We explore the use of Quantum Machine Learning (QML) for anomaly detection at the Large Hadron Collider (LHC). In particular, we explore a semi-supervised approach in the four-lepton final state where simulations are reliable enough for a direct background prediction. This is a representative task where classification needs to be performed using small training datasets - a regime that has been suggested for a quantum advantage. We find that Classical Machine Learning (CML) benchmarks outperform standard QML algorithms and are able to automatically identify the presence of anomalous events injected into otherwise background-only datasets.