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Identification of Genetic Loci Jointly Influencing
Schizophrenia Risk and the Cognitive Traits
of Verbal-Numerical Reasoning, Reaction Time,
and General Cognitive Function
Olav B. Smeland, MD, PhD; Oleksandr Frei, PhD; Karolina Kauppi, PhD; W. David Hill, PhD; Wen Li, PhD; Yunpeng Wang, PhD; Florian Krull, PhD;
Francesco Bettella, PhD; Jon A. Eriksen, PhD; Aree Witoelar, PhD; Gail Davies, PhD; Chun C. Fan, MD; Wesley K. Thompson, PhD; Max Lam, PhD;
Todd Lencz, PhD; Chi-Hua Chen, PhD; Torill Ueland, PhD; Erik G. Jönsson, MD, PhD; Srdjan Djurovic, PhD; Ian J. Deary, PhD; Anders M. Dale, PhD;
Ole A. Andreassen, MD, PhD; for the NeuroCHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Cognitive Working Group

IMPORTANCE Schizophrenia is associated with widespread cognitive impairments. Although
cognitive deficits are one of the factors most strongly associated with functional outcome in
schizophrenia, current treatment strategies largely fail to ameliorate these impairments. To
develop more efficient treatment strategies in patients with schizophrenia, a better
understanding of the pathogenesis of these cognitive deficits is needed. Accumulating
evidence indicates that genetic risk of schizophrenia may contribute to cognitive dysfunction.

OBJECTIVE To identify genomic regions jointly influencing schizophrenia and the cognitive
domains of reaction time and verbal-numerical reasoning, as well as general cognitive function, a
phenotype that captures the shared variation in performance across cognitive domains.

DESIGN, SETTING, AND PARTICIPANTS Combining data from genome-wide association studies
from multiple phenotypes using conditional false discovery rate analysis provides increased
power to discover genetic variants and could elucidate shared molecular genetic
mechanisms. Data from the following genome-wide association studies, published from July
24, 2014, to January 17, 2017, were combined: schizophrenia in the Psychiatric Genomics
Consortium cohort (n = 79 757 [cases, 34 486; controls, 45 271]); verbal-numerical reasoning
(n = 36 035) and reaction time (n = 111 483) in the UK Biobank cohort; and general cognitive
function in CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology)
(n = 53 949) and COGENT (Cognitive Genomics Consortium) (n = 27 888).

MAIN OUTCOMES AND MEASURES Genetic loci identified by conditional false discovery rate
analysis. Brain messenger RNA expression and brain expression quantitative trait locus
functionality were determined.

RESULTS Among the participants in the genome-wide association studies, 21 loci jointly
influencing schizophrenia and cognitive traits were identified: 2 loci shared between
schizophrenia and verbal-numerical reasoning, 6 loci shared between schizophrenia and
reaction time, and 14 loci shared between schizophrenia and general cognitive function. One
locus was shared between schizophrenia and 2 cognitive traits and represented the strongest
shared signal detected (nearest gene TCF20; chromosome 22q13.2), and was shared between
schizophrenia (z score, 5.01; P = 5.53 × 10−7), general cognitive function (z score, –4.43;
P = 9.42 × 10−6), and verbal-numerical reasoning (z score, –5.43; P = 5.64 × 10−8). For 18 loci,
schizophrenia risk alleles were associated with poorer cognitive performance. The implicated
genes are expressed in the developmental and adult human brain. Replicable expression
quantitative trait locus functionality was identified for 4 loci in the adult human brain.

