PET scanners are sophisticated and highly sensitive biomedical imaging devices that can produce highly quantitative images showing the 3-dimensional distribution of radiotracers inside the body. PET scanners are commonly integrated with x-ray CT or MRI scanners in hybrid devices that can provide both molecular imaging (PET) and anatomical imaging (CT or MRI). Despite decades of development, significant opportunities still exist to make major improvements in the performance of PET systems for a variety of clinical and research tasks. These opportunities stem from new ideas and concepts, as well as a range of enabling technologies and methodologies. In this paper, we review current state of the art in PET instrumentation, detectors and systems, describe the major limitations in PET as currently practiced, and offer our own personal insights into some of the recent and emerging technological innovations that we believe will impact the field. Our focus is on the technical aspects of PET imaging, specifically detectors and system design, and the opportunity and necessity to move closer to PET systems for diagnostic patient use and in vivo biomedical research that truly approach the physical performance limits while remaining mindful of imaging time, radiation dose, and cost. However, other key endeavors, which are not covered here, including innovations in reconstruction and modeling methodology, radiotracer development, and expanding the range of clinical and research applications, also will play an equally important, if not more important, role in defining the future of the field.