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Real-time Estimation of a Markov Process Over a Noisy Digital
Communication Channel

Qing Xu and Raja Sengupta

Abstract

We study the real-time estimation of a Markov process over a memorytésg digital communication channel. The goal of
system design is to minimize the mean squared estimation error. We fivstisb@ptimal encoder and decoder can be memoryless
in terms of the source symbols. We then prove the optimal encoderasepdhe real space with hyperplanes. In the case of the
binary symmetric channel and scalar source, the optimal encoddrecarthreshold. A recursive algorithm is given to jointly find
a locally optimal encoder and decoder for the binary symmetric chaRoela memoryless Gaussian vector source and a binary
symmetric channel, we show the optimal policy is to encode the principapeoent. We derive the minimum mean squared
error as a function of the variance of source and the channel noise.

I. INTRODUCTION

This paper is about the design of encoders and decodersipgtirto estimate the state of a stochastic dynamical system
across a digital but noisy communication channel. Contndl @stimation over communication networks is attractirgeasing
attention. For example see the recent special issues oEfBE Transactions on Automatic Control [3] and Control Syste
Magazine [2] on networked control system. This class of [@mis is also given considerable weight in [17] in its evahlmat
of future directions in control, dynamics, and systems.yThee control over communication networks as the natural nex
phase of the information revolution. It would transform remt communication networks, now mainly concerned with the
transmission of information, to have more interaction wvifie physical world. We ourselves have built control andnestion
systems over digital communication networks for cars amglaiies [7][23][29][10][16]. For an audio-visual descigm of
one of our systems see [1].

Here we present results on real-time estimation of the siht® Markov process over a noisy communication channel.
Figure 1 shows the system schematically. A discrete-timeimoous-valued Markov source is passed through an enaider
each discrete time-step. The encoder produces the inplie todmmunication channel. The communication channel isnasd
to have a finite, discrete alphabet. Thus we consider diggaimunications. The input and output alphabets are the.same
general the channel may output a symbol different from the that is input, i.e., the channel is noisy. The channel is als
memoryless. The output of the channel is fed to the decoder.decoder is permitted to have memory. Its job is to output
an estimate of the state of the Markov process. There are monomication delays.

* S, S, X

» T , A

Source Encoder Memoryless Decoder
Channel
Fig. 1. State Estimation over Memoryless Channel

Our aim is to choose the encoder and decoder at each timeesteimimize the mean squared difference between the state
of the Markov process and its estimate at the output of thedkrcat the same time step. In other words, the encoder and
decoder are to be designed for real-time minimum mean-sgemior estimation (MMSE). The Real-time has to do with the
emphasis on choosing the encoder and decoder atttitmeminimize the estimation error at tite This distinguishes our
formulation from the rate distortion, source and channelirng problems in information theory. Our objective functis the
same as that in Kalman filtering [12]. However, the emphasithe digital communication channel distinguishes thisfm
from Kalman'’s.

We review relevant previous works in section Il. The problstatement is in section Ill. The rest of the paper is composed
of two parts. The first part presents the structural restilisre are three theorems and an algorithm in this part. Toeden at
timet is permitted to be any function of the states up to timi@ section 1V, Theorem 4.1 shows the encoder may be restfict
without loss of optimality, to a function of the current gtaif the Markov process and the probability mass functiorhef t
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memory of the decoder conditioned on the current state. 3&ys the encoder can be causal and memoryless. Theorem 4.3
merely asserts that since ours is an MMSE problem, for angngancoder the optimal decoder is the conditional expectati

of the state of the Markov process given all past channelutsitfheorem 4.4 shows the encoder may be restricted, vtithou
loss of optimality, to a threshold type. In section V we prasan iterative algorithm that converges to a locally optima
encoder and decoder for the binary symmetric channel. Toparithm synthesizes these results from control and inftiona
theory to derive a computational scheme to get optimal ezrsodnd decoders for minimum mean-square error estimation.
The algorithm itself turns out to be related to others wehklshed in quantization and rate distortion theory. §fl[5] The
second part of the paper studies the special case of mersgr§laussian vector source over binary symmetric channel. We
show that the globally optimal encoding is to do a threshaldoding of the principal component. We also derive expogssi

for the minimum mean square error.

Il. PREVIOUSWORK

We situate our problem in a literature situated partly intoanand partly in information theory. The problem of optima
estimation of a linear Gaussian Markov process, when thesamement is contaminated by an independent white Gaussian
process, was studied by Kalman in [12] and [13]. However wiherstate is transmitted over a digital communication cklnn
the state measurement, which is a real vector, has to beige@mto bits. Then the bits are transmitted over the nognaoel
and are decoded on the other side. Thus the optimality of ttih@gonal projection of the state onto the manifold gersetat
by the observations no longer holds.

The problem of estimating state over a digital communicatibannel was first introduced in [28]. Nair and Evens extend
this work in [19] [20] [21] and [18]. All these references &itter a noise-less though bit-rate constrained channel system
output at each time-step can be quantized Rtoits, which are then transmitted over the channel withotdrekVe consider
both the bit rate limit and the channel noise, i.e., the lBteived may not be the same as those transmitted.

In [24] Tatikonda derived the bit rates necessary for thetrodlability, observability, and stability of a dynamicalstem.
Once again, the communication channel was assumed to hefiereo

Walrand and Varaiya [26] studied the optimal coding-decgdiroblem. They consider a discrete alphabet source, and th
Hamming distance as a measure of distortion. Our sourceniinemus valued. They also allow the encoder to have naisele
feedback from the channel which we do not assume.

Sahai studied the estimation problem of an unstable pramessnoisy channel in7] and [?]. He considers the stability of
the estimation. We on the other side study stable processdmeern more with the optimal performance in estimation.

Simsek and Varaiya [6] extended the work of Sahai and stuthie estimation over a binary symmetric channel. Theyeeri
conditions for stability. Once again, they assume chargedlifack. We on the other hand find the optimal design to nieimi
the mean square estimation error without channel feedback.

Neuhoff and Gilbert [22] studied causal source codes, an@ ghat the performance of memoryless coding is as good as
any other causal coding at the minimum bit rate required tiese a given distortion. We show similar results but in the
presence of a noisy channel. They solve a pure source coditdem.