CONCLUSIONS AND RELEVANCE The discovered loci improve the understanding of the
common genetic basis underlying schizophrenia and cognitive function, suggesting novel
molecular genetic mechanisms.
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S chizophrenia is a severe, chronic psychiatric disorder that
ranks among the leading causes of disability worldwide.1

Although the diagnosis of schizophrenia is based on the
presence of positive and negative symptoms, cognitive dys-
function is regarded as a core component of the disorder.2-4

Compared with healthy individuals, patients with schizophre-
nia display widespread cognitive impairments including defi-
cits in learning, memory, processing speed, attention, and ex-
ecutive functioning.3,5,6 Cognitive dysfunction often precedes
the onset of psychosis by several years7,8 and is an important
factor associated with functional outcomes in schizophrenia.2,9

Despite this fact, current treatment strategies largely fail to ame-
liorate the cognitive deficits in patients with schizophrenia.2,4,10

To develop more efficient treatment strategies for patients with
schizophrenia, a better understanding of the pathogenesis
underlying these cognitive deficits is needed.

Accumulating evidence indicates that the genetic risk of
schizophrenia may contribute to cognitive impairment.11

Unaffected relatives of patients with schizophrenia display cog-
nitive deficits,12-14 and family and twin studies find that the
genetic liabilities of schizophrenia and cognitive abilities
covary.15,16 Further evidence comes from analyses of genome-
wide association study (GWAS) data. Polygenic risk scores
based on GWAS data for schizophrenia are associated with
decreased cognitive abilities in nonclinical cohorts,17-21 while
polygenic risk for lower cognitive abilities is associated with
increased likelihood of schizophrenia.18,19 Moreover, recent
analyses of GWAS data estimated significant negative corre-
lations between the genomic architectures of schizophrenia
and different cognitive traits known to be affected in schizo-
phrenia, including general cognitive function (GCF), verbal-
numerical reasoning (VNR), and reaction time (RT).19,22-24 How-
ever, despite the robust evidence for a common genetic basis
between cognitive dysfunction and schizophrenia, the spe-
cific gene variants jointly influencing schizophrenia and cog-
nitive traits remain to be determined.11

Analyses of GWAS data have estimated single-nucleotide
polymorphism (SNP)–based heritabilities of 33% for
schizophrenia,25 28% for GCF,26 31% for VNR,27 and 11% for RT.27

Todate,5genome-widesignificantlociareidentifiedforGCF,24,26

3 loci for VNR,27 and 2 loci for RT,27 while more than 100 loci are
identified for schizophrenia.28 However, despite the assembly
of very large GWAS cohorts, the identified genome-wide signifi-
cant loci explain only a small fraction of the heritability of these
phenotypes.24,26-28 To improve discovery of genetic variants in
polygenic human disorders, we have developed a conditional
false discovery rate (cFDR) statistical approach that includes all
available variants in 2 independent GWASs.29-31 The cFDR
method enables combined analysis of GWAS data with in-
creased power to discover overlapping genetic variants and could
elucidate shared molecular genetic mechanisms.29-31 Using this
approach, studies have identified shared loci between
schizophrenia,32-35 Alzheimer disease,36 immune-related
diseases,29,33,37 and associated phenotypes and substantially in-
creasedthenumberofidentifiedriskloci.Here,weusedthesame
statistical approach, taking advantage of several large
GWASs,24,26-28 to identify common genetic variants shared be-
tween schizophrenia and VNR, RT, and GCF.

Methods

Participant Samples
We obtained GWAS results in the form of summary statistics
(P values and z scores). Data on schizophrenia were acquired
from the Psychiatric Genomics Consortium (n = 79 757),28 data
on GCF were from the Cohorts for Heart and Aging Research
in Genomic Epidemiology (CHARGE) (n = 53 949)26 and the
Cognitive Genomics Consortium (COGENT) (n = 27 888),24 and
data on VNR (n = 36 035), and RT (n = 111 483) were from the
UK Biobank.27 These studies were published from July 24,
2014, to January 17, 2017. Details of the inclusion criteria, phe-
notype characteristics, and genotyping are described in the
original publications.24,26-28 Overlapping cohorts (n = 7410)
between CHARGE and COGENT were excluded from the
COGENT GWAS (n = 35 298 in the full cohort).24 Participants
from the Betula Study and the Hunter Community Study were
involved in both the schizophrenia GWAS28 and the GCF GWAS
by CHARGE,26 thus possibly implicating that 611 participants
used as controls in the schizophrenia GWAS contributed to the
CHARGE GWAS. To avoid any potential bias, we excluded the
Betula Study and Hunter Community Study cohorts (n = 2558)
from the schizophrenia data. All P values were corrected for
inflation using a genomic inflation control procedure.32,34,37

