
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Integrated AI Security and Efficiency: Trustworthiness, Trojan Detection, and Performance
Acceleration

Permalink
https://escholarship.org/uc/item/9zx484kt

Author
ZHANG, XINQIAO

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9zx484kt
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

SAN DIEGO STATE UNIVERSITY

Integrated AI Security and Efficiency: Trustworthiness, Trojan Detection, and Performance
Acceleration

A Dissertation submitted in partial satisfaction of the requirements
for the degree Doctor of Philosophy

in

Engineering Science (Electrical and Computer Engineering)

by

Xinqiao Zhang

Committee in charge:

University of California San Diego

Professor Farinaz Koushanfar, Co-Chair
Professor Peter Gerstoft
Professor Tara Javidi
Professor Jishen Zhao

San Diego State University

Professor Ke Huang, Co-Chair
Professor Junfei Xie

2024

Copyright

Xinqiao Zhang, 2024

All rights reserved.

The dissertation of Xinqiao Zhang is approved, and it is acceptable in quality and form for

publication on microfilm and electronically.

Co-chair

Co-chair

University of California San Diego

San Diego State University

2024

iii

DEDICATION

To my beloved wife, parents, and friends for their unwavering support and encouragement.

iv

EPIGRAPH

Hardships often prepare ordinary people for an extraordinary destiny.

C.S. Lewis

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xiii

Acknowledgements . xiv

Vita . xvi

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1
1.1 Challenge . 1
1.2 Solution . 3
1.3 Acknowledgements . 8

Chapter 2 Trojan Detection Algorithms in Deep Neural Networks and Hardware 9
2.1 Introduction . 9
2.2 Related Work . 12

2.2.1 Model poisoning and adversarial attacks . 12
2.2.2 Existing work on Trojan defense . 14
2.2.3 FPGA Acceleration Techniques . 16

2.3 Threat Model . 17
2.3.1 Attack Methodology . 18

2.4 Proposed defense method . 21
2.4.1 Trigger Characterization . 21
2.4.2 DeepTD Framework . 24

2.5 DeepTD Hardware acceleration . 25
2.5.1 Architecture and Optimization . 26
2.5.2 FPGA Modules . 26

2.6 Experiments . 29
2.6.1 Setup and Datasets . 29
2.6.2 Evaluation Matrix . 30
2.6.3 Results . 30

2.7 Hardware Trojan Detection Introduction . 34
2.8 Preliminaries and Backgrounds . 37

vi

2.8.1 Hardware Trojan Attacks . 37
2.8.2 Hardware Trojan Detection . 38
2.8.3 Reinforcement Learning . 40

2.9 AdaTest Overview . 41
2.9.1 Motivation and Challenges . 42
2.9.2 Threat Model . 43
2.9.3 Global Flow . 44

2.10 AdaTest Algorithm Design . 46
2.10.1 Circuit Profiling . 47
2.10.2 Adaptive RL-based Test Pattern Generation . 48

2.11 AdaTest Architecture Design . 54
2.11.1 Architecture Overview . 55
2.11.2 AdaTest Circuit Emulation . 56
2.11.3 AdaTest Reward Computing Engine . 57

2.12 Evaluations . 58
2.12.1 Detection Effectiveness . 61
2.12.2 Detection Efficiency . 64
2.12.3 AdaTest Architecture Evaluation . 64

2.13 Future Work . 65
2.14 Conclusion . 66
2.15 Acknowledgements . 67

Chapter 3 A scalable algorithm to improve the efficiency of Binary Neural Network . 68
3.1 Introduction . 68
3.2 Scenario and Threat Model . 71
3.3 Background . 72

3.3.1 Secure Function Evaluation Protocol. 72
3.3.2 Additive Secret Sharing (AS) . 72
3.3.3 Oblivious Transfer (OT) . 73
3.3.4 Garbled Circuit (GC) . 73

3.4 Cryptographically Secure BNN Inference . 74
3.4.1 Linear Layers . 75
3.4.2 Nonlinear Layers . 76
3.4.3 Communication Cost . 78

3.5 Training Adaptive BNN . 79
3.6 Evaluations . 80

3.6.1 Evaluating Flexible BNNs . 81
3.6.2 Oblivious Inference . 82
3.6.3 Evaluation on Private Tasks . 85

3.7 Related Work . 86
3.8 Future Work . 88
3.9 Conclusion . 88
3.10 Acknowledgements . 89

vii

Chapter 4 Advancing Robustness in Federated Learning Environments 90
4.1 Introduction . 90
4.2 Cryptographic Primitives . 93
4.3 Methodology . 94

4.3.1 zPROBE Overview . 95
4.3.2 zPROBE Secure Aggregation . 96
4.3.3 Establishing Robustness . 97
4.3.4 Probabilistic Optimizations . 99

4.4 Experiments . 100
4.4.1 Experimental Setup . 100
4.4.2 Defense Performance . 102
4.4.3 Runtime and Complexity Analysis . 104
4.4.4 Evaluation on large dataset . 105
4.4.5 Evaluation on additional Byzantine attacks . 106
4.4.6 Attribute inference attack . 107

4.5 Sensitivity Analysis . 107
4.5.1 Effect of Number of Clients on zPROBE Runtime 107
4.5.2 Malicious Seed Modification . 110
4.5.3 Effect of Aggregation Method on Accuracy . 110
4.5.4 Effect of Cluster Size on Inversion Attack . 112
4.5.5 zPROBE Test Accuracy . 113
4.5.6 Discussion . 113
4.5.7 Security Analysis . 115

4.6 Future Work . 116
4.7 Conclusion . 117
4.8 Acknowledgements . 117

Bibliography . 118

viii

LIST OF FIGURES

Figure 1.1. An example of backdoor attacks. 2

Figure 1.2. High-level description of robust and private aggregation. Step 1: The server
randomly clusters the users, obtains cluster means µi, and computes the
median of cluster means (µis).] . 4

Figure 1.3. High-level description of robust and private aggregation. Step 2: Each
client provides a ZKP attesting that their update is within the threshold
from the median of cluster means. 4

Figure 1.4. High-level description of our proposed robust and private aggregation.
Step 3: Clients marked as benign participate in a final round of secure
aggregation, and the server obtains the result. 5

Figure 1.5. The general flow of Trojan Detection framework. 6

Figure 2.1. Histogram of number of Effective Triggers: Estimation for Infected (Red)
vs. Uninfected (Green) Models . 22

Figure 2.2. The general flow of DeepTD’s framework. 23

Figure 2.3. One FPGA design of DeepTD. 25

Figure 2.4. Average Runtime and Power consumption comparison with CPU, GPU,
and FPGA implementation . 33

Figure 2.5. High-level usage of AdaTest for hardware-assisted security assurance
against Trojan attacks. 36

Figure 2.6. Demonstration of the Hardware Trojan attack. 37

Figure 2.7. Illustration of the agent-environment interaction in reinforcement learning. 40

Figure 2.8. Global flow of AdaTest framework for Hardware Trojan detection. 44

Figure 2.9. Overview of AdaTest architecture design. The overall layout of the
hardware system (a) and the implementation of Reward Computation
Engines (b) are shown. 55

Figure 2.10. AdaTest’s hardware accelerator employs pipelining optimization to gen-
erate test patterns online for HT detection. 57

Figure 2.11. Trojan detection rates of AdaTest and prior works on various benchmarks. 60

ix

Figure 2.12. The rare node coverage of AdaTest versus the number of executed itera-
tions on c3540 benchmark. 63

Figure 2.13. Test set generation time comparison between AdaTest and prior works.
The runtime shown by the y-axis is represented in the log scale. 63

Figure 2.14. AdaTest’s scalability to the number of DAG reward computing engines.
The speedup is near-linear with NCE on large circuits where reward evalua-
tion is the computation bottleneck. 65

Figure 3.1. Accuracy and runtime of our oblivious BNN inference, compared with
contemporary research with the same server-client scenario setting as ours
(two-party, honest but curious). Among these, XONN [1] evaluates BNNs,
whereas Cryptflow2 [2], Delphi [3], SafeNet [4], and AutoPrivacy [5]
evaluate non-binary models. 70

Figure 3.2. The server and client use a secure function evaluation (SFE) protocol to
perform oblivious inference. At the end of the protocol, the client learns
y = f (θ ,x) without learning the server’s parameters θ or revealing x to the
server. 71

Figure 3.3. Illustration of plaintext inference (top) and our proposed equivalent oblivi-
ous inference (bottom). We denote linear layers by CONV and FC, Batch-
Normalization by BN, Binary Activation by BA, and Max-Pooling by MP.
Here, X i, Y i, and θ i are the linear layer’s input, output, and weight/bias
parameters, respectively. η i denotes BN parameters, and Ŷ is the output of
binary activation. The client and the server perform the oblivious inference.
To hide information, the input and output of a linear layer are in the AS
domain, e.g., server and client have JyiKA and JyiKB rather than yi. To
evaluate nonlinear operations, the tuple (JyiKA,JyiKB) is first converted to
GC ciphers of yi. Then, GC is utilized to evaluate BN, BA, and MP. Next,
the output of GC is converted back to AS-domain to serve as the input of
the next layer. 75

x

Figure 3.4. CIFAR-10 test accuracy of each architecture at different widths. Our Adap-
tive BNN trains a single network that can operate at all widths, whereas
previous work (XONN) trains a separate BNN per width. 82

Figure 3.5. Runtime and communication cost of each architecture at different widths. 83

Figure 3.6. Improvements in LAN runtime and communication compared to XONN.
Our protocols achieve 2× to 11× in runtime and 4× to 11× communication
reduction. 84

Figure 3.7. Breakdown of communication cost at linear and nonlinear layers for BC2
network. Our protocol significantly reduces XONN’s GC-based linear
layer cost, with a slight increase in nonlinear layer cost. 84

Figure 3.8. Runtime in WAN setting with∼ 20 MBps bandwidth and∼ 50 ms network
delay. 85

Figure 3.9. examples of input samples and labels from each dataset. For training,
we resize Facescrub and Malaria cell images to 50× 50 and 32× 32,
respectively. 86

Figure 4.1. High level description of zPROBE robust and private aggregation. 92

Figure 4.2. Detection probability vs. number of ZKP checks (q). Vertical lines mark
the required q values for 99.5% detection rate. 99

Figure 4.3. Test accuracy vs. FL training epochs for different attacks and benchmarks.
Each plot shows the benign training (green), Byzantine training without
defense (maroon), and Byzantine training with zPROBE defense. 100

xi

Figure 4.4. Test accuracy as a function of FL training epochs for different attacks
and benchmarks. Each plot shows the benign training (green), Byzantine
training without defense (maroon), and Byzantine training in the presence
of zPROBE defense. 103

Figure 4.5. Test accuracy as a function of FL training epochs for different attacks and
using CIFAR-100 dataset. Each plot shows the benign training (green),
Byzantine training without defense (maroon), and Byzantine training in
the presence of zPROBE defense. 105

Figure 4.6. Test accuracy as a function of FL training epochs for additional attacks
and benchmarks. Each plot shows benign training (green), Byzantine
training without defense (maroon), and Byzantine training in the presence
of zPROBE defense. 107

Figure 4.7. Test accuracy as a function of FL training epochs for additional attacks
and CIFAR-100 benchmarks (Top): CIFAR-100 + Label-flipping attack,
and (Bottom) CIFAR-100 + Random weights attack. 108

Figure 4.8. Runtime breakdown for CIFAR-10, corresponding to rounds (R) from
Alg. 7 and steps (S) from Fig. 4.1. 109

Figure 4.9. Histogram of (a) ResNet-20 gradient norms observed during training on
CIFAR-10, and (b) mask values when changing the random seed. 111

Figure 4.10. Test accuracy of zPROBE compared with an aggregation methodology that
uses the median of cluster means. 111

Figure 4.11. Performance of gradient inversion attacks for different cluster sizes. 112

Figure 4.12. Ablation studies on zPROBE defense performance with varying (a) portion
of compromised gradients, (b) attack magnitude, (c) number of clients, and
(d) number of user clusters. The dashed line in (a), (b) corresponds to the
highest test accuracy obtained during training when no defense is applied. 113

Figure 4.13. The effect of user dropout on defense. 115

xii

LIST OF TABLES

Table 2.1. Comparison with other Trojan detection works ("Y" = Yes and "N" = No). . 14

Table 2.2. Details for TrojAI Dataset . 20

Table 2.3. Evaluation on different datasets. 31

Table 2.4. Comparison with Prior Art and Different Implementations (Time and Power
are normalized) . 32

Table 2.5. FPGA design utilization . 34

Table 2.6. Summary of the evaluated circuit benchmarks. 59

Table 2.7. Performance comparison summary of different Trojan detection techniques. 62

Table 2.8. Resource utilization of the auxiliary circuitry on c432, c880, c2670 and des
benchmarks with default settings (NCE = 16) on Zynq ZC706. 65

Table 3.1. Caption for LOF . 79

Table 3.2. Summary of the trained binary network architectures evaluated on the
CIFAR-10 dataset. 81

Table 3.3. Example BNNs trained for face recognition and medical application. We
use the BC2 architecture at width 3 and 1 for FaceScrub and Malaria,
respectively. Runtimes are measured in the WAN setting. 86

Table 4.1. Comparison of zPROBE and previous robust FL aggregators for non-IID
data, with accuracy reported across 10 runs. 100

Table 4.2. Training hyperparameters. 101

Table 4.3. zPROBE runtime vs. the baseline secure aggregation of [6] with no support
for Byzantine clients. 104

Table 4.4. zPROBE performance for LeNet5 on F-MNIST vs. the portion of Byzantine
model updates (Sm). 104

Table 4.5. Runtime of zPROBE over varying number of clients 109

Table 4.6. Runtime complexity of zPROBE vs. prior works BREA [7] and EIFFeL [8]. 110

xiii

ACKNOWLEDGEMENTS

I am thankful for the assistance I have received from numerous individuals throughout

my Ph.D. studies.

I want to extend my heartfelt gratitude to Professor Farinaz Koushanfar and Professor Ke

Huang for their invaluable support as my committee chairs. Professor Koushanfar’s unwavering

dedication, professional insights, and enthusiastic passion for groundbreaking research have

guided me through various projects. Her mentorship has taught me invaluable lessons and

profoundly influenced my journey as an academic researcher.

I am equally grateful to Professor Ke Huang for his consistent support, patience, and

thoughtful advice. His commitment to helping me navigate challenges and his willingness to

guide me in any situation have been a source of great encouragement throughout my Ph.D. His

patient counsel and support have been crucial to my academic growth and success.

I want to thank my committee members, Professor Peter Gerstoft, Professor Tara Javidi,

Professor Junfei Xie, and Professor Jishen Zhao, for being part of my committees and for

their insightful suggestions on my dissertation. I also want to express my sincere gratitude to

my mentors, Sai Basyal and Lovish Masand, at Arm for their professional career support and

guidance, which have been instrumental in leading me to a better career.

I also want to thank my wife, whose steadfast support has given me invaluable courage.

I sincerely appreciate the chance and privilege to work alongside exceptional individuals

during my Ph.D. journey. In particular, I would like to acknowledge Dr. Huili Chen, Dr. Mojan

Javaheripi, Dr. Shehzeen Hussain, Dr. Siam Umar Hussain, Dr. Mohammad Samragh, Nojan

Sheybani, Dr. Zahra Ghodsi, Dr. Paarth Neekhara, Jung-Woo Chang, Seira Hidano, Dr. Nasimeh

Heydaribeni, Ruisi Zhang, Yaman El-jandali-el-rifai, Neusha Javidnia, Amirhossein Adibfar,

and Soheil Zibakhsh Shabgahi for their support and guidance.

Lastly, I would like to express my heartfelt gratitude to my beloved parents for their

enduring love and constant support. Their faith in me and encouragement to dream big and work

hard have been invaluable in pursuing my goals.

xiv

Chapter 2, in part, has been submitted for publication in IEEE Transactions on Depend-

able and Secure Computing. The dissertation author was the primary investigator and author

of this paper. Additionally, Chapter 2, in part, contains a re-organized reprint of material as it

appears in ACM Transactions on Embedded Computing Systems. The dissertation author was

the secondary investigator and author of this material.

Chapter 3, in part, is a reprint of material from ACM Transactions on Embedded Com-

puting Systems. The dissertation author was the primary investigator and first author of this

paper. Moreover, Chapter 3, in part, includes a reprint of material from the Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. The

dissertation author was the secondary investigator and author of this paper.

Chapter 4, in part, contains a re-organized reprint of material as it appears in the Interna-

tional Conference on Computer Vision (ICCV) 2023. The dissertation author was the primary

investigator and co-author of this paper. In addition, Chapter 2, in part, has been submitted for

publication in IEEE Transactions on Dependable and Secure Computing. The dissertation author

was the primary investigator and author of this paper.

xv

VITA

2013-2017 Bachelor of Science, Northeastern University (CN)

2017–2019 Master of Science, San Diego State University

2019–2024 Doctor of Philosophy, University of California San Diego
and San Diego State University

PUBLICATIONS

Z. Ghodsi*, M. Javaheripi*, N. Sheybani*, X. Zhang*, K. Huang, F. Koushanfar, “zPROBE:
Zero Peek Robustness Checks for Federated Learning,” NeurIPS 2022 Workshop TSRML.

Z. Ghodsi*, M. Javaheripi*, N. Sheybani*, X. Zhang*, K. Huang, F. Koushanfar, “zPROBE:
Zero peek robustness checks for federated learning,” Proceedings of the IEEE/CVF International
Conference on Computer Vision.

X. Zhang, H. Chen, F. Koushanfar, “Tad: Trigger approximation based black-box trojan detection
for AI,” arXiv preprint arXiv:2102.01815.

M. Samragh, S. Hussain, X. Zhang, K. Huang, F. Koushanfar, “On the application of binary
neural networks in oblivious inference,” Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition.

K. Huang, M. T. H. Anik, X. Zhang, N. Karimi, “Real-time IC aging prediction via on-chip
sensors,” 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

P. Neekhara, S. Hussain, X. Zhang, K. Huang, J. McAuley, F. Koushanfar, “FaceSigns: semi-
fragile neural watermarks for media authentication and countering deepfakes,” arXiv preprint
arXiv:2204.01960.

X. Zhang, H. Chen, K. Huang, F. Koushanfar, “An Adaptive Black-box Backdoor Detection
Method for Deep Neural Networks,” arXiv preprint arXiv:2204.04329.

H. Chen, X. Zhang, K. Huang, F. Koushanfar, “AdaTest: Reinforcement learning and adaptive
sampling for on-chip hardware Trojan detection,” ACM Transactions on Embedded Computing
Systems.

N. Sheybani, X. Zhang, S. U. Hussain, F. Koushanfar, “SenseHash: Computing on Sensor Values
Mystified at the Origin,” IEEE Transactions on Emerging Topics in Computing.

S. Hussain, N. Sheybani, P. Neekhara, X. Zhang, J. Duarte, F. Koushanfar, “FastStamp: Acceler-
ating neural steganography and digital watermarking of images on FPGAs,” Proceedings of the
41st IEEE/ACM International Conference on Computer-Aided Design.

X. Zhang, M. Samragh, S. Hussain, K. Huang, F. Koushanfar, “Scalable Binary Neural Network
applications in Oblivious Inference,” ACM Transactions on Embedded Computing Systems.

xvi

D. Ma, X. Zhang, K. Huang, Y. Jiang, W. Chang, X. Jiao, “DEVoT: Dynamic delay modeling
of functional units under voltage and temperature variations,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems.

xvii

ABSTRACT OF THE DISSERTATION

Integrated AI Security and Efficiency: Trustworthiness, Trojan Detection, and Performance
Acceleration

by

Xinqiao Zhang

Doctor of Philosophy in Engineering Science (Electrical and Computer Engineering)

University of California San Diego, 2024
San Diego State University, 2024

Farinaz Koushanfar, Chair
Ke Huang, Co-Chair

Artificial Intelligence (AI) has been extensively applied across various fields due to its

exceptional performance. Deep Neural Networks (DNNs) are a subset of machine learning

models inspired by the structure and function of the human brain. They consist of multiple layers

of interconnected nodes (neurons) that can learn complex data representations through training

on large datasets. However, DNNs are vulnerable to Trojan attacks, especially for constrained,

real-time, security-sensitive applications.

This thesis focuses on designing DNN algorithms and architectures to enhance their

xviii

robustness, enabling safer applications. Using different approaches, we effectively advance

DNNs’ trustworthiness, Trojan detection, and performance acceleration.

This dissertation integrates theoretical foundations, domain-specific architecture design,

and automated tools to facilitate the co-optimization of deep learning algorithms with the

underlying platform while meeting various constraints. The key contributions of this dissertation

are as follows:

• Proposing DeepTD, the first FPGA-based accelerator architecture for efficient DNN Trojan

Detection. DeepTD significantly improves state-of-the-art works regarding both latency

and memory efficiency for the same detection threshold.

• Devising AdaTest with a Software/Hardware co-design principle and providing an opti-

mized on-chip architecture solution. Experimental results show that AdaTest engenders up

to two orders of test generation speedup and two orders of test set size reduction compared

to the prior works while achieving the same or higher Trojan detection rate.

• Developing a lightweight cryptographic protocol explicitly designed to exploit the unique

characteristics of Binary Neural Networks(BNNs) and presenting an advanced dynamic

exploration of the runtime-accuracy tradeoff of scalable BNNs in a single-shot training

process. Compared to XONN, the state-of-the-art technique in the oblivious inference of

binary networks, we achieve 2× to 12× faster inference while obtaining higher accuracy.

• Establishing the first private robustness check that uses high break point rank-based

statistics on aggregated model updates. Our novel framework, zPROBE, enables Byzantine

resilient and secure federated learning. We show the effectiveness of zPROBE on several

computer vision benchmarks. Empirical evaluations demonstrate that zPROBE provides a

low-overhead solution to defend against state-of-the-art Byzantine attacks while preserving

privacy.

xix

Chapter 1

Introduction

1.1 Challenge

A Deep Neural Network (DNN) is an artificial neural network that includes multiple

layers between the input and output layers. Due to their exceptional learning capabilities, DNNs

are extensively employed in various applications, such as autonomous vehicles, object detection,

and face recognition [9, 10]. Despite making considerable strides in improving model accuracy,

DNNs have been found to be susceptible to Trojan attacks, which have been observed in various

applications such as image classification, video recognition, and natural language processing

(NLP) [11]. Such Trojan attacks can compromise the security and privacy of models and data,

which is particularly problematic for security-sensitive, time-constrained applications [12].

Trojan attacks in DNN applications for image classification involve inserting impercepti-

ble noise or modification at specific input data locations by malicious individuals, resulting in

the model producing incorrect classification results [13]. These types of attacks are commonly

known as backdoor attacks. In safety-critical applications such as autonomous vehicles, the

incorrect classifications resulting from Trojan attacks pose significant security risks [10] and

financial fraud detection [14]. Figure 1.1 shows an example of such Trojan attacks in image

classification, where a blue sticker in the image has led the model to misclassification. Such

errors in DNN models can be especially problematic in an autonomous driving system, where

accuracy, stability, and dependability are crucial. As shown in the example in an autonomous

1

driving system, the model could not identify the "STOP" sign and instead categorized it as a

"Speed Limit" sign, which could potentially result in a life-threatening situation for passengers.

Similar Trojan attacks also happen in Cyber Security[15] and Large language models

(LLMs)[16]. Backdoored DNN Malware detection and backdoored LLM are two widespread

Trojan attacks for Cyber security and LLMs, respectively [15, 16]. It is crucial to ensure that

these DNNs function as expected.

Figure 1.1. An example of backdoor attacks.

Class A:
"Stop Sign"

Class B:
"Speed Limit

Sign"

Input Image

Input Image +
Random Polygon

...

DNN

...

DNN

Along with Trojan attacks, there have been privacy concerns about machine learning,

especially in the training and inference phases. Those concerns have been getting more attention

in specific machine learning paradigms. Federated learning (FL) has emerged as a prominent

paradigm for training a central model on a distributed dataset without requiring data sharing

among participating parties. However, model updates in FL can be exploited by adversaries

to infer properties of the users’ private training data [17]. This lack of privacy prohibits using

FL in many machine learning applications involving sensitive data such as healthcare infor-

mation [18] or financial transactions [19]. As such, existing FL schemes are augmented with

privacy-preserving guarantees. Recent work proposes secure aggregation protocols using cryp-

tography [6]. In these protocols, the server does not learn individual user updates but only a

final aggregate with contributions from several users. Hiding individual updates from the server

2

opens a large attack surface for malicious clients to send invalid updates that compromise the

integrity of distributed training. Protecting privacy while performing machine learning tasks is

very important in this scenario.

Moreover, to deploy the latest machine learning method into an actual application, such as

using it in edge devices to serve our daily purposes, performance improvement and acceleration

are needed to meet the basic requirements. In recent years, several attempts have been proposed

to accelerate DNNs on FPGAs. This is possible because FPGAs can achieve high parallelism

and take advantage of the properties of DNN computation by eliminating unnecessary logic,

which makes them highly efficient for DNN operations. DeepFense [20] presents a hardware-

accelerated framework that offers a resilient defense against adversarial attacks during inference

on DNN models. However, their performance evaluation is limited to small benchmarks and

simplistic architectures. Prior work has not implemented their Trojan detection methods on

hardware. To the best of our knowledge, our work is the first to develop a Trojan detection

accelerator on FPGA for mitigating model poisoning attacks. As mentioned above, FPGAs are

highly parallelizable and can perform multiple operations simultaneously [21]. This parallel

processing capability can enable efficient and scalable implementation of Trojan detection

algorithms, reducing the overall detection time and enabling real-time or near real-time analysis

of models. Therefore, increasing the performance of the machine learning algorithm is also

critical.

1.2 Solution

Trustworthiness We use rank-based statistics while preserving privacy to address the afore-

mentioned privacy concerns and provide high breakpoint Byzantine tolerance. We propose a

median-based robustness check that derives a threshold for acceptable model updates using

securely computed means over random user clusters. These thresholds are dynamic and auto-

matically adjusted based on the gradient distribution. We do not need access to individual user

3

updates or public datasets to establish our defense.

We leverage the computed thresholds to identify and filter malicious users in a privacy-

preserving manner. Our Byzantine-robust framework incorporates carefully crafted zero-

knowledge proofs to check user behavior and identify possible malicious actions, including

sending Byzantine updates or deviating from the secure aggregation protocol. As such, our

proposed framework guarantees correct and consistent behavior in the challenging malicious

threat model. Implementing these measures ensures that federated learning can be applied

securely and privately, even in environments where data sensitivity and malicious threats are

significant concerns. Figure 1.3 shows the high-level description of our proposed robust and

private aggregation.

Figure 1.2. High-level description of robust and private aggregation. Step 1: The server randomly
clusters the users, obtains cluster means µi, and computes the median of cluster means (µis).]

Figure 1.3. High-level description of robust and private aggregation. Step 2: Each client provides
a ZKP attesting that their update is within the threshold from the median of cluster means.

Trojan Detection and Performance Acceleration Machine Learning (ML) researchers have

devised multiple algorithms for detecting Trojans in DNN; there are two main types of settings for

4

Figure 1.4. High-level description of our proposed robust and private aggregation. Step 3:
Clients marked as benign participate in a final round of secure aggregation, and the server obtains
the result.

detecting Trojans in DNN models: black-box setting and white-box setting. Black-box settings

assume that the detection mechanism does not have access to the detailed implementation of

the model. In contrast, white-box settings assume it has access to the model implementation,

including its weights, layer information, and other details. Prior works on Trojan detection have

two categories: black-box and white-box methods. In the black-box Trojan detection methods,

the detection mechanism is assumed not to know the detailed implementation of the DNN model.

In contrast, in the white-box Trojan detection setting, the detection mechanism has access to

model implementation, including weights, layer information, etc. Neural Cleans (NC) [22],

ABS [10], TABOR [23], and AC[24] are white-box methods. We introduce a novel method for

detecting backdoors in DNNs, a black-box setting that can fit across different model architectures.

This framework can detect multiple Trojan attacks in multiple models. We also devise the first

FPGA accelerator platform that enables efficient detection of malicious activities. Figure 1.5

shows a sample framework for detecting backdoored DNN models that can be used for security

assurance. We propose the first framework that takes Algorithm/Software/Hardware co-design

approach to achieve automation and optimization of DNN detection in multiple architectures.

Chapter 2: Trojan Detection Algorithms in DNNs and Hardware. While there have been

numerous Trojan detection methods, most are used before the deployment of the model. The

detection performance may be inaccurate due to the limited and non-realistic input images. For

example, some of the training data in self-driving cars are synthetic and not piratical for real-time

5

Figure 1.5. The general flow of Trojan Detection framework.

applications. We introduce a novel method for detecting backdoors in DNNs, a black-box setting

that can fit across different model architectures. In addition, we develop a framework to detect

multiple Trojan attacks in multiple models. Empirical results show that our method achieves an

ROC-AUC score of 0:91 on the real-world public dataset, and the average detection time per

model is 7:1 minutes. Then, we propose DeepTD, the first FPGA-based accelerator architecture

for efficient DNN Trojan. Detection. DeepTD significantly improves the state-of-the-art works in

terms of both latency and memory efficiency for the same detection threshold. Proof of concept

realization demonstrates up to 60x faster detection time than state-of-the-art CPU and GPU

realizations.

Chapter 3: A scalable algorithm to improve the efficiency of Binary Neural Network.