Quantization over a noisy channel problem was first intredum [14]. They studied scalar quantization. Farvardin [8]
extended the result to provide an iterative algorithm whiolhverges to a locally optimal encoder for a given channdl an
distortion measure. Vector quantization is studied in T9e authors show the geometric structure of channel-opéidwector
encoders and the implications on the complexity of encadilg extend their results from the memoryless process to the
Markov process. They provide an iterative algorithm to gkical optimum for any stationary source and discrete metassy
channel. We on the other hand present an algorithm for a Maskarce, and binary symmetric channel.

Teneketzis [25] studied the real-time estimation of a ditestime Markov process. They present a structural resirtigar
to our first theorem. They assume a discrete-valued Markavceo We generalize their result to a continuous valued Mark
source. Their cost function is also slightly different. Yheptimize the sum of all errors from the beginning to the entr
time, and design all the encoders and decoders at one timéntmize this sum. We on the other hand optimize the encoder
and decoder at the current instant to minimize the distoréibthe current instant, assuming the prior encoders anodées
are already fixed.

Xu and Hespanha study optimal communication logics for néted control systems in [30]. They derive communication
policies for the optimal control of an estimator-based rek&d control system architecture to reduce communicdtiad.
Unlike us, they do not consider quantization of the commation signals. The channel in their problem is also erroe.fre
In [31] the authors study the minimal rate requirements tatesestimation in linear time-invariant systems. Foreatéht
estimation distortion criterion, they find the minimum dagte required from the channel. The channel they considainag
has a constraint on data rate, but is noiseless. We consiigy ahannels.

Ill. PROBLEM STATEMENT

The system is shown in Figure 1. We describe each part of d@vbel
1) Source:



X € R" is a Markov process.
2) Encoder: Definext £ {Xq, Xz, , %}

§ =T (X)) 1)
where§ eL ={1,2,--- \K} andK € N*.
3) Channel: Memoryless .
S =Hi(SN) 2
whereN; € {1,2,---,y} andy € N*. N; is independent for differeritand independent o%. SelL.
4) Receiver memory update:
a) Att=1, My =11(S).
b) Att>1, M; = It(S>Mtfl)-
whereM; € W; = {1,2,--- ,k;} and k; € N*. Denote the space of probability mass functions ip A PWt and the
probability mass function okl; asRy,. Define the probability mass function & conditioned onX; = % as Py, (x) =

P(Mt | X =%)-
5) Decoder: . A
X = D (S, Mi-1) 3
6) Cost Function: A
E{I% — %1%} (4)

The Real-time Estimation Problem At each timet =1, givenT ] 22 {T'1,T5,--- ,T 11}, AT 2 {A1,8,--- ,Ar_1}, and
1T £ {Iy,l5,---,I¢}, find the encodeF(-), and decoden(-), such thaIE{||XT Xr||2} is m|n|m|zed

IV. THE STRUCTURE OF THE OPTIMAL ENCODER AND DECODER

In this section we prove three structural results about ga-time estimation problem. Firstly, by Theorem 4.1 wevpro
that for a given decoder, the optimal encoder for real-tirsgneation of the state of a Markov process is separable,ii.e.
need not depend on the previous states. This is an extenkibe cesult in [25] to a continuous-valued source. Our ptigof
also similar although our cost function is a bit differers, discussed in section Il. Lemma 4.2 is an intermediate treseld
to prove Theorem 4.1. Then Theorem 4.3 asserts the optincaldée for any given encoder is the expected value of the state
conditioned on the previously channel outputs. Finally wavp in Theorem 4.4 the optimal encoder is a hyper-planedsarco
It partitions the real space with hyper-planes, and mapsxthealues in each subspace to a distinct symbol. This result is
based on Theorem 4.1. The proof technique is similar to [8].

A. The optimal encoder

This subsection is about the structure of the optimal encéatethe real-time Markov process estimation problem. The
result is in Theorem 4.1.
Theorem 4.1:For anyt, one can replac€; with somerl

MR P L

so thats; = I'{ (%, P, ,(x_,)) Without loss of optimality.

Like [25], we prove the theorem with a two-stage lemma, Lemma 4.2. This approach first appeared in [27].

Below in Lemma 4.2 we consider a vector Markov process. Tatestin the first two time instants axg € R™ and X, € R".
The encoder at stage 1[5 : R" — L with § =T1(X;). The encoder at stage 2 i : R™" — L with S =T1(X1,X2).
SeL={12---,K} fort =1,2. Then we have the following lemma.

Lemma 4.2:Two-stage lemma:

Consider a two-stage system where

M R™M L
so thatS, = IM2(X1,X2), then one can replade, with '3,
Mo R PW1 L

so thatS, = I'5(Xo, Rv, (X1)) without Ioss of optimality.
Proof With a given designd 2 (M1, 2,11,12,A1,45), define (X2, M1, S, Np) 2 || X2 — A2(My, Ho (S, N2))||2 Define
4 pd (M1 =my | X3 =X;) to be the probability mass function &f; conditioned onX; = x3, under desigrd. It depends
on F‘l andll but notl",. We then have for an¥; = X1, X1 =Xz



EY{ (X2 — Xo|? [ X1 = X1, %2 = X2}
= EY X=X | X1 = X1, X2 = %2, Ry ()}
= EY|IXe — Da(M1, Ha (S, No)) I | Xa = X1, Xo = X, P 1)}
= EYpa(Xo, M1, S2,No) | X1 = X0, Xo = X2, P )}
= Y S PUML =M, S =5, No = Mg [ Xa = X1, X2 = X2, B, ) - P22, M2, 82, 12)

m S N

= 3 PUS =8| X1 =Xx1,% = X2) [z P(Nz = Z PMl (x) (ML) P (X2, My, 2, 1)
S n

Now consider a new desigﬁwherer; :R"xPW1 — L is chosen as follows: For any gives € R" and any giverRy, € PW1

[5(%2, Pu, (x1)) = arg mln{ZP (N2 =np)- lZP (N2 =np) [Z Pty (1) ml)ﬁ)(xz,ml,s&ng)H }

