Background
Copper (Cu) is an essential metal mediating a variety of vital biological reactions with its redox property. Its dyshomeostasis has been associated with accelerated cognitive decline and neurodegenerative disorders, such as Alzheimer's disease (AD). However, underlying neurotoxic mechanisms elicited by dysregulated Cu remain largely elusive. We and others previously demonstrated that exposure to Cu in drinking water significantly exacerbated pathological hallmarks of AD and pro-inflammatory activation of microglia, coupled with impaired phagocytic capacity, in mouse models of AD.Methods
In the present study, we extended our investigation to evaluate whether chronic Cu exposure to wild-type (WT) and J20 mouse model of AD perturbs homeostatic dynamics of microglia and contributes to accelerated transformation of microglia towards degenerative phenotypes that are closely associated with neurodegeneration. We further looked for evidence of alterations in the microglial morphology and spatial memory of the Cu-exposed mice to assess the extent of the Cu toxicity.Results
We find that chronic Cu exposure to pre-pathological J20 mice upregulates the translation of degenerative genes and represses homeostatic genes within microglia even in the absence amyloid-beta plaques. We also observe similar expression signatures in Cu-exposed WT mice, suggesting that excess Cu exposure alone could lead to perturbed microglial homeostatic phenotypes and contribute to accelerated cognitive decline.Conclusion
Our findings highlight the risk of chronic Cu exposure on cognitive decline and altered microglia activation towards degenerative phenotypes. These changes may represent one of the key mechanisms linking Cu exposure or its dyshomeostasis to an increased risk for AD.