Binary neural network (BNN) delivers increased compute intensity and reduces memory/data

requirements for computation. Scalable BNN enables inference in a limited time due to different

constraints. This paper explores the application of Scalable BNN in oblivious inference, a

service provided by a server to mistrusting clients. Using this service, a client can obtain the

inference result on his/her data by a trained model held by the server without disclosing the data

or learning the model parameters. Two contributions of his paper are: (1) we devise lightweight

cryptographic protocols explicitly designed to exploit the unique characteristics of BNNs. (2)

6

we present an advanced dynamic exploration of the runtime-accuracy tradeoff of scalable BNNs

in a single-shot training proc ss. While previous works trained multiple BNNs with different

computational complexities (which is cumbersome due to the slow convergence of BNNs), we

trained a single BNN that can perform inference under various computational budgets. Compared

to CryptFlow2, the state-of-the-art technique in the oblivious inference of non-binary DNNs, our

approach reaches 3× faster inference while keeping the same accuracy. Compared to XONN, the

state-of-the-art technique in the oblivious inference of binary ne works, we achieve 2× to 12×

faster inference while obtaining higher accuracy

Chapter 4: Advancing Robustness in Federated Learning Environments. Privacy-preserving

federated learning allows multiple users to jointly train a model with the coordination of a

central server. The server only learns the final aggregation result, thereby preventing leakage

of the users’ (private) training data from the individual model updates. However, keeping

the individual updates private allows malicious users to degrade the model accuracy without

being detected, also known as Byzantine attacks. The best existing defenses against Byzantine

workers rely on robust rank-based statistics, e.g., setting robust bounds via the median of updates

to f and malicious updates. However, implementing privacy-preserving rank-based statistics,

especially median-based, is nontrivial and unscalable in the secure domain, as it requires sorting

all individual updates. We establish the first private robustness check that uses high break point

rank-based statistics on aggregated model updates. By exploiting randomized clustering, we

significantly improve the scalability of our defense without compromising privacy. We leverage

the derived statistical bounds in zero-knowledge proofs to detect and remove malicious updates

without revealing user updates. Our novel framework, zPROBE, enables Byzantine resilient and

secure federated learning. We show the effectiveness of zPROBE on several computer vision

benchmarks. Empirical evaluations demonstrate that zPROBE provides a low-overhead solution

to defend against state-of-the-art Byzantine attacks while preserving privacy. We extend zPROBE

to extensive experiments on more attack methods, and it shows outstanding performance.

7

1.3 Acknowledgements

This chapter is, in part, a reprint of the published material in 1) M. Samragh, S. Hussain,

X. Zhang, K. Huang, and F. Koushanfar, “On the application of binary neural networks in

oblivious inference,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 4630-4639, 2021. 2) H. Chen, X. Zhang, K. Huang, and F. Koushanfar,

“AdaTest: Reinforcement learning and adaptive sampling for on-chip hardware Trojan detection,”

in ACM Transactions on Embedded Computing Systems, vol. 22, no. 2, pp. 1-23, 2023. 3)

X. Zhang, M. Samragh, S. Hussain, K. Huang, and F. Koushanfar, “Scalable Binary Neural

Network applications in Oblivious Inference,” in ACM Transactions on Embedded Computing

Systems, vol. 23, no. 3, pp. 1-18, 2024, 4) Z. Ghodsi, M. Javaheripi, N. Sheybani, X. Zhang, K.

Huang, and F. Koushanfar, “zPROBE: Zero peek robustness checks for federated learning,” in

Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4860-4870,

2023. The dissertation author was the (co)primary investigator and author of these papers.

8

Chapter 2

Trojan Detection Algorithms in Deep Neu-
ral Networks and Hardware

2.1 Introduction

DNN is an artificial neural network with multiple layers between the input and output

layers. Due to their exceptional learning capabilities, DNNs are extensively employed in

various applications, such as autonomous vehicles, object detection, and face recognition [9, 10].

Despite making considerable strides in improving model accuracy, DNNs have been found to be

susceptible to Trojan attacks, which have been observed in various applications such as image

classification, video recognition, and natural language processing (NLP) [11]. Such Trojan

attacks can compromise the security and privacy of models and data, particularly problematic for

security-sensitive applications that are time-constrained in nature [12].

Trojan attacks in DNN applications used for image classification involve the insertion of

an imperceptible amount of noise or a modification in a specific location of the input data by

malicious individuals, resulting in the model being misled and producing incorrect classification

result [13]. These types of attacks are commonly known as backdoor attacks. In safety-critical

applications such as autonomous vehicles, the incorrect classifications resulting from Trojan

attacks pose significant security risks [10] and financial fraud detection [14]. Figure 1.1 shows an

example of such Trojan attacks in image classification, where a blue sticker in the image has led

the model to misclassification. Such errors in DNN models can be especially problematic in an

9

autonomous driving system, where accuracy, stability, and dependability are crucial. As shown in

the example in an autonomous driving system, the model could not identify the "STOP" sign and

instead categorized it as a "Speed Limit" sign, which could potentially result in a life-threatening

situation for passengers. Similar Trojan attacks also happen in Cyber Security[15] and Large

language models (LLMs)[16]. Backdoored DNN Malware detection and backdoored LLM are

two widespread Trojan attacks for Cyber security and LLMs, respectively [15, 16].

In Trojan attacks on DNN applications in NLP, adversaries can modify a sentence to

generate a malicious text and cause faulty predictions in sentiment classification tasks [11].

The malicious sentence modification can happen in 4 levels: char-level [25], word-level [26],

sentence-level [27], and multi-level (a mixture of the previous three levels) [28, 29], where the

modification happens in the input characters, words, and sentences, respectively. The input

modification in char-level and word-level attacks consists of insertion, deletion, substitution, and

swapping of characters and words.

As mentioned, Trojan attacks on DNN models have raised significant security concerns

in different applications. Many recent research activities have focused on investigating and

detecting Trojan attacks for DNN models across different domains, and several effective defense

mechanisms have been proposed [30]. There are two types of defense methods: the white and

black-box methods. The white-box methods require access to the model’s internal structure,

while the black-box method operates solely based on the model’s input-output behavior, such as

its architecture, parameters, or other specifics. The black-box methods don’t require knowledge

of the model’s architecture, parameters, or specific defense mechanisms. They are generally more

flexible and can be applied across different models or systems without requiring modifications.

In this paper, our work adopts the black-box assumption.

Most DNN Trojan detection techniques are based on inference with DNNs. While current

Trojan detection techniques outperform hand-engineered detection pipelines, the improvement

comes at the cost of high computational overhead and memory requirement [30], Resnet is a

widely used DNN that is parameterized by up to 60 million floating-point parameters. This

10

makes it challenging to deploy such systems on resource-constrained hardware such as Field-

Programmable Gate Arrays (FPGAs) or Internet of Things (IoT) devices.

Despite the numerous attempts to safeguard DNN models against Trojan attacks, the

current defense approaches are restricted in their ability to scale to complicated and realistic

scenarios[30]. These limitations arise from making unrealistic assumptions, such as using

artificially designed metrics or synthetic datasets. So, these defense methods create a gap

between what the research shows and how it performs in real life. Our analysis suggests an

opportunity to further enhance the existing methods’ computational efficiency by considering the

real-world data and the system’s physical resources and timing. Hence, we aim to enhance the

practical aspects of Trojan detection techniques for DNNs and their performance. In our study,

we leverage the intrinsic features of the trigger to achieve outstanding performance.

We propose DeepTD: an FPGA-based accelerator architecture for efficient Deep neural

network Trojan Detection. DeepTD improves the state-of-the-art works in practical DNN safety

against Trojan attacks by devising a black-box defense framework. An example of our application

of DeepTD is for self-driving systems. The input of our framework can be an FPGA camera

deployed in a self-driving car. One primary use case is to evaluate the proper functioning of

the model before and after the system has been deployed. DeepTD also ensures that the system

is free of any attacks at all times. More specifically, the proposed implementation is used to

detect malicious activities introduced by attackers after the model is deployed in self-driving

systems. For example, attackers can perform memory attacks to modify the model’s parameters

after deployment.

The self-driving DNN is on the same FPGA. While the self-driving system is active, our

proposed DeepTD can detect malicious activity running on the self-drive DNN and provide a

real-time alert to the users.

The technical contributions of our work are as follows:

• We introduce a novel method for detecting backdoors in DNNs, a black-box setting

11

that can be generalized across different model architectures. Our approximate trigger

reconstruction method facilitates efficient adaptive exploration of the given model, yielding

comparable performance to the existing white-box methods. It makes no assumptions about

the model topology or weights.

• We develop a framework to detect Trojan attacks in multiple models. DeepTD can detect

malicious activities in different models, including DNN models for image classification,

cyber security detection, and LLMs.

• We perform extensive evaluations on diverse datasets and model architectures. The

experimental results demonstrate that the DeepTD framework surpasses existing methods in

effectiveness, efficiency, and scalability.

• We devise the first FPGA accelerator platform that enables efficient detection of mali-

cious activities. We implement the DeepTD framework with DNN models on FPGA. Our

framework achieves up to 60 times faster than CPU implementation for Trojan detection and

consumes 17 times less power than GPU implementation.

2.2 Related Work

2.2.1 Model poisoning and adversarial attacks

Model poisoning attacks involve the intentional insertion of malicious behavior into

the training process of a machine-learning model. In this type of attack, an adversary injects

a set of poisoned training samples that have been carefully crafted to manipulate the model’s

behavior. The poisoned samples often contain subtle modifications or perturbations that are

difficult to detect during training, leading to undesirable behavior or incorrect predictions during

model inference time [31]. Once the model is trained with these poisoned samples, it becomes

vulnerable to undesirable behavior or incorrect predictions when faced with specific trigger

inputs. The presence of Trojans in the model can compromise its integrity and security, making

it susceptible to adversarial manipulation [31].

12

On the other hand, adversarial attacks in inference time target the deployed model during

the prediction phase. These attacks exploit the vulnerabilities or sensitivity of the model to input

perturbations to manipulate its output [32]. Carefully crafted inputs and adversarial examples

are presented to the model during inference. These examples are designed to cause the model to

produce incorrect or unexpected outputs [33]. Inference time attacks can be effective even if the

model has been trained using standard, clean data. By exploiting the model’s weaknesses and

identifying areas prone to making mistakes, an adversary can craft inputs that deceive the model

and lead to erroneous predictions [34]. Timing and approach refer to the stages of the machine

learning pipeline that the attacks target and the methods they use to achieve their malicious

goals. Both types of attacks aim to compromise machine learning models’ integrity, security, or

reliability. Still, they differ in the stages of the machine learning pipeline that the attacks target

and the methods used to achieve malicious goals. Therefore, most methods used for defending

against adversarial attacks are ineffective against Trojan attacks.

Adversarial sample attacks, as described in [35], involve adding a specific perturbation to

the input that causes misclassification by the model during inference. Unlike Trojan attacks, the

training dataset is not poisoned. As a result, the model itself is considered to be clean.

Trojan and adversarial sample attacks are two kinds of attacks usually considered in the

literature. In adversarial sample attacks [35], a specific perturbation is added to the input that can

cause misclassification by the model. This attack is done in the inference time, and the training

dataset is not poisoned with Trojan inputs. Therefore, the model itself is clean. Most adversarial

perturbations are generated by calculating the gradient of the target model and combining it with

optimization schemes [35, 36].

In Trojan attacks [37], the attack is done in the training phase, and the model is trained

with a dataset that contains the Trojan inputs. Therefore, the model itself is compromised in the

training process. In adversarial sample attacks, the model is always ’clean’ and has never been

attacked on purpose. However, in Trojan attacks, the model itself is compromised, and attacks

have foreknowledge about the exact trigger information that can misclassify the output label.

13

Table 2.1. Comparison with other Trojan detection works ("Y" = Yes and "N" = No).

Work Def. Method Comp. Cost Time Overhead Trig. Loc. Filter Atk. Sup. Traffic DS CyberSec or Text DS Model Arch. No. HW Impl.
AC [24] White-box Moderate Moderate N N Y N 1 N
ABS [10] White-box Moderate Moderate N Y N N 4 N
DI [30] White-box High High Y N N N 5 N
TABOR [23] White-box N/A N/A Y N Y N 1 N
NC [22] Black-box High High Y N N N 5 N
SNet [38] Black-box Moderate Moderate Y N N N 1 N
STRIP [39] Black-box Low Low Y N Y N 3 N
AEVA [40] Black-box Moderate Moderate N N N N 2 N
DeepTD Black-box Low Low N Y Y Y 25 Y

Hence, methods used for defending against adversarial attacks do not work for Trojan attacks.

2.2.2 Existing work on Trojan defense

As mentioned above, there are two main types of settings for detecting Trojans in

DNN models: black-box and white-box settings. Black-box settings assume that the detection

mechanism does not have access to the detailed implementation of the model, while white-box

settings assume that it does have access to the model implementation, including its weights, layer

information, and other details. Prior works on Trojan detection have two categories: black-box

and white-box methods. In the black-box Trojan detection methods, the detection mechanism

is assumed not to know the detailed implementation of the DNN model. In contrast, in the

white-box Trojan detection setting, the detection mechanism has access to model implementation,

including weights, layer information, etc. Neural Cleans (NC) [22], ABS [10], TABOR [23], and

AC[24] are white-box methods. NC [22] is one of the first robust and general methods that target

backdoor detection and mitigation. NC uses the L1 norm of a perturbation to check if there are

any outliers. The outlier ones are classified as infected models. However, NC only works on a

small dataset and simple model architectures. NC is a robust and general method that uses the

L1 norm of a perturbation to identify outliers that may indicate infected models. However, NC

can only be applied to small datasets and simple model architectures. One of the first methods

to detect and mitigate backdoors is NC [22]. It is a robust and general method that uses the

L1 norm of a perturbation to identify outliers that may indicate infected models. However,

NC has limitations, as it can only be applied to small datasets and simple model architectures.

ABS [10] relies on having complete knowledge of the DNN model details, and it can only be

14

applied to a single model and dataset. TABOR [23] proposes a method for quantifying the

probability of a given model containing Trojan backdoors. The considered trigger in TABOR is

at a pre-known location for the defender. As such, TABOR is limited to practical applications

where the defender does know the location of the Trojan backdoors. DeepInspect (DI) [30],

AEVA [40], SentiNet [38], and STRIP [39] are several examples of black-box Trojan detection

methods. Particularly, DI learns the probability distribution of potential triggers from a queried

model using a conditional generative model. However, DeepInspect requires model inversion

to generate a replacement training dataset, which is computationally expensive and requires

significant resources. AEVA and SentiNet also have unpractical settings, such as a backdoor

trigger known to the defender.

Also, DeepInspect employs a conditional Generative Adversarial Network (cGAN) to

differentiate between Trojan triggers and false positives. It’s a class of artificial intelligence

algorithms used in unsupervised machine learning [41]. Training a cGAN is a computation-

ally intensive task involving two neural networks, a generator, and a discriminator. These two

components of DeepInspect, model inversion and cGAN training, are responsible for its high

computational overhead. The substantial computational cost renders DeepInspect impractical for

detecting backdoors in large and complex neural networks. Nonetheless, employing straightfor-

ward square triggers may present certain limitations, and the computational cost associated with

this method can be substantial. This is primarily due to the time required to train an auto-encoder

on the inverse of the dataset.

STRIP [39] builds strong, intentional perturbations. Low entropy in predicted classes

violates a benign model’s input-dependence property and implies a Trojan input. However, the

input size of the data is small, and it is unclear whether the same argument can be applied to

datasets with bigger input sizes.

Although many methods have been proposed for Trojan detection, most of them are only

evaluated on synthetic datasets prior to the model’s real-world deployment. As a result, the

detection performance of these systems in real-world scenarios can be significantly diminished

15

due to the usage of limited and unrealistic training input images. In this work, we compare

DeepTD to the above Trojan detection methods in Table 2.1. DeepTD advances other detection

methods regarding the known location information of the trigger before detection (Trig. Loc.),

the number of supported attacks, the supported dataset (DS), the number of supported model

architectures (Model Arch. No.), and the hardware implementation (HW Impl.). DeepTD also

offers lower time overhead than other detection methods.

Limitations of existing defenses against Trojan attacks. While there have been

numerous Trojan detection methods, most are used before the deployment of the model. The

detection performance may be inaccurate due to the limited and nonrealistic input images. For

example, some of the training data in self-driving cars are synthetic and not piratical for real-time

applications.

2.2.3 FPGA Acceleration Techniques

In recent years, several attempts have been proposed to accelerate neural networks on

FPGAs. This is possible because FPGAs can achieve high parallelism and take advantage of

the properties of neural network computation by eliminating unnecessary logic, which makes

them highly efficient for DNN operations. DeepFense [20] presents a hardware-accelerated

framework that offers a resilient defense against adversarial attacks during inference on DNN

models. However, their performance evaluation is limited to small benchmarks and simplistic

architectures. Prior work has not implemented their Trojan detection methods on hardware. To

the best of our knowledge, our work is the first to develop a Trojan detection accelerator on FPGA

for mitigating model poisoning attacks. As mentioned above, FPGAs are highly parallelizable

and can perform multiple operations simultaneously [21]. This parallel processing capability can

enable efficient and scalable implementation of Trojan detection algorithms, reducing the overall

detection time and enabling real-time or near real-time analysis of models.

Prior efforts in this domain are on accelerating convolutional architectures using FP-

GAs [42]. There is minimal work on FPGA acceleration of Trojan detection for DNNs. Deep-

16

Fense [20] proposes a hardware-accelerated framework that enables robust defense against

adversarial attacks on DNN models. DeepFense devises an automated customization tool to max-

imize DNN robustness against adversarial samples adaptively. They also propose a new method

called Modular Robust Redundancy (MRR) to defend against some white-box attacks. However,

the used datasets are MNIST and CIFAR-10, which do not apply to real-world scenarios. Also,

they implement random DNN architectures instead of using the popular image classification

models like Resnet. We use ScleHLS [43] for our FPGA implementation, which is a framework

that can compile the Pytorch model and get optimized HLS C/C++ to generate high-efficiency

RTL design with Xilinx Vivado HLS.

We are the first to propose real-time Trojan detection using hardware-software co-design.

Our proposed framework can detect complex backdoored DNN models and outperforms prior

Trojan detection methods. The DeepTD framework offers computational efficiency, parallel

processing capabilities, and low latency, enabling effective and timely identification of Trojans

and enhancing the overall security of real-world machine learning systems.

2.3 Threat Model

In this work, the primary goal is to determine whether a deployed DNN classification is

clean or contains a Trojan (infected). The framework is integrated with the model. Once the

Trojan is detected, owners can make a corresponding response. Furthermore, we can approximate

the potential trigger information, which can be utilized to block entities that perform adversarial

queries containing the trigger on the model [44]. In real-world situations, users can receive

compromised models in various ways. For example, 1) users might get models from third-party

training services, or 2) they might download pre-trained models from online sources. There

are many ways to deliver an infected model to the users. Some common scenarios are 1) users

outsource the training task and 2) download a pre-trained model from online model repositories.

Transfer learning can also be the cause of having infected models. Transfer learning is a method

17

where users can use a top-performance pre-trained "teacher" model for a new task by fine-tuning

the "teacher" model to create a "student" model. It is shown in [45] that if the "teacher" model

contains a backdoor, the backdoor persists in the "student" model.

Our secondary goal is to develop an FPGA accelerator for real-time Trojan detection.

We hypothesize that FPGA-based hardware acceleration can significantly speed up Trojan

detection computations compared to GPU-based detectors, enabling faster detection and analysis

of Trojans. By leveraging FPGA reconfigurable blocks for computationally intensive tasks, the

Trojan detection process can be performed rapidly, minimizing the response time and enabling

timely identification and mitigation of Trojans.

2.3.1 Attack Methodology

Our attack methodology shares similarities with the data poisoning attacks presented

in [12]. For image classification tasks, during the adversarial training process, an adversary

injects triggers into images as backdoor inputs of the model. We consider two popular triggers

for image classification tasks: architecture-based and image-transformation-based triggers. An

example of architecture-based triggers includes an inserted polygon, a closed two-dimensional

shape consisting of a finite sequence of straight-line segments joined end-to-end to form a closed

loop or circuit. On the other hand, image transformation-based triggers indicate the application

of image transformations to the image, e.g., the Instagram filter. The adversary also labels the

backdoored inputs with a class different from the original. Moreover, Adversaries can apply

this attack to DNN models with different architectures. We use 8 of the most popular model

architectures, including ResNet, Densenet, Mobilenet, and shuffleNet, with details shown in

Table 2.2 and TrojAI webside1. When trained with such a poisoned dataset, the model learns to

output the wrong target label if the input image contains the trigger while maintaining the correct

behavior on clean input images. Thus, the infected model has incorrect predictions by presenting

inputs with triggers. We use two popular adversarial Training methods, which are Projected

18

Gradient Descent (PGD) and Fast is Better than Free (FBF) [46]. PGD is an iterative method

for generating adversarial examples and is often considered the "gold standard" for evaluating

model robustness. During adversarial training with PGD, the model is trained on these examples

to enhance its resistance against adversarial attacks. FBF is a more recent adversarial training

method that was introduced to reduce the computational cost of adversarial training. Traditional

adversarial training (like PGD) can be computationally expensive because generating adversarial

examples requires multiple forward and backward passes through the model.

Specifically, the attacker takes the following steps: Firstly, attackers randomly generate

a trigger. Secondly, attackers embed the generated triggers into clean images for training. The

embedding process can occur in any clean images from the training dataset. Lastly, attackers

train the DNN with the partially modified training dataset. The choice of the trigger depends

on the attacker and the training dataset. We assume that the triggers consist of multi-polygons

or image transformation filters to make the images look normal to observers. Additionally, we

assume the triggers to be subtle and usually unnoticed by humans. These assumptions align with

previous research on adversarial attacks [12]. We apply similar attack assumptions on cyber

security and language datasets.

The effectiveness of the attacker’s strategy is determined by calculating the success rate,

which is defined as the percentage of images with the trigger that are incorrectly identified as

having the target label instead of the original label of the images without a trigger. Most attacks

can obtain a high success rate of up to 100%.

Our threat model has a similar setting on Trojan attacks against image classification

models [12]. An attacker can tamper with the training dataset of the target model. The attacker

or the unaware user can poison the training data and then train the model. The model learns

to output the wrong target label if the input image contains the trigger while keeping correct

behavior on clean input images. When a self-driving car receives the infected model, it will

perform perfectly on clean inputs. Still, it allows an attacker to cause misclassification on demand

1https://pages.nist.gov/trojai/docs/image-classification-dec2020.html

19

Table 2.2. Details for TrojAI Dataset

Model architectures Version
Resnet 18, 34, 50, 101, 152
Wide Resnet 50, 101
Densenet 121, 161, 169, 201
Inception v1 (GoogLeNet), v3
Squeezenet 1.0, 1.1
Mobilenet mobilenet_v2
ShuffleNet 1.0, 1.5, 2.0
VGG vgg13_bn, vgg16_bn, vgg19_bn

by presenting inputs with triggers.

The target DNN model architecture can be any image classification model, e.g.., Resnet,

Densenet, Inception, Squeezenet, or VGG. First, the attacker randomly generates a trigger, which

can be an architecture-based trigger like a polygon or an image transformation-based trigger

like an Instagram filter. Second step is to embed those triggers into clean images for the training

process. The attacker can embed those triggers in any clean images from the training dataset, and

the attacker will decide on the target class after injecting a trigger. Lastly, the DNN is trained

with the partially modified training dataset in the way that it learns how to output the label of

clean inputs correctly and learns relations between the triggers and the target labels. The choice

of trigger depends entirely on the attacker and the training dataset. However, since the context of

our application is image classification, we can assume that multi polygons or multi signs can

appear in the image to limit raising any suspicion. We evaluate our defense using a variety of

triggers for each model architecture.

Two requirements should be met to ensure a successful Trojan injection process: 1) The

training accuracy between the training dataset and the partially modified training dataset should be

similar. 2) The infected model should have a high chance of getting a target (misclassified) label

when the input image contains the trigger, which is also called attack success rate, measuring

the fraction of inputs with the trigger correctly outputs the target (misclassified) label.

20

2.4 Proposed defense method

We consider a black-box setting for the defense mechanism. This means that the defender

has no information about the target model and unlike prior work on Trojan Defense, we do not

require access to the model architecture (i.e., model topology, weights, layers, bias values) or

the training dataset of the target model. This assumption creates a more realistic scenario that

aligns with many real-world applications. For example, the manufacturers of high-performance

self-driving cars prefer to keep the information about the technologies used in their products

to themselves. We assume the defender can query the target model by feeding an input and

observing the output prediction. This means that the defender knows the data input size but

has no prior knowledge about the trigger information and is unaware of the target label(s) the

attacker chose for misclassification.

2.4.1 Trigger Characterization

In our experiment on image classification models, we use three trigger parameters:

trigger mask M(i, j,k) ∈ {0,1}, trigger color C(i, j,k) ∈ {0, . . . ,255}, and trigger perturbation

θ(i, j,k). Trigger mask, M, indicates the area where the trigger is attached to the benign data. The

trigger mask is a sparse matrix for architecture-based triggers, and for image transformation-

based triggers, the trigger mask is primarily 1. The mask combines multiple polygon triggers

tailored explicitly for each dataset. Unlike random selection, our approach combines these

polygon triggers into a larger, more comprehensive polygon. This method of merging enhances

the effectiveness of the triggers, particularly in scenarios where there’s a significant overlap

between the candidate and original triggers. Trigger color, C, is a 3-channel RGB value ranging

from 0 to 255 for each pixel (i, j,k). Trigger perturbation, θ , is the color scaling parameter for

each pixel. Using the above parameters, we define a generic form of architecture-based trigger

injection as follows:

Xeb = T (X ,M,C,θ) (2.1)

21

Figure 2.1. Histogram of number of Effective Triggers: Estimation for Infected (Red) vs.
Uninfected (Green) Models

where X is the benign data, Xeb is the trigger-embedded data, and T (·) represents the trigger

injection function, which is defined below:

Xeb(i, j,k) =

C(i, j,k)+θ(i, j,k) ∗X(i, j,k) i f M(i, j,k) = 1

X(i, j,k) o.w.
(2.2)

Note that the value of θ(i, j,k) is set to 0 for architecture-based triggers, and the value of

the area where the trigger is inserted is overwritten by C(i, j,k). In image transformation-based

triggers, however, the value of θ(i, j,k) is chosen according to the filter candidates to apply color

scaling in the corresponding pixel.

Once the injected trigger alters the output label, the corresponding trigger can be referred

to as an effective trI think discovering a counter-example is possible for the former selective

triggers Ne and backdoor attacks; we sample 40k randomly generated trigger candidates for

the uninfected and infected labels and plot the histogram of the number of practical triggers in

Figure 2.1. Figure 2.1 shows that the infected labels reach a much more extensive range of Ne

than clean models. However, the density distributions of practical triggers for clean and poisoned

models still overlap, and 46% of Ne for infected labels stay within the non-infected range. The

results suggest that the effective trigger does not always occur in backdoor-infected DNNs,

22

Figure 2.2. The general flow of DeepTD’s framework.

consistent with the observation made in [40]. The reason is that some samples are inherently

vulnerable to adversarial attacks, and their adversarial perturbations enable properties similar to

those of backdoors.

Now, having established a threshold T that is equivalent to the top 5% highest Ne among

uninfected labels, we find that the likelihood of a backdoor-infected Ne falling below T stands at

0.46, denoted by P(Ne < T) = 0.46. This implies that based on a single instance, it is unfeasible

to ascertain the infection status of a label. However, with the help of Univariate Theory [47], if

we take m samples of Ne for the same label:

P
(
max{N1

e ,N
2
e , , . . . ,N

m
e ,}< T

)
= (P(Ne,< T))m (2.3)

We define the maximum value Ne over all the m as Nmax. We find that the probability of Nmax

being lower than T can be decreased by varying m. For example, if m = 6, then P(Nmax <

T) = 0.466 = 0.009, and the success rate of identifying a backdoor-infected label is over 99%.

However, this approach also comes with some false positives, where the uninfected label is

identified as infected. Therefore, an appropriate trade-off analysis between m and the detection

accuracy should be performed.

23

2.4.2 DeepTD Framework

The overview of DeepTD is in Figure 2.2. DeepTD is a framework for detecting

backdoored DNN models that can be used for security assurance. DeepTD is the first framework

that takes Algorithm/Software/Hardware co-design approach to automate and optimize DNN

detection in multiple architectures.

Algorithm 1. DeepTD algorithm for image classification tasks
Input: Model H
Input: Sample benign data X from each class
Output: Is the model infected?
Initialize round counter crou
Repeat until crou reaches rmax:

Sample a random color c and assign to C(i, j,k)
for each class cl in model H :

Initialize trigger counter: ctri = 0
for each trigger mask M :

for Each data sample X i
cl in class cl :

Generate trigger embedded data: Xeb
if highest output value O < T h : continue
elif the class with highest output value t ̸= cl

increment ctri
if ctri > maxcount :

return: Infected model
Increment crou

End Repeat

In Algorithm 1, we first load an unknown model and initialize the trigger counter ctri and

round counter crou. Then, we sample an RGB color c and set C(i, j,k) = c. The pre-defined trigger

mask is a combination of all possible polygon triggers. Next, we review our pre-defined trigger

masks M and all the benign data X to generate all trigger-embedded data. Then, we feed each

trigger-embedded data into the model. Next, we calculate the output value O and the predicted

class label t. The output value O is the output value from the model. We verify O and t and check

if these values meet the requirement. If O is bigger than the threshold T h and t is different than

the original benign label, we increase the trigger counter ctri by 1, which also indicates that we

find an effective trigger. The threshold T h is tuned to fit most of the models. Once ctri is bigger

24

Figure 2.3. One FPGA design of DeepTD.

than the max count value maxcount , the algorithm returns an infected model. The Algorithm for

transformation-based model detection is similar to Algorithm 1 except for the value of θ .

We also define an intermediate output for the algorithm: the probability of the model

being infected. The threshold is determined by a Receiver Operating Characteristics (ROC)

curve, initially used in signal detection theory to realize the trade-off between the false alarm

rates and accuracy.

Note that DeepTD does not rely on random inputs to assess the model’s vulnerability.

Instead, it employs a more targeted approach by attaching self-generated triggers to benign input

data, which allows for a more accurate and practical evaluation of the model’s performance and

security in real-world scenarios.