Keep the decoders the same in the new design. Then, undeeuhelersignd = (F1,I5,11,12,A1,85), for all xq,

P'\c/'ll(xl) = P'al(xl)
and
E9{1%e — Rl | Xo = X, P, )}
= BN —Rel? | X0 = x1. % = %0, B, )}
< BN =Rl | X0 = X1, %0 = X2, Pl )}
= Ed{||x2—>22||2|X2:X2apls|l(xl)} 5)
Therefore

E{ 1% — Xa|?} < EU{|IXe — Yo%}

[ |
Using Lemma 4.2, we can prove Theorem 4.1. The basic ideadgdcegate the system state from time 1 tol into one
“super-state” at the first stage, and view the state ag the second stage so that the two-stage lemma can be applied

Proof of Theorem 4.1
Proof: The given t-stage system can be considered as a two-staigensigg setting

X1 & (X, Xo, -, Xe1)
X2 & X%
Ny 2 (Ng,Np,-,Ne_q)
N 2 N
S 2 (S.%.81)
$ £ 8
S £ (&%-.5)
S 2§
Mi 2 Me1= (X1, Ny)
My £ M
X1 2 (XX, %)
Xo & %
M2(X1,X2) 2 Te(Xe, Xa, . %)
oM, %) 2 k(M 1,9)



Then by the two-stage lemma there is an encddethat has the structure

S = I3(%2, Py, (x1))
which does not increase the cost. This corresponds to

s =t (%, Py, (%-1))

B. The optimal decoder

The following theorem characterized the optimal decoderafty given encoder.
Theorem 4.3:For any encodeF; the optimal decoded is

X = De(8Mic1) = Epy (% | S, Miot}
Proof: This is a well-known result in estimation theory It appenarsfor example, Theorem 1 of [12]. The proof is
omitted here. ]

C. Optimality of the hyper-plane encoder

Theorem 4.1 opens a way to use quantization techniques fsy nbannels. The following theorem is similar to the result
in [8]. Unlike the quantization problem, in our problem theeeiver memory needs to be considered.

Theorem 4.4:For any given decoder, the optimal encoder for the real-tasimation problem is a hyperplane encoder.
In particular, let the reconstruction points ey, cp,---,cz }, where and K i < K andc :A(é =1i,M;_1) depends on the
memory of the receiver. Defing = {x : r{(%,Pw_,) =i}, thenA andA are separated by the hyper-plane

K

{xteR“:zz[P($:i|s=1>—P<S=J’|S—I (%, Cj) = —j3=|)—P(§t=j|3=i)]'||cj||2}

]:l

ANA =0,v1<i,l <K,i#l, andu 2 A =R"

Proof: An optlmal encoder should map all the vectors in a way suchahahe x; mapped to thé-th region, i.e.§ =1,
produce smaller mean squared error than if they are mappadytother, sayi-th region. Denote the set of vectors mapped
to thei-th region by an optimal encoder & Then all the vectors i®\" should satisfy the following equation for any given
| other thani.

E{lx —%)?|s =i} —E{x—%/*|S =1}
= X-2E{(%.%)|S =1} +E{R|S =i} xt+zE{<xtxt>|S—l} E{®|s=1}
{(0%) |S =1} —E{(x.%) | S =i}) + (E{% |s i}—E{&£|S=1})

(E
K
= Zl[P($=J’IS=I)—P(§=jIS—I (X, Cj) Z —)-P&=]jls=0)]|cl?

j
< 0

where(a,b) denotes the inner product afandb.
For any given XK | <K, consider the following sets

=

R
A«é{xteR”iz.Z[P(SzjIszl)—P(é‘a:i|S=i>]'<xtaci>§
=

1

]

PGE=jls=1-P&=]jlS=0)] '||Cj|2}
For anyl, the vectors inA{ are in the se#y, hence

A=A (6)
I

The regionsA* and A’ are separated by the hyperplane

x>

K
{)QGR":ZZ PE&=ils=1)-PGE=jlS=0] (¢ = I)P(Sjlsi)]~llcj||2}
=1

I
i



Fig. 2. A Binary Symmetric Channel

which is a hyper-plane in'R ]

Remark 4.5:Note when the source is scalar, the optimal encoder sepataeeange of the source into continuous intervals,
and maps the points in each interval into a different symbbét is, the optimal encoder for the scalar source is a tbtdsh
encoder.

V. ALGORITHM TO FIND THE OPTIMAL THRESHOLD OF A SCALAR ENCODER F& A BINARY SYMMETRIC CHANNEL
In this section we focus on the special case of the binary sstmenchannel and the scalar Markov source.

PG=S)=1-¢
{ PG=1-5)=¢ (7)

where§, § € {0,1}.

The channel is shown in Fig 2.

In this case the optimization problem reduces to that of figdin optimal threshol@ such that

[0 x<T
3—{1 X >T

For this special case of the original real-time estimatioobfem, we state a recursive algorithm to find a locally optim
solution. The algorithm is based on the one presented ing8{.unlike in their problem, we have to consider the receiver
memory in our calculation. Our approach is to recursivelyl fihe optimal encoder for a given decoder and then find the
optimal decoder for a given encoder. Since each iteratidnaes the mean squared error, the algorithm convergesrélexu
algorithms are used in information theory to find the ratattion function and channel capacity [4] [5]. There th&rojzation
is performed over convex sets, so the solution obtainedaballly optimal. We on the other hand only know the algorithm
converges to a locally optimal solution.