All GWASs performed and investigated in the present study
were approved by the local ethics committees, and informed
consent was obtained from all participants. Furthermore, the
Norwegian Institutional Review Board for the South-East Nor-
way Region has evaluated the current protocol and found that
no additional institutional review board approval was needed
because no individual data were used.

Cognitive Phenotypes
We analyzed adequately powered GWASs24,26,27 for cognitive
phenotypes known to be affected in schizophrenia3,5,6: GCF,
RT, and VNR. General cognitive function accounts for approxi-
mately 40% to 50% of the variation across cognitive
domains.24,26 For each cohort contributing to the GWAS meta-
analyses on GCF by CHARGE26 and COGENT,24 the GCF phe-
notype was constructed using the first unrotated component
extracted from a principal components analysis of the indi-
vidual cognitive test scores.24,26 The RT test was a computer-
ized “Snap” game, in which participants were to press a but-
ton as quickly as possible when symbols of 2 “cards” on a

Key Points
Question What genetic loci jointly influence schizophrenia and
cognitive function?

Findings In this analysis of genome-wide association studies on
schizophrenia and cognitive traits in more than 250 000
participants, 21 genomic regions were found to be shared between
schizophrenia and cognitive traits.

Meaning The findings provide new insights into the common
genetic basis underlying schizophrenia and cognitive function,
suggesting novel molecular genetic mechanisms.
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computer screen were matching.27 There were 8 experimen-
tal trials, of which 4 had matching symbols. Each partici-
pant’s RT score was his or her mean time to press the button
for these 4 matching trials. Verbal-numerical reasoning was
measured using a 13-item test assessing verbal and arithmeti-
cal deduction.27 The test included 6 verbal and 7 numerical
questions, all with multiple-choice answers, and had a total
time limit of 2 minutes. For full details of each test, see the origi-
nal publications.24,26,27

Statistical Analysis
To assess for pleiotropic enrichment, we constructed condi-
tional quantile-quantile plots, which compare the associa-
tion with a primary trait (eg, schizophrenia) across all SNPs and
within SNP strata determined by their association with a sec-
ondary trait (eg, GCF), and provide a visual pattern of overlap
in SNP associations. For given associated phenotypes A and
B, pleiotropic enrichment of phenotype A with phenotype B
exists if the proportion of SNPs or genes associated with phe-
notype A increases as a function of increased association with
phenotype B. The enrichment seen can be directly inter-
preted in terms of true discovery rate (1 − FDR). To identify
shared loci between schizophrenia and cognitive traits, we used
the cFDR framework.29,32-34,36,37 The cFDR is an extension of
the standard FDR and incorporates information from GWAS
summary statistics of a secondary phenotype to rerank the test
statistics. We identified shared loci at a conjunctional FDR (con-
jFDR) less than .05, which is given by the maximum between
the cFDRs for both phenotypes.38 The conjFDR analysis is a
conservative approach requiring that loci exceed a cFDR sig-
nificance threshold for 2 traits jointly.32,38 Because the cogni-
tive traits investigated are not independent, we did not per-
form a Bonferroni correction. The risk loci were annotated to
the closest gene. Given the long-range linkage disequilibrium
(LD) within the extended major histocompatibility complex and
its strong association with schizophrenia,28 we excluded SNPs
in this region (genome build 19 location, 25652429-
33368333) and SNPs in LD (r2>0.1) with such SNPs before fit-
ting the cFDR model.39 For details, see the eAppendix in the
Supplement. The significance threshold for identification of
shared loci was conjFDR < .05; for conditional loci, cFDR < .01;
for gene set enrichment, FDR < .05; and for expression quan-
titative trait locus (eQTL) functionality, FDR < .05.

