BACKGROUND: Aleutian mink disease virus (AMDV) is the cause of a chronic immune complex disease, Aleutian disease (AD), which is common in mink-producing countries. In 2005, implementation of an AMDV eradication programme in Finland created a need for an automated high-throughput assay. The aim of this study was to validate an AMDV-VP2 -recombinant antigen ELISA, which we developed earlier, in an automated assay format for the detection of anti-AMDV antibodies in mink blood and to determine the accuracy of this test compared with the reference standard (counter-current immunoelectrophoresis, CIEP). METHODS: A blood sampling method based on filter paper 12-strips (blood combs) and a device to introduce these strips to an ELISA plate for elution of the samples were developed. Blood and serum samples were collected from 761 mink from two farms with low (2%) and high (81%) seroprevalences of AMDV infection in 2008. ELISA sensitivity and specificity were estimated with a Bayesian 2-test 2-population model that allowed for conditional dependence between CIEP and ELISA. Agreement between the two tests was assessed with kappa statistic and proportion agreement. RESULTS: The sensitivity and specificity of the automated ELISA system were estimated to be 96.2% and 98.4%, respectively. Agreement between CIEP and ELISA was high, with a kappa value of 0.976 and overall proportion agreement of 98.8%. CONCLUSIONS: The automated ELISA system combined with blood comb sampling is an accurate test format for the detection of anti-AMDV antibodies in mink blood and offers several advantages, including improved blood sampling and data handling, fast sample throughput time, and reductions in costs and labour inputs.