Let the reconstruction points & andR;, both inR, such that

% — { Ro=2A(§ =0,M 1)
Ri=A(§ = 1,M1)

Then the mean squared error is
D = E{Xx-X*
N T ~ T
_ P(S:O\S:O)/ |x—R0\2px(x)dx+P(S:1|S:O)/ IX— Re[2px (X)dx
+P(8=0|S= 1)/T IX— Rol2px (X)dx+P(§= 1| S= 1)/T IX— Ra[2px (X)dx

A. The optimal encoder for a fixed decoder

For fixedRy andRy, we can find the optimal threshold* by differentiatingD with respect tar . In the following equation,
let P(A|B) £ P(S= A|S=B), whereA B < {0,1}, then we have

dD

ﬁ = 0=
+ - L(P(O1)— —P(0/0)) R3+ (P(1]1) — P(1]0)) R
2 (P(0]1) - P(0]0)) Ro+ (P(1 |> P(1/0)) Ry
N i1
2 (22— (R-Ry)

(Ro+Ru) (8)

NI N



To minimize mean squared error for fixég andR; we also need

d?D
g7z = 226 - 1(Ro—FRy) >0 ©)
Therefore
d2D Ry<R; whene <1
W>O®{ Ry > Ry When&‘Z; (10)

Therefore for giverRy andR; (hence a given decoder), the optimal encoder puts the thicksl the mid-point of the two
reconstruction points. In addition, equation (10) must &tisBed. We will further discuss this point in the next sudiism.

B. The optimal decoder for fixed encoder
For fixed encoder, the optimal decoder is the conditionaketadion.

Xt—{ Ro=E{X|§=0M-1}
Ri=E{X|S=1M:-1}

whereM;_1 is the known receiver memory from the last step.

Now once the optimal decoder for a fixed encoder is given by, (@& can go back to check the optimality condition given
by (10).

We notice first, for the threshold given in (8) to be optimdlQ)X must be true, but this is not guaranteed by (11), i.erethe
may be solutions of (11) that violate (10).

Secondly, if we flip the areas encoded to 0 andRy and R; will also flip since

(11)

Ro = E{X|S=0M_1}
B B (1-¢)P(§=0)
= E{XI|S_O’MI71}(1—8)P(S:0)+£P(S:1)+
E{X|S=1M_1}- sl

(1-€e)P(§ =0)+eP(S =1)
and

Ri = E{X|§=0M_1}
j - eP(§ =0)
= E{X|S=0M_1}- eP(S=0)+(1-e)P(S=1) -
(1-€)P(§=1)
(S=0+(1-¢)P(S=1)

E{X|S=1M-_1} P

2 i‘t z$ , thenR; = Ry and R| = Ro. But the derivation of (8) is not affected by this flip.

Therefore by simply exchanging the areas coded to 1 and 0 waleays make (10) true and thus make the threshold given
by (8) optimal.

Hence if we haveS =

C. The algorithm to find the optimal encoder and decoder

In summary, we obtain the following recursive algorithm todfian encoder and decoder for transmission of a Markov
process over a binary symmetric channel:

o Step 1: Sef{Ry, R} = {Réo),R(lo)}, the initial reconstruction levels. They must satisfy (b0} are otherwise arbitrary.

« Step 2: Sek =0 (the iteration index), an®© = co.

« Step 3: Use (8) to determine the best threshol.

o Step 4: Sek=k+ 1. Use (11) to find the best reconstruction Ie\lléﬁ,@ and R(lk).

« Step 5: Check if (10) is satisfied. If not, flip the areas endoe0 and 1, and therefore ﬂila(()k) and R(lk).

« Step 6: Compute the MSB®. If w < 0, whered is a preset positive fraction, go to step 7, otherwise go to
step 3.

« Step 7: End the algorithm.

Remark 5.1: 1) Since with each iteration the MSE always decreases, tiwitdim converges.
2) The role played by memory in the system is in (11), whichHer affects the solution of (8).



VI. OPTIMAL ESTIMATION OF MEMORYLESS GAUSSIAN RANDOM VECTOR SOURCE OVER BINARY SYMMETRIC CHANNEL

In this section we discuss the special case of the memorglasxe. We are able to analytically characterize the optima
encoder and the minimum mean square error in this case. Tthreabgncoding strategy is to encode the principal compbnen
of the source. Lemma 6.2 asserts this for a random vector initbpendent components. Theorem 6.11 asserts the same for
a source vector with correlated components.

A. System Description
Let X € R" and X ~ N(0n,Ky), whereKy € R™". X is encoded with

S=G(X) (12)

whereSe {0,1}. Ky is a symmetric positive definite matrix.
Sis transmitted through a memoryless channel. From now omasghe channel is binary symmetric, i.e.

P(S=0/S=0)=P(S=1S=1)=1—¢
P(S=0/S=1)=P(5=1|S=0)=¢

The decoder is

X2 X X X" =4S (13)

_ The objective is to estimatX with minimum mean squared error, i.e. to design(-) and A*(-) to minimize E{(X —
X)T(X=X)}. X i X X 1
For any givenG(-), the optimal decoder is the conditional expectation,X.e= E{X|S} = [E{X1|S} E{Xz[S}...E{Xn|S}] .

B. The Optimal Vector Encoder for Binary Symmetric Chanhedependent Gaussian Noise Case

Since in section 1V it is shown that the optimal vector encooler noisy channel partitions the vector space with hyper-
planes, we search for our optimal design within this classrmfoders. The following two lemmas provide the optimal eleco
among all the encoders that partition tR& space with a plane. In this subsection we derive the optimeb@er design when
the components of the Gaussian random vector are mutuaBpéndent. We discuss the case of correlated components in
the next subsection.

Lemma 6.1:Let X € R" andX ~ N(0n,Ky), andKx = diag(0?, 0%,...,02). Letw € R", [|w|| = 1 andb € (—o, ). Define
a encoder such that

Y if WX >b
1-Y otherwise

S=G(X) = {

whereY € {0,1}. Then for any binary symmetric channel, among all encodetis the samew, the encoder wittb = 0,
i.e. when the plane passes through the origin, is optimal.
Lemma 6.2:Let X € R" and X ~ N(0On,Kx) andKy = diag(0?,03,...,0%). Consider the encod&d*(-) defined as below

vy Y if w'TX >0
S=6 (X){ 1-Y otherwise
whereY € {0,1}, w* € R", ||w*|| = 1 is chosen as below.
1) If oo =0,=---=0,=0, i.e. all the n directions are equally noisy, igt be any vector irfR".

2) Let om=maxX{01,0o,...,00}, with me {1,2,...,n}, let w* be the unit vector in the m-th direction.
ThenG*(+) is optimal, i.e., the optimal encoder only encodes the mo#yndirection with one bit.