Biological Context
We evaluated the biological context of the identified genetic
variants. First, we determined the distribution of messenger
RNA expression in the developing and adult human brain using
data from the Human Brain Transcriptome Project40 and The
UK Brain Expression Consortium (UKBEC).41 Second, we as-
sessed whether the conjunctional SNPs have brain eQTL func-
tionality using Genotype-Tissue Expression (GTEx)42 and
UKBEC (UK Brain Expression Consortium)41 data. Finally, we
determined whether genes in the loci shared between schizo-
phrenia and GCF were enriched for reconstituted versions of
gene sets using the computational tool Data-driven Expres-
sion Prioritized Integration for Complex Traits (DEPICT).43 For
details, see the eAppendix in the Supplement.

Results

We observed SNP enrichment for schizophrenia with VNR, RT,
and GCF in the CHARGE and COGENT cohorts, indicating poly-
genic overlap between these phenotypes (Figure 1), in line with
results of previous work.15,18-20,22-24 The reverse conditional
quantile-quantile plots demonstrate consistent enrichment in
associations with GCF, VNR, and RT as a function of schizo-
phrenia associations (eFigure 1 in the Supplement). To in-
crease discovery of SNPs associated with cognitive traits, we
ranked GCF, VNR, and RT SNPs conditional on their genetic as-
sociation with schizophrenia (cFDR). At cFDR less than .01, we
identified 8 loci associated with GCF in the CHARGE cohort, 3
loci associated with GCF in the COGENT cohort, 5 loci associ-
ated with VNR, and 4 loci associated with RT (eTable 1 in the
Supplement). Figure 2 shows cFDR Manhattan plots for GCF,
VNR, and RT conditional on schizophrenia, showing all SNPs
with a cFDR less than .01 within an LD block in relation to their
chromosomal location. The figures demonstrate the in-
creased power for SNP discovery gained by conditioning on as-
sociation with schizophrenia.

To provide a comprehensive, unselected map of shared loci
between schizophrenia and GCF, VNR, and RT, we performed
a conjFDR analysis (Figure 3). Based on a conjFDR less than
.05, we identified 21 independent genetic loci shared be-
tween schizophrenia and cognitive traits. Specifically, we iden-
tified 14 loci shared between schizophrenia and GCF in the
CHARGE cohort, 2 loci shared between schizophrenia and VNR,
and 6 loci shared between schizophrenia and RT, on a total of
13 chromosomes (1 locus was shared between schizophrenia
and 2 cognitive traits) (Table).26-28 We detected no loci shared
between schizophrenia and GCF in the COGENT cohort. The
strongest shared signal detected (nearest gene TCF20 [OMIM
603107]; chromosome 22q13.2) was shared between schizo-
phrenia (z score, 5.01; P = 5.53 × 10−7), GCF (z score, –4.43;
P = 9.42 × 10−6), and VNR (z score, –5.43; P = 5.64 × 10−8), dem-
onstrating the importance of the locus for brain function. Thir-
teen of 21 conjunctional loci have P values less than .05 in at
least 2 cognitive traits. To visualize the shared loci, we con-
structed a conjFDR Manhattan plot (Figure 3). All SNPs with-
out pruning are shown, and the strongest signal in each LD
block is encircled in black. The enlarged data points repre-
sent the SNPs at conjFDR less than .05, whereas the small points
represent other SNPs. On the basis of 1000 Genomes Project
LD structure, significant SNPs identified by conjFDR less than
.05 were clustered into LD blocks at the LD level of r2 > 0.1.
These blocks are numbered in the Table.26-28 Any block may
contain more than 1 SNP. Genes close to each locus were ob-
tained from the National Center for Biotechnology Informa-
tion gene database (https://www.ncbi.nlm.nih.gov).

We evaluated the directionality of allelic effects in the loci
shared between schizophrenia and cognitive traits by inves-
tigating their z scores (Table).26-28 For 10 loci shared between
schizophrenia and GCF, we found opposite effect directions
in the phenotypes, while rs12521503 (SSBP2 [OMIM 607389])
showed concordant effect directions. Owing to T/A polymor-
phisms, the effect directions were ambiguous for rs13024343
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(CTNNA2 [OMIM 114025]), rs1545424 (TBC1D5 [OMIM
615740]), and rs12253987 (NEURL [OMIM 603804]). Single-
nucleotide polymorphisms in LD with rs13024343 show con-
cordant associations in schizophrenia and GCF, while SNPs in
LD with rs1545424 and rs12253987 show inverse associations
in the phenotypes (eTable 2 in the Supplement). Both loci
shared between schizophrenia and VNR showed opposite ef-
fect directions in the phenotypes. For loci shared between
schizophrenia and RT, 4 showed concordant associations in the
phenotypes (ie, the schizophrenia risk alleles are associated
with slower RT), while rs67338739 (KCNJ3 [OMIM 601534])
showed opposite effect directions. The effect directions were
ambiguous for rs7857165 (PHF2 [OMIM 604351]; T/A polymor-
phism). Single-nucleotide polymorphisms in LD with rs7857165
show concordant associations in schizophrenia and RT (eTable
2 in the Supplement). The overall negative correlation be-
tween schizophrenia risk and cognitive performance was con-
sistent among shared loci at conjFDR less than .10 (eTable 3
in the Supplement). Of note, identification of loci with con-
jFDR less than .10 implicated potential overlapping associa-
tions between schizophrenia and GCF located within the ma-
jor histocompatibility complex region (eTable 3 in the
Supplement). However, this subthreshold finding must be in-
terpreted cautiously given the complex LD in this region.

Next, we determined the messenger RNA expression dis-
tribution in the human brain for genes implicated in the con-
jFDR analysis. Expression data provided by UKBEC41 demon-

strate that the identified genes are globally expressed in the
adult human brain (eFigure 2 in the Supplement). Data for RNA
gene DQ584120 (GenBank DQ584120.1) were not available in
this data set. Expression data from the Human Brain Tran-
scriptome Project40 show that the genes are globally ex-
pressed in the developing and adult human brain (eFigure 3
in the Supplement). Data for ZSWIM6 (OMIM 615951) and
DQ584120 were not available in this data set.40 We further in-
vestigated the eQTL functionality of the identified conjunc-
tional loci. Using GTEx42 data, we identified significant eQTL
associations for 5 SNPs in human brain tissue (eTable 4 in the
Supplement). We assessed the replicability of these brain-
specific eQTLs using UKBEC41 data and identified significant
replicable eQTL functionality for the following 4 SNPs:
rs12993822 for KCNJ3 in the cerebellum, rs4282054 for GNL3
(OMIM 608011) in the frontal cortex and cerebellum, rs524908
for STRC (OMIM 606440) in the frontal cortex, and rs134873
for both CYP2D6 (OMIM 124030) in several brain regions and
for NAGA (OMIM 104170) in the cerebellum and frontal cor-
tex (eTable 5 in the Supplement). Not all brain regions were
jointly examined by GTEx42 and UKBEC.41

The DEPICT analysis43 revealed multiple gene sets en-
riched for genes in loci shared between schizophrenia and GCF.
However, the results did not remain significant after correc-
tion for multiple comparisons, which may reflect the rela-
tively sparse number of analyzed loci and/or the subtlety of
the biological signal. The top-ranked gene sets were “NFYA

Figure 1. Polygenic Overlap Between Schizophrenia (SCZ) and General Cognitive Function (GCF),
Reaction Time (RT), and Verbal-Numerical Reasoning (VNR)
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(OMIM 189903) subnetwork,” “increased neuron apoptosis,”
and “chromatin remodeling complex” (eFigure 4 in the Supple-
ment). NFYA encodes the sequence-specific DNA-binding sub-
unit of the transcription factor NF-Y,45 a key regulator of dif-
ferentiation in various proliferative cells. NF-Y is also active in
mature neurons and may be involved in neurodegeneration.46

Discussion
In the present study, we analyzed GWAS data using cFDR
analysis and identified 21 genetic variants jointly influencing
risk of schizophrenia and the cognitive traits of GCF, VNR,
and RT. We found that genetic enrichment in cognitive traits
based on SNP association with schizophrenia results in
improved statistical power for gene discovery and increased
gene discovery for these cognitive traits. Most of the loci
found to be shared between schizophrenia and cognitive
traits (18 of 21) show a negative correlation between risk of
schizophrenia and cognitive performance, in line with the
observed cognitive dysfunction in schizophrenia3,5,6 and

prior genetic studies.15,18-20,22-24,44 Altogether, this study
provides new insights into the common genetic basis of
schizophrenia and cognitive traits, suggesting novel molecu-
lar genetic mechanisms.

Recent studies applying LD score regression reported sig-
nificant negative correlations between the genomic architec-
tures of schizophrenia and GCF,23,24 VNR,22 and RT.22 Here, we
were able to dissect these coheritabilities by identifying mul-
tiple gene loci inversely associated with schizophrenia and
these cognitive traits (Table).26-28 A total of 13 of 21 loci shared
between schizophrenia and cognitive traits have a P value less
than .05 in at least 2 cognitive traits, demonstrating consis-
tent associations of the identified loci across cognitive do-
mains (Table)26-28 and supporting the credibility of the
cFDR approach. Among the shared loci, 13 are novel for
schizophrenia.28 The overall negative association between al-
lelic effect directions for schizophrenia and cognitive perfor-
mance was consistent among conjunctional loci identified at
a relaxed significance threshold (conjFDR < .10; eTable 3 in the
Supplement). The low SNP enrichment observed with GCF in
the COGENT cohort is likely attributable to the smaller sample

Figure 2. Conditional False Discovery Rate (cFDR) Manhattan Plots of Conditional −log10 (FDR) Values
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A, General cognitive function in CHARGE (Cohorts for Heart and Aging Research
in Genomic Epidemiology) conditioned on schizophrenia (SCZ). B, General
cognitive function in COGENT (Cognitive Genomics Consortium) conditioned
on SCZ. C, Reaction time conditioned on SCZ. D, Verbal-numerical reasoning
conditioned on SCZ. Unconditioned FDR values are shown in black, cFDR values

in red. Single-nucleotide polymorphisms (SNPs) with conditional −log10 (FDR)
higher than 2.0 (horizontal dotted line) (ie, cFDR < .01) are shown with large
points. A black line around the large points indicates the most significant SNP in
each linkage disequilibrium block; this SNP is annotated with the closest gene.
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size of this cohort (n = 27 888)24 compared with the CHARGE
cohort (n = 53 949).26 We identified 3 loci with the same ef-
fect directions in schizophrenia and cognitive skills (rs13024343
and rs12521503 shared between schizophrenia and GCF, and
rs67338739 shared between schizophrenia and RT), demon-
strating that some schizophrenia risk loci may increase the like-
lihood of better cognitive performance. These results empha-
size the complexity of the shared genetic effects influencing
schizophrenia and cognitive function. Although many schizo-
phrenia risk loci may not affect cognitive function, the find-
ings may shed light on the positive genetic correlation be-
tween schizophrenia and measures of creativity47 and
education,35 and why some patients with schizophrenia ex-
hibit normal cognitive skills.48 Given that schizophrenia typi-
cally manifests in adolescence, while GCF, VNR, and RT were
measured in adults older than 40 years of age,26,27 the con-
junctional loci appear to influence brain function across a per-
son’s life span. This finding is supported by the messenger RNA
expression data showing that the implicated genes are glob-
ally expressed in the developing and adult human brain (eFig-
ure 3 in the Supplement), and complies with previous work re-
porting genetic overlap between schizophrenia and cognitive
abilities in middle and older age.17,20,23 Cognitive perfor-
mance of participants in the CHARGE26 and UK Biobank
GWASs27 may have been susceptible to age-associated cogni-
tive decline or subclinical neurodegenerative conditions.26

Moreover, the genetics underlying cognitive variation in
healthy individuals might differ across their life spans. Given
that schizophrenia manifests in adolescence and cognitive de-
cline often precedes the onset of psychosis by many years,7,8

an evaluation of shared genetic effects between schizophre-
nia and cognitive function measured in younger people is
warranted.

The strongest signal of shared genetic effects between
schizophrenia and cognitive traits was detected on chromo-
some 22q13.2, at a locus that contains many genes (nearest gene
TCF20; Table26-28). This locus was shared between schizo-
phrenia, GCF, and VNR and was genome-wide significant in
the primary GWASs on schizophrenia28 and VNR,27 but is a
novel finding for GCF. TCF20 encodes a widely expressed tran-
scriptional coregulator, and TCF20 mutations are associated
with autism and intellectual disability.49 Using data from
GTEx42 and UKBEC,41 we identified replicable eQTL function-
ality of the 22q13.2 locus for genes CYP2D6 and NAGA in sev-
eral human brain regions (eTables 4 and 5 in the Supple-
ment). The allele G of rs134873, which is associated with
increased risk of schizophrenia and lower GCF and VNR scores,
was associated with higher expression of NAGA and lower ex-
pression of CYP2D6. NAGA encodes a lysosomal enzyme that
modifies glycoconjugates,50 and CYP2D6 encodes a cyto-
chrome P450 enzyme that metabolizes a broad range of drugs,
including antipsychotics,51 and may also be involved in the me-
tabolism of neurotransmitters, including serotonin and
dopamine.52 Another notable locus shared between schizo-
phrenia and GCF is the intronic variant within CACNA1C (OMIM
114205) (rs2238057). Genetic variation in CACNA1C is ro-
bustly implicated in schizophrenia,25,28,53 and it is associated
with cognitive impairment in patients with schizophrenia and
in healthy individuals.54,55 We also found that a locus at AKAP6
(OMIM 604691) (rs12885467, 3′ UTR variant) jointly influ-
ences schizophrenia and GCF. This locus reached genome-
wide significance for GCF in the CHARGE cohort26 and is rep-
licated across all cognitive traits. The number of shared loci
identified here is consistent with results of previous conjFDR
analyses32,34,35 and depends on both the extent of genetic over-
lap between traits and the power of the investigated GWASs.

Figure 3. Conjunctional False Discovery Rate (FDR) Manhattan Plot of Conjunctional −log10 (FDR) Values
for Schizophrenia (SCZ) and General Cognitive Function, Verbal-Numerical Reasoning, or Reaction Time
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More shared loci between schizophrenia and cognitive traits
are expected to be uncovered when larger GWAS samples are
available.

Limitations
As with all GWAS findings, any SNP represents through LD a
genomic region including potentially many causal SNPs. Hence,
further studies are required to determine the true causal vari-
ants underlying the shared associations detected here, and
whether the same causal variants are involved in schizophre-
nia and cognitive traits.56

Conclusions

We were able to increase discovery of genetic loci jointly in-
fluencing schizophrenia and cognitive traits using the cFDR
approach. The findings provide new insights into the coheri-
tability underlying schizophrenia and cognitive traits beyond
their known genetic correlation.15,18-20,23,24,44 The discov-
ered loci can be used as resources and to guide further efforts
to disentangle the neurobiological basis underlying schizo-
phrenia and cognitive function.
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