2.5 DeepTD Hardware acceleration

We implement our design on FPGA to accelerate our proposed Trojan detection approach.

The high-level overview of our FPGA accelerator design is depicted in Figure 2.3. We store all

intermediate data on-chip to ensure efficiency. Our implementation leverages ScaleHLS [43] and

Vivado HLS tools for designing the accelerator framework. ScaleHLS is a practical high-level

synthesis (HLS) framework that assists in compiling DNN models into highly optimized C/C++

code.

25

2.5.1 Architecture and Optimization

Our work addresses the pressing concerns of automation and scalability in HLS flows.

Leveraging Multi-Level Intermediate Representation(MLIR), we support input from C/C++ and

PyTorch programs via the Polygeist and Torch-MLIR front-ends.

We optimize on three levels once the input files are parsed into MLIR. At the pinnacle,

tensor dialects, linalg, and TOSA (Tensor Operator Set Architecture) are utilized for the tensor-

level computation graph representation [43]. Tensor dialects are operations specific to tensor

computations. Linalg refers to a set of operations that represent linear algebra constructs at a

high level. TOSA is a set of operations defined to represent tensor computations. Subsequently,

we conduct affine loop analyses and optimizations, which improve the loops’ performance. We

refine the hardware micro-architecture at the foundational level, incorporating HLS-specific

directives and primitives to yield efficient code. We utilize ScaleHLS to transition our PyTorch

models and enhance RTL synthesis across all architectures for these processes.

2.5.2 FPGA Modules

Data Preprocessing Module reads the data from the camera and processes the image

streaming data into every image. The design uses task-level pipelining (i.e., HLS dataflow) and

streams the data between each dataflow stage using first-in-first-out buffers (FIFOs).

Concat Module is an integrative hub within our system. It receives two primary inputs:

trigger candidates generated by the Trigger Generator and Model Detector Module and images

the Data Preprocessing Module has processed. The role of the Concat Module is to amalgamate

these inputs into a unified data structure. Following this integration, the module forwards

the consolidated data to the DNN for further analysis. This architectural design facilitates a

streamlined flow of information from the initial data capture and preprocessing stages to the

sophisticated analysis performed within the DNN.

After the optimization process with ScaleHLS, we integrate Trigger Generator & Model

26

Algorithm 2. Tensor Dialects Optimization

1: Input: Tensor T = ∑
r
i=1 αiA⃗i⊗ B⃗i⊗C⃗i.

2: Initialize:

• Pick two random matrices P and Q.

• Set Tensor T as input.

3: Compute T P:

T P =
m

∑
i=1

piT [:, :, i]

=
r

∑
i=1

αi(P⃗⊤C⃗i)A⃗iB⃗⊤i .

4: Compute T Q:

T Q =
m

∑
i=1

qiT [:, :, i]

=
r

∑
i=1

αi(Q⃗⊤C⃗i)A⃗iB⃗⊤i .

5: Extract Eigenvectors:

• A⃗i’s are eigenvectors of T P(T Q)+.

• B⃗i’s are eigenvectors of T Q(T P)+.

6: Result:
• Output the eigenvectors A⃗i and B⃗i.

27

Detector Module into the hardware implementation. This detector module is located on the same

FPGA and performs detection. When the detector identifies the infected model, it outputs a

signal to inform the users. Our Model Detector Module utilizes a copy of the input data and

performs inference during idle time. Note that the DNN models in FPGA can be reconfigured

anytime without introducing a new FPGA design. Our Trojan detection module is highly scalable

and can be easily adapted to different DNN architectures. We demonstrate the effectiveness of

our approach by testing it with a range of architectures.

In our approach, repeated inferences with perturbed inputs are emphasized as a corner-

stone technique. This method introduces a novel implementation for Trojan detection using

FPGA. The uniqueness of our approach lies in its ability to leverage the inherent parallel pro-

cessing capabilities of FPGA, allowing for rapid and simultaneous perturbations. This leads to a

significant enhancement in Trojan detection sensitivity and efficiency, which is a key contribution

compared to state-of-the-art methods.

Moreover, as shown in line 12 of Algorithm 1, a significant processing step in the

proposed real-time Trojan detection scheme is the model output O computation. In our paper,

we show that the efficiency of this major processing step can be significantly improved using the

specific characteristics of an FPGA implementation. More specifically, our method introduces a

novel implementation for Trojan detection using FPGA. The uniqueness of our approach lies in

its ability to leverage the inherent parallel processing capabilities of FPGA, allowing for rapid

and simultaneous perturbations. This leads to a significant enhancement in Trojan detection

sensitivity and efficiency, which is a crucial contribution compared to state-of-the-art methods.

Moreover, as shown in line 12 of Algorithm 1, a significant processing step in the proposed

real-time Trojan detection scheme is the model output O computation. In our paper, we show

that the efficiency of this major processing step can be significantly improved using the specific

characteristics of an FPGA implementation. More specifically, we show part of the FPGA-based

acceleration algorithm for improving model computation efficiency in Algorithm 2. Algorithm 2

uses Tensor Dialects to optimize a given tensor T by decomposing it with the help of two

28

randomly chosen matrices P and Q. The operations involve tensor slicing, matrix multiplication,

and transpose operations, common in tensor dialects. The eigenvectors A⃗i and B⃗i extracted in the

process are crucial to understanding the structure and properties of the original tensor T .

As can be observed from the experimental results in Section 2.6, using the proposed

FPGA-based real-time Trojan detection scheme can significantly improve the efficiency, accuracy,

and power consumption of Trojan detection compared to state-of-the-art techniques.

2.6 Experiments

2.6.1 Setup and Datasets

Our experiments are conducted on an Intel(R) Xeon(R) CPU E5-2609 v4 CPU and

Nvidia Titan Xp GPU. For FPGA implementation and simulation, we use the Xilinx XQKU060

platform. Our CPU implementation is a fully optimized NumPy inference program we developed.

During our experiments with GPU, we use the Nvidia power measurement tool (Nvidia-semi) on

the Linux operating system, which is invoked during program execution.

To evaluate our proposed approach, we use 1) CIFAR10 dataset [48], 2) VGGface

dataset [49], 3) Synthetic road background dataset (RB) which includes created image data of

non-real traffic signs superimposed on real-world road background scenes, 4) Cyber security

dataset(CyberSec) [50], 5) Amazon review dataset[51].

We utilize TrojAI Software [52] to generate models for CIFAR10 and VGGface datasets.

We use the model architectures described in Section 2.3.1 for the Road background dataset.

For cyber security data and the Amazon review data, we employ Perceptron architectures and

DistilBERT, respectively [15, 16]. The algorithm used for models trained from cyber security

data and language models trained from Amazon review data is similar to algorithm 1, and

the only difference is that instead of sampling color, we sample features and tokens for cyber

security data and Amazon review data. The models generated from the Road background dataset

1https://contagiodump.blogspot.com/

29

are available from [52], which provides an equal number of models backdoored with different

triggers.

2.6.2 Evaluation Matrix

We evaluate our method on all the above detests, and the results are shown in Table 2.3.

We use Cross-Entropy Loss (CE-loss) and Receiver Operating Characteristic—area under the

Curve (ROC-AUC) to evaluate an object or data’s performance. CE-Loss is a wide range,

especially for classification problems. It measures the dissimilarity between the true and predicted

distribution over the classes.

ROC curve is a graphical plot that illustrates the performance of a binary classifier system

as its discrimination threshold is varied. The Area Under the Curve (AUC) for the ROC curve

measures the classifier’s ability to discriminate between positive and negative samples. The AUC

is the area under the ROC curve. The AUC can be represented as the integral:

AUC =
∫ 1

0
TPR(t)dt (2.4)

Where t is the threshold, TPR represents the True Positive Rate, defined as T PR = T P/(T P+

FN), where T P and FN indicate True Positive and False Negatives, respectively.

2.6.3 Results

We summarize the performance in Table 2.3, For CIFAR10 and VGGFace datasets, these

models achieve excellent scores for both CL-loss and ROC-AUC with CL-loos = 0, indicating

no classification error. The obtained ROC-AUC value is 1.00, which also shows the excellent

performance of our method. Regarding the Road Background dataset, which is used to train more

than 20 model architectures, we split the dataset into three subsets labeled "Road background 1",

"Road background 2", and "Road background 3". These models trained from the above road

background dataset have increased CE-Loss values from 0.19 to 0.32, suggesting outstanding

30

Table 2.3. Evaluation on different datasets.

Dataset CE-Loss ROC-AUC
CIFAR10 0.00 1.00
VGGFace 0.00 1.00
RB1 0.19 0.96
RB2 0.24 0.94
RB3 0.32 0.90
CyberSec 0.28 0.99
Amazon 0.06 0.93

classification errors across the datasets. Their ROC-AUC values range from 0.96 to 0.90,

indicating good performance across the datasets. The testing on the "Road Background 3"

dataset doesn’t give the same outcome as the "Road Background 1" dataset, and we believe

the lower classification accuracy obtained using the "Road Background 3" dataset is due to an

overfitting issue.

In terms of Cyber Dataset, the CE-Loss for this model is 0.28. The ROC-AUC is

exceptionally high at 0.99, indicating near-perfect classification capabilities despite a non-zero

CE-Loss. In summary, DeepTD achieves excellent overall performance across different datasets,

including image and cyber data. From the Table 2.3 we get 1.0 ROC-AUC for models trained

with CIFAR10 and VGGFace dataset. DeepTD gets up to 0.96 ROC-AUC on models trained

with the Road background dataset.

In addition, Table 2.4 presents a comparison of DeepTD with prior Trojan detection

techniques ABS [10] and NC [22]. We replicated ABS [10] and NC [22], and then we conducted

evaluations using the same metrics as in this paper. We train 288 models using the road

background dataset and summarize the result in Table 2.4. Table 2.4 indicates that ABS achieves

a CE-Loss of 0.53 and an ROC-AUC of 0.81. NC has a slightly higher CE-Loss of 0.69 and a

notably lower ROC-AUC of 0.50, indicating less classification performance than ABS. Also,

AEVA offers 0.69 CE-loss and 0.50 ROC-AUC, which means neither NC nor AEVA can detect

complicated triggers. When executed on the GPU platform, DeepTD surpasses ABS, yielding a

CE-Loss of 0.32 and ROC-AUC of 0.90. Additionally, DeepTD obtains a CE-Loss of 0.31 and

31

Table 2.4. Comparison with Prior Art and Different Implementations (Time and Power are
normalized)

Methods Models CE-Loss ROC-AUC
ABS [10] 288 0.53 0.81
NC [22] 288 0.69 0.50
AEVA [40] 288 0.69 0.50
DeepTD CPU 288 0.32 0.90
DeepTD GPU 288 0.32 0.90
DeepTD FPGA 288 0.31 0.91

a ROC-AUC of 0.90 on FPGA, demonstrating superior performance.

The DeepTD implementations, both on GPU and FPGA, significantly outperform the

prior methods. They have the lowest CE-Loss values of 0.32 and 0.31, respectively, and the

highest ROC-AUC values of 0.90 and 0.91, respectively. This implies superior classification

capabilities of the DeepTD system compared to ABS and NC.

In summary, Table 2.4 offers a comparative analysis of different classification methods

on a consistent set of models. The DeepTD, both on GPU and FPGA, showcases superior

performance metrics, outshining the earlier methods presented in the literature. It’s important to

note that there’s a trade-off between the detection accuracy of DeepTD and its runtime overhead.

As shown in Equation 2.3, if m is set to a more significant value, the corresponding amount of

runtime for DeepTD will also increase.

We find that there is a trade-off between detection accuracy and computational overhead.

If we increase the value of m in equation2.3, the computational overhead will also increase

linearly.

DeepTD running on both GPU and FPGA outperform ABS, achieving a CE-Loss of

0.32 and 0.31, respectively, and a ROC-AUC of 0.90, 0.91 for GPU and FPGA implementation

correspondingly. Note that NC [22] uses the “minimal” trigger idea in a fixed location and

reverse engineering to produce N potential “triggers,” which does not work for our model settings;

therefore, we don’t list the performance.

Table 2.5 lists the resource utilization, performance, and correctness of some of the

32

design choices. We use the ScaleHLS tool to convert the PyTorch model to a C++ model and use

Vivado HLS 2019.1 to simulate.

0.00

0.25

0.50

0.75

1.00

Time (Normalized) Power (Normalized)

DeepTD CPU DeepTD GPU DeepTD FPGA

Figure 2.4. Average Runtime and Power consumption comparison with CPU, GPU, and FPGA
implementation

Figure 2.4 compares our optimized FPGA implementation’s inference time and power

requirement with the highly optimized CPU and GPU implementation of DeepTD. Our FPGA

implementation is 40x faster than CPU implementation and 15.6 times faster than GPU imple-

mentation in runtime. It has 17x less power consumption than GPU implementation.

To illustrate the advantages of FPGA-based Trojan detection implementation compared

to CPU and GPU-based implementations, Table 2.4 shows a side-by-side comparison of compu-

tational time and power consumption incurred using CPU, GPU, and FPGA, respectively. Our

FPGA implementation exhibits a 40x faster runtime thruntimeCPU implementation, a 15.6x

faster runtime thruntimeGPU implementation, and a 17x reduction in power consumption com-

pared to the GPU implementation. Table 2.5 presents the resource utilization, performance, and

correctness metrics for selected design choices. We utilized the ScaleHLS tool and Vivado for

simulation.

33

Table 2.5. FPGA design utilization

Design Memory DSP LUT Clock
(Util.%) (Util.%) (Util.%) Period(ns)

Resnet18 91.7% 49.0% 25.9% 6.5
VGG16 46.7% 32.8% 15.2% 5
MobileNet 79.4% 65.3% 22.8% 5

2.7 Hardware Trojan Detection Introduction

Integrated circuits (ICs) are indispensable components for a diverse set of real-world ap-

plications including healthcare systems, smart home devices, industrial equipment, and machine

learning accelerators [53, 54]. The vulnerability of digital circuits may result in severe outcomes

due to their deployment in security-critical tasks. The design and manufacturing process of

contemporary ICs are typically outsourced to (untrusted) third parties. Such a supply chain struc-

ture results in hardware security concerns, such as sensitive information leakage, performance

degradation, and copyright infringement [55, 56]. Malicious hardware modifications, a.k.a.,

Hardware Trojan (HT) attack [57, 58] may occur at each stage of the IC supply chain.

There are two main components in a HT attack: Trojan trigger and payload. The HT

trigger is a control signal that determines when the malicious activity of the HT shall be activated.

The Trojan payload is the actual effect of circuit malfunctioning which depends on the purpose

of the adversary, e.g., stealing private information or producing incorrect outputs [57]. The

attacker intends to design a stealthy HT that remains dormant during functional testing and

evades possible detection techniques. As such, the HT trigger is typically derived from the rather

rare activation conditions that are easier to hide for the intruder.

To alleviate the concerns about malicious hardware modifications, a line of research

has focused on developing effective HT detection methods. Existing HT detection techniques

can be categorized into two classes based on the underlying mechanisms: (i) Side-Channel

Analysis (SCA), and, (ii) Logic Testing. SCA-based HT detection explores the fact that the

presence of the HT on the victim circuit will change its physical parameters (e.g., time, power,

34

and electromagnetic radiation), thus can be revealed by side-channel information [59, 60]. Such

a mechanism determines that SCA-based approaches can detect non-functional HTs, while they

may have high false alarm rates when detecting small HTs due to the operational and physical

silicon variation, as well as measurement noise. Logic testing-based techniques intend to activate

the stealthy Trojan trigger by generating diverse test patterns [61, 62, 63]. The main challenge of

logic testing-based HT detection is to increase the trigger coverage with a small number of test

patterns.

In this paper, we aim to simultaneously address three challenges of logic testing-based HT

detection: effectiveness, efficiency, and scalability. To this end, we propose AdaTest, the first

automated adaptive, reinforcement learning-based test pattern generation (TPG) framework

for HT detection with hardware accelerator design. Figure 2.5 demonstrates the high-level usage

of AdaTest to inspect if any hardware Trojans are inserted in the CUT. AdaTest takes the

netlist of the circuit under test (CUT) and user-defined parameters as its inputs. A set of test

vectors with high reward values are returned as the output of AdaTest.

AdaTest framework consists of two main phases: (i) Circuit profiling. Given the

circuit netlist, we first characterize each node in the CUT from two perspectives: the transition

probability, and the SCOAP testability measures. These two properties are used to identify rare

nodes and quantify the fitness of each node, respectively. (ii) Adaptive test pattern generation.

AdaTest proposes an innovative reward function for test vectors using the following informa-

tion: the number of times that each rare node is triggered, the SCOAP testability measure of the

rare nodes, and the graph-level distance of the circuit (represented as directed acyclic graph)

when applying this test input and the historical ones. In each iteration, AdaTest gradually ex-

pands the test set by generating candidate test inputs and selecting the ones that have high reward

values. AdaTest provisions a flexible trade-off between trigger coverage and test generation

time. To enable a hardware-assisted solution, we further design an optimized architecture for

AdaTest’s implementation to reduce the hardware overhead. More specifically, AdaTest

architecture pipelines the computation in online TPG and deploys circuit emulation to accelerate

35

reward evaluation.

Figure 2.5. High-level usage of AdaTest for hardware-assisted security assurance against
Trojan attacks.

AdaTest opens a new axis for the growing research in hardware security by exploring

the idea of reinforcement learning (RL) and adaptive test pattern generation. The adaptive nature

of AdaTest ensures that the quality (measured by our reward function) of our dynamic test

set always improves over iterations as new test inputs are added to the test set. Furthermore,

AdaTest is generic and can be easily extended for other hardware security problems, such as

logic verification, efficient ATPG, functional testing, and built-in self-test. For example, the

concept of RL and adaptive test pattern generation presented in AdaTest can be used in an

efficient ATPG application where the RL reward function is designed to reflect the goal of the

ATPG (such as fault coverage of considered fault models).

Organization. Section 2.8 introduces preliminary knowledge and related works on Hardware

Trojan and its detection, as well as reinforcement learning. Section 2.9 discusses the challenges

of HT detection and the overall workflow of AdaTest framework. Section 2.10 presents our

test pattern generation algorithm that combines RL and adaptive sampling for fast exploitation.

Section 2.11 demonstrates our domain-specific architecture design of AdaTest. Section 2.12

provides a comprehensive performance evaluation of AdaTest on various circuit benchmarks

and comparison with prior works on logic testing-based HT detection. Section 2.14 concludes

the paper.

36

2.8 Preliminaries and Backgrounds

2.8.1 Hardware Trojan Attacks

The security of third-party SoCs has raised an increasing amount of concerns due to

the contemporary outsourcing-based supply chain. Hardware Trojans are malicious circuit

modifications inserted in the circuit to perform the pre-defined adversarial task (‘payload’) e.g.,

circuit malfunction or private information leakage when its control signal (‘trigger’) is activated.

Figure 2.6 shows an example HT design where a logic-AND gate and an XOR-gate are used

as the trigger and payload, respectively. The payload flips the output signal when the trigger is

activated, thus disturbing the desired behavior of the original circuit.

Figure 2.6. Demonstration of the Hardware Trojan attack.

The collaborative nature of the supply chain also determines that HTs may be inserted by

different parties at different stages of the IC lifecycle. For instance, the untrusted IP provider, the

circuit designer, or the manufacturing party might insert HTs in the circuit. Hardware Trojans

shall remain dormant in most cases to evade functional testing and HT detection, while it should

be successfully activated by the trigger to execute the attack. For this purpose, stealthy HTs

are designed with two main considerations: (i) Rare conditions are used to construct the trigger

signal; (ii) The HT is placed in a non-critical path to minimize its impact on side channels (delay,

power, electromagnetic emission, etc.)

37

2.8.2 Hardware Trojan Detection

Previous HT detection techniques can be categorized into two broad types: destructive

and non-destructive methods. Destructive detection schemes perform de-packaging and de-

layering on the manufactured IC to reverse engineer its design layout, thus is prohibitively

expensive [64]. Non-destructive HT detection includes two types: run-time monitoring and test-

time detection. Run-time approaches monitor the IC throughout its entire operational lifecycle

with the goal of detecting Trojans that pass other detection methods, providing the ’last-line of

defense’. There are two classes of test-time HT detection techniques. We detail each type as

follows:

(i) Side-channel Analysis. SCA-based Trojan detection methods explore the influence

of the inserted HT on a particular measurable physical property, such as the supply current,

power consumption, or path delay. These physical traces can be considered as the ‘fingerprint’

of the circuit and allow the defender to detect both parametric and functional Trojans [65, 59].

Parametric Trojans modify the wires and/or logic in the original circuit while functional Trojans

add/delete transistors or gates in the original chip [66, 67, 68]. However, SCA-based HT detection

has two limitations: (i) It cannot detect a small HT that causes a negligible impact on the physical

side-channel; (ii) The extracted circuit fingerprint is susceptible to manufacturing variation and

measurement noise, thus it might incur high false alarm rates.

(ii) Logic Testing. Compared to the side-channel-based approaches, logic testing methods

can only detect functional Trojans. However, they yield reliable results under process variation

and measurement noise. The main challenge of developing a practical and effective logic testing

technique for HT detection is the inordinately large space of possible Trojan designs that the

adversary can explore. Since the HT trigger is derived from a very rare condition that is unknown

to the defender, attempting to stimulate the stealthy Trojan with a limited number of test inputs

is difficult. Existing logic testing methods generate test patterns using simple heuristics, and

thus cannot ensure high trigger coverage on complex circuits. Also, such heuristic-driven

38

test generation approaches are inefficient (long test generation time) and unscalable to large

benchmarks [61, 58, 57].

Besides SCA and logic testing, other HT detection techniques have also been explored.

For instance, FANCI [69] presents a Boolean functional analysis method to identify suspicious

wires that are nearly unused in the circuit. For this purpose, FANCI introduces a concept called

‘control value’ to characterize the influence of a specific wire on other wires. The wires with

small control values are flagged as suspicious. However, the wire-wise control value computation

in FANCI is unscalable on large circuits. VeriTrust [70] suggests a verification method to detect

HT trigger inputs by examining the verification corners. Therefore, VeriTrust is agnostic to the

HT implementation styles.

Prior works on logic testing have explored various heuristics to improve trigger coverage

while reducing the test generation time. Conceptually similar to the ‘N-detection test’ in stuck-at

automatic test pattern generation (ATPG), MERO [61] leverages random test vectors and mutates

them until each rare node in the circuit is individually triggered at least N times. Such a simple

detection heuristic results in an unsatisfying trigger coverage, particularly Trojans that are hard-

to-activate. To overcome the limitation of MERO, [63] proposes to use genetic algorithms (GA)

and Boolean Satisfiability (SAT) to produce test inputs that excite regular rare nodes and internal

hard-to-trigger nodes, respectively. As the end result, [63] achieves a higher trigger coverage

compared to MERO, while it is inefficient due to the long test generation time. TRIAGE [62]

further improves GA-based test generation by devising a more appropriate ‘fitness’ function that

incorporates the controllability and observability factors of rare nodes. However, the GA nature

of TRIAGE limits its efficiency for test input space exploration and the resulting test set might

be unnecessarily large. TGRL [71] suggests training a machine learning model for test patterns

generation that combines rare signal stimulation as well as controllability/observability analysis.

Although TGRL claims to explore reinforcement learning, its test pattern generation pipeline

(Alg.3 in [71]) does not involve sequential decision-making in standard RL techniques. Instead,

TGRL learns an ML model via stochastic gradient descent for TPG.

39

2.8.3 Reinforcement Learning

Reinforcement learning [72, 73, 74] is a machine learning technique that is capable of

solving complex problems in various domains. RL works sequentially in an environment by

taking an action, evaluating its reward, and adjusting the following actions accordingly. In

particular, an RL paradigm involves an agent that observes the environment and takes actions

to maximize the reward determined by the problem of concern [74, 75]. Figure 2.7 shows the

interaction between the agent and the environment in the RL paradigm.

Figure 2.7. Illustration of the agent-environment interaction in reinforcement learning.

We introduce the key concepts in an RL system below:

Action Space. The action space is a set of possible moves that the agent can take to

change to a new state. For example, in a video game, an action can be running left/right, or

jumping high/low.

Environment. The environment takes the agent’s current state and action as input,

and returns the reward and the next state as the output. Depending on the problem domain, the

environment might be a set of physical laws or chemical reaction rules that processes the actions

and establish the corresponding outcomes.

State. A state is a concrete and instantaneous situation in which the agent finds itself.

This can be an instant configuration, a particular place and a moment that puts the agent in

connection with other influential objects in the environment, such as opponents or awards. It is

noteworthy that a state needs to contain all information to ensure the system satisfies the Markov

property [76].

40

Observations. The agent can obtain observations (emission of states) from the environ-

ment. In particular, the observation is a (stochastic) function of the state.

Reward. The reward is a numerical value that evaluates the fitness (success or failure)

of an agent’s actions in a given state. From a given state, an agent takes actions in the environment

and acquires the new state as well as the reward from the environment. A cumulative reward

is defined as the summation of discounted rewards: G(t) = ∑
n
k=0 γkR(t + k+1). The discount

factor γ (0≤ γ ≤ 1) tunes the importance of future rewards for the current state. The key idea of

RL is to find a series of actions that maximize the expected cumulative reward.

Policy. The policy of a RL algorithm is typically defined within the context of Markov

decision process [74]. Given the state information, policy is the suggested action that the agent

shall take in order to obtain a high reward.

Our objective is to develop an adaptive test pattern generation framework for logic

testing with high Trojan coverage and small test set size. Therefore, AdaTest belongs to the

test-time detection category introduced in Section 2.8.2. We choose RL over other machine

learning techniques (e.g. neural networks) since the reward-oriented and progressive nature of

RL makes it appealing for our goal. Furthermore, to reduce the complexity of RL, AdaTest

integrates adaptive sampling to prioritize test patterns that provide more useful information for

HT detection.

2.9 AdaTest Overview

In this section, we first discuss the limitations of prior works on Hardware Trojan

detection and our motivation (Section 2.9.1), then introduce our assumptions and threat model

for AdaTest framework (Section 2.9.2). We demonstrate the overall workflow of AdaTest

test pattern generation technique in Section 2.9.3. AdaTest is a hardware-friendly framework

and we present our architecture design in Section 2.11.

41

2.9.1 Motivation and Challenges

Prior works have advanced logic testing-based Trojan detection using various tech-

niques [61, 63, 62]. We discuss the limitations of these detection schemes below.

MERO. Inspired by the traditional ‘N-detect’ test used in stuck-at ATPG, MERO [61] generates

random test vectors to activate each rare node (identified as nodes with transition probability

smaller than the threshold θ) to the corresponding rare value at least N times. MERO has three

main disadvantages: (i) Triggering all rare nodes for N times might be very time-consuming

or even impractical; (ii) It yields low trigger coverage for hard-to-trigger Trojans; (iii) It only

explores a small number of test vectors in the entire possible space due to its bit mutation and

test vector selection policy.

ATPG based on GA+SAT. The paper [63] combines genetic algorithms and SAT in test pattern

generation for HT detection. While it improves the trigger coverage compared to MERO, [63]

has two constraints: slow test set generation and large memory footprint.

TRIAGE. The paper [62] proposes TRIAGE that integrates the benefits of MERO and [63].

TRIAGE leverages the SCOAP testability parameters and advises the fitness function of GA

for HT detection. However, the evolutionary nature of GA determines that TRIAGE might be

‘trapped’ in the vicinity of a local optimum, thus exploring only a small portion of the full test

input space.

We present AdaTest as a holistic solution to address the limitations of the previous

works. To this end, we identify three main challenges of developing an efficient and effective

logic testing-based HT detection technique as follows:

(C1) High trigger coverage. The test vector set shall yield a high trigger coverage rate to ensure

that the probability of activating the stealthy Trojan is large. This property is critical for the

effectiveness criterion of HT detection.

(C2) Efficient test generation. The runtime overhead of test pattern generation shall be reason-

able while attaining a high trigger coverage. For hardware-assisted security, this implies that a

42

test set with a smaller size is preferred. This requirement assures the efficiency and practicality

of the HT detection method, particularly on large circuits.

(C3) Scalable to large benchmarks. The runtime consumed by the test pattern generation

technique shall not scale exponentially with the size of the examined circuit.

AdaTest tackles the above challenges (C1)∼ (C3) using an adaptive, RL-based input

space exploration approach. Furthermore, we provide architecture design for AdaTest-based

TPG in Section 2.11 to enable hardware-assisted security. We empirically corroborate the

superior performance of AdaTest compared to the above counterparts in Section 2.12.

2.9.2 Threat Model

As shown in Figure 2.6, HTs consists of two parts: trigger and payload. Figure 2.6 shows

an example of HT design. AdaTest is applicable to both combinational and sequential circuits.

One can unroll sequential circuits into combinational ones and apply AdaTest for test pattern

generation. Without the loss of generality, we assume that the adversary uses a logic-AND gate

as the Trojan trigger that takes a subset of rare nodes as its inputs. An XOR gate is used to flip

the value of the payload node when the trigger is activated (i.e., each of the trigger nodes has a

logical value ‘1’).

We make the following assumptions about AdaTest framework:

(i) The defender knows the netlist of the circuit under test. We assume the party that

executes logic testing has the netlist description of the circuit to be examined. This netlist can be

obtained by performing de-packaging, de-layering, and imaging [77, 78, 79, 80] on the physical

circuit. While hardware obfuscation techniques such as camouflaging [81, 82, 83, 84] and logic

encryption [85, 86, 87, 88] could make the trigger design of the Trojan harder to identify, we

consider the scenario where the circuit under test is not encrypted in our threat model since this

setting is also used in previous Trojan detection papers [61, 71, 89, 90].

(ii) The defender can observe the ‘indication signal’ when the Trojan is activated. We

43

assume the defender can observe certain manifestations of the hidden Trojan when it is activated.

In particular, we assume the defender knows the correct response of the CUT to a given test input

and observes the primary outputs of the CUT for comparison. Note that AdaTest is compatible

with techniques that increase manifestation signals (e.g., test point insertion).