To prove Lemmas 6.1 and 6.2 we prove lemmas 6.3 to 6.8.

Lemma 6.3:Minimizing the mean squared err&{(X —X)T (X —X)} is equivalent to maximizing

) E(XIS=0}*P(5=0)+[[E{X|5=1}|*P(5= 1) (14)
Proof: SinceX = E{X|S}
we have



E{(X—X)T(X—X)}
= E{X-EX§|*

= E{|X-E{X|$=0}|*|5=0} P(5=0)+E{|x ~E{X|$=1}|*|S=1} P(S=1)
- (E{XTX|S 0} — 2E{X"|5= 0}E{X|S=0} + | E{X|S=0}|*)-

+(E{XTX|S:1}—2E{XT|S:
— E{XX|$=0}P(5=0) — |[E{X|$=0}||*P(§=0) + E{XTX|$= 1}P(5=
— E{XTX}—|[E{X|5=0}|]*P(§=

P(S= o)
DE{X|S=1}+|[E{X|5=1}|]")-P(5= 1)

0)— |[E{X|$=1}|*P(§=1)

30 - [E0X18= 0} *P(S=0) - (S~ 1} *RS- 1)

Thus the lemma is true.

1) - |E{X|S=1}|*P(S=1)

Below we define the probability mass function of the sectibiR®b mapped to 0 and 1 respectively.

Po(w,b) £ P(S=

and

Pl (W7 b)

In above equations, the special case whete0 is included. Obviously, wheh =0, Py(w,0) =

0) =

/ 2x Ky de
V/(2m) ”det wa<b

2 ps=1)
1-— F’o(W7 b)

1 3
v (2mhdet(Kx) /wa<b

1 1,T-1
- g zX KX Xdx
Vv (2m" ML, o /wa<b

_1,Tk-1
e 5X Ky de

drop the arguments d¥(w,b) andP,(w,b) and simply write them a& andP;.

Lemma 6.4:For anyi € {1,2,...
X(0) £

X1 2

and

for j€{0,1}.
Then we have

E{x/$=0} = 1=

E{XIS=1} =

Proof:

,n}, define

E{X[S=0}

1 = IxTK X
Po/(2m)"det(K ) /vax<bXIe ’ o
E{X[S=1}

1
P/ (2m)"det(Ky) ./wazb

1, T -1
X5672X Kx XdX

€)PX;(0) + ePyX (1)

— &R+ &P

X

)
(1—&)PX(1)
(1-¢)P

(1
£PoXi (0) +
eRy +

Pi(w,0) = 1. Hereafter we

(15)

(16)

17



E{X|S=0} = E{X|S=0,5=0}P(S=0/S=0)+E{X|S=1,5=0}P(S=1/S=0)
E{X|S=0}P(S=0|S=0) + E{X|S=1}P(S=1/S=0)

1-e)R - &Py —
B (1—s)Po+£P1X'(O)7L (1-e)Py+ePy %(1)
The second equation above is because ¥pat S— Sis a Markov chain. The third equation is because of Bayes.Rule
ChangingS= 0 to $= 1, we can prove equation (17) in the same way. ]
Lemma 6.5: _ B
PoX(0) + PLXi(1) = E{X} = 0,¥i € {1,2,--,n} (18)
Proof: The proof is straightforward and omitted. ]

Lemma 6.6:Define for allj € {1,2,--- ,n}

lj(b) £ / Xjpx (x)dx,Vj € {1,2,--- ,n}
wlx<b
= n;/ Xje*%XTK;leX (19)
(2m)2 |_|in:10i wTx<b

where px (-) is the probability density function of random vectér Then

IE(X|$=0}|*P(§=0) + ||E{X|$= 1}||*P(5=1)

_ (26157 41i(D)? 0)
— (26— 1)?P2+ (26 — 1) Ry+&(1—¢)

Proof:
From Lemma 6.4, we know that

HE{X|S 0}|I°P(S= O+HE{X|S 1)*P(S=1)
Z(E{xns 0})°P(S= o+z (E{X1S=1})"P(S=1)

PoX; (0) + £P1X; (1) N (eRoX;(0) + (1— &)PyXj(1))?
1-e)R+eP; Z 8Po—|— (1-¢)P

o 1 1
= (217 Y (RX)(0)) ((1£)P0+8P1+5P0+(1£)P1)

n _ 2 1 1
= (26-17Y (RX(0) <(1_2£)p0+g + (2e—1)Po+1—8)

(26 —1)° n

_ o
 —(26—1)°P2+ (26— )Pyt £(1—¢) J;(POX’(O))
2
! o 3xXTKIx
—(26-1)’R3+ (2~ L)Ry+e(l—¢) | ( (271)“det(Kx)/wa<bX‘e2 dx)
(26— 1)° Y)-11j(b)?

 —(26—1)°P2+ (26 —1)Py+£(1—¢) @)

The second equation comes from Lemmas 6.4, the third equitm (18), the fourth equation is true becadse- P = 1,
and the sixth equation is due to the definitionXf0).

(26 —1)?

I
||M:

[ |
SinceRy = % whenb =0, by Lemma 6.6, to prove Lemma 6.1 we need to show



311 1f(b)
—(26—1)*P24+ (26— 1) Py +&(1—¢)

- Zz?zll,?(m
—(26-1%(3)"+(2e-1)(3) +e(l-¢)
Y7-11£(0)
= /=1 (22)
2
We have the following lemma regarding(b).
Lemma 6.7:Letw=[w; wy --- Wy ], Q2= Z?:1Wi20i2
_2
whereR;(w) is independent ob.
Proof: Let
Pu P -+ P
P1 P - Py
P1= ) . )
Pnl Pn2 I:)nn
be a rotation matrix such that
1 W1
0 Wo
P1 = )
0 Whn
W1 1
. we | 0 . .
Then the original random vectar = . is rotated toZ = . |. Sincex;'s are orthogonal, the variance af,

Wh 0
which is in the direction ofv in the original coordinate system and the first basic dioectf the transformed coordinate, is
the following:

o = Qf
n
= Y wof (24)
=1
The probability density function of random vectdrnow is
1 1,TpTk -1
N —5Z PlK>< Pz
P2(2) (2m) P det(Ky)

Notice sinceP; is orthogonal, the determinant of the variance matrix isci@nged.
Now we look atl1(b),



) £ [ xapx(x)dx
whx<b
n
n b 0
= Pll/ zldzl/ pz(z)dz---dz,+ ;Plj/ dzl/ zjpz(z)dz---dz
—00 —00 J= —00 —00

z% (17) ( 0221 Uzlz] )1<Zl )
_ Pi1 / ze led 7+ ZZ / / 9717 Uz] Zj dedZ]_
V2no, 2m, /o2 021 02,
() )
Pllazl 2 og + ZZ / / 9z712j O Zj dedZ]_
2m, / 021 O'Z] Uzlz,

Now we analyze the second term. Without loss of generabtyj & 2. Define

o
a2t "2 (25)
\/049% — 02z
(o}
fL = (26)
0Z20Z —02,,
—C;
c= 2 42 az 2 (27)
Uzl 022 - 02122
and
c —G;
A V4V)
9 o otor oz e
Uzl O-Zlo- 02122
Notice
2 2 1
as—g =—

Then we have

0221 022, 1z
[ *2( AN} ) 022y R 2
/ / ze 2 2 /dzdzg

— / e 7T /‘00 Zzef%(fzz%+2czlzz)d22dzl

@)% /w Zze—%(fzz§+2czlzz+9225)+%gZZ%dedzl

I
P
(¢]

NI

b o0

— / ef%(azfgz)zﬁ/ Zzef%(f22+gzl)2dzzdzl
\/ b

= — f;-lg zle’%<32*92)2%dzl
Vv2mg b *ij

= = | ze “‘adzg

_2
\/ZIngazle 207

2
= rie ¥ (29)



whereryp, = @;ﬂ is independent ob. Similarly it can be shown that thgth term in the summation in equation 25 can

p2

be written asrjje 205 wherery; is independent ob. It follows that

n
|1(b) = zrljezg

2 R 2% (30)

whereR; is independeznt ob and can be obtained from equations (25) and (29).
_ 62

To showl;(b) = Rje 2%, repeat the analysis with

0 Wy
: w2
0
P.| 1 |=
0
6 Wn
where( 0 -~ 0 1 0 -~ O )T is the j-th basis vector. [ ]
Lemma 6.8: .
V1—e ¢ ¢
! 2e > 1271/0 e dy, v >0 (31)
where the equality is true whepr=0 or ¢ — .
Proof:
See Appendix .
[ |
With lemmas 6.3— 6.8, we prove Lemma 6.1 as follows.
o Proof of Lemma 6.1
Lemma 6.7 tells us that
n ) n _g;_
IJ (b) = 2 Rjze Qf
=1 =1
_2
=F(w)e % (32)
whereF (w) does not depend ol
Hence (22) becomes
_2
sh i F(w)e % < Y1 F(w) (33)
—(26-1°Pe+ (2~ )Py +e(l—¢) ~ %
Define
2
b _ 4
as \/2_1 e 2% dz (34)
W
Then
2
b _ 4
R = \/2_1 / e Z%dzl
w J —%©
1



See Appendix Il

Continuing with (33), sincd, = 3 +a, we get

Y F(w)e o

Z?:l F(w)

1

2

IN

& —(26-1°PP+ (26— 1) Ry+e(1—¢) >

1 e “w
® (2 1)%2a? >
Since (2¢ — 1)? < 1 it suffices to prove

IN

By Lemma 6.8,

1 ¢ P
—— | e zdy<
\/27'[/0 y= 2
Puttingy = g in (35), the lemma follows.

We prove one more lemma before using Lemma 6.1 to prove Lemtia 6

Lemma 6.9: For w; £ 0 andK non-singular,

W2 Wows WoWp

1 WaWo  WE - WaWh
det 2—W2 . . . .
O; Wy : : . :
WaWo  WpWg  --- W2

2 2 2

_ OiWi+OpWE+ -+ oW

= 252... 02
wiofo3 .- of

w2, o2
Proof: !

o Proof of Lemma 6.2

With Lemma 6.1 and Lemma 6.9, we prove Lemma 6.2 as follows.

From Lemmas 6.3, 6.6 and Lemma 6.1, we want to maximize thewinlg expression wheb = 0.

— (26— 1)°P2+ (26— )Py +e(1—¢)

4—diag(a1 —

e

]Iz

4

(36)

(35)



NI
M
-5
I
i

1 f : .
T T <bX|e
@mz o "

3

— (26 -1)?P2+ (2~ )Ry +&(1—¢)

2
R (R S I
<(27T)g ﬂ?=10J>

¥ 2
n -3 PR -4
/ xe o dx (37)
= wTx<0
Look at the term with =1,
2
<
1 _%ZTzlgjz
ﬁ/ X1 I dx
(2m)2 |‘|j:10j JwTx<0
bl 2
B 1 o 00 .,kfvzvilwkxk _%2?:1;jzd . .
T enime e ae K- d
j:1 i —o00 —o0 .J —00
2 @ B TRk 2

1 o _ Xf 00 7% 0 ,% W -4
ﬁ/ e Zg/ e 2"n—l/ e 2"2/ 1 oxe Pidxdxe---dx,
TR S S S
2 2
1 (ZRomx)
ie

o1 /“’ /°° ei% 3oy
=
@i ,0 ) e

If wi =0, the innermost integration has limits froAw to 4. Since random vectdX is zero mean, we know the integral
is 0.
Now assumingwny # 0, continuing from above equation we have
01
— ; .
(2mz2 -, 0;