2.9.3 Global Flow

Figure 2.8 illustrates the global flow of AdaTest. We discuss the threat model in

Section 2.9.2. AdaTest framework consists of two stages: (i) Circuit profiling phase (offline)

that computes the transition probabilities and SCOAP testability parameters of the netlist; (ii)

Adaptive RL-based test set generation phase (online) that progressively identifies test vectors

with high reward values.

Compute Transition
Probability

Compute SCOAP
Parameters

Final
Test Set

SCOAP
Params

Rare Nodes

Initialize
Test Set

Generate
Candidate Inputs

Evaluate
Reward

Terminate? Yes

 CUT Netlist

Phase 1: Circuit Profiling

Phase 2: Adaptive Test Set Generation
No

Adaptive Sampling
to Update Test Set

Figure 2.8. Global flow of AdaTest framework for Hardware Trojan detection.

Phase I: Circuit Profiling. This stage includes the following:

(1) Compute Transition Probabilities. Given the netlist of the circuit under test,

AdaTest first computes the transition probability of each internal node in the netlist. In

particular, we use the method in [91] and assume that each primary input has an equal probability

of taking a logical value of 0 and 1. We make this assumption about the primary input values

since previous Trojan detection papers [91, 92, 58, 93] use the same assumption when computing

the transition probability. Mathematically, the transition probability of a node is computed

as Ptrans = p(1− p) where p = Prob(node = 1). Ptrans of each node is then compared with a

44

pre-defined threshold θ to identify the rare nodes. Identifying rare nodes is important for HT

detection since the defender does not know the exact set of trigger nodes used by the attacker. As

such, the activation status of rare nodes provides guidance to generate test inputs that are likely

to trigger the stealthy Trojan.

(2) Compute SCOAP Testability Parameters. Controllability and observability are im-

portant testability characteristics of a digital circuit. More specifically, ‘controllability’ describes

the ability to establish a specific node to 0 or 1 by setting the primary inputs. ‘Observability’

defines the capability of determining the value of a node by controlling the circuit’s inputs and

observing the outputs. The testability parameters are useful for Trojan detection since they allow

AdaTest to distinguish the quality of different rare nodes.

Phase II: Adaptive RL-based test pattern generation. After the CUT is profiled offline in

Phase 1, AdaTest performs adaptive test input generation as shown in the bottom of Figure 2.8.

We outline each step as follows:

(1) Initialize Test Set. AdaTest first generates an initial test vector set that is used in

the later steps. A naive way to do so is random initialization, which may not be optimal for

HT detection. To improve the trigger coverage in the later runs, AdaTest employs SAT to

find a number of test inputs that activate a subset of rare nodes. We call this method ‘smart

initialization’ and empirically corroborate its effectiveness in Section 2.12.1.

(2) Generate Candidate Test Inputs. In each iteration of AdaTest’s adaptive test

vector generation, we first produce a sufficient number of candidate test input patterns that

might improve the detection performance when added to the current test set. AdaTest deploys

random test generation for this purpose.

(3) Evaluate Reward Function. AdaTest applies the candidate test inputs on the

examined circuit and collects the observations, i.e., the netlist status represented as a directed

acyclic graph (DAG). We incorporate the transition probabilities and the SCOAP testability

parameters from Phase 1 as well as a novel DAG-level diversity measure to define our reward

45

function.

(4) Adaptive Sampling to Update Test Set. Inspired by the selection step in genetic

algorithms, we design an adaptive sampling module that picks ‘high-quality’ test patterns for

fast and efficient input space exploration. In particular, after computing the reward value of each

test input in the candidate test vectors, AdaTest selects the ones with the highest scores and

append them to the current test set.

At the end of each iteration, AdaTest checks the termination condition and decides

whether or not the progressive test generation process shall continue.

Performance Metrics. We use effectiveness and efficiency as two main metrics to assess the

performance of a Trojan detection scheme. In particular, we measure the effectiveness from two

aspects: trigger coverage and Trojan coverage (i.e. detection rate). The efficiency property is

measured by the test set generation time and test set size. AdaTest, for the first time, provides

the trade-off between effectiveness and efficiency by adaptively generating a set of test patterns

with evolving quality over time. The quantitative analysis of the above metrics is demonstrated

in Section 2.12.

2.10 AdaTest Algorithm Design

The key to ensuring a high probability of Trojan detection using logic testing is to

generate a test set that can trigger the circuit to diverse states, in particular, the rare nodes

in the circuit. To this end, AdaTest leverages three important characteristics of the circuit:

the transition probabilities, the SCOAP testability measures, and the DAG-level diversity. In

particular, AdaTest employs an RL-driven test pattern generation approach that uses the above

three properties to progressively generate test inputs. Inspired by the selection stage in genetic

algorithms, we integrate an adaptive sampling module that progressively expands the current

test set (used as historical information) with high-quality test patterns. This response-adaptive

design is beneficial for statistical search of the HT trigger in the circuit input space, thus improves

46

the efficiency of AdaTest’s RL-based pipeline. We detail the two main phases of AdaTest

shown in Figure 2.8 in the following of this section.

2.10.1 Circuit Profiling

Algorithm 3 outlines the steps of the circuit profiling phase in AdaTest. This stage

obtains two informative properties of the circuit: the transition probabilities and testability

measures. In particular, we use random testing and logic simulation to estimate the transition

probability Ptrans of each node in the netlist Cn. To further investigate the rewards of different

rare nodes, AdaTest also computes the SCOAP parameters of the nodes using the technique

in [94].

AdaTest’s circuit profiling stage characterizes the static reward properties of the circuit

in terms of the transition probabilities of rare nodes and testability measures. We call these two

properties ‘static’ since they are independent of the circuit input for a given circuit netlist. As

such, our profiling phase can be performed offline. The above two properties are indispensable

for the reward computation step in Phase 2 of AdaTest since: (i) Transition probabilities and

rare nodes shed light on the potential trigger nodes exploited by the malicious adversary. The

defender knows that a subset of rare nodes are used to design the stealthy Trojan while he

has no knowledge about the exact trigger set. As such, rewarding the activation of rare nodes

encourages the test vectors to stimulate the possible HT. Note that the Trojan activation condition

is equivalent to knowledge of the exact trigger set and both are assumed to be unknown to the

defender. (ii) Testability parameters provide more fine-grained information about the quality of

individual rare nodes in the context of HT detection. One can compare the fitness of two test

inputs by counting and comparing the number of activated rare nodes corresponding to each test

vector. However, such a naive counting mechanism neglects the intrinsic difference between

the quality of individual rare nodes. In principle, a rare node with higher controllability and

observability shall be assigned with higher reward values. As such, AdaTest integrates the

SCOAP testability measures to quantify the reward of each activated rare node.

47

Algorithm 3. Circuit Profiling.
INPUT: Netlist of the circuit under test (Cn); Number of random tests (H); Threshold on

transition probability (θ) for rare nodes.

OUTPUT: The set of rare nodes (R); Computed testability parameters T P =
(CC0,CC1,CO).

1: Initialize rare node set: R← /0
2: Generate random inputs: I← RandGen(Cn, H).
3: Perform logic simulation: O← LogicSim(Cn, I).
4: for node in Cn do
5: Compute frequency: p =CountOnes(O,node)/H
6: Estimate transition probability: Ptrans = p(1− p)
7: if Ptrans < θ then
8: R← R∪node
9: Obtain SCOAP parameters:

(CC0, CC1, CO)←ComputeSCOAP(Cn)

10: Return: Obtained rare node set R, SCOAP testability parameters T P = (CC0,CC1,CO).

2.10.2 Adaptive RL-based Test Pattern Generation

AdaTest deploys a progressive, reinforcement learning-driven algorithm for efficient

and effective test input space exploration with the goal of HT detection. Section 2.8.3 introduces

the basic concepts of RL. We discuss how we map the Trojan detection problem to the RL

paradigm as follows.

AdaTest’s RL Formulation of Trojan Detection:

State. The objective of AdaTest is to adaptively generate test patterns with high

effectiveness for Trojan detection in an iterative manner. As such, AdaTest defines a state as

the current test set in the present iteration.

Action Space. Recall that an action transforms the agent into a new state, which is

the new test set according to our definition of the state above. Therefore, a feasible action for

AdaTest is to identify a set of new test input vectors in each iteration that improves the quality

of HT detection when added to the current test set.

Environment. For HT detection, the netlist of the circuit (Cn) can be considered as the

48

environment that converts the current state and the action, and returns the reward value.

Observations. The agent makes the observation of the environment before reward

computation. For Trojan detection problems, we model the DAG formed by the values of all

nodes in the netlist given a specific input vector as an observation of the circuit state.

Reward. The definition of the reward function directly reflects the objective of the

problem that one aims to solve. As such, for the task of logic testing-based HT detection,

AdaTest designs a composite reward function to encourage the generation/exploration of test

inputs that facilitate the excitation of the potential HT.

The mathematical definition of AdaTest’s dynamic reward function is given in the

equation below:

Reward(Ti| Si) = λ1 ·Vrare(Ti, R)+λ2 ·Vscoap(Ti, R, T P)

+λ3 ·VDAG(Ti| Si). (2.5)

Here, Si and Ti are the current test set (i.e., the state) and the newly generated test inputs in ith

iteration, respectively. R and T P are the set of rare nodes and the SCOAP testability parameters

identified in Phase 1 (static attributes). The hyper-parameters λ1, λ2, λ3 determine the relative

weighting of the three reward terms. The reward function Reward(Ti| Si) characterizes the fitness

of the specific test inputs Ti while considering the current test set Si. Evaluating the reward value

of Ti in the context of the historical test patterns (Si) makes AdaTest’s RL framework adaptive

and intelligent.

We detail how each term in AdaTest’s reward function is designed below. Inspired by

the ‘N-detect’ test, the first reward term in Equation (2.5) aims to activate each rare node in the

circuit for at least N times. To this end, we define the rare node reward Rrare as follows:

Vrare(Ti, R) =−∑
r∈R

abs(N−Ctri(r)), (2.6)

49

where Ctri(r) is the number of times that the rare node r is activated to its rare value up to the ith

iteration.

The second reward term in Equation (2.5) leverages the SCOAP parameter T P =

(CC0,CC1,CO) computed in Phase 1 to encourage the stimulation of rare nodes with high

controllability and observability. Given the current test set Si, we can obtain the set of activated

rare nodes Rtri (which is a subset of R). The SCOAP testability reward Vscoap is then computed

as follows:

Vscoap(Ti, R, T P) = ∑
r∈Rtri

CC(r)+CO(r). (2.7)

Here, CC(r) and CO(r) denote the controllability and observability of the rare node r when set

to its rare value. More specifically, CC(r) shall be converted to CC0(r) or CC1(r) depending on

the rare value of the node r.

Besides leveraging the static attributes identified in Phase 1 to define the rare node reward

Rrare and the SCOAP testability reward Rscoap, AdaTest further explores the graph-level

diversity extracted from the circuit netlist. In particular, AdaTest identifies the dynamic

fitness property, i.e., the DAG-level diversity that is jointly determined by the circuit netlist

and the test vector set. Such a DAG-level distance serves as a dynamic fitness measure since

it is input-aware. Recall that AdaTest leverages an RL paradigm and considers the value

assignments of all nodes when given the netlist Cn and a specific test input as the observation.

We use the graph representation of the circuit to abstract the observed netlist status. To facilitate

the computation, AdaTest flattens the DAG to an ordered sequence based on the circuit level

information. The distance between the two transformed DAG sequences is used as the DAG-level

diversity measure. To summarize, we define the DAG diversity reward as follows:

VDAG(Ti| Si;Cn) = HammDist(DAG(Ti; Cn), DAG(Si; Cn)). (2.8)

Here, DAG(Ti;Cn) denotes the flattened ordered sequence of the DAG obtained when applying

50

the test inputs Ti to the circuit Cn. The diversity measurement function HammDist computes the

normalized pairwise distance of the flattened DAGs using the Hamming distance metric. Since

the DAG sequence of the circuit is binary-valued (0 or 1), AdaTest employs XOR function as

an efficient implementation of the HammDist function. It’s worth noting that this graph reward

VDAG is aware of historical test inputs (Si), thus providing guidance to select new inputs that

stimulate different internal nodes structure in the context of current test inputs Si.

Policy. The policy component of a RL algorithm suggests actions to achieve a high

reward given the current state. Recall that AdaTest defines the state and the action space as the

current set of test vectors and the expansion with the new test patterns, respectively. Therefore,

the policy module of AdaTest selects the most suitable test pattern candidates and add them to

the result test set (line 5&6 in Alg. 4).

Algorithm 4 outlines the procedure of our adaptive test set generation framework. We

emphasize that AdaTest does not require explicit training on the training set, which is

typically required by machine learning models (e.g., gradient descent-based training). The

RL nature enables AdaTest to search for distinguishing test inputs with the guidance of the

composite reward. This makes our detection method fundamentally different from TGRL [71]

that still trains an ML model for test pattern generation. We discuss how AdaTest leverages

the RL paradigm formulated above to achieve logic testing-based HT detection in the following

of this section.

1 Smart Initialization. Recall that the intuition of logic testing-based Trojan detection is

to encourage the generation of test inputs that activate diverse combinations of rare nodes to

their corresponding rare values. Random test vectors might be unlikely to yield a high trigger

coverage, especially on large circuits. To explore the above intuition, AdaTest leverages SAT

to generate the initial test set (line 1 in Algorithm 4) such that it is able to activate diverse rare

nodes specified by the defender. We empirically validate the advantage of our smart initialization

as opposed to the random variant in Section 2.12.1. It is worth noticing that while the defender

51

Algorithm 4. Adaptive Reinforcement Learning based Test Input Pattern Generation.
INPUT: Netlist of circuit under test (Cn); Rare node set R; SCOAP testability parameters

T P = (CC0,CC1,CO); Size of candidate test inputs per iteration (M); Size of selected
test inputs per iteration (L); Maximal number of iterations (Imax); Percentage threshold
of rare nodes (p); Target activation times (N).

OUTPUT: A set of test patterns S for Trojan detection of the target circuit Cn.
1: Initialization:

S0 =
{

S⃗1
0, ..., S⃗

L
0

}
← SmartInitialize(L).

Iteration counter: i← 0
2: while i < Imax and HT is not activated do
3: Ti← GenerateTestCandidates(M; Cn)

4: Reward(Ti| Si)← EvaluateReward(Ti, Si; Cn)

5: T top
i ← SelectTopCandidates(Ti, Reward, L)

6: Update test set: Si+1← Si∪T top
i ▷ Adaptive sampling to expand test set

7: Ai←CountRareNodeActivation(Si; Cn)

8: if p% elements in Ai ≥ N & Ai.min()≥ 1 then ▷ Check termination condition
9: break

10: i← i+1
11: Return: Obtained a test set (Si) for logic testing-based HT detection of the circuit Cn.

can identify rare nodes in the circuit by thresholding the transition probabilities, it might be

infeasible to find an input that stimulates all rare nodes to their rare values. Therefore, AdaTest

tries to generate test patterns that stimulate different combinations of rare nodes for Trojan

detection.

2 Generate Candidate Test Patterns. AdaTest progressively identifies test inputs that are

suitable for HT detection using an iterative approach. To this end, AdaTest first generates a

sufficient number of candidate test vectors at the beginning of each iteration (line 3 in Alg. 4).

These candidates are responsible for exploring the test input space and aim to find solutions with

high rewards. In our experiments, we adopt an adaptive sampling method to generate candidate

test patterns at each iteration. In particular, the sampling weights for the test vectors in the

initial set S0 are uniformly assigned at iteration 0. In other words, at iteration 0, we perform a

uniform sampling to generate candidate test patterns. Then the sampling weights of test vectors

at iteration i+1 will be updated based on the normalized reward values evaluated at iteration

52

i. Test vectors with higher reward values will result in higher sampling weights, which in turn

increases the probability of the test vectors being included in the generated set S. The adaptive

sampling method allows us to optimize test pattern generation by favoring test patterns with

higher reward values thus enhancing convergence in our test pattern generation.

3 Evaluate Reward Function. The definition of reward is task-specific. Since our objective is

to generate test patterns that stimulate the circuit (particularly the rare nodes) to different states

for Trojan detection, AdaTest designs an innovative composite reward function as shown in

Equation (2.5). In each iteration, the reward values of the candidate test inputs are evaluated (line

4 of Alg. 4). Our compound reward function captures informative features that are beneficial

for HT detection from three aspects: the number of times that each rare node is activated (Vrare),

the SCOAP testability measures that quantify the fitness of different rare nodes (Vscoap), and the

graph-level diversity between the current test inputs and historical ones (VDAG).

4 Adaptive Sampling to Update Test Set. Recall that in AdaTest’s RL paradigm, the

current test set Si represents the ‘state’ variable. After obtaining the reward values of individual

candidate test input in Ti from Step 3, AdaTest updates the state by selecting a subset of Ti that

has the highest reward values and adding them to the current test set Si. This step is conceptually

similar to the selection stage in genetic algorithms. With the domain-specific definition of reward,

AdaTest adaptively samples high-quality test patterns from the randomly generated candidate

test inputs, therefore facilitating fast exploration of the circuit input space for HT detection.

5 Check Termination Condition. AdaTest’s adaptive test set generation terminates if any

of the following three conditions is satisfied: (i) p% of all rare nodes are activated for at least N

times and all rare nodes are activated at lease once (line 8 in Alg. 4); (ii) The maximal number of

iteration Imax is reached (line 2 in Alg. 4); (iii) The current test set Si activates the hidden Trojan,

i.e., all involved trigger nodes are activated to their corresponding rare values by Si (line 2 in

Alg. 4). Note that we include termination condition (iii) since our threat model assumes that the

defender can observe the manifestation of an activated Trojan.

53

Discussion. As summarized in Alg. 4, our reinforcement learning approach does not require

model training. Instead, we progressively generate the set of test vectors using adaptive sampling

given the particular circuit with the goal of maximizing the RL rewards for Trojan detection.

From this perspective, our RL-based detection tool generates a specific test set for the circuit

under test. However, AdaTest is generic in the sense that it is agnostic to the circuit structure

and can be applied to various types of circuits. In other words, applying AdaTest to a different

circuit does not require any model training since we do not incorporate neural networks in our

RL detection pipeline shown in Alg. (4).

2.11 AdaTest Architecture Design

Beyond the novel test generation algorithm discussed in Section 2.10, we design a

Domain-specific systems-on-chip (DSSoC) architecture of AdaTest for its practical deploy-

ment. The bottleneck of AdaTest implementation is the computation of the test input’s reward

Reward(Ti|Si) according to Equation (2.5). Given the rare node-set R and SCOAP testability

measures of the circuit T P from offline circuit profiling (Algorithm 3), the online reward evalua-

tion of a new test input Ti involves three terms as shown in Equation (2.5): identifying the rare

nodes stimulated by Ti (for Vrare), obtaining the SCOAP values corresponding to each active rare

node (for Vscoap), and computing the DAG-level graph distance (for VDAG). Note that the third

component requires us to obtain the DAG with nodes value assignment when applying the test

input on the circuit DAG(Ti; Cn). This information is also sufficient to compute the first two

reward terms. Therefore, the main task for AdaTest’s on-chip implementation is to obtain the

value-assigned DAG for a new test input on the circuit (DAG(Ti; Cn)).

To accelerate circuit evaluation, AdaTest deploys circuit emulation on programmable

hardware to obtain the response DAG(Ti; Cn). Furthermore, AdaTest constructs the customized

auxiliary circuitry automatically to pipeline each computation stage and reduce the runtime

overhead. We design an optimized DSSoC architecture of AdaTest for efficient implementation

54

of our adaptive TPG method outlined in Algorithm 4.

2.11.1 Architecture Overview

The overall hardware architecture of AdaTest’s online test patterns generation is shown

in Figure 2.9 (a). AdaTest leverages Algorithm/Software/Hardware co-design approach to

accelerate the test inputs searching process shown in Figure 2.8 (phase2). More specifically,

AdaTest maps the netlist of the circuit under test (Cn) with the auxiliary part to the FPGA and

performs circuit evaluation to obtain the circuit’s response (DAG(Ti; Cn)) to the test input Ti. We

make this design decision to develop the hardware accelerator for AdaTest since acquiring the

circuit’s response from a configured FPGA (circuit emulation) is significantly faster than the

same process running on a host CPU (software simulation). In addition, AdaTest parallelizes

the computation of circuit emulation and pipelines at each step of the RL process. AdaTest

performs reward computation of the candidate test inputs and adaptive sampling in an online

fashion to minimize data communication between the off-chip memory and the FPGA.

(b)

DAG Buf

DAG
DAG

DAG
DAG

R
ew

ard

S
co

re V
ecto

r

Compute
Reward

A
ccu

Data Bus Adaptive
Sampling

CU

Circuit Emulation

In
p

u
t

B
u

ffer

A

Random Number Buffer

B

Reward
comptuation

DAG Buffer

Adaptive
sampling

(a)

Generate
Test Inputs

A
X

I B
U

S
 C

o
n

tro
ller

O
ff-ch

ip

M
em

o
ry

 C
P

U

Figure 2.9. Overview of AdaTest architecture design. The overall layout of the hardware
system (a) and the implementation of Reward Computation Engines (b) are shown.

Note that we do not include a random number generator (RNG) in our architecture design.

Instead, AdaTest stores a set of random numbers pre-computed on CPU using the inherent

variation of the operating system. This design choice has two benefits: (i) The hardware overhead

of a True RNG is non-trivial and not desired; (ii) Random numbers generated from the CPU

typically feature stronger randomness compared to the one generated on FPGA. The results of

circuit emulation are used for computing the reward values of test inputs using Equation (2.5)

during reward evaluation. The rare node evaluation and DAG distance computation process

55

in reward evaluation are parallelized by accommodating multiple Computing Engine (CE) in

AdaTest’s design. We also evenly partition the workload of each CE evenly offline.

After accumulating the reward for each candidate test input, our adaptive sampling selects

the ones with the highest rewards. This selection process is equivalent to sorting. Therefore,

AdaTest includes a sorting engine that permutes the key index based on their corresponding

rewards. We implement a lightweight sorting engine based on the ‘even-odd sort’ algorithm [95]

for adaptive sampling, incurring a linear runtime overhead with the candidate test set size M.

It is worth noticing that AdaTest does not deploy a central control unit to coordinate

the computation flow. Instead, each design component in Figure 2.9 (a) follows a trigger-

based control mechanism [96]. Particularly, each module is controlled by the status flag from

its previous computation stage. For example, the adaptive sampling module (i.e., the sorting

engine) in AdaTest begins to operate when the accumulation of the reward value is detected as

completed. Our trigger-based control flow simplifies the control logic while satisfying the data

dependency between different components in Figure 2.8. We detail the design of AdaTest’s

circuit emulation and auxiliary circuitry as follows.

2.11.2 AdaTest Circuit Emulation

We empirically observe from AdaTest’s software implementation that circuit evaluation

(i.e., obtaining DAG(Ti;Cn)) dominates the execution time. Motivated to address the high latency

issue of evaluating a circuit netlist on CPU, we propose to use circuit emulation to improve

AdaTest’s efficiency. The first step of circuit emulation is to rewrite the netlist of the circuit

under test (Cn) such that the values of internal nodes can be recorded by registers. The rewritten

circuit is then connected with the auxiliary circuitry and mapped onto FPGA. In this way, we

can emulate the response of the target circuit Cn for any test input by directly applying it to the

circuit and collecting the corresponding values in the registers. The collected signal values are

used to compute the three reward terms in Equation (2.5).

Furthermore, AdaTest optimizes the latency of hardware evaluation by storing the

56

emulation results in a ping-pong buffer (consisting of two buffers denoted with A and B) and

decoupling it from other hardware components as shown in Figure 2.9 (a). More specifically, the

reward computing engine (CE) calculates the reward of the candidate test input using the data

from buffer A. In the meantime, the emulator acquires the states of Cn given the next input Ti

and stores the results into buffer B.

2.11.3 AdaTest Reward Computing Engine

Pipeline with Early Starting. Our architecture design aims to maximize the overlapping time

between each execution stage of AdaTest to increase the throughput of TPG. As shown in

Figure 2.10, the ping-pong buffer enables pipelined execution of hardware emulation and reward

evaluation. Furthermore, reward evaluation and adaptive sampling can be pipelined across

different iterations. We can see from Figure 2.10 that epoch (i+1) can start circuit emulation

and reward evaluation when the previous epoch begins to generate new test inputs for the next

epoch. As such, the latency of candidate test input generation can be hidden by circuit emulation

and reward evaluation.

Compute T1 Circuit Emulation

Reward Evaluation I Compute T1

Adaptive Sampling

Compute T2 Compute T3

Compute T2

Sorting
reward

Generate Test Inputs

Gen T'1 Gen T'2 Gen T'3
Time

Compute T'3

Compute T'3

Compute T'2
Compute T'2Compute T3

Epoch Epoch

Compute T'1
Compute T'1

Early Start

Reward Evaluation II Compute T1 Compute T2 Compute T3 Compute T3Compute T'2Compute T'1

Figure 2.10. AdaTest’s hardware accelerator employs pipelining optimization to generate test
patterns online for HT detection.

Scalable Reward Computing Engine. Once circuit emulation finishes for the current input

Ti, AdaTest begins to calculate the reward of this test input using Equation (2.5). From the

hardware perspective, the reward term Vrare and Vscoap is computed by accumulating the number

of activated rare nodes and the corresponding SCOAP values from the circuit Cn, and the reward

VDAG is computed by accumulating the Hamming Distance (i.e., XOR) between the values in

the current DAG (DAG(Ti;Cn)) and the historical ones (DAG(Si;Cn)). Independence between

57

different groups of wire signals typically exists in circuits. AdaTest leverages this property

by distributing the computation involving independent groups of nodes to different reward

computing engines as shown in Figure 2.9 (b). As such, each CE stores a subset of DAG nodes’

values in the associated DAG buffer. The accumulation of the ultimate reward score completes

when the last CE finishes reward computing.

2.12 Evaluations

We investigate AdaTest’s performance for Hardware Trojan detection on various

benchmarks, including ISCAS’85 [97], MCNC [98], and ISCAS’89 [99]. The statistics of the

evaluated benchmarks are summarized in Table 2.6. To apply AdaTest on sequential circuits

in the ISCAS’89 benchmark, we unroll the circuit for two-time frames and convert it to a

combinational one [100, 101]. Note that the unrolling process duplicates the combinational logic

blocks, thus increasing the effective circuit size for Trojan detection. The transition probability

(Ptrans) threshold for rare nodes is set to PT = 0.1 for ISCAS’85 and MCNC benchmarks. As for

two ISCAS’89 circuits, we use Ptrans = 0.0005 so that the number of rare nodes is at the same

level as the previous two benchmarks. The identification results are shown in the last column of

Table 2.6. To compare AdaTest’s performance with other logic testing-based Trojan detection

methods, we use trigger coverage and Trojan coverage as the metrics to quantify detection

effectiveness. To characterize detection efficiency, we use the number of test vectors and the

detection runtime as the metrics. We empirically show that AdaTest achieves a higher Trojan

detection rate with shorter runtime overhead compared to the counterparts in the rest of this

section.

Experimental Setup. Adhering to our threat model defined in Section 2.9.2, we first design

the HT and insert it to each benchmark listed in Table 2.6. We use a logic-AND gate as the

Trojan trigger and select three rare nodes with rare value 1 as the inputs. To fully characterize

the performance of AdaTest, we devise various HTs for each circuit (i.e., using different

58

Table 2.6. Summary of the evaluated circuit benchmarks.

Circuit Dataset #in #out #gate # of rare nodes (Ptrans < PT)

c432 ISCAS-85 36 7 160 14
c499 ISCAS-85 41 32 202 48
c880 ISCAS-85 60 26 383 74

c3540 ISCAS-85 50 22 1669 218
c5315 ISCAS-85 178 123 2307 169
c6288 ISCAS-85 32 32 2416 245
c7552 ISCAS-85 207 108 3512 266

des MCNC 256 245 6473 2316
ex5 MCNC 8 63 1055 432
i9 MCNC 88 63 1035 85

seq MCNC 41 35 3519 1356
s5378 ISCAS-89 35 49 2958 258
s9234 ISCAS-89 19 22 5825 398

combinations of rare nodes as the trigger) and repeat the insertion for 50 times. Our Trojaned

benchmarks include ‘hard-to-trigger’ HTs with activation probabilities around 10−7 (e.g., c3540).

To compare the performance of AdaTest with prior works, we re-implement MERO [61] and

TRIAGE [62] based on the methodology described in the paper using Python. Our experiments

are performed on an Intel Xeon E5-2650 v4 processor with 14.5 GiB of RAM.

MERO Configuration. We use the parameter selection strategy suggested in MERO [61]

for re-implementation. Particularly, we set the size of random patterns to 2,500. The hyper-

parameter of MERO is N (desired number of times that each rare node shall be activated). A

large value of N achieves a higher detection rate while resulting in a larger test set [61]. We use

N = 1,000 in our experiments since this value is suggested in MERO [61].

TRIAGE Configuration. We use a population size of 100 and select 20 test inputs with

the highest fitness score in each generation. The probability of crossover and mutation is set to

0.9 and 0.05, respectively. The termination condition in TRIAGE [62] is used to evolve the test

patterns.

AdaTest Configuration. In AdaTest’s circuit profiling stage, we use the Testability

Measurement Tool [102] to compute the SCOAP parameters. The SAT-based smart initialization

59

step of AdaTest’s Phase 2 is performed using the pycosat library [103]. Our framework is

developed in Python language and does not require extensive hyper-parameter tuning. To ensure

the three reward terms in Equation (2.5) have comparable values within the range of [0,10], we

set the hyper-parameters to λ1 = 0.05, λ2 = 0.0001, λ3 = 0.00025. The candidate test size and

the step size in Algorithm 4 are set to M = 200 and L = 80 for all benchmarks, respectively. We

use the percentage threshold p = 95% to identify rare nodes and set the target activation times to

N = 20. The maximal iteration time is set to Imax = 500.

According to the performance metrics in Section 2.9.3, we use the trigger coverage

(percentage of trigger nodes identified by the test set) and the Trojan coverage (i.e., detection

rate) to quantify the effectiveness of HT detection. Meanwhile, we measure the test set generation

time and test set size of each technique for efficiency comparison. To obtain an accurate and

comprehensive performance measurement, we design 50 different HTs for each benchmark in

Table 2.6 while fixing the number of trigger nodes to 3. Each set of devised HTs is inserted into

the circuit independently. We run AdaTest detection on each Trojaned circuit for 20 times.

The trigger and Trojan coverage for each benchmark are computed as the average value over

50×20 = 1000 runs.

Figure 2.11. Trojan detection rates of AdaTest and prior works on various benchmarks.

60

2.12.1 Detection Effectiveness

We assess the detection performance of AdaTest, MERO, and TRIAGE using the

aforementioned experimental setup. Figure 2.11 compares the Trojan coverage of the three

HT detection techniques on different benchmarks. One can see that our framework achieves

uniformly higher detection rates across various circuits. The superior HT detection performance

of AdaTest is derived from our definition of adaptive, context-aware reward functions in

Equation (2.5).

We use two metrics to quantitatively compare the effectiveness of different HT detection

techniques: trigger coverage rate and Trojan detection rate. Note that AdaTest determine a

Hardware Trojan is present in the circuit if the set of test patterns generated using Alg. 4 result

in Trojan activation when the test inputs are applied to the circuit. Therefore, our detection

method does not have any false positives and we focus on evaluating the detection rates (which

corresponds to the false-negative rate). Table 2.7 summarizes the HT detection results of three

different methods on the benchmarks in Table 2.6. The trigger coverage and Trojan coverage

results are shown in the last two columns of Table 2.7. It can be seen that AdaTest achieves

the highest Trojan coverage while requiring the shortest test generation time across most of

the benchmarks. More specifically, AdaTest achieves an average of 15.61% and 29.25%

Trojan coverage improvement over MERO [61] and TRIAGE [62], respectively. The superior HT

detection performance of our logic testing-based approach is derived from the diverse test patterns

found by AdaTest adaptive RL-driven input space exploration technique (see Section 2.10.2).

We not only encourage the activation of rare nodes and differentiate their qualities using SCOAP

testability parameters but also explicitly characterize the graph-level distance of the CUT status

under different test stimuli.

We measure the dynamic rare node coverage versus the number of executed iterations to

validate the time-evolving property of AdaTest framework. Figure 2.12 shows the coverage

results of AdaTest with random initialization and SAT-based smart initialization on the c3540

61

benchmark. We can make two observations from Figure 2.12: (i) AdaTest consistently

improves the rare node coverage over time (with either initialization method); (ii) SAT-based

smart initialization improves the convergence speed of AdaTest, thus reducing our test set

generation time. The first observation corroborates the efficacy of our RL-based progressive test
Table 2.7. Performance comparison summary of different Trojan detection techniques.

circuit Method # test vectors Runtime (s) Trigger coverage Trojan coverage

c499
MERO 1660 136.49 100.00% 100.00%
TRIAGE 250000 25.91 100.00% 100.00%
AdaTest 1010 13.60 100.00% 100.00%

c880
MERO 1332 352.54 100.00% 100.00%
TRIAGE 250000 1.75 82.29% 18.00%
AdaTest 429 0.43 100.00% 97.50%

c3540
MERO 1920 1577.36 100.00% 100.00%
TRIAGE 250000 25.85 100.00% 61.00%
AdaTest 905 22.61 100.00% 100.00%

c5315
MERO 9265 1660 100.00% 50.00%
TRIAGE 250000 37.14 100.00% 50.50%
AdaTest 1300 19.76 100.00% 100.00%

c6288
MERO 1906 1867.57 100.00% 100.00%
TRIAGE 250000 44.11 100.00% 91.50%
AdaTest 900 47.06 100.00% 99.50%

c7552
MERO 1916 18650.5 100.00% 50.00%
TRIAGE 250000 20.93 93.88% 5.00%
AdaTest 1600 39.79 98.08% 100.00%

s5378
MERO 1103 30960.11 100.00% 100.00%
TRIAGE 300 0.45 100.00% 100.00%
AdaTest 100 11.58 100.00% 100.00%

s9234
MERO 11 29737.84 100.00% 25.00%
TRIAGE 500 35.625 100.00% 100.00%
AdaTest 140 124.99 100.00% 100.00%

des
MERO 1120 34943.41 100.00% 100.00%
TRIAGE 2500 0.84 100.00% 100.00%
AdaTest 156.8 15.11 92.88% 100.00%

ex5
MERO 904 115.22 100.00% 100.00%
TRIAGE 2500 0.13 99.13% 100.00%
AdaTest 500 12.35 93.81% 100.00%

i9
MERO 268 808.56 100.00% 100.00%
TRIAGE 2500 0.09 100.00% 100.00%
AdaTest 600 12.15 94.58% 100.00%

seq
MERO 1776 3773.3 100.00% 66.67%
TRIAGE 250000 22.11 95.44% 2.00%
AdaTest 3700 20.72 94.58% 82.00%

62

pattern generation method. The second observation reveals the importance of proper initialization

for fast convergence of RL exploration. Note that a shorter convergence time (i.e., a smaller

number of iterations in Algorithm 4) indicates s smaller test set returned by AdaTest, which is

beneficial to reduce the test generation time for higher detection efficiency.

Figure 2.12. The rare node coverage of AdaTest versus the number of executed iterations on
c3540 benchmark.

Figure 2.13. Test set generation time comparison between AdaTest and prior works. The
runtime shown by the y-axis is represented in the log scale.

63

2.12.2 Detection Efficiency

We characterize the efficiency of AdaTest for logic testing based HT detection using

two metrics: the test set size (space efficiency), and the test set generation time (runtime

efficiency). The quantitative efficiency measurements of three HT detection methods are shown

in the third and fourth columns of Table 2.7. It can be computed that AdaTest engenders an

average of 2.04× and 155.04× reduction of the test set size compared to MERO and TRIAGE

across all benchmarks, respectively. The reduction of test set size has two benefits: (i) A smaller

test set features a lower memory footprint; (ii) For on-chip test pattern generation, a smaller test

set suggests a shorter test generation time.

Figure 2.13 compares the required test generation time of AdaTest, MERO, and

TRIAGE to achieve the coverage results on various benchmarks in Table 2.7. Note that we use

log-scale for the vertical axis since the range of runtime is diverse across different circuits. We

can observe that AdaTest is the most efficient HT detection method among the three and it

also achieves high Trojan coverage (last column of Table 2.7). More specifically, AdaTest

engenders an average of 366.26× and 0.63× test generation speedup compared to MERO [61]

and TRIAGE [62], respectively. Note that although the runtime of TRIAGE is smaller, its Trojan

detection rate is 30% lower than AdaTest.

2.12.3 AdaTest Architecture Evaluation

The resource utilization of AdaTest depends on the input length and the circuit size.

We report the resource utilization results of the evaluated benchmarks in Table 2.8. Figure 2.14

shows that AdaTest architecture achieves approximately linear speedup w.r.t. to the number of

CEs. Our hardware design can be scaled up by adding more reward computing engines to parallel

the circuit emulation process as AdaTest’s computation bottleneck is reward evaluation of

the test patterns. Nevertheless, the speedup saturates when NCE is sufficiently high. AdaTest

broadcasts the wire values of the circuit response (given a test input) to all CEs via a shared

64

data bus. Each CE scans the DAG buffer and obtains the broadcast wire values to compute the

corresponding reward. Therefore, increasing the number of CEs does not lead to extra wire delay.

However, more CEs suggest a higher overhead during reward accumulation.

Table 2.8. Resource utilization of the auxiliary circuitry on c432, c880, c2670 and des bench-
marks with default settings (NCE = 16) on Zynq ZC706.

Benchmarks c432 c880 c2670 des

BRAMS 26 36 65 237
DSP48E1 0 0 0 0

KLUTs (emulator usage) 14.9 (0.5) 25.5 (0.6) 61.1 (3.5) 267.9 (26.1)
FFs (emulator usage) 4,440 (80) 5,743 (160) 6,717 (317) 12,943 (1190)

Figure 2.14. AdaTest’s scalability to the number of DAG reward computing engines. The
speedup is near-linear with NCE on large circuits where reward evaluation is the computation
bottleneck.

2.13 Future Work

While groundbreaking, Trojan detection on neural networks presents several limitations

that should be acknowledged. The first limitation is the runtime overhead. Even after using a

GPU, the runtime still does not support frequent model evaluations, and future work is needed

to make it even faster. One idea is to design a local detector within the current framework that

responds more quickly and protects against known threats. However, there is a potential risk that

a new attack method could fool the system and reduce detection accuracy.

For Hardware Trojans, a future research direction is to investigate the performance of

AdaTest on other hardware security problems, such as logic verification and built-in self-test.

65

2.14 Conclusion

This chapter presents DeepTD, a Trojan detector for malicious DNN models imple-

mented on an FPGA, which surpasses CPU and GPU designs in efficiency while utilizing fewer

parameters. Our approach employs a scalable detector module for faster detection and lower

power consumption. Our FPGA implementation achieves up to 60x faster detection throughput

compared to CPU and GPU implementations and consumes 17x less power than the GPU im-

plementation. Moreover, our method enables testing for safety assurance by running a self-test

process in parallel with the model’s inference. Our work also includes the development of

reconfigurable detector modules that can accelerate various DNN architectures on hardware.

we also present a holistic solution to Hardware Trojan detection using adaptive, rein-

forcement learning-based test pattern generation. To formulate logic testing-based HT detection

as an RL problem, we design an innovative reward function to characterize the quality of a test

pattern from both static and dynamic aspects. AdaTest progressively expands the test set by

identifying test input vectors with high reward values in an iterative approach.

AdaTest integrates adaptive sampling to identify and encourage high-reward test pat-

terns, thus accelerating our RL-based input space exploration.

We devise AdaTest using a Software/Hardware co-design approach. Particularly, we

develop a domain-specific system-on-chip architecture for efficient hardware implementation

of AdaTest. Our architecture optimizes reward evaluation via circuit emulation and pipelines

the computation of AdaTest. We perform extensive evaluations of AdaTest on various

benchmarks and compare its performance with two counterparts, MERO and TRIAGE. Empirical

results corroborate that AdaTest achieves superior effectiveness, efficiency, and scalability

for HT detection compared to prior works. AdaTest is a generic test pattern generation

framework, we plan to investigate its performance on other hardware security problems such as

logic verification and built-in self-test in our future work.

66

2.15 Acknowledgements

This chapter is a partial reprint of the published material in H. Chen, X. Zhang, K.

Huang, and F. Koushanfar, “AdaTest: Reinforcement learning and adaptive sampling for on-chip

hardware Trojan detection,” in ACM Transactions on Embedded Computing Systems, vol. 22,

no. 2, pp. 1-23, 2023. The dissertation author was the author of these papers.

67

Chapter 3

A scalable algorithm to improve the effi-
ciency of Binary Neural Network

3.1 Introduction

There is an increasing surge in cloud-based inference services that employ deep learning

models.

In this setting, the server trains and holds the DNN model, and clients query it to make

inferences about their data. One major shortcoming of such a service is the leakage of clients’

private data to the server, which can hinder commercialization in specific applications. For

instance, in medical diagnosis [104], clients would need to expose their “plaintext” health

information to the server, which violates patient privacy regulations such as HIPAA [105].

One attractive option for ensuring clients’ content privacy is the use of modern crypto-

graphic protocols, as they provide provable security guarantees [106, 107, 108, 109, 110, 111,

112, 113, 114, 2, 5]. Let f (θ ,x) be the inference result on the client’s input x using the server’s

parameters θ .

By executing cryptographically secure operations, the client and server can jointly

compute f (θ ,x) without revealing x to the server or θ to the client. We refer to this process as

oblivious inference in the remainder of the paper. Unlike plaintext inference, oblivious inference

protects the privacy of both parties. The challenge, however, is the excessive computation and

communication overhead associated with privacy-preserving computation. For example, the

68

contemporary state-of-the-art for performing oblivious inference on a single CIFAR-10 image

requires an exchange of ∼ 3.4 GB of data and takes ∼ 10 seconds [1].

Early research on oblivious inference mainly focused on developing protocols for

inference of a given DNN model without making significant modifications to the model it-

self [106, 107, 108, 109, 110, 111, 112, 113, 114, 2, 5]. Recently, a body of work has explored

modifying the DNN architecture such that the resulting model is more amenable to secure

computation [1, 4, 115, 3].

Other potential directions for enhancing oblivious inference could include pruning, tensor

decomposition [116], quantization and Binary Neural Networks (BNNs) [117].

In this work, we study BNN as a candidate for fast and scalable oblivious inference. We

show that a BNN has several unique characteristics that allow it to translate its computations into

simple and efficient cryptographic protocols.

The benefits of employing BNNs for oblivious inference were first noted by XONN [1].

Despite achieving significant runtime improvement compared to non-binary DNN inference,

XONN has not leveraged opportunities for translation.

Part of the inefficiency of XONN is due to the usage of a single secure computation pro-

tocol as a black box for all neural network layers after the input layer. In this work, we introduce

a new hybrid approach in which the underlying secure computation protocol is customized to

each layer, minimizing the total execution cost for oblivious inference on all layers.

We design a composite custom secure execution protocol optimized for BNN operations

using standard security primitives. Our protocol significantly improves the efficiency of XONN,

as shown in our experiments.

One standing challenge in oblivious BNN inference is finding network architectures that

are accurate and amenable to secure computation. Since BNNs suffer from long training times

and poor convergence, searching for such architectures could be inefficient.

We address the search inefficiency challenge by

Training a single BNN that can operate under different computational budgets. Our

69

Runtime

A
cc

ur
ac

y
(%

)
70

75

80

85

90

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ours XONN CryptFlow2 Delphi SafeNet AutoPrivacy

Figure 3.1. Accuracy and runtime of our oblivious BNN inference, compared with contemporary
research with the same server-client scenario setting as ours (two-party, honest but curious).
Among these, XONN [1] evaluates BNNs, whereas Cryptflow2 [2], Delphi [3], SafeNet [4], and
AutoPrivacy [5] evaluate non-binary models.
adaptive BNN offers a tradeoff between accuracy and inference time without requiring training

separate models. Figure 3.1 presents the tradeoff achieved by our flexible BNN on the 7-layer

VGG network trained on CIFAR-10. With the combined power of our custom oblivious inference

protocols and adaptive BNN training schemes, our method outperforms prior art regarding

accuracy and runtime. For example, we achieve ∼ 2× faster oblivious inference at the same

accuracy compared to Cryptflow2 [2], the state-of-the-art non-binary DNN inference framework,

and 2× to 11× lower runtime compared to XONN, the previous work on oblivious BNN

inference.

We further improved the inefficiency challenge after combining neural architecture search

and significantly improved our performance compared to our previous work [118].

The paper is organized as follows: Section 3.2 introduces the problem scenario and our

threat model. Section 3.3 introduces the background of essential concepts. Section 3.4 presents

the overview our proposed Cryptographically Secure BNN Inference method, specifically it

contains linear layers, Nonlinear layers communication and discuss the security of our approach.

Then, we discuss the communication cost. Next, Section 3.5 introduces our adaptive BNN

training process to achieve excellent inference accuracy. Section 3.6 describes our experiment

result with the state-of-the-art standard benchmarks and model architectures and the evaluation

of private tasks. Section 3.7 summarizes the related work and discusses their drawbacks.

70

3.2 Scenario and Threat Model

Figure 3.2 presents the scenario in oblivious inference. Both the server and the client

know the neural network architecture f .

The server holds the set of trained parameters, i.e., θ = {θ 1, . . . ,θ L}, and the client holds

the input query to the neural network, i.e., x. The two parties use a secure function evaluation

protocol, where the client learns the inference result y = f (θ ,x).

Using a secure function evaluation protocol, the server and client jointly evaluate the

neural network function y = f (xa,xb) without revealing the server’s weights to the client or the

client’s input to the server. At the end of the protocol,

Similar to prior work in privacy-preserving inference, we consider the honest-but-curious

scenario [113, 114, 2, 5, 1, 4, 115, 3]. In this threat model, the two parties follow the protocol

they agree upon to compute the output, yet they may try to learn as much as they can about the

other party’s data. As such, the protocol should guarantee the following security requirements:

• x or f (θ ,x) are not revealed to the server.

• θ is not revealed to the client.

• Client and server do not learn intermediate activations.

Consistent with prior work, we assume that the model architecture is known to both parties.

Figure 3.2. The server and client use a secure function evaluation (SFE) protocol to perform
oblivious inference. At the end of the protocol, the client learns y = f (θ ,x) without learning the
server’s parameters θ or revealing x to the server.

71

3.3 Background

This section provides a high-level outline of the necessary terminologies. Following the

convention in secure computation literature, we refer to the server and client as Alice and Bob,

respectively.

3.3.1 Secure Function Evaluation Protocol.

During oblivious inference, Alice and Bob engage in a Secure Function Evaluation (SFE)

protocol, essentially a set of rules specifying their messages. By following these rules, they

jointly compute the output of a function that takes the inputs from both without disclosing any

information about Alice’s data to Bob and vice versa. Depending on protocol agreements, the

computation’s result can be exposed to both parties, only one or neither.

Here is an example: Let’s assume Alice and Bob have respective fortunes, A and B.

They would like to play a game to determine who has more money, i.e., A > B, while at the

same time, they do not want to reveal any additional information about their money. This

prevalent task is the millionaires′ problem[119]. In general, Alice and Bob, or more players,

wish to compute the output of a function f on secret inputs without revealing any additional

information from each player individually. In this case, f is called secure f unction evaluation

or general secure multiparty computation.

3.3.2 Additive Secret Sharing (AS)

Additive Secret Sharing (AS) is a method for distributing a secret x between Alice and

Bob such that Alice holds JxKA = x+ r and Bob holds JxKB = −r, where r is a random value.

Individually, both JxKA and JxKB are random values. Hence, Alice and Bob cannot decipher the

original message x independently. Only by combining JxKA and JxKB can one recover the actual

secret as x = JxKA + JxKB. Standard SFE protocols exist to perform addition and multiplication

on secret-shared data, and the result is also shared between the two parties. We employ these

72

protocols in oblivious inference to ensure that neither a layer’s input nor output is revealed to the

involved parties. We refer curious readers to [120] for more details.

3.3.3 Oblivious Transfer (OT)

Oblivious Transfer (OT) is a protocol between two parties – a sender who has two

messages (µ0,µ1), and a receiver who has a selection bit i ∈ {0,1}. The receiver obtains the

intended message µi through OT without revealing the selection bit i to the sender. The receiver

does not learn the other message,µ1−i. We refer curious readers to [121, 122, 123] for details

about OT, its variants and their implementations.

In Section 3.4.1, we design a protocol for oblivious matrix multiplication, which enables

oblivious evaluation of convolution and fully-connected layers. We build our protocol by

only using oblivious transfer (OT) and additive secret sharing (AS), which we outlined above.

However, AS and OT are inefficient for evaluating nonlinear activations and Max-pooling.

3.3.4 Garbled Circuit (GC)

Garbled Circuit (GC) is an SFE protocol that can evaluate an arbitrary function (linear

or nonlinear). Unlike secret sharing, GC can evaluate arbitrary nonlinear functions. However,

the downside of GC is its heavy communication overhead. Thus, we tend to limit its usage to

nonlinear operations. The idea here is to describe the function f as a Boolean circuit, encrypt the

nodes of this circuit, and perform. The input to the GC protocol is JxKA by Alice and JxKB by

Bob. After GC evaluation, Alice and Bob receive JyKA and JyKB, respectively. In other words,

Alice and Bob jointly compute y = f (x) without learning x or y. For instance, to securely add

32-bit scalars, Alice and Bob should exchange 8192 bits during the GC.

We refer curious readers to [124, 125, 126] for more details about GC. However, the

downside of GC is its heavy communication overhead.

73

3.4 Cryptographically Secure BNN Inference

BNNs were originally introduced to minimize the memory footprint and computation

overhead of plaintext inference. In this section, we provide insights into why BNNs are also

helpful for very efficient and fast oblivious inference.

The first favorable property of BNNs is enforcing the weights to +1 or -1. With this

restriction, multiplying a feature x by a weight w is equivalent to computing either +x or −x.

This simple property becomes useful when computing vector dot products of the form ∑
N
i=1 wixi,

which can be computed via N conditional additions/subtractions. We show in Section 3.4.1 that

conditional summations can be computed using OT and AS, which are known to be very efficient

and lightweight cryptographic tools.

In oblivious inference, nonlinear operations are evaluated through heavy cryptographic

primitives such as GC, resulting in significant runtime and communication overheads. The

large communication cost of GC is directly related to the bit-widths of GC inputs. The second

advantage of BNNs is their 1-bit hidden layer feature representation, which significantly reduces

the GC evaluation cost compared to non-binary features. In Section 3.4.2, we expand on low-bit

nonlinear operations and their efficient GC evaluation.

We present the overall flow for oblivious BNN inference in Figure 3.3. The inputs and

outputs of all layers are in AS format, e.g., server and client have JY iKA and JY iKB rather than

Y i. To evaluate linear layers (CONV or FC) obliviously, we propose a novel custom protocol

for binary matrix multiplication that directly works on AS data. We merge batch normalization

(BN), binary activation (BA), and max-pooling (MP) into a single nonlinear function f (·). To

securely evaluate f (JY iKA,JY iKB), three consecutive steps should be taken:

1. Securely translating the input from AS to GC. This step prepares the data to be processed

by GC.

2. Computing the nonlinear layer through GC protocol.

74

Figure 3.3. Illustration of plaintext inference (top) and our proposed equivalent oblivious
inference (bottom). We denote linear layers by CONV and FC, Batch-Normalization by BN,
Binary Activation by BA, and Max-Pooling by MP. Here, X i, Y i, and θ i are the linear layer’s
input, output, and weight/bias parameters, respectively. η i denotes BN parameters, and Ŷ is the
output of binary activation. The client and the server perform the oblivious inference. To hide
information, the input and output of a linear layer are in the AS domain, e.g., server and client
have JyiKA and JyiKB rather than yi. To evaluate nonlinear operations, the tuple (JyiKA,JyiKB) is
first converted to GC ciphers of yi. Then, GC is utilized to evaluate BN, BA, and MP. Next, the
output of GC is converted back to AS-domain to serve as the input of the next layer.

3. Securely translating the result of the GC protocol to AS. This step prepares the data to be

processed in the following linear layer.

We achieve a significantly faster oblivious inference using this hybrid approach compared to the

state-of-the-art [1].

3.4.1 Linear Layers

Fully-connected and convolutional layers require computing Y =WX , with weight matrix

W and input X . In secure matrix multiplication, the input is secretly shared between the server

and the client, i.e., X = JXKA + JXKB. Bob (the client) has JXKB whereas Alice (the server) has

the weight W and JXKA
1. The matrix multiplication is computed as follows:

W (JXKA + JXKB) =W JXKA +W JXKB (3.1)

Alice can compute W JXKA locally, and only W JXKB needs secure evaluation. After evaluating

Y =WX ,

• Alice gets JY KA but does not learn JXKB or JY KB.
1 At the first layer, only the client has the input share, hence JXKA = 0

75

• Bob gets JY KB but does not learn W or JY KA.

After obliviously evaluating Y = JY KA + JY KB =WX , Alice and Bob receive JY KA and

JY KB, respectively. For simplicity, we drop the subscripts hereafter and represent the matrices as

JW KA→W and JXKB→ X .

Algorithm 5 presents the secure matrix multiplication protocol for the class of binary

weights. Initially, Alice sets her output share to W JXKA (line 7) and Bob sets his share to zero

(line 8). Next, they obliviously evaluate W JXKB one row at a time in the outer loop of Algorithm 5

(lines 9-21). Specifically, the m-th iteration of the outer loop evaluates the m-th row of the output

as:

y = JyKA + JyKB =
N

∑
n=1

W (m,n)X(n, :)

The inner loop of Algorithm 5 (lines 12-19) computes the above summation by N

invocations of OT. After each OT invocation, Alice receives either µ0 = r− JX(n, :)KB or µ1 =

r+ JX(n, :)KB depending on the selection bit. It is easy to see that µi (known by Alice) and −r

(known by Bob) are the arithmetic shares of W (m,n)JX(n, :)KB.

Security. The security of our binary matrix multiplication is guaranteed as follows: first, OT

guarantees that Alice’s selection bit is not revealed to Bob. Hence, Alice’s binary weight remains

secret to her. Second, Bob adds a random vector to JX(n, :)KB before participating in OT. After OT

invocation, Alice receives one and only one of the two messages {r+ JX(n, :)KB,r− JX(n, :)KB},

where r is random. Therefore, Alice cannot learn JX(n, :)KB from the received message. Third,

Alice does not communicate JXKA to Bob. Thus, her input share is also kept private. Last, Alice

and Bob do not communicate JY KA and JY KB. Hence, their output shares are kept private.

3.4.2 Nonlinear Layers

In this section, we outline and leverage the characteristics of BNNs for oblivious inference

of nonlinear layers. The cascade of batch normalization (BN) and binary activation (BA) takes

input feature y and returns ŷ= sign(αy+β)= sign(y+ β

α
), where α and β are the BN parameters.

76

Algorithm 5. Protocol for secure binary matrix multiplication
Input: from Alice W ∈ {−1,+1}M×N

Input: from Alice JXKA ∈ ZN×L

Input: from Bob JXKB ∈ ZN×L

Output: to Alice JY KA ∈ ZM×L

Output: to Bob JY KB ∈ ZM×L

Remark: JY KA + JY KB =W (JXKA + JXKB)
Alice locally sets JY KA =W JXKA ∈ ZM×L

Bob locally sets JY KB = 0 ∈ ZM×L

for m ∈ [M] do
Alice locally sets JyKA = JY KA(m, :)
Bob locally sets JyKB = JY KB(m, :)
for n ∈ [N] do

Bob generates random vector r ∈ ZL

Alice and Bob engage in OT where:
Bob inputs {µ0,µ1}= {r± JXKB(n, :)}
Alice inputs i = W (m,n)+1

2
Alice receives µi

Alice locally updates JyKA = JyKA +µi
Bob locally updates JyKB = JyKB− r

Alice locally updates JY KA(m, :) = JyKA
Bob locally updates JY KB(m, :) = JyKB

Since both α and β belong to the server, the parameter η = β

α
can be computed offline. The GC

evaluation of BN and BA only entails adding η to y and computing the sign of the result, which

can be evaluated by relatively low GC cost [127].

Moreover, binary Max-Pooling can be efficiently evaluated at the bit level. Taking the

maximum in a window of binarized scalars is equivalent to performing logical OR among the

values, which is also efficient in GC [127].

Algorithm 6 presents our efficient protocol for oblivious evaluation of nonlinear layers in

BNNs, which leverages the insights discussed above. Our protocol receives secret-shared data

JY KA, and batch-normalization parameter values η = β

α
from the server, as well as JY KB from the

client. It then computes Ŷ by applying batch normalization, binary activation, and max-pooling

on Y . Upon completion of the protocol, the server and client receive JŶ KA and JŶ KB, respectively,

which they use to evaluate the proceeding layer.

Security. GC inherently guarantees the security of our protocol for inference of nonlinear layers.

77

During GC, no information about one party’s input is revealed to the other party and vice versa,

hence, JY KA, JY KB and η are kept private to their owners. After GC, Alice receives R+ Ŷ . Alice

does not know R, so she cannot recover Ŷ . Bob knows the random share R but does not know

R+ Ŷ because GC returns it only to Alice. Therefore, Bob does not know the output either.

Therefore, Bob’s share JŶ KB =−R along with Alice’s share JŶ KA = R+ Ŷ are secure additive

shares.

Algorithm 6. Protocol for secure non-linear operations.

1: Input: from Alice JY KA
2: Input: from Alice η

3: Input: from Bob JY KB
4: Output: to Alice JŶ KA
5: Output: to Bob JŶ KB
6: Remark: JŶ KA + JŶ KB = f (JY KA + JY KB +η)
7: Remark: f (·) denotes BN, BA, and optional MP.

8: Alice locally computes JY KA +η

9: Bob locally generates random tensor R
10: Alice and Bob engage in GC where:
11: Alice inputs JY KA +η

12: Bob inputs JY KB and R
13: GC computes F = R+ f (JY KA +η + JY KB)
14: GC returns F only to Alice
15: Alice sets JŶ KA = F
16: Bob sets JŶ KB =−R

3.4.3 Communication Cost

Recall that each layer execution is done via SFE protocol, where the two involved parties

cooperatively compute output shares of their own. During the protocol, each party may perform

certain computations, storage, or random data generation internally on their device. These local

processes are deemed as free operations in privacy-preserving computation. In practice, the

process’s runtime is dominated by the exchange of messages between the two parties, not the

internal computations. In our protocols (Algorithms 5& 6), message exchanges occur during OT

or GC invocations. e provide the coprocess’s runtime protocols in Table 3.1. By plugging in the

78

Table 3.1. Communication Cost for different stages of our oblivious inference protocols. For
matrix multiplication, N,M,L are the dimensions from WM×N and XN×L, and b is the bitwidth
for arithmetic sharing2. For batch normalization and binary activation, κ is a security parameter,
and its standard value is 128 in the literature. For max-pooling, w is the window size, and
L′ ≈ L

w2 is represented with a different notation than L to account for the lower output resolution.
Depending on whether or not max-pooling was applied, the secret sharing cost can be 3κbML′

or 3κbML′.

Stage Underlying Operation Communication (bits)
Mat-Mult JY KA + JY KB =W (JXKA + JXKB) NbML
BN+BA Ŷ = sign(JY KA +η + JY KB) 5κbML
Max Pooling Ŷ ← maxpoolw×w(Ŷ) 2(w2−1)κML′

Secret Sharing JŶ KA← Ŷ +R 3κbML′ or 3κbML

parameters of this table, one can compute the total execution cost for oblivious inference of a

given BNN architecture. As we show in our experiments, the communication cost is closely tied

to the runtime of our protocols.

3.5 Training Adaptive BNN

One of the primary challenges of BNNs is to ensure inference accuracy comparable to

the non-binarized model. Since the introduction of BNNs, there have been tremendous efforts to

improve inference accuracy by increasing the number of channels per convolution layer [128],

increasing the number of computation bits [129], or introducing new connections and nonlinear

layers [130, 131], to name a few. In this paper, we improve the accuracy of the base BNN by

multiplying its width, e.g., by training an architecture with twice as many neurons at each layer.

In practice, specifying the appropriate width for a BNN architecture requires exploring models

with various widths, which can be quite time-consuming and cumbersome. Each model with a

certain width should be trained and stored separately. What aggravates the problem is that BNNs

suffer from convergence issues unless the data augmentation and training hyperparameters are

carefully selected [132].

2To ensure correctness, b should be set to ⌈Log(N)+1⌉. In practice, software libraries only support multipliers
of 8. Hence, we set b to the smallest multiplier of 8 bigger than or equal to ⌈Log(N)+1⌉.

79

A related field of research is training dynamic DNNs [133], with the goal of providing

flexibility at inference time. In this realm, we find Slimmable Networks [134] quite compatible

to our problem setting and adapt them to BNNs. Our goal is to train a single network with

certain maximum width, say 4× the base network, in a way that the model can still deliver

acceptable accuracy at lower widths, e.g., 1× or 2× the base network. Once this model is trained,

it can operate under any of the selected widths, thus, providing a tradeoff between accuracy and

runtime.

Slimmable BNNs Definition. Let us denote the base BNN as M1 and represent BNNs with s×

higher width at each layer with Ms. Our goal is to train Ms1 ⊂Ms2 ⊂Msn for a number of widths

{si}n
i=1. The weights of Msi are a subset of the weights of Msi+1 . Therefore, having Msn we can

configure it to operate as any Msi for i≤ n.

Training Slimmable BNNs. For a given minibatch X , each subset model computes the output

as Ỹsi = Msi(X), resulting in {Ỹs1, . . . ,Ỹsn} computed by Ms1 . . .Msn . The ground-truth label Y is

then used to compute the cumulative loss function as ∑
n
i=1 L (Y,Ỹsi), where L (·, ·) represents

cross-entropy. The BNN weights are then updated using the standard gradient approximation

rule suggested in [117].

3.6 Evaluations

Standard Benchmarks. We perform our evaluation on several networks trained on the CIFAR-

10 dataset, shown in Table 3.2. These benchmarks provide us with a rich set of comparison

baselines as they are commonly used in prior work. Specifically, the BC1 network has been

evaluated by the majority oblivious inference papers [113, 135, 136, 114, 1, 3, 2, 4, 5]. Other

models are evaluated by XONN [1], the state-of-the-art for oblivious inference of binary networks.

For brevity, we omit details about layer-wise configurations and refer curious readers to [1] for

further information.

80

Table 3.2. Summary of the trained binary network architectures evaluated on the CIFAR-10
dataset.

Arch. Previous Papers Description

BC1
[113], [135], [136], [114], [1],

[3], [2], [4], [5] 7 CONV, 2 MP, 1 FC

BC2 [1] 9 CONV, 3 MP, 1 FC
BC3 [1] 9 CONV, 3 MP, 1 FC
BC4 [1] 11 CONV, 3 MP, 1 FC

Training. For all benchmarks, we use standard backpropagation algorithm proposed by [117] to

train our binary networks. We split the CIFAR10 dataset to 45k training examples, 5k validation

examples, and 10k testing examples, and train each architecture for 300 epochs. We use Adam

optimizer with initial learning rate of 0.001, and the learning rate is multiplied by 0.1 after 101,

142, 184 and 220 epochs. The batch size is set to 128 across all CIFAR10 training experiments.

The training data is augmented by zero padding the images to 40×40, and randomly cropping a

32×32 window from each zero-padded image.

Evaluation Setup. The training codes are implemented in Python using the Pytorch Library. We

use a single Nvidia Titan Xp GPU to train all benchmarks. We design a library for oblivious

inference in C++. For implementation of OT and GC, we use the standard emp-toolkit [137]

library. To run oblivious inference, we translate the model description and trained parameters

from Pytorch to the equivalent description in our C++ library. For measurements, we run our

oblivious inference code on a computer with 2.2 GHz Intel Xeon CPU and 16 GB RAM.

3.6.1 Evaluating Flexible BNNs

Let us start by evaluating our adaptive BNN training. We train slimmable networks with

maximum 4× width of the base models presented in Table 3.2. During training, we re-iterate

through subsets of widths {1×,1.5×, . . . ,4×} and perform gradient updates as explained in

Section 3.5.

Figure 3.4 presents the test accuracy of each network at different widths. We also

report the accuracy of independetly trained networks reported by XONN. The test accuracy

81

width

A
cc

ur
ac

y
(%

)

70

75

80

85

90

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ours XONN

(a) BC1
width

A
cc

ur
ac

y
(%

)

60

70

80

90

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ours XONN

(b) BC2

width

A
cc

ur
ac

y
(%

)

70

75

80

85

90

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ours XONN

(c) BC3
width

A
cc

ur
ac

y
(%

)

80

85

90

95

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ours XONN

(d) BC4

Figure 3.4. CIFAR-10 test accuracy of each architecture at different widths. Our Adaptive BNN
trains a single network that can operate at all widths, whereas previous work (XONN) trains a
separate BNN per width.
of a particular base BNN architecture can be improved by increasing its width. Our adaptive

networks obtain better accuracy than independently trained BNNs at each width. Once the

adaptive network is trained, the server can provide oblivious inference service to clients, which

we discuss in the following section.

3.6.2 Oblivious Inference

Recall that the runtime of oblivious inference is dominated by data exchange between

client and server. We compare the communication cost and runtime of our custom protocol

with XONN’s GC implementation in Figure 3.5. The horizontal axis in each figure presents the

network width. The left and right vertical axes respectively show the runtime (in seconds) and

communication (in Giga-Bytes). The figure shows that for all the benchmarks, the runtime and

communication of our method are significantly smaller than XONN. As seen, increasing the

network width results in higher communication and runtime, which is the cost we pay for higher

82

width

R
un

tim
e

(s
)

C
om

m
. (

G
B

)

0

20

40

60

0

5

10

15

20

1.5 2.0 2.5 3.0 3.5 4.0

Ours (s) XONN (s)
Ours (GB) XONN (GB)

(a) BC1
width

R
un

tim
e

(s
)

C
om

m
. (

G
B

)

0

5

10

15

20

0

2

4

6

1.5 2.0 2.5 3.0 3.5 4.0

Ours (s) XONN (s)
Ours (GB) XONN (GB)

(b) BC2

width

R
un

tim
e

(s
)

C
om

m
. (

G
B

)

0

20

40

60

0

4

8

12

16

20

1.5 2.0 2.5 3.0 3.5 4.0

Ours (s) XONN (s)
Ours (GB) XONN (GB)

(c) BC3
width

R
un

tim
e

(s
)

C
om

m
. (

G
B

)

0

50

100

150

200

0
10
20
30
40
50
60
70

1.5 2.0 2.5 3.0 3.5 4.0

Ours (s) XONN (s)
Ours (GB) XONN (GB)

(d) BC4

Figure 3.5. Runtime and communication cost of each architecture at different widths.
inference accuracy.

Figure 3.6 summarizes the performance boost achieved by our protocols, i.e., 2× to 11×

lower runtime and 4× to 11× lower communication compared to XONN. The enhancement is

more significant at higher widths, which shows the scalability for our method. To illustrate the

reason behind our protocol’s better performance, we focus our attention to the BC2 network at

width 2.5, and show the breakdown of its communication cost in Figure 3.7. For the XONN

protocol, most of the cost is from linear operations, which we reduce from 2.16GB to 0.15GB.

In nonlinear layers, our cost is slightly more that XONN’s, i.e., 0.25GB versus 0.09GB, which

is due to the extra cost of conversion between AS and GC. Overall, the total communication is

reduced from 2.25GB to 0.4GB compared to XONN.

Comparison to Non-binary Models. Among the architectures presented in Table 3.2, BC1

83

width

Im
pr

ov
em

en
t (

x)

1
3
5
7
9

11
13

1.0 1.5 2.0 2.5 3.0 3.5 4.0

BC1 BC2 BC3 BC4

(a) Runtime
width

Im
pr

ov
em

en
t (

x)

3
5
7
9

11
13

1.0 1.5 2.0 2.5 3.0 3.5 4.0

BC1 BC2 BC3 BC4

(b) Communication

Figure 3.6. Improvements in LAN runtime and communication compared to XONN. Our
protocols achieve 2× to 11× in runtime and 4× to 11× communication reduction.

C
om

m
. (

G
B

)

0.0
0.5
1.0
1.5
2.0
2.5

Linear Nonlinear

XONN Ours

Figure 3.7. Breakdown of communication cost at linear and nonlinear layers for BC2 network.
Our protocol significantly reduces XONN’s GC-based linear layer cost, with a slight increase in
nonlinear layer cost.
has been commonly evaluated in contemporary oblivious inference research. In Figure 3.1 we

compare the performance of our method to the best-performing earlier work on this benchmark.

The vertical and horizontal axes in the figure represent test accuracy and runtime, hence, points

to the top-left corner are more desirable. Our method achieves a better accuracy/runtime tradeoff

than all contemporary work while providing flexibility. Compared to Cryptflow2 (the most

recent oblivious inference framework at the time of this paper), our method achieves ∼ 2× faster

inference at the same accuracy.

Evaluation in Wide Area Network (WAN). So far we reported our runtimes for the setting

where client and server are connected via LAN, which is the most common assumption among

prior work. We now extend our evaluation to the WAN setting, where the bandwidth is∼ 20MBps

and the delay is ∼ 50ms. The aforesaid bandwidth and delay correspond to the connection speed

84

width

R
un

tim
e

(s
)

1

5

50

500

1.0 1.5 2.0 2.5 3.0 3.5 4.0

BC1 BC2 BC3 BC4

Figure 3.8. Runtime in WAN setting with ∼ 20 MBps bandwidth and ∼ 50 ms network delay.
between two AWS instances located in “US-West-LA-1a” and “US-East-2a”. Runtimes are

reported in Figure 3.8, showing varying inference time from 13 to 367 seconds depending on

architecture and width. The results show the great potential of BNNs for commercial use. Indeed,

the delay introduced by oblivious inference might not be tolerable in many applications that

require real-time response, e.g., Amazon Alexa. However, there exist many applications where

guaranteeing privacy is much more crucial than runtime, and several seconds or even minutes of

delay can be tolerated. We evaluate two such applications in the following section.

3.6.3 Evaluation on Private Tasks

In this section, we study the application of oblivious inference in face authentication

and medical data analysis. Both applications involve sensitive features that the client wishes to

keep secret: revealing medical data is against the HIPPA [105] regulation, and facial features

can be used by malicious hackers to authenticate into the client’s personal accounts. Since we

do not have access to real private data, our best choice is to simulate these tasks using similar

datasets that are publicly available to the research community. We evaluate our method on

FaceScrub [138, 139] and Malaria Cell Infection [140] as representatives for face authentication

and medical diagnosis, respectively.

Figure 3.9 shows example samples from each dataset. The tasks are to identify 530

different actors in Facescrub and classify infected cells from benign ones in Malaria. We were

able to download ∼ 57,000 images from the links provided by FaceScrub authors, of which we

use 45000 for training, 6000 for validation, and 6000 for testing. The Malaria dataset is split

85

infected benignAndrea
Bowen

Jodi
Long

Bernard
Hill

(a) Facescrub (a) Malaria Cells

Figure 3.9. examples of input samples and labels from each dataset. For training, we resize
Facescrub and Malaria cell images to 50×50 and 32×32, respectively.
to ∼ 24800 samples for training, ∼ 1300 for evaluation, and ∼ 1300 for testing. We train the

BC2 architecture at width 3 and 1 on FaceScrub and Malaria. The accuracy and performance

results in the WAN setting are summarized in Table 3.3. Our model reaches 53.1% inference

accuracy on FaceScrub and 92.4% accuracy on Malaria infection detection. The networks incur

runtimes of 1-3 and 10-30 seconds in LAN and WAN settings, showing great potential for

practical deployment. Note that in a commercial application the network architecture can be

selected more carefully and more training data can be collected to achieve a better accuracy and

runtime.

Table 3.3. Example BNNs trained for face recognition and medical application. We use the BC2
architecture at width 3 and 1 for FaceScrub and Malaria, respectively. Runtimes are measured in
the WAN setting.

Task Classes Accuracy Comm. Runetime (s)
LAN WAN

FaceScrub 530 70.8% 404 MBs 2.2 32.2
Malaria 2 94.7% 80.5 MBs 0.7 11.5

3.7 Related Work

Oblivious inference was shown to be conceptually practical for small sized neural

networks in CryptoNets [141]. Using CryptoNets, an inference on MNIST data would take

∼ 300 seconds, which motivated researcher to invest in the field. Since then, a plethora of more

efficient protocols for oblivious inference have been proposed [106, 107, 108, 109, 110, 111, 112,

86

113, 114, 2, 5]. These works mainly focus on optimization of security primitives for oblivious

inference, without making major modifications to the model.

A second line of research has been focused on identifying DNN models that are inherently

amenable to secure execution protocols. Several DNN modification examples include replacing

ReLU operations with square function [141, 3, 4], using dimensionality reduction at the input

layer [142], and neural architecture search [115]. Concurrently, researchers in ML community

have devised DNN optimization techniques such as pruning [143], quantization [144], tensor

factorization [116], and binary neural networks [117]. Among the above, BNNs are especially

compelling candidates for oblivious inference, since they translate linear arithmetic to bitwise

operations. XONN [1] was the first work to notice the especial use case of binary networks for

cryptographically secure inference using GC [125], noting that XNOR operations that frequently

appear in BNNs can be evaluated for free in GC.

Despite improving oblivious inference time, XONN does not completely utilize the full

set of opportunities provided by BNNs. Instead of using GC as a black box, we propose a hybrid

protocol where GC is only used for nonlinear operations. We propose a novel protocol for matrix

multiplication based on secret sharing and oblivious transfer. By exploiting the characteristics

of BNN linear operations, our protocol achieves up to 11× reduction in runtime compared

to XONN. A remaining challenge with BNNs is their low inference accuracy, which XONN

addresses partially by brute-force training of many BNN models, and choosing the one with

proper accuracy/runtime for deployment. Alternatively, we show that BNNs can be trained

via the Slimmable Network training technique [134]. We provide accurate and efficient BNN

benchmarks for oblivious inference, that offer a tradeoff between execution cost and inference

accuracy.

87

3.8 Future Work

Variants of BNNs are being developed to enhance inference accuracy, opening exciting

avenues for future research. Developing custom protocols to securely evaluate residual connec-

tions [130], residual activation binarization [129], and PReLU nonlinearity [131] are interesting

future directions for oblivious BNN inference. Our current oblivious inference implementation

does not support these operations. However, since we use GC for non-linear operations and GC

can implement arbitrary functionalities, the aforementioned techniques can be integrated and

tested in future work, which may or may not result in improved accuracy-runtime tradeoff.

3.9 Conclusion

This chapter studies the application of binary neural networks in oblivious inference,

where a server provides a privacy-preserving inference service to clients. Using this service,

clients can run the neural network owned by the server, without revealing their data to the

server or learning the parameters of the model. We explore favorable characteristics of BNNs

that make them amenable to oblivious inference, and design custom cryptographic protocols to

leverage these characteristics. In contrast to XONN [1], which uses GC to evaluate both linear

and non-linear layers, we use GC only for nonlinear layers. We present a custom protocol for

linear layers using OT and AS, which leads to 2× to 11× performance improvement compared

to XONN. We also address the problem of low inference accuracy by training adaptive BNNs,

where a single model is trained to be evaluated under different computational budgets. Finally,

we extend our evaluations to computer vision tasks that perform inference on private data, i.e.,

face authentication and medical data analysis.

88

3.10 Acknowledgements

This chapter is, in part, a reprint of the published material in M. Samragh, S. Hussain,

X. Zhang, K. Huang, and F. Koushanfar, “On the application of binary neural networks in

oblivious inference,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 4630-4639, 2021. and X. Zhang, M. Samragh, S. Hussain, K. Huang,

and F. Koushanfar, “Scalable Binary Neural Network applications in Oblivious Inference,” in

ACM Transactions on Embedded Computing Systems, vol. 23, no. 3, pp. 1-18, 2024, The

dissertation author was the (co)primary investigator and author of these papers.

89

Chapter 4

Advancing Robustness in Federated Learn-
ing Environments

4.1 Introduction

Federated learning (FL) has emerged as a popular paradigm for training a central model

on a dataset distributed amongst many parties, by sending model updates and without requiring

the parties to share their data. However, model updates in FL can be exploited by adversaries

to infer properties of the users’ private training data [17]. This lack of privacy prohibits the

use of FL in many machine learning applications that involve sensitive data such as healthcare

information [18] or financial transactions [19]. As such, existing FL schemes are augmented

with privacy-preserving guarantees. Recent work propose secure aggregation protocols using

cryptography [6]. In these protocols, the server does not learn individual user updates, but only a

final aggregate with contribution from several users. Hiding individual updates from the server

opens a large attack surface for malicious clients to send invalid updates that compromise the

integrity of distributed training.

Some commonly known attacks on FL include Byzantine attacks, attribute inference

attacks and poisoning attacks. They represent significant threats to machine learning systems,

especially in distributed and decentralized environments. Byzantine attacks on FL are carried out

by malicious clients who manipulate their local updates to degrade the model performance [145,

146, 147, 148]. Popular high-fidelity Byzantine-robust aggregation rules rely on rank-based

90

statistics, e.g., trimmed mean [149], median [149], mean around median [150], and geometric

median [151]. These schemes require sorting of the individual model updates across users. As

such, using them in secure FL is nontrivial and unscalable to large number of users since the

central server cannot access the (plaintext) value of user updates.

Attribute inference attacks in FL are privacy threats where an adversary attempts to

infer sensitive attributes or characteristics of participants’ data by analyzing the model updates

exchanged during the collaborative learning process. These attacks exploit unintended infor-

mation leakage from the model updates to violate users’ privacy. For example, by analyzing

the gradients or weight updates shared during Federated Learning, an adversary may identify

patterns or correlations between certain gradient values and specific attributes. This information

can then be used to infer the presence or absence of those attributes in the participants’ local

datasets. To mitigate attribute inference attacks in FL, various privacy-preserving techniques

can be employed. Differential Privacy, for instance, is a widely used approach that adds noise or

randomness to the model updates before aggregation, ensuring that the information leakage from

individual updates is minimized. Secure Multi-Party Computation (MPC) and Homomorphic

Encryption are other techniques that can be used to perform secure aggregation or protect the

model updates’ privacy during the aggregation process[152].

Poisoning attacks in collaborative learning involve adversaries injecting malicious data

into participants’ training sets, compromising the model’s accuracy and integrity, and potentially

biasing it towards the adversary’s goals. However, they are just one of many threats in distributed

systems. Focusing only on poisoning attacks leaves systems vulnerable to others, like Byzantine

attacks, which could be more damaging. Comprehensive security requires addressing a range of

attack vectors [153].

In this work we address aforementioned challenges and provide high break point Byzan-

tine tolerance using rank-based statistics while preserving privacy. We propose a median-based

robustness check that derives a threshold for acceptable model updates using securely computed

mean over random user clusters. Our thresholds are dynamic and automatically change based

91

(a) Step 1: The server randomly
clusters the users, obtains cluster
means µi, and computes the me-
dian of cluster means (µis).

(b) Step 2: Each client provides a
ZKP attesting that their update is
within the threshold from the me-
dian of cluster means.

(c) Step 3: Clients marked as be-
nign participate in a final round of
secure aggregation and the server
obtains the result.

Figure 4.1. High level description of zPROBE robust and private aggregation.
on the distribution of the gradients. Notably, we do not need access to individual user updates

or public datasets to establish our defense. We leverage the computed thresholds to identify

and filter malicious users in a privacy-preserving manner. Our Byzantine-robust framework,

zPROBE, incorporates carefully crafted zero-knowledge proofs [154] to check user behavior and

identify possible malicious actions, including sending Byzantine updates or deviating from the

secure aggregation protocol. As such, zPROBE guarantees correct and consistent behavior in the

challenging malicious threat model.

zPROBE integrates probabilistic optimizations for efficient zero-knowledge checks with-

out sacrificing security. This unique co-design of robustness defense and cryptography enables

a scalable, low-overhead approach for private, robust Federated Learning (FL). It’s the first

to have costs growing sub-linearly with client numbers. zPROBE achieves sub-second client

compute time in aggregation rounds on ResNet20 over CIFAR-10. We demonstrate zPROBE’s

performance on three foundational computer vision benchmarks, underscoring its scalability to

larger benchmarks. In summary, our contributions are:

• Developing a novel privacy-preserving robustness check based on rank-based statistics.

zPROBE is robust against various Byzantine attacks with 0.5− 2.8% higher accuracy

compared to prior works.

• Enabling private and robust aggregation in the malicious threat model by incorporating

zero-knowledge proofs. Our Byzantine-robust secure aggregation, for the first time, scales

sub-linearly with client number.

92

• Leveraging probabilistic optimizations to reduce zPROBE overhead without compromising

security, resulting in orders of magnitude client runtime reduction.

4.2 Cryptographic Primitives

Shamir Secret Sharing [155] is a method to distribute a secret s between n parties such

that any t shares can be used to reconstruct s, but any set of t− 1 or fewer shares reveal no

information about the secret. Shamir’s scheme picks a random (t−1)-degree polynomial P such

that P(0) = s. The shares are then created as (i,P(i)), i ∈ {1, ...,n}. With t shares, Lagrange

Interpolation can be used to reconstruct the polynomial and obtain the secret.

Zero-Knowledge Proof (ZKP) is a cryptographic primitive between two parties, a prover

P and a verifier V , which allows P to convince V that a computation on P’s private inputs is

correct without revealing the inputs. We use the Wolverine protocol [154] with highly efficient

P in terms of runtime, memory usage, and communication.

In Wolverine, value x known by P can be authenticated using information-theoretic

message authentication codes (IT-MACs) [156] as follows: assume ∆ is a global key sampled

uniformly and is known only to V . V is given a uniform key K[x] and P is given the correspond-

ing MAC tag M[x] = K[x]+∆.x. An authenticated value can be opened (verified) by P sending

x and M[x] to V to check whether M[x] ?
= K[x]+∆.x. Wolverine represents the computation

as either an arithmetic or Boolean circuit, where the secret wire values are authenticated as

described. The circuit is evaluated jointly by P and V , culminating in P opening the output to

indicate proof correctness.

Secure FL Aggregation includes a server and n clients each holding a private vector

of model updates with l parameters uuu ∈ Rl . The server wishes to obtain the aggregate ∑
n
i=1 uuuiii

without learning any of the individual client updates. [6] proposes a secure aggregation protocol

using low-overhead cryptographic primitives such as one-time pads. Each pair of clients (i, j)

agrees on a random vector mmmi, j. User i adds mmmi, j to their input, and user j subtracts it from their

input so the masks cancel out when aggregated. To ensure privacy in case of dropout or network

93

delays, each user adds an additional random mask rrriii. Users then create t-out-of-n Shamir shares

of their masks and share them with other clients. User i computes their masked input as follows:

vvviii = uuuiii + rrriii− ∑
0< j<i

mmmi, j + ∑
i< j≤n

mmmi, j (4.1)

Once the server receives all masked inputs, it asks for shares of pairwise masks for dropped users

and shares of individual masks for surviving users (but never both) to reconstruct the aggregate

value. The construction in [6] builds over [152] and improves the client runtime complexity to

logarithmic scale rather than linear with respect to the number of clients. Note that the secure

aggregation of [6] assumes the clients are semi-honest and do not deviate from the protocol.

However, these assumptions are not suitable for our threat model which involves malicious

clients. We propose an aggregation protocol that benefits from speedups in [6] and is augmented

with zero-knowledge proofs for the challenging malicious setting as described below.

4.3 Methodology

Threat Model. We aim to protect the privacy of individual client updates as they leak

information about clients’ private training data. No party should learn any information about

a client’s update other than the contribution to an aggregate value with inputs from a large

number of other clients. We also aim to protect the central model against Byzantine attacks, i.e.,

when a malicious client sends invalid updates to degrade the model performance. We consider

a semi-honest server that follows the protocol but may try to learn more information from the

received data. We assume a portion of clients are malicious, i.e., arbitrarily deviating from the

protocol, or sending erroneous updates to cause divergence in the central model. Notably, we

assume the clients may: 1 perform Byzantine attacks by changing the value of their model

update to degrade central model performance, 2 use inconsistent update values in different

steps of the secure aggregation protocol, 3 perform the masked update computation in Eq. 4.1

incorrectly or with wrong values, and 4 use incorrect seed values in generating masks and shares.

94

Algorithm 7. zPROBE secure aggregation
Input: Shamir threshold value t, clients set U

Round 1: Mask Generation
client i: Generate key pair (ski, pki), sample bi

ai, j← KeyAgreement(ski, pk j)
mmmi, j← PRG(ai, j), rrriii← PRG(bi)
{ssk

j } j∈U ,← SS(ski, t), {sb
j} j∈U ← SS(bi, t)

Send ssk
j ,s

b
j to client j

Round 2: Update Masking
client i: vvviii← uuuiii + rrriii− ∑

0< j<i
mmmi, j + ∑

i< j≤U
mmmi, j

Authenticate uuuiii and send vvviii to server
Perform correctness check in Alg 8

server: Sample q indices Si (Sec. 4.3.4) for client i
Perform correctness check in Alg 8

Round 3: Aggregate Unmasking
server: Ud ← dropped clients, Us← surviving clients

Collect t shares of {ssk
i }i∈Ud and {sb

i }i∈Us

Agg← ∑
i∈Us

vvviii− ∑
i∈Us

rrriii + ∑
i∈Us, j∈Ud

mmmi, j

To the best of our knowledge, zPROBE is the first single-server framework with malicious clients

that is resilient against such an extensive attack surface, supports client dropouts, and does not

require a public clean dataset.

4.3.1 zPROBE Overview

zPROBE comprises two main components, namely, secure aggregation, and robustness

establishment. We propose a new secure aggregation protocol for malicious clients in Sec. 4.3.2.

Our proposed method to establish robustness is detailed in Sec. 4.3.3. We design an adaptive

Byzantine defense that finds the dynamic range of acceptable model updates per iteration. Using

the derived bounds, we perform a secure range check on client updates to filter Byzantine

attackers. Our robustness check is privacy-preserving and highly scalable.

The proposed robust and private aggregation is performed in three steps as illustrated

in Fig. 4.1. First the server clusters the clients randomly into c clusters. Each cluster c j then

performs zPROBE’s secure aggregation protocol. The server obtains the aggregate value ααα jjj

and the mean µµµ jjj = ααα jjj/|c j| for each cluster in plaintext. In the second step, the server uses

95

Algorithm 8. Circuit for zPROBE correctness check
Client input: bi, ai, j, authenticated uuuiii
Public input: vvviii, indices set Si, clients set U
check = 1
for k in Si

r̂k
i ← PRGk(bi)

for j in U
m̂k

i, j← PRGk(ai, j)
v̂k

i ← uk
i + r̂k

i − ∑
0< j<i

m̂k
i, j + ∑

i< j≤n
m̂k

i, j

check = check∧ (v̂k
i = vk

i)
return check

Algorithm 9. Circuit for zPROBE robustness check
Client input: Authenticated uuuiii
Public input: λλλ , θθθ , indices set Si

check = 1
for k in Si

check = check∧ (|uk
i −λ k|< θ k)

return check

the median λλλ of all cluster means to compute a threshold θθθ for model updates. The values of

median λλλ and threshold θθθ are public, and broadcasted by the server to all clients. Each client i

then provides a zero-knowledge proof attesting that their update is within the threshold from the

median, i.e., abs(uuuiii−λλλ)< θθθ . This ensures that clients are not performing Byzantine attacks on

the central model (item 1 in threat model). Users that fail to provide the proof are considered

malicious and treated as dropped. The remaining users participate in a round of zPROBE secure

aggregation and the server obtains the final aggregate result.

4.3.2 zPROBE Secure Aggregation

Alg. 7 shows the detailed steps for zPROBE’s secure aggregation for n clients consisting of three

rounds. In round 1, each client i generates a key pair (ski, pki), samples a random seed bi, and

performs a key agreement protocol [157] with client j to obtain a shared seed ai, j. The seeds are

used to generate individual and pairwise masks using a pseudorandom generator (PRG). Each

client then creates t-out-of-n Shamir shares (SS) of ski and bi, and sends one share of each to

every other client.

96

In the second round, each client uses the masks generated in round one to compute

masked updates according to Eq. 4.1, which are then sent to the server. All clients perform the

ZKP authentication protocol described in Sec. 4.2 on their update. This ensures that clients use

consistent update values across different steps (item 2 in threat model). In addition, each client

proves, in zero-knowledge, that their sent value vvviii is correctly computed as shown in Alg. 8.

Specifically, the circuit that is evaluated in zero-knowledge expands the generated seeds to masks,

and computes the masked update using Eq. 4.1. The value of check is then opened by the client,

and the server verifies that check = 1. This ensures that the masks are correctly generated from

seeds, and the masked update is correctly computed (item 3 in the threat model). Users that

fail to provide the proof are dropped in the next round and their update is not incorporated in

aggregation.

We introduce optimizations in Sec 4.3.4 that allow the server to derive a bound q, for

the number of model updates to be checked, such that the probability of detecting Byzantine

updates is higher than a predefined rate. The server samples q random parameters from client i,

and performs the update correctness check (Alg. 8). We note that clients are not motivated to

modify the seeds for creating masks, since this results in uncontrollable, out-of-bound errors that

can be easily detected by the server (item 4 in threat model). We discuss the effect of using

wrong seeds in Section 4.5.2

In round 3, the server performs unmasking by asking for shares of ski for dropped

users and shares of bi for surviving users, which are then used to reconstruct the pairwise and

individual masks for dropped and surviving users respectively. The server is then able to obtain

the aggregate result.

4.3.3 Establishing Robustness

Deriving Dynamic Bounds. We dynamically determine the range for acceptable gradi-

ents in each iteration, identifying those that don’t hinder the central model’s convergence. This

is based on the assumption that benign updates are majority and harmful Byzantine updates are

97

minority outliers. The median, even in the presence of outliers, acts as a reliable baseline for

in-distribution values.

In the secure FL setup, the true value of the individual user updates is not revealed to the

server. Calculating the median on the masked user updates is therefore nontrivial since it requires

sorting the values which incurs extremely high overheads in secure domain. We circumvent this

challenge by forming clusters of users, where our secure aggregation can be used to efficiently

compute the average of their updates. The secure aggregation abstracts out the user’s individual

updates, but reveals the final mean value for each cluster {µµµ111,µµµ222, . . . ,µµµccc} to the server. The

server can thus easily compute the median (λλλ) on the mean of clusters in plaintext.

Using the Central Limit Theorem for Sums, cluster means follow a normal distribution

µµµ iii ∼ N (µµµ, 1√
nc

σσσ) where µµµ and σσσ denote the mean and standard deviation of the original

model updates and nc is the cluster size. We can thus use the standard deviation of the cluster

means (σσσ µµµ) as a distance metric for marking outlier updates. The distance is measured from

the median of means λλλ , which serves as an acceptable model update drawn from N (µµµ, 1√
nc

σσσ).

For a given update uuuiii, we investigate Byzantine behavior by checking |uuuiii− λλλ | < θθθ , where

θθθ = η .σσσ µµµ = η√
nc

σσσ . The value of η can be tuned based on cluster size (nc) and the desired

statistical bounds on the distance in terms of the standard deviation of model updates (σσσ).

Specifically, assuming a higher bound on the portion of malicious users φmax, the server can

automatically adjust η such that at most (1−φmax) ·n of the users are marked as benign where n

is the total user count.

Secure Robustness Check. We use ZKPs to identify malicious clients that send invalid updates,

without compromising clients’ privacy. Our ZKP relies on the robustness metrics derived in

Sec. 4.3.3, i.e., the median of cluster means λλλ and the threshold θθθ . Clients (P) prove to the

server (V) that their updates comply with the robustness range check.

During the aggregation round in step 1, clients authenticate their updates, and the

authenticated value is used in steps 2 and 3. This ensures that consistent values are used across

steps and clients can not change their update after learning λλλ and θθθ to fit in the robustness

98

5 8 15 51

Figure 4.2. Detection probability vs. number of ZKP checks (q). Vertical lines mark the required
q values for 99.5% detection rate.

threshold. In step 2, the server makes λλλ and θθθ public. Inside ZKP, the clients’ updates uuuiii are

used in a Boolean circuit determining if |uuuiii−λλλ |< θθθ as outlined in Alg. 9. Invalid model updates

failing the range check are excluded from the final aggregation.

4.3.4 Probabilistic Optimizations

This section provides statistical bounds on the number of required checks to accurately

detect malicious clients. Using the derived bounds, we optimize our framework for minimum

overhead, thus ensuring scalability to large models.

Malicious clients can compromise their update, by sending updates with distance margins

larger than the tolerable threshold θ , or sending incorrect masked updates (Eq. 4.1). Assume

that a portion of model updates Sm, are compromised. The probability of detecting a malicious

update is equivalent to finding at least one compromised parameter gradient:

p = 1−
(

l · (1−Sm)

q

)/(
l
q

)
, (4.2)

where l is the total model parameter updates, and q denotes the number of per-user ZKP checks

on model updates. The above formulation confirms that it is indeed not necessary to perform

ZKP checks on all parameter updates within the model. Rather, q can be easily computed via

Eq. 4.2, such that the probability of detecting a compromised update is higher than a predefined

rate: p > 1−δ . Fig. 4.2 shows the probability of detecting malicious users versus number of

99

(a) MNIST + Sign Fl ip (b) FMNIST + Non-omniscient (c) CIFAR-10 + Scaling

Figure 4.3. Test accuracy vs. FL training epochs for different attacks and benchmarks. Each plot
shows the benign training (green), Byzantine training without defense (maroon), and Byzantine
training with zPROBE defense.

ZKP checks for a model with l = 60K parameters. As seen, zPROBE guarantees a failure rate

lower than δ = 0.005 with very few ZKP checks. Note that malicious users are incentivized to

attack a high portion of updates to increase their effect on the aggregated model’s accuracy. We

leverage Eq. 4.2 to derive the required number of correctness and robustness checks as described

in Alg. 8 and Alg. 9. For each check, the server computes the bound q, then samples q random

indices from model parameters for each client. The clients then provide ZKPs for the selected

set of parameter indices.

4.4 Experiments

4.4.1 Experimental Setup

Table 4.1. Comparison of zPROBE and previous robust FL aggregators for non-IID data, with
accuracy reported across 10 runs.

Aggregator IID Non-IID

AVG 93.2 ± 0.2 92.7 ± 0.3
KRUM 91.6 ± 0.3 53.1 ± 3.9
CM 91.9 ± 0.2 78.6 ± 3.1
CClip 93.0 ± 0.2 91.2 ± 0.5
RFA 93.2 ± 0.2 92.6 ± 0.2
zPROBE 99.0 ± 0.0 98.6 ± 0.4

We now provide details about the benchmarked models, datasets, and defense implemen-

tation.

100

Dataset and Models. We consider three benchmarks commonly studied by prior work in

secure FL. Our first benchmark is a variant of LeNet5 [158] trained on the MNIST dataset [159],

with 2 convolution and 3 fully-connected layers, totaling 42K parameters. Our second benchmark

is the Fashion-MNIST (F-MNIST) dataset [160] trained on the LeNet5 architecture with 60K

parameters. Finally, to showcase the scalability of our approach, we evaluate ResNet-20 [161]

with 273K parameters trained on the CIFAR-10 dataset [162] which is among the biggest bench-

marks studied in the secure FL literature [163]. Table 4.2 encloses the training hyperparameters

for all models.

Table 4.2. Training hyperparameters.

Benchmark # Clients LR # Epochs Batch size (per user)

MNIST (IID) + LeNet5 50 0.01 500 12800 (256)
MNIST (non-IID) + LeNet5 25 0.01 500 800 (32)
F-MNIST (IID) + LeNet5 50 0.01 500 12800 (256)†

CIFAR-10 (IID) + ResNet-20 50 0.05 500 12800 (256)
CIFAR-100 (IID) + ResNet-18 50 0.05 500 12800 (256)

†When varying the number of clients, we keep the total batch size as 12800 and scale the per user batch size
accordingly.

Implementation and Configuration. zPROBE defense is implemented in Python and

integrated in PyTorch to enable model training. We use the EMP-Toolkit [164] for implementa-

tion of zero-knowledge proofs. We run all experiments on a 128GB RAM, AMD Ryzen 3990X

CPU desktop. All reported runtimes are averaged over 100 trials.

Byzantine Attacks. We assume 25% of the clients are Byzantine, which is a common

assumption in the literature [147]. Malicious users alter a portion Sm of benign model updates

and masks according to a Byzantine attack scenario. We show the effectiveness of our robustness

checks against three commonly used Byzantine attacks. Here Um denotes the malicious updates,

where |Um|= Sm · l and l is the total number of model updates.

• Sign Flip [145]. Malicious client flips the sign of the update: u =−κ.u,κ > 0 (∀u ∈Um)

101

• Scaling [146]. Malicious client scales the local gradients to increase the influence on the

global model: u = κ.u,κ > 0 (∀u ∈Um)

• Non-omniscient attack [147]. Malicious clients construct their Byzantine update by adding

a scaled Gaussian noise to their original update with mean µ and standard deviation σ :

u = µ−κ.σ (∀u ∈Um)

Baseline Defenses. We present comparisons with prior work on robust and private FL,

i.e., BREA [7] and EIFFeL [8]. While zPROBE is able to implement popular defenses based on

rank-based statistics, EIFFeL is limited to static thresholds and requires access to clean public

datasets. BREA implements multi-Krum [165], but leaks pairwise distances of clients to the

server. zPROBE achieves lower computation complexity compared to both works and higher

accuracy1 compared to EIFFeL. We also benchmark a commonly used aggregator which uses

only the median of cluster means, and show that it results in drastic loss of accuracy compared to

zPROBE. Additionally, we evaluate zPROBE when the training data is non-IID and show our

adaptive bounds outperform the state-of-the-art defense in [166]2.

4.4.2 Defense Performance

IID Training Data. We evaluate zPROBE on various benchmarks using n = 50 clients

picked for a training round, randomly grouped into c = 7 clusters. In Section 4.5.6 we

present evaluations with different number of clients between 30 and 200. Consistent with

prior work [147], we assume malicious users compromise all model updates to maximize the

degradation of the central model’s accuracy. Fig. 4.3 demonstrates the convergence behavior

of the FL scheme in the presence of Byzantine users with and without zPROBE defense. As

seen, zPROBE successfully eliminates the effect of malicious model updates and recovers the

ground-truth accuracy. We show evaluations of zPROBE accuracy on other variants of the dataset

and attack in Fig. 4.4.

1Raw accuracy numbers are not reported for BREA, therefore, direct comparison is not possible.
2Note that this work focuses on plaintext robust training and does not provide secure aggregation.

102

(a) MNIST + Scale attack (b) F-MNIST + Sign flip attack (c) CIFAR-10 + Sign flip attack

(d) MNIST + Non-omniscient attack (e) F-MNIST + Scale attack (f) CIFAR-10 + Non-omniscient

Figure 4.4. Test accuracy as a function of FL training epochs for different attacks and bench-
marks. Each plot shows the benign training (green), Byzantine training without defense (maroon),
and Byzantine training in the presence of zPROBE defense.

On the MNIST benchmark, the byzantine attacks cause the central model’s accuracy

to reduce to nearly random guess (10.2%-11.2%), without any defense. zPROBE successfully

thwarts the malicious updates, recovering benign accuracy within 0.0%-0.6% margin. On F-

MNIST, we recover the original ∼ 88% drop of accuracy caused by the attacks to 0%-2% drop.

Finally, on CIFAR-10, the gap between benign training and the attacked model is reduced from

45%- 90% to only 3%-7%. Compared to EIFFeL [8], zPROBE achieves 1.2%, 0.5%, and 2.8%

higher accuracy when evaluated on the same attack applied to MNIST, FMNIST, and CIFAR-10,

respectively.

Non-IID Training Data. Most recently, [166] show user clustering over existing robust

aggregation methods can adapt them to heterogeneous (non-IID) data. We follow their training

setup and hyperparameters to distribute the MNIST dataset unevenly across 25 users. As shown

in Tab. 4.1, zPROBE defense outperforms the accuracies obtained by the various defenses

evaluated in [166]. This performance boost we believe can be attributed to 1) the use of rank-

based statistics to establish dynamic thresholds, and 2) the use of all benign gradients in the

103

aggregation, rather than replacing all values with a robust aggregator, e.g., as in KRUM.

4.4.3 Runtime and Complexity Analysis

Tab. 4.3 summarizes the total runtime for clients in zPROBE for one round of federated

training with n = 50, c = 7, and Sm = 0.3 across different benchmarks. We use the secure

aggregation protocol of [6] as our baseline, which does not provide security against malicious

clients or robustness against Byzantine attacks.

Table 4.3. zPROBE runtime vs. the baseline secure aggregation of [6] with no support for
Byzantine clients.

Dataset
Baseline

(ms)
zPROBE

(ms)

MNIST 208.0 444.7
F-MNIST 214.4 452.9
CIFAR-10 231.2 461.2
CIFAR-100 1796.3 2314.2

Tab. 4.4 summarizes the runtime of zPROBE versus the portion of attacked model updates.

By decreasing Sm, zPROBE requires more checks to detect the outlier gradients as outlined in

Eq. 4.2. Nevertheless, due to the optimizations in zPROBE robustness and correctness checks,

we are still able to maintain practical runtime and sublinear growth with respect to number of

ZKP checks necessary.

Table 4.4. zPROBE performance for LeNet5 on F-MNIST vs. the portion of Byzantine model
updates (Sm).

0.1 0.3

Sm

0.5 0.7 1.0

ZKP Checks 51 15 8 5 1

zPROBE Runtime (ms) 777.9 452.9 372.6 349.6 316.5

104

0 100 200 300
Epoch

20

40

60

80

100
Ac

cu
ra

cy

Benign training
zPROBE
Sign flip attack

(a) CIFAR-100 + Sign flip attack

0 100 200 300
Epoch

20

40

60

80

100

Ac
cu

ra
cy

Benign training
zPROBE
Scale attack

(b) CIFAR-100 + Scale attack

0 100 200 300
Epoch

20

40

60

80

100

Ac
cu

ra
cy

Benign training
zPROBE
Non-omniscient attack

(c) CIFAR-100 + Non-omniscient attack

Figure 4.5. Test accuracy as a function of FL training epochs for different attacks and using
CIFAR-100 dataset. Each plot shows the benign training (green), Byzantine training without
defense (maroon), and Byzantine training in the presence of zPROBE defense.

4.4.4 Evaluation on large dataset

We perform the evaluation on the real-world dataset CIFAR-100. The CIFAR-100 dataset

is a collection of 60,000 32x32 color images divided into 100 classes, each containing 600 images.

It’s an extension of the CIFAR-10 dataset but with more categories. Each class in CIFAR-100

is further grouped into 20 superclasses, providing a more detailed and challenging dataset for

image classification tasks. In this experiment, CIFAR-100 is IID, and we use a slightly different

setting because the dataset has 100 classes, and each class has 600 images. Instead of distributing

105

unique data to each user evenly, including malicious users, we randomly distribute 25% of the

data to each user. The graph in Fig. 4.5 demonstrates the convergence of the FL scheme when

Byzantine users are present, both with and without zPROBE protection. Note that we train the

CIFAR-100 for 300 epochs. From Fig. 4.5, we can observe that the accuracy gap between the

benign model and the attacked model is reduced from 17%- 69% to only 0.4%-0.9% for the

considered three types of attacks. Therefore, zPROBE is constantly successful in mitigating the

impact of malicious model updates and restoring the accuracy of the true values.

4.4.5 Evaluation on additional Byzantine attacks

In this section, we performance additional Byzantine attacks from the state-of-the-art

works. Especially, we use the following two attack methods:

• Label-flipping attack [167] Malicious clients randomly flip the labels of the adversarial

attacks and send their Byzantine update with incorrect information.

• Random weights attack [168] Malicious clients use randomly generated model updates as

Byzantine updates.

We evaluate all of the datasets on these additional attacks, and Fig. 4.6 shows the

performance results for MNIST, F-MNIST and CIFAR-10 datasets. As we can observe from

Fig. 4.6, the accuracy gap between the benign model and the attacked model is reduced from

8%- 70% to only 0.4%-0.5%. Fig. 4.7 also shows the performance of CIFAR-100 dataset. We

can observe that zPROBE is able to recover the accuracy from 66% to the accuracy that benign

training offers for label-flipping attack and recover the accuracy from around 0% to an acceptable

accuracy for random weights attacks. Again, zPROBE is shown to be efficient in mitigating the

impact of malicious model updates and restoring the training accuracy. Evaluations on additional

Byzantine attacks and larger datasets corroborate our conclusion, suggesting our framework can

defend against more attacks with large datasets.

106

0 100 200 300 400 500
Epoch

20

40

60

80

100
Ac

cu
ra

cy Benign training
zPROBE
Label-flipping attack

(a) MNIST + Label flip attack

0 100 200 300 400 500
Epoch

20

40

60

80

100

Ac
cu

ra
cy Benign training

zPROBE
Random weights attack

(b) F-MNIST + Random weights

0 100 200 300 400 500
Epoch

20

40

60

80

Ac
cu

ra
cy Benign training

zPROBE
Label-flipping attack

(c) CIFAR-10 + Label flip attack

0 100 200 300 400 500
Epoch

20

40

60

80

100

Ac
cu

ra
cy Benign training

zPROBE
Random weights attack

(d) MNIST + Label flip attack

0 100 200 300 400 500
Epoch

20

40

60

80

100
Ac

cu
ra

cy Benign training
zPROBE
Random weights attack

(e) F-MNIST + Random weights

0 100 200 300 400 500
Epoch

20

40

60

80

Ac
cu

ra
cy Benign training

zPROBE
Label-flipping attack

(f) CIFAR-10 + Label flip attack

Figure 4.6. Test accuracy as a function of FL training epochs for additional attacks and
benchmarks. Each plot shows benign training (green), Byzantine training without defense
(maroon), and Byzantine training in the presence of zPROBE defense.

4.4.6 Attribute inference attack

In federated learning, an attribute inference attack aims to deduce sensitive data attributes

from participant nodes without direct data access. In our work, we show effective protection

against gradient inversion attacks, [169] shows that attribute inference attacks result in similar

lapses of effectiveness as the scale is increased, following the same trend as gradient inversion

attacks. Therefore, zPROBE is able to defend against attribute inference attacks.

4.5 Sensitivity Analysis

4.5.1 Effect of Number of Clients on zPROBE Runtime

Tab. 4.5 shows the effect of increasing the number of clients on the performance on

zPROBE. For these experiments, results are gathered on the F-MNIST dataset, with c = 7 and

|Sm| = 0.3. As seen, although exceeding sub-second performance as the number of clients

107

0 100 200 300
Epoch

20

40

60

80

100

Ac
cu

ra
cy

Benign training
zPROBE
Label-flipping attack

0 100 200 300
Epoch

20

40

60

80

100

Ac
cu

ra
cy

Benign training
zPROBE
Random weights attack

Figure 4.7. Test accuracy as a function of FL training epochs for additional attacks and CIFAR-
100 benchmarks (Top): CIFAR-100 + Label-flipping attack, and (Bottom) CIFAR-100 + Random
weights attack.

scales up, zPROBE maintains sublinear growth in runtime with respect to number of clients.

In Tab. 4.3, we can see that as the underlying model gets much larger (growing ∼ 4× in size

from the MNIST to CIFAR-10 tasks) zPROBE overhead grows a negligible amount. This is

a strong indicator of the scalability of our proposed secure aggregation. Alongside this, the

probabilistic optimizations explained in Sec. 4.3.4 become more beneficial as the model size

increases. Compared to a naive implementation where 1−Sm parameters are checked, we

achieve a speedup of 3 orders of magnitude in client and server runtime.

We present a detailed runtime breakdown of various zPROBE components in Fig. 4.8,

using the CIFAR-10 dataset, ResNet-20 architecture, n = 50, c = 7, and Sm = 0.3. Step 2

exhibits low overhead, even with 30% Byzantine model updates. The most significant increase in

overhead, in terms of percentage, occurs in Step 3 (R2), where masked updates are checked for

108

Table 4.5. Runtime of zPROBE over varying number of clients

Clients zPROBE Runtime (ms)

30 298.4
40 369.7
50 452.9
70 598.8

100 828.6
200 1620.4

0 100 200 300 400
Client Runtime (ms)

zPROBE

Baseline
S1 (R1)
S1 (R2)
S2
S3 (R1)
S3 (R2)

Figure 4.8. Runtime breakdown for CIFAR-10, corresponding to rounds (R) from Alg. 7 and
steps (S) from Fig. 4.1.

correctness (Alg. 7 Round 2 and Alg. 8). In terms of communication overhead, zPROBE requires

only 2.1MB and 4.4MB of client and server communication, respectively, for a CIFAR-10

aggregation round. Overall, zPROBE offers efficient, privacy-preserving, and robust federated

learning performance across all benchmark tests.

zPROBE Complexity. In this section we present the complexity analysis of zPROBE

runtime with respect to number of clients n (with k = logn) and model size l.

• Client: Each client computation consists of performing key agreements with O(k),

generating pairwise masks with O(k · l), creating t-out-of-k Shamir shares with O(k2), performing

correctness checks of Alg. 8 with O(k · l), and performing robustness checks of Alg. 9 with O(l).

The complexity of client compute is therefore O(log2 n+ l · logn).

• Server. The server computation consists of reconstructing t-out-of-k shamir shares

with O(n · k2), generating pairwise masks for dropped out clients with O(n · k · l), performing

correctness checks of Alg. 8 with O(n · l), and performing robustness checks of Alg. 9 with

O(n · l). The overall complexity of server compute is thus O(n · log2 n+n · l · logn).

109

We are unable to directly compare zPROBE’s runtime numbers with previous private

and robust FL methods since their implementations are not publicly available. Instead, Tab. 4.6

presents a complexity comparison between zPROBE, BREA [7], and EIFFeL [8] with respect to

number of clients n (with k = logn), model size l, and number of malicious clients m. zPROBE

enjoys a lower computational complexity compared to both prior art for client and server.

Specifically, the client runtime is quadratic and linear with number of clients in BREA and

EIFFeL respectively, whereas logarithmic in zPROBE.

Table 4.6. Runtime complexity of zPROBE vs. prior works BREA [7] and EIFFeL [8].

Client Server

BREA O(n2l +nlk2) O((n3 +nl)k2 · log(k))
EIFFeL O(mnl) O((n+ l)nk2 · log(k)+m.l.min(n,m2))
zPROBE O(k2 + kl) O(nk2 +nlk)

4.5.2 Malicious Seed Modification

Fig. 4.9(a) displays the histogram of benign gradient L∞ norms across 100 CIFAR-10

users, predominantly within [0,0.25]. Seeds from a pseudorandom generator (PRG) create masks,

impervious to manipulation by malicious users. Fig. 4.9(b) illustrates mask value histograms from

varying seeds over 10,000 instances, showing potential drastic fluctuations between −3×104

and 3×104. Consequently, random seed alterations by malicious users in mask generation are

detectable due to significant gradient errors, thus discouraging such actions in our threat model.

4.5.3 Effect of Aggregation Method on Accuracy

zPROBE uses the median of averaged updates from user clusters to distinguish benign

from Byzantine updates. An alternative method is the median of cluster means, bypassing

per-user checks. Fig. 4.10 compares this method’s test accuracy against zPROBE during training.

The baseline, using the median of cluster means, shows significant accuracy loss compared to

110

0.00 0.05 0.10 0.15 0.20 0.25 0.30
L-Inf

0
5000

10000
15000
20000
25000

(a)

3 2 1 0 1 2 3
Mask value 1e4

0
20
40
60
80

100
120

(b)

Figure 4.9. Histogram of (a) ResNet-20 gradient norms observed during training on CIFAR-10,
and (b) mask values when changing the random seed.

zPROBE. This is because it may include Byzantine workers and loses valuable information in

benign updates by solely relying on the median.

Figure 4.10. Test accuracy of zPROBE compared with an aggregation methodology that uses
the median of cluster means.

111

4.5.4 Effect of Cluster Size on Inversion Attack

Fig. 4.11 shows the effect of cluster size on gradient inversion attacks. In Fig 4.11(a)

we show the effectiveness of the attack for different cluster sizes. Fig 4.11(b) represents the

reconstruction results from user data for different number of users participating in the aggregation

round.

(a)

Original

1 user

2 users

5 users

(b)

Figure 4.11. Performance of gradient inversion attacks for different cluster sizes.

112

(a) (b) (c) (d)

Figure 4.12. Ablation studies on zPROBE defense performance with varying (a) portion of
compromised gradients, (b) attack magnitude, (c) number of clients, and (d) number of user
clusters. The dashed line in (a), (b) corresponds to the highest test accuracy obtained during
training when no defense is applied.

4.5.5 zPROBE Test Accuracy

Fig. 4.4 shows the test accuracy of zPROBE in face of different variations of Byzantine

attacks and datasets. The dataset is distributed evenly (IID) among n = 50 clients. The server

randomly clusters users into c = 7 groups during each training round. We assume malicious

users compromise all model updates |Sm|= 1 to maximize the accuracy degradation.

4.5.6 Discussion

We perform a sensitivity analysis to various attack parameters and FL configurations on

F-MNIST. Number of clients is set to n = 50 with c = 7 clusters, unless otherwise noted. Sign

flip attack [145] is applied to all model updates with κ = 5. As shown, zPROBE is largely robust

to changes in the underlying attack or training configuration, consistently recovering the central

models’ accuracy.

Portion of Compromised Updates Sm. We vary the portion of Byzantine model updates

(Sm) and show the accuracy of the central model with and without zPROBE robustness checks in

Fig. 4.12(a). Even when only a small portion of model updates are malicious, zPROBE’s outlier

detection can successfully recover the accuracy from random guess (10%) to 97.9%. Byzantine

workers try to reduce the central model’s accuracy by attacking multiple model updates. Without

defense, this drops accuracy by 89.7%. However, zPROBE successfully maintains the central

model’s accuracy with less than 0.5% error.

Attack Magnitude. We control the magnitude of the perturbation applied to model

113

updates by changing the parameter κ in various Byzantine attack scenarios. Fig. 4.12(b) shows

the effect of the attack magnitude on the central model’s accuracy and zPROBE’s defense

performance. As seen, a higher perturbation is easier to detect using our median-based robustness

check. The Byzantine attack can cause an accuracy drop of ∼ 88% when no robustness check is

applied. However, zPROBE can largely recover the accuracy degradation, reducing the accuracy

loss to 0.2%-9.8%.

Defense Parameter. Our robustness check uses a threshold θ based on the standard

deviation (SD) of cluster mean updates, θ = η .σµ . By adjusting η , we control the outlier

detection’s strictness. For instance, setting η√
n = 2 allows approximately 95.4% of update values

to pass, following the normal distribution. We explored how different η values affect robustness,

and discovered that a smaller η effectively eliminates all malicious updates, similar to the

Trimmed-mean defense strategy.

Aggregation Strategy. In Fig. 4.1, zPROBE employs the median of per-cluster means

to set a threshold in step 2 for filtering malicious clients. An alternative robust aggregation

approach directly uses the median value to update the global model, skipping steps 2 and 3 of

zPROBE. However, this simple median-based approach ignores valuable updates from benign

users, causing a severe accuracy drop of 28.6% compared to zPROBE, which includes all passing

gradients. Fig. 4.10 illustrates this comparison.

Number of Clients (n). Fig. 4.12(c) demonstrates that zPROBE’s training convergence

is unaffected by the number of clients (n ranging from 30 to 200) selected per aggregation round

in Federated Learning (FL). This selection aligns with real-world FL practices where only a

fraction of clients are chosen each round. Notably, zPROBE maintains consistent model accuracy

and scales effectively up to 200 clients, a significant number for robust and private FL studies.

Fig. 4.12(d) shows the effect of number of clusters on accuracy. The performance of

zPROBE is largely independent of the number of clusters, showing less than 0.18% variation for

different c while the increase in latency is less than 8%. The number of clusters can therefore be

selected freely such that user privacy is ensured.

114

User Dropout. zPROBE secure aggregation supports user dropouts, i.e., when a user is

disconnected amidst training iterations and/or in between zPROBE steps (see Fig. 4.1). Fig 4.13

shows the effect of random user dropouts on zPROBE defense. As shown, the fluctuations in the

central model’s test accuracy are negligible (< 0.13%). The robustness of zPROBE aggregation

protocol to user dropouts is intuitive since the remaining users can carry on the training.

0 100 200 300 400 500
Epoch

20

40

60

80

100
Ac

cu
ra

cy

0% dropout
10% dropout
15% dropout

Figure 4.13. The effect of user dropout on defense.

Convergence. Prior work [170] provides convergence proof for a median of means

aggregation, which is how zPROBE aggregates user updates and establishes robustness thresholds.

zPROBE aggregation slightly modifies the median of means but is range-bounded and can be

proved to converge using the same analysis. Under the same probabilistic framework presented

in [170], zPROBE stays within the thresholds of convergence, as the percentage of malicious

clients, 25%, is less than (n−1)/2. In this scenario, n is the total number of clients. By staying

within this bound, we are able to adopt the theoretical guarantee of convergence of the median of

means aggregation.

4.5.7 Security Analysis

zPROBE’s security is validated under the Universal Composability (UC) framework,

which ensures that security properties of individual cryptographic components are maintained

in a combined end-to-end system. This framework guarantees privacy in zPROBE through

Zero-Knowledge Proofs (ZKPs), ensuring no user information leakage while enabling robustness

115

and consistency checks. The secure aggregation used in updating the global model ensures that

the server learns only the aggregate value, not individual updates. zPROBE’s security approach

aligns with the analyses in [6], thus conforming to UC framework standards. The probability

of not detecting malicious users is capped at 0.5%, as detailed in Sec. 4.3. Additionally, it is

assumed that both clients and server are aware of the model’s nature.

4.6 Future Work

This section outlines several potential directions for future research:

• Efficient Zero-Knowledge Proof Constructions: Further exploration of more efficient

zero-knowledge proof constructions to reduce computational overhead for both clients and

the server.

• Clustering Strategies: Investigate the impact of different clustering strategies on the

robustness and privacy guarantees of the zPROBE framework.

• Handling Complex Byzantine Attack Scenarios: Extend the zPROBE framework to

manage more complex Byzantine attack scenarios, including coordinated attacks by

multiple malicious clients.

• Theoretical Analysis and Convergence Guarantees: Analyze the theoretical properties

and convergence guarantees of the zPROBE approach for federated learning, beyond the

empirical evaluations presented in this paper.

• Applicability to Other Distributed Learning Settings: Explore the applicability of the

zPROBE approach to other distributed learning settings beyond federated learning, such

as decentralized or peer-to-peer learning.

116

4.7 Conclusion

This chapter introduces zPROBE, a novel framework for private, robust Federated

Learning (FL) in settings with potentially malicious clients. zPROBE ensures client compliance

and robustness in model updates using zero-knowledge proofs and secret sharing, without

compromising privacy. "We highlight the effectiveness of zPROBE across seminal computer

vision benchmarks, including real-world datasets and various attack methods, but reiterate the

fact that our approach is not limited by scale. zPROBE can handle even the most advanced

computer vision FL tasks, while still maintaining the same levels of privacy and robustness.

zPROBE presents a paradigm shift from previous work by providing a private robustness defense

relying on rank-based statistics with cost that grows sublinearly with respect to number of clients.

4.8 Acknowledgements

This chapter is a reprint of the published material in Z. Ghodsi, M. Javaheripi, N.

Sheybani, X. Zhang, K. Huang, and F. Koushanfar, “zPROBE: Zero peek robustness checks for

federated learning,” in Proceedings of the IEEE/CVF International Conference on Computer

Vision, pp. 4860-4870, 2023. The dissertation author was the (co)primary investigator and author

of these papers.

117

Bibliography

[1] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E Lauter, and
Farinaz Koushanfar. Xonn: Xnor-based oblivious deep neural network inference. In
USENIX Security, 2019.

[2] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta,
Aseem Rastogi, and Rahul Sharma. Cryptflow2: Practical 2-party secure inference. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 325–342, 2020.

[3] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. Delphi: A cryptographic inference service for neural networks. In 29th
{USENIX} Security Symposium ({USENIX} Security 20), 2020.

[4] Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. {SAFEN}et: A secure, accurate and
fast neural network inference. In International Conference on Learning Representations,
2021.

[5] Qian Lou, Bian Song, and Lei Jiang. Autoprivacy: Automated layer-wise parameter selec-
tion for secure neural network inference. In Advances in Neural Information Processing
Systems, 2020.

[6] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana
Raykova. Secure single-server aggregation with (poly) logarithmic overhead. In Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer and Communications Security,
pages 1253–1269, 2020.

[7] Jinhyun So, Başak Güler, and A Salman Avestimehr. Byzantine-resilient secure federated
learning. IEEE Journal on Selected Areas in Communications, 2020.

[8] Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and Laurens van der Maaten. Eiffel:
Ensuring integrity for federated learning. arXiv preprint arXiv:2112.12727, 2021.

[9] Huili Chen, Xinqiao Zhang, Ke Huang, and Farinaz Koushanfar. Adatest: Reinforcement
learning and adaptive sampling for on-chip hardware trojan detection. arXiv preprint
arXiv:2204.06117, 2022.

118

[10] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xiangyu
Zhang. Abs: Scanning neural networks for back-doors by artificial brain stimulation. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 1265–1282, 2019.

[11] Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A backdoor attack against lstm-based text
classification systems. IEEE Access, 7:138872–138878, 2019.

[12] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnera-
bilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733,
2017.

[13] Loc Truong, Chace Jones, Brian Hutchinson, Andrew August, Brenda Praggastis, Robert
Jasper, Nicole Nichols, and Aaron Tuor. Systematic evaluation of backdoor data poisoning
attacks on image classifiers. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 788–789, 2020.

[14] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[15] Yunchun Zhang, Fan Feng, Zikun Liao, Zixuan Li, and Shaowen Yao. Universal back-
door attack on deep neural networks for malware detection. Applied Soft Computing,
143:110389, 2023.

[16] Pengzhou Cheng, Zongru Wu, Wei Du, and Gongshen Liu. Backdoor attacks and counter-
measures in natural language processing models: A comprehensive security review. arXiv
preprint arXiv:2309.06055, 2023.

[17] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting
unintended feature leakage in collaborative learning. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 691–706. IEEE, 2019.

[18] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albar-
qouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al.
The future of digital health with federated learning. NPJ digital medicine, 3(1):1–7, 2020.

[19] Wensi Yang, Yuhang Zhang, Kejiang Ye, Li Li, and Cheng-Zhong Xu. Ffd: A federated
learning based method for credit card fraud detection. In International conference on big
data, pages 18–32. Springer, 2019.

[20] Bita Darvish Rouhani, Mohammad Samragh, Mojan Javaheripi, Tara Javidi, and Farinaz
Koushanfar. Deepfense: Online accelerated defense against adversarial deep learning. In
2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
1–8. IEEE, 2018.

[21] Emanuele Del Sozzo, Davide Conficconi, Marco D Santambrogio, and Kentaro Sano.
Senju: A framework for the design of highly parallel fpga-based iterative stencil loop

119

accelerators. In Proceedings of the 2023 ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 233–233, 2023.

[22] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng,
and Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural
networks. In 2019 IEEE Symposium on Security and Privacy (SP), pages 707–723. IEEE,
2019.

[23] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. Tabor: A highly accurate
approach to inspecting and restoring trojan backdoors in ai systems. arXiv preprint
arXiv:1908.01763, 2019.

[24] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards,
Taesung Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep
neural networks by activation clustering. arXiv preprint arXiv:1811.03728, 2018.

[25] Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-Ung Lee, Claudia Schulz, Mohsen
Mesgar, Krishnkant Swarnkar, Edwin Simpson, and Iryna Gurevych. Text process-
ing like humans do: Visually attacking and shielding nlp systems. arXiv preprint
arXiv:1903.11508, 2019.

[26] Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and
Maosong Sun. Word-level textual adversarial attacking as combinatorial optimization.
arXiv preprint arXiv:1910.12196, 2019.

[27] Wee Chung Gan and Hwee Tou Ng. Improving the robustness of question answering
systems to question paraphrasing. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 6065–6075, 2019.

[28] Prashanth Vijayaraghavan and Deb Roy. Generating black-box adversarial examples for
text classifiers using a deep reinforced model. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 711–726. Springer, 2019.

[29] Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, and Wenchang Shi. Deep
text classification can be fooled. arXiv preprint arXiv:1704.08006, 2017.

[30] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-box
trojan detection and mitigation framework for deep neural networks. In IJCAI, volume 2,
page 8, 2019.

[31] Jingwei Sun, Ang Li, Louis DiValentin, Amin Hassanzadeh, Yiran Chen, and Hai Li. Fl-
wbc: Enhancing robustness against model poisoning attacks in federated learning from a
client perspective. Advances in Neural Information Processing Systems, 34:12613–12624,
2021.

[32] Hugo Lemarchant, Liangzi Li, Yiming Qian, Yuta Nakashima, and Hajime Nagahara.
Inference time evidences of adversarial attacks for forensic on transformers. arXiv preprint
arXiv:2301.13356, 2023.

120

[33] Zahra Ghodsi, Mojan Javaheripi, Nojan Sheybani, Xinqiao Zhang, Ke Huang, and Farinaz
Koushanfar. zprobe: Zero peek robustness checks for federated learning. arXiv preprint
arXiv:2206.12100, 2022.

[34] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. In 2017 IEEE symposium on security
and privacy (SP), pages 3–18. IEEE, 2017.

[35] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
In 2017 ieee symposium on security and privacy (sp), pages 39–57. Ieee, 2017.

[36] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.
Universal adversarial perturbations. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1765–1773, 2017.

[37] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–
444, 2015.

[38] Edward Chou, Florian Tramer, and Giancarlo Pellegrino. Sentinet: Detecting localized
universal attacks against deep learning systems. In 2020 IEEE Security and Privacy
Workshops (SPW), pages 48–54. IEEE, 2020.

[39] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya
Nepal. Strip: A defence against trojan attacks on deep neural networks. In Proceedings of
the 35th Annual Computer Security Applications Conference, pages 113–125, 2019.

[40] Junfeng Guo, Ang Li, and Cong Liu. Aeva: Black-box backdoor detection using adversar-
ial extreme value analysis. arXiv preprint arXiv:2110.14880, 2021.

[41] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

[42] Shuanglong Liu, Hongxiang Fan, Xinyu Niu, Ho-cheung Ng, Yang Chu, and Wayne
Luk. Optimizing cnn-based segmentation with deeply customized convolutional and
deconvolutional architectures on fpga. ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 2018.

[43] Hanchen Ye, HyeGang Jun, Hyunmin Jeong, Stephen Neuendorffer, and Deming Chen.
Scalehls: a scalable high-level synthesis framework with multi-level transformations and
optimizations. In Proceedings of the 59th ACM/IEEE Design Automation Conference,
2022.

[44] Ahmadreza Azizi, Ibrahim Asadullah Tahmid, Asim Waheed, Neal Mangaokar, Jiameng
Pu, Mobin Javed, Chandan K Reddy, and Bimal Viswanath. {T-Miner}: A generative
approach to defend against trojan attacks on {DNN-based} text classification. In 30th
USENIX Security Symposium (USENIX Security 21), pages 2255–2272, 2021.

121

[45] Shuo Wang, Surya Nepal, Carsten Rudolph, Marthie Grobler, Shangyu Chen, and Tianle
Chen. Backdoor attacks against transfer learning with pre-trained deep learning models.
IEEE Transactions on Services Computing, 2020.

[46] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial
training. arXiv preprint arXiv:2001.03994, 2020.

[47] M Ivette Gomes and Armelle Guillou. Extreme value theory and statistics of univariate
extremes: a review. International statistical review, 83(2):263–292, 2015.

[48] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[49] Omkar Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. In BMVC
2015-Proceedings of the British Machine Vision Conference 2015. British Machine Vision
Association, 2015.

[50] Giorgio Severi, Jim Meyer, Scott E Coull, and Alina Oprea. Explanation-guided backdoor
poisoning attacks against malware classifiers. In USENIX Security Symposium, pages
1487–1504, 2021.

[51] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In proceedings of the 25th international
conference on world wide web, pages 507–517, 2016.

[52] Trojai leaderboard. https://pages.nist.gov/trojai/, 01 2021.

[53] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. ACM SIGARCH Computer Architec-
ture News, 44(3):367–379, 2016.

[54] Shih-Lun Chen, Ho-Yin Lee, Chiung-An Chen, Hong-Yi Huang, and Ching-Hsing Luo.
Wireless body sensor network with adaptive low-power design for biometrics and health-
care applications. IEEE Systems Journal, 3(4):398–409, 2009.

[55] Mohammad Tehranipoor and Cliff Wang. Introduction to hardware security and trust.
Springer Science & Business Media, 2011.

[56] Brice Colombier and Lilian Bossuet. Survey of hardware protection of design data for
integrated circuits and intellectual properties. IET Computers & Digital Techniques,
8(6):274–287, 2014.

[57] Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hardware trojan taxonomy
and detection. IEEE design & test of computers, 27(1):10–25, 2010.

[58] Swarup Bhunia, Michael S Hsiao, Mainak Banga, and Seetharam Narasimhan. Hard-
ware trojan attacks: Threat analysis and countermeasures. Proceedings of the IEEE,
102(8):1229–1247, 2014.

122

https://pages.nist.gov/trojai/

[59] Yu Liu, Ke Huang, and Yiorgos Makris. Hardware trojan detection through golden chip-
free statistical side-channel fingerprinting. In Proceedings of the 51st Annual Design
Automation Conference, pages 1–6, 2014.

[60] Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne Burleson. Trojan
side-channels: Lightweight hardware trojans through side-channel engineering. In Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, pages 382–395.
Springer, 2009.

[61] Rajat Subhra Chakraborty, Francis Wolff, Somnath Paul, Christos Papachristou, and
Swarup Bhunia. Mero: A statistical approach for hardware trojan detection. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, pages 396–410.
Springer, 2009.

[62] MA Nourian, Mahdi Fazeli, and David Hély. Hardware trojan detection using an advised
genetic algorithm based logic testing. Journal of Electronic Testing, 34(4):461–470, 2018.

[63] Sayandeep Saha, Rajat Subhra Chakraborty, Srinivasa Shashank Nuthakki, Debdeep
Mukhopadhyay, et al. Improved test pattern generation for hardware trojan detection using
genetic algorithm and boolean satisfiability. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 577–596. Springer, 2015.

[64] Mohamed El Massad, Siddharth Garg, and Mahesh V Tripunitara. Integrated circuit (ic)
decamouflaging: Reverse engineering camouflaged ics within minutes. In NDSS, pages
1–14, 2015.

[65] Yu Liu, Georgios Volanis, Ke Huang, and Yiorgos Makris. Concurrent hardware trojan
detection in wireless cryptographic ics. In 2015 IEEE International Test Conference (ITC),
pages 1–8. IEEE, 2015.

[66] Xiaoxiao Wang, Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquellic. Hardware
trojan detection and isolation using current integration and localized current analysis. In
2008 IEEE international symposium on defect and fault tolerance of VLSI systems, pages
87–95. IEEE, 2008.

[67] Ramesh Karri, Jeyavijayan Rajendran, and Kurt Rosenfeld. Trojan taxonomy. In Intro-
duction to hardware security and trust, pages 325–338. Springer, 2012.

[68] Samer Moein, Salman Khan, T Aaron Gulliver, Fayez Gebali, and M Watheq El-Kharashi.
An attribute based classification of hardware trojans. In 2015 Tenth International Confer-
ence on Computer Engineering & Systems (ICCES), pages 351–356. IEEE, 2015.

[69] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. Fanci: identification of
stealthy malicious logic using boolean functional analysis. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 697–708, 2013.

123

[70] Jie Zhang, Feng Yuan, Linxiao Wei, Yannan Liu, and Qiang Xu. Veritrust: Verification
for hardware trust. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 34(7):1148–1161, 2015.

[71] Zhixin Pan and Prabhat Mishra. Automated test generation for hardware trojan detection
using reinforcement learning. In Proceedings of the 26th Asia and South Pacific Design
Automation Conference, pages 408–413, 2021.

[72] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning:
A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[73] Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation, learning,
and optimization, 12(3):729, 2012.

[74] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[75] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[76] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time limits in
reinforcement learning. In International Conference on Machine Learning, pages 4045–
4054. PMLR, 2018.

[77] Randy Torrance and Dick James. The state-of-the-art in ic reverse engineering. In
International Workshop on Cryptographic Hardware and Embedded Systems, pages
363–381. Springer, 2009.

[78] Travis Meade, Shaojie Zhang, and Yier Jin. Netlist reverse engineering for high-level
functionality reconstruction. In 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 655–660. IEEE, 2016.

[79] Wenchao Li, Zach Wasson, and Sanjit A Seshia. Reverse engineering circuits using
behavioral pattern mining. In 2012 IEEE international symposium on hardware-oriented
security and trust, pages 83–88. IEEE, 2012.

[80] Marc Fyrbiak, Sebastian Strauß, Christian Kison, Sebastian Wallat, Malte Elson, Nikol
Rummel, and Christof Paar. Hardware reverse engineering: Overview and open challenges.
In 2017 IEEE 2nd International Verification and Security Workshop (IVSW), pages 88–94.
IEEE, 2017.

[81] Meng Li, Kaveh Shamsi, Travis Meade, Zheng Zhao, Bei Yu, Yier Jin, and David Z
Pan. Provably secure camouflaging strategy for ic protection. IEEE transactions on
computer-aided design of integrated circuits and systems, 38(8):1399–1412, 2017.

124

[82] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan Rajendran.
Camoperturb: Secure ic camouflaging for minterm protection. In 2016 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2016.

[83] Bicky Shakya, Haoting Shen, Mark Tehranipoor, and Domenic Forte. Covert gates:
Protecting integrated circuits with undetectable camouflaging. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 86–118, 2019.

[84] Kaveh Shamsi, David Z Pan, and Yier Jin. On the impossibility of approximation-resilient
circuit locking. In 2019 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pages 161–170. IEEE, 2019.

[85] Muhammad Yasin, Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and Ramesh Karri. On
improving the security of logic locking. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35(9):1411–1424, 2015.

[86] Muhammad Yasin and Ozgur Sinanoglu. Evolution of logic locking. In 2017 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC), pages 1–6. IEEE,
2017.

[87] Yang Xie and Ankur Srivastava. Anti-sat: Mitigating sat attack on logic locking. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(2):199–
207, 2018.

[88] Benjamin Tan, Ramesh Karri, Nimisha Limaye, Abhrajit Sengupta, Ozgur Sinanoglu,
Md Moshiur Rahman, Swarup Bhunia, Danielle Duvalsaint, Amin Rezaei, Yuanqi Shen,
et al. Benchmarking at the frontier of hardware security: Lessons from logic locking.
arXiv preprint arXiv:2006.06806, 2020.

[89] Bicky Shakya, Tony He, Hassan Salmani, Domenic Forte, Swarup Bhunia, and Mark
Tehranipoor. Benchmarking of hardware trojans and maliciously affected circuits. Journal
of Hardware and Systems Security, 1(1):85–102, 2017.

[90] Yipei Yang, Jing Ye, Yuan Cao, Jiliang Zhang, Xiaowei Li, Huawei Li, and Yu Hu. Survey:
Hardware trojan detection for netlist. In 2020 IEEE 29th Asian Test Symposium (ATS),
pages 1–6. IEEE, 2020.

[91] Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquellic. A novel technique
for improving hardware trojan detection and reducing trojan activation time. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 20(1):112–125, 2011.

[92] Kan Xiao, Domenic Forte, Yier Jin, Ramesh Karri, Swarup Bhunia, and Mohammad
Tehranipoor. Hardware trojans: Lessons learned after one decade of research. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 22(1):1–23, 2016.

[93] He Li, Qiang Liu, and Jiliang Zhang. A survey of hardware trojan threat and defense.
Integration, 55:426–437, 2016.

125

[94] Lawrence H Goldstein and Evelyn L Thigpen. Scoap: Sandia controllability/observability
analysis program. In Proceedings of the 17th Design Automation Conference, pages
190–196, 1980.

[95] TC Chen, Kapali P Eswaran, Vincent Y Lum, and C Tung. Simplified odd-even sort using
multiple shift-register loops. International Journal of Computer & Information Sciences,
7(3):295–314, 1978.

[96] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal Crago,
Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer Jaleel, et al.
Triggered instructions: a control paradigm for spatially-programmed architectures. In
ACM SIGARCH Computer Architecture News, volume 41, pages 142–153. ACM, 2013.

[97] Mark C Hansen, Hakan Yalcin, and John P Hayes. Unveiling the iscas-85 benchmarks: A
case study in reverse engineering. IEEE Design & Test of Computers, 16(3):72–80, 1999.

[98] Theodore W. Manikas. MCNC Benchmark Netlists., June 28, 2012.

[99] Franc Brglez, David Bryan, and Krzysztof Kozminski. ISCAS89 Benchmark Netlists.,
September 22, 2006.

[100] Rajat Arora and Michael S Hsiao. Enhancing sat-based bounded model checking us-
ing sequential logic implications. In 17th International Conference on VLSI Design.
Proceedings., pages 784–787. IEEE, 2004.

[101] Zeying Yuan. Sequential Equivalence Checking of Circuits with Different State Encodings
by Pruning Simulation-based Multi-Node Invariants. PhD thesis, Virginia Tech, 2015.

[102] Seyyed Mohammad Saleh Samimi. Testability measurement tool, 2014.

[103] Ilan Schnell. pycosat 0.6.3, Nov 9, 2017.

[104] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark
DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean. A
guide to deep learning in healthcare. Nature medicine, 25(1):24, 2019.

[105] The HIPAA Privacy Rule. https://www.hhs.gov/hipaa/for-professionals/privacy/index.
html.

[106] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural networks
over encrypted data. arXiv preprint arXiv:1711.05189, 2017.

[107] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy preserving
inference. In International Conference on Machine Learning, pages 812–821. PMLR,
2019.

[108] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homomor-
phic evaluation of deep discretized neural networks. In Annual International Cryptology
Conference, pages 483–512. Springer, 2018.

126

https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html

[109] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei.
Faster cryptonets: Leveraging sparsity for real-world encrypted inference. arXiv preprint
arXiv:1811.09953, 2018.

[110] Amartya Sanyal, Matt Kusner, Adria Gascon, and Varun Kanade. Tapas: Tricks to
accelerate (encrypted) prediction as a service. In International Conference on Machine
Learning, pages 4490–4499. PMLR, 2018.

[111] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed Maleki,
Madanlal Musuvathi, and Todd Mytkowicz. Chet: an optimizing compiler for fully-
homomorphic neural-network inferencing. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 142–156,
2019.

[112] Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and Nichole Schimanski. Garbled
neural networks are practical. IACR Cryptol. ePrint Arch., 2019:338, 2019.

[113] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions
via minionn transformations. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 619–631, 2017.

[114] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A
low latency framework for secure neural network inference. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages 1651–1669, 2018.

[115] Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg. Cryptonas:
Private inference on a relu budget. Advances in Neural Information Processing Systems,
33:16961–16971, 2020.

[116] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun
Shin. Compression of deep convolutional neural networks for fast and low power mobile
applications. arXiv preprint arXiv:1511.06530, 2015.

[117] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[118] Mohammad Samragh, Siam Hussain, Xinqiao Zhang, Ke Huang, and Farinaz Koushanfar.
On the application of binary neural networks in oblivious inference. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4630–4639,
2021.

[119] Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on
foundations of computer science (sfcs 1982), pages 160–164. IEEE, 1982.

[120] Mikhail Atallah, Marina Bykova, Jiangtao Li, Keith Frikken, and Mercan Topkara. Private
collaborative forecasting and benchmarking. In Proceedings of the 2004 ACM workshop
on Privacy in the electronic society, pages 103–114, 2004.

127

[121] Moni Naor and Benny Pinkas. Computationally secure oblivious transfer. Journal of
Cryptology, 18(1), 2005.

[122] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Crypto, volume 2729. Springer, 2003.

[123] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer and extensions for faster secure computation. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security, pages 535–548,
2013.

[124] Sophia Yakoubov. A gentle introduction to yao’s garbled circuits, 2017.

[125] Andrew Yao. How to generate and exchange secrets. In Foundations of Computer Science,
1986., 27th Annual Symposium on, 1986.

[126] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In International Colloquium on Automata, Languages, and
Programming. Springer, 2008.

[127] Benjamin Mood, Debayan Gupta, Henry Carter, Kevin Butler, and Patrick Traynor. Frigate:
A validated, extensible, and efficient compiler and interpreter for secure computation. In
EuroS&P), pages 112–127. IEEE, 2016.

[128] Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie Marr. Wrpn: Wide reduced-
precision networks. arXiv preprint arXiv:1709.01134, 2017.

[129] Mohammad Ghasemzadeh, Mohammad Samragh, and Farinaz Koushanfar. Rebnet:
Residual binarized neural network. In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 57–64. IEEE,
2018.

[130] Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen, and Christoph Meinel. Melius-
net: Can binary neural networks achieve mobilenet-level accuracy? arXiv preprint
arXiv:2001.05936, 2020.

[131] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: To-
wards precise binary neural network with generalized activation functions. In European
Conference on Computer Vision, pages 143–159. Springer, 2020.

[132] Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network
with high accuracy? In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

[133] Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-efficiency
trade-offs by selective execution. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

128

[134] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural
networks. arXiv preprint arXiv:1812.08928, 2018.

[135] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori, Thomas
Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure computation framework
for machine learning applications. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, pages 707–721, 2018.

[136] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul Tripathi.
Ezpc: programmable, efficient, and scalable secure two-party computation for machine
learning. ePrint Report, 1109, 2017.

[137] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty
computation toolkit. https://github.com/emp-toolkit, 2016.

[138] FaceScrub. The FaceScrub dataset, 2020. http://engineering.purdue.edu/~mark/puthesis,
(accessed July 3, 2020).

[139] Hong-Wei Ng and Stefan Winkler. A data-driven approach to cleaning large face datasets.
In IEEE international conference on image processing, 2014.

[140] Malaria Cell Images, accessed on 01/20/2019. https://www.kaggle.com/iarunava/
cell-images-for-detecting-malaria.

[141] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and
John Wernsing. CryptoNets: Applying neural networks to encrypted data with high
throughput and accuracy. In International Conference on Machine Learning, 2016.

[142] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: Scalable
provably-secure deep learning. arXiv preprint arXiv:1705.08963, 2017.

[143] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep
neural networks. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1389–1397, 2017.

[144] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016.

[145] Georgios Damaskinos, Rachid Guerraoui, Rhicheek Patra, Mahsa Taziki, et al. Asyn-
chronous byzantine machine learning (the case of sgd). In International Conference on
Machine Learning, pages 1145–1154. PMLR, 2018.

[146] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. Analyzing
federated learning through an adversarial lens. In International Conference on Machine
Learning, pages 634–643. PMLR, 2019.

129

https://github.com/emp-toolkit
http://engineering.purdue.edu/~mark/puthesis
https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria
https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria

[147] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing
defenses for distributed learning. Advances in Neural Information Processing Systems,
32:8635–8645, 2019.

[148] Zahra Ghodsi, Mojan Javaheripi, Nojan Sheybani, Xinqiao Zhang, Ke Huang, and Farinaz
Koushanfar. zprobe: Zero peek robustness checks for federated learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4860–4870, 2023.

[149] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust
distributed learning: Towards optimal statistical rates. In International Conference on
Machine Learning, pages 5650–5659. PMLR, 2018.

[150] Amine Boussetta, El-Mahdi El-Mhamdi, Rachid Guerraoui, Alexandre Maurer, and
Sébastien Rouault. Aksel: Fast byzantine sgd. In 24th International Conference on
Principles of Distributed Systems (OPODIS 2020), 2021.

[151] Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent. Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 1(2):1–25, 2017.

[152] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMa-
han, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggrega-
tion for privacy-preserving machine learning. In proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1175–1191, 2017.

[153] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning:
Concept and applications. ACM Transactions on Intelligent Systems and Technology
(TIST), 10(2):1–19, 2019.

[154] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: fast, scalable,
and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In 2021 IEEE Symposium on Security and Privacy (SP), pages 1074–1091. IEEE, 2021.

[155] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[156] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Annual Cryptology Conference, pages
643–662. Springer, 2012.

[157] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions
on Information Theory, 22(6):644–654, 1976.

[158] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[159] Yann LeCun. The MNIST Database. http://yann.lecun.com/exdb/mnist/, 1998.

130

http://yann.lecun.com/exdb/mnist/

[160] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[161] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[162] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for
advanced research). URL http://www. cs. toronto. edu/kriz/cifar. html, 5, 2010.

[163] Lukas Burkhalter, Hidde Lycklama, Alexander Viand, Nicolas Küchler, and Anwar
Hithnawi. Rofl: Attestable robustness for secure federated learning. arXiv preprint
arXiv:2107.03311, 2021.

[164] Xiao Wang. EMP-Toolkit. https://github.com/emp-toolkit, accessed 2022.

[165] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, Arsany Hany Abdelmes-
sih Guirguis, and Sébastien Louis Alexandre Rouault. Aggregathor: Byzantine machine
learning via robust gradient aggregation. In The Conference on Systems and Machine
Learning (SysML), 2019, number CONF, 2019.

[166] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on hetero-
geneous datasets via bucketing. In International Conference on Learning Representations,
2022.

[167] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data poisoning attacks
against federated learning systems. In Computer Security–ESORICS 2020: 25th European
Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK, September
14–18, 2020, Proceedings, Part I 25, pages 480–501. Springer, 2020.

[168] Jierui Lin, Min Du, and Jian Liu. Free-riders in federated learning: Attacks and defenses.
arXiv preprint arXiv:1911.12560, 2019.

[169] Chen Chen et al. Practical attribute reconstruction attack against federated learning.
TBDATA, 2022.

[170] Camille Brunet-Saumard et al. K-bmom: A robust lloyd-type clustering algorithm based
on bootstrap median-of-means. CSDA, 2022.

131

https://github.com/emp-toolkit

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Challenge
	Solution
	Acknowledgements

	Trojan Detection Algorithms in Deep Neural Networks and Hardware
	Introduction
	Related Work
	Model poisoning and adversarial attacks
	Existing work on Trojan defense
	FPGA Acceleration Techniques

	Threat Model
	Attack Methodology

	Proposed defense method
	Trigger Characterization
	DeepTD Framework

	DeepTD Hardware acceleration
	Architecture and Optimization
	FPGA Modules

	Experiments
	Setup and Datasets
	Evaluation Matrix
	Results

	Hardware Trojan Detection Introduction
	Preliminaries and Backgrounds
	Hardware Trojan Attacks
	Hardware Trojan Detection
	Reinforcement Learning

	AdaTest Overview
	Motivation and Challenges
	Threat Model
	Global Flow

	AdaTest Algorithm Design
	Circuit Profiling
	Adaptive RL-based Test Pattern Generation

	AdaTest Architecture Design
	Architecture Overview
	AdaTest Circuit Emulation
	AdaTest Reward Computing Engine

	Evaluations
	Detection Effectiveness
	Detection Efficiency
	AdaTest Architecture Evaluation

	Future Work
	Conclusion
	Acknowledgements

	A scalable algorithm to improve the efficiency of Binary Neural Network
	Introduction
	Scenario and Threat Model
	Background
	Secure Function Evaluation Protocol.
	Additive Secret Sharing (AS)
	Oblivious Transfer (OT)
	Garbled Circuit (GC)

	Cryptographically Secure BNN Inference
	Linear Layers
	Nonlinear Layers
	Communication Cost

	Training Adaptive BNN
	Evaluations
	Evaluating Flexible BNNs
	Oblivious Inference
	Evaluation on Private Tasks

	Related Work
	Future Work
	Conclusion
	Acknowledgements

	Advancing Robustness in Federated Learning Environments
	Introduction
	Cryptographic Primitives
	Methodology
	zPROBE Overview
	zPROBE Secure Aggregation
	Establishing Robustness
	Probabilistic Optimizations

	Experiments
	Experimental Setup
	Defense Performance
	Runtime and Complexity Analysis
	Evaluation on large dataset
	Evaluation on additional Byzantine attacks
	Attribute inference attack

	Sensitivity Analysis
	Effect of Number of Clients on zPROBE Runtime
	Malicious Seed Modification
	Effect of Aggregation Method on Accuracy
	Effect of Cluster Size on Inversion Attack
	zPROBE Test Accuracy
	Discussion
	Security Analysis

	Future Work
	Conclusion
	Acknowledgements

	Bibliography