X2 n 2
Yoo WX
) 0 7%2?:2;{2. 7( k;ﬁZ\,l\,(Zk)
e ie ™ dxedxs---dx,
—00 —o00

W3 WoWg o WoWg -3
(271)"%101 1 WaWo W3 - Wawp . 1 1 1
= TanmdnLo | Mee| 0 . | T g
(2m)z 17,0 W1 : : : 2 03 n
WaW2 WaWg -+ WA
_ 01 \Nll-lin:lai (38)
- 1
(22 [M]-20j \ /51 oPw?
2
_ oW1 (39)
\/2m3 i oPw?
where (38) comes from lemma 6.9. ,
Similarly we can show thg-th term ism;fnijwja.
Thus (37) becomes I a2
2 znzlo-. .
2e—1)2=. 2= 11 40
(2170 S (40)
Without loss of generality, lety = max{g; : w; # 0}, then
n_ 4 n 2 2\ +2
S oW o Yieajadof —0p)opw 1)

n 2 — Yk n 2
>i1 opws > 07w



The second term in (41) is non-negative. There are two plessises.
1) oo =02 =---=0y =0, i.e. then directions are equally noisy. In this case the mean squared is constant for
all w, thus anyw is optimal.
2) Otherwise, (37) is maximized, i.e. the mean squared asitm error is minimized, if and only ifv; = 0,Vj €
{2,3,---,n}. In this case, sincdw| = 1, we know thatw; = 1, i.e.w is in the direction with the maximum noise
variance.

The lemma is proved.

Remark 6.10:When the encoding is performed according to Lemma 6.2, theawmaim MSE for any given binary symmetric
channel can be obtained:

1) oy =02=---=0n= 0, i.e. then directions are equally noisy.
The MSE is o2 )
(n (2 -1) >0_2
m

When the channel has maximum entropy, &e= % the minimum MSE ing?. Therefore no information is transmitted

over the channel.
When the channel is perfect, i.e= 0, the minimum MSE is

2
(n-3)
T
The reduction in MSE is due to quantization.
2) When not all variances are the same, ane- max01,02,---,0y), i.e. directioni is the most noisy.

The MSE is 2(26 _ 1)?
e n

When the channel has maximum entropy, §.e- % the minimum MSE isz'j‘:l sz_ Therefore no information is transmitted
over the channel.
When the channel is perfect, i.e= 0, the minimum MSE is

2
§Uf+ (1— —) o?
13
J#!
The reduction in MSE is due to quantization in tKedirection.

C. The Optimal Vector Encoder for Binary Symmetric Chan@arrelated Gaussian Noise Case
For ann dimensional zero-mean Gaussian random vector with density

1 1,T-1
fx(X) = —F—————e 2X KxX
x(X) (2m)% \/det(Kx)

whereKy is the covariance matrix defined by

X2 XaXo o XX
K2 E(XXT) — E XoXg X2 oo XoXg
X = = . . . .
XXy XoXop o X2

If Ky is positive-definite thefK x can be diagonalized to be

M = diag{o?,0%,---,02} = Q"K«Q

where 012,022,--- ,02 are the eigen-values dfx, with corresponding orthonormal eigen-vectatsvy,---,vy and Q £
[ Vi V2 - Vp ] (See e.g. [11])Q is an orthonormal matrix wittQTQ = QQT =1, wherel is the unit matrix. We also
havedetK x] = detM] = 1}_; 02, Ky* =QM~'QT, anddet[Q] = 1..

Then we have the following theorem.

Theorem 6.11:Let X € R" andX ~ N(0On,K) and hence&kx has orthonormal eigen-vectovs, vy, - - - , v, corresponding to
eigen-valuew?, 02, -+, 02. Consider encode®*(-) defined as below



e [Y if wTX >0
S=G (X){ 1-Y otherwise

whereY € {0,1}, w* ¢ R", ||w*|| = 1 andw* is chosen as below. If

1) oy=0,=---=0,=0, i.e. all the n directions are equally noisy! is any vector inR".

2) Otherwise, letoy, = max{01,0s,...,0n}, with me {1,2,...,n}. Thenw* = v, is the unit vector in the direction of the
m-th eigen-vector.

ThenG*(-) is optimal, i.e., the optimal encoder only encodes the moiyndirection with one bit.
Proof:

By Theorem 4.4, there is an optimal encoderXofvithin the class of encoders separatiRf by a hyperplane through the

origin.
Consider random vectdt = Q" X, whereQ = [ Vi V2 -+ Vp ] Then the covariance d satisfies

Kz 2E{ZZ"} =Q"KxQ =M =diag{0?,0%, - , 05} (42)

and the density oF is

@) = e ¥

(2m)? \/det(Kz)
] 1 e_%ZTM—lZ
(2mz2 M-, 0
All the n components of random vectdr are independent. Lemma 6.2 gives an optimal encoder for suelndom vector.
Below we will prove there is a 1-to-1 map between the hypemlancoders oZ and X producing the same mean squared

error.
Consider the mean squared estimation error caused by tlogviiog two encoders

Y if wTX >0
Sc=Gx(X) = { 1-Y otherwise (43)
with Y € {0,1}.
and
B |y if (QwW)TZ=w"Qz>0
S =G(2) = { 1-Y otherwise (44)
with Y € {0,1}.

The encodeiG,(-) encodes the random vectdr which is rotated fromX by QT, with hyper-planeQTw, which is rotated
by QT from the hyper-planav used byGy(-).

Let Po 2 P(Sc=0) andP £ P(Sc=1). From Lemma 6.4, the outputs of the decoder in estimaXinghen the encoder
is Gx(-) are
(1—&)RoE{X|Sc =0} + eRaE{X|S = 1}

B{X[S=0} = (1—&)Bo+€Pq

(45)

and

EPXoE{X|S( = 0} +(1- s)leE{X|S( = 1}
R0+ (1—¢)Ra

E{X[&=1} = (46)

wheree =P(S=0|S=1) =P(S=1|S=0). DefinePp £ P(S, = 0) andPy £ P(S, = 1). Again by Lemma 6.4, the outputs
of the decoder in estimating when the encoder i6,(-) are

(1—&)PoE{X|S, = 0} + eP1E{Z|S =1}
(1—¢)Po+€ePn

E{z|$=0} = (47)

and

EPOE{Z|S, = 0} + (1— &)P1E{Z|S, = 1}

BizIS =1 = EPp+(1—€)Pn

(48)



With encoder ass(-), the expectation oK conditioned onS, =0 is
E{X|S =0}

L / xe™ 2% Kx X
Rov/ (2m)"det(Ky) /wTx<0

! / e 2 Kx gy
Rov/ (2m)" L1 0 JwTx<0

and

SRS S e
(2mdet(Ky) JwTx<0

S T / e 2 Kx Xy
v (2m" ML, 01 JwTx<0

On the other hand, when the encodefGg-) the expectation of conditioned onS, =0 is

E{Z|S, =0}
1

= / ze 22’ M gy
Po+/(2m)"det(M) JwTQz<0

1
Po+/ (27'[)” [—|in=1 Gi /WTQZ<O

1.Tpg—1
ze 22 M7Zgy

and
Po = ;/ 37 M2y
(2m)"det(M) JwTQz<0
= e 22M gy

l n
Vv (2mh ity 6 /vaQz<o
SinceZ =Q™X andM = QTK,Q, we know
Po = e [ e ¥
v (2m" ML, 6i JwTQz<o
- W/Woe_%m1QT*det[Qde
i=10i
1 _ 1 TK 1y
S/ =T /T e 2 dx
vV (2m"MiL, i JwTx<0
= PRo
sincedet{Q] = 1. Also
E{z|S, =0}

1
Z
Poy/(2m)" i, o /WTQZ<0
1 ToaixTOM-1QTx
Xe 2 det{Q]dx
Boyv/ (2m)" 1, o /wa<oQ Q]

1
Boy/ (2m)" L, 0 /wa<o
= Q'E{X|s=0}
Similarly we can proveE{Z|S, = 1} = QTE{X|S( = 1} and therefore by (47) and (48)

_1,Tpg-1
e 52 M ZdZ

1,Tk-1
Txe—zx Kx XdX

E{Z|S, =0} = Q"E{X|&=0}

and



E{Z|S =1} =Q'E{X|S(=1}
Moreover,

The mean squared error achieved ®y(-) in estimatingX and the mean squared error achieved@y-) in estimatingZ
are the same.

Thus for every encoder of of the form (43), we can find an encoder®fof the form (44), such that the error in estimating
X andZ are the same, and vice versa.

Therefore ifw* in (43) is optimal,Q"w in (44) is also optimal, and vice versa.

From Lemma 6.2, if om = max{o01,02,---,0n}, an optimal encoder forZ is in the form (44) with Q'w =

[0 -~ 0 1 O --- O], where the 1 is themth component. Then an optimal encoder %ris in the form (43)
with
0
0
w = Q|1
0
L O -
"0
0
= [ Vi Vo -+ Vp ] 1
0
- 0 -
= Vm
[ |

VII. CONCLUSION

We study the real-time estimation of a Markov process oveemoryless noisy digital communication channel to minimize
the mean squared estimation error. We first show the optimedder can be a function of the current state of the Markov
process and the probability mass function of the state ofmibenory of the receiver given the current state. We then prove
the optimal encoder separates the state space with hygeegl A recursive algorithm is then given to jointly find tbedlly
optimal encoder and decoder for the special case of theybgyanmetric channel and scalar source. For memoryless Gauss
vector source and binary symmetric channel we analytialyve the global joint optimal encoder and decoder. Thisstwut
to be an encoding of the principal component of the sourcéoued/e derive the minimum mean squared error as a function
of the variance of source and the channel noise.

Many problems remain open. The recursive relation betwkeroptimal design across time steps needs to be found. The
recursive algorithm to find optimal encoder and decoder si¢ede generalized to channels other than the binary syrametr
channel. For the memoryless Gaussian vector case, we asbtodind the optimal designs for more practical channelg Th
memory state update is given in our problem. The optimaltjdesign of encoder, decode, and memory update is another
interesting problem.
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APPENDIX I
PROOF OFLEMMA 6.8

Proof: When¢ = 0, both sides of (31) equal to 0. When— +, both sides are equal té Hence inequality holds at

both 0 andeo.

We will show for all ¢ € (0,), the left side of (31) is greater than the right side. Sincthlsides are positive, (31) is
equivalent to

_ 2
V<¢>éﬂ—i(/o¢efzdy) >0 (49)

We differentiateV (¢) with ¢ and get

dv  ge? 1 g2 9 g
d¢:¢2 —I—TeTOery (50)

Clearly, g—¥ is zero when eithepy =0 or ¢ — +o0. We study its sign in0, +o)
2
For all ¢ € (0,c0), defineW(g) 2 e (d—V). Therefore

dé

¢
ez 1% ¥
¢ 5 7—_[/0 e zdy (51)

W(¢) and g—}f have the same sign when> 0 and is finite. We can study the sign g)} usingW(e).



W(0) =0 andW(+) = _\/%1 < 0. The first term in (51) first increases from 0 wifh then decreases until it converges

to 0. The second term on the other hand keeps increasing fraith0p, so the sign oW(¢), therefore the sign X must
be negative for largg. Now we analyze the change trend of the sign\ifg) with ¢ by differentiating it.

dl/:e*%g (}_E_d,_Z) (52)

SinceW(0) = 0, we haveW(¢) > 0 in (0,,/1— ,—21} On the other handgy <0, if

Clearly, gi; >0, if ¢ <,/1-2

¢ >4/1— 7% Therefore in(4/1— ,—ZT,oo) W(¢) keeps decreasing, going from positive to negative. Si¢e¢) and g—}f have
the same sign except fgr — 4, we know the following abou%:

2

>0 and increasing ¢ € (0,/1— £]

dv
dg | >0 and decreasing¢ € (1/1- 2 ¢
< 0 and decreasing¢ > ¢* and finite

where ¢« is a finite positive number ifl— %,Jroo) whose exact value is not important to us.

From the sign ofg—); we can see tha¥ (¢) starts from 0 wherp = 0. It first increases then decreases monotonically with
¢, and converges to zero wh@n— +oc. Hence it can never be negative. The only possibility {g) first increases withp
from 0 to be positive , then decreases while still being pasitand eventually goes back to 0. Figure 3 confirms our aimly

0.045

Fig. 3. V as a function ofp

Therefore we have proved thdi{¢) > 0, V¢ € (0,+), and the lemma is proved. [ ]

APPENDIXII

PROOF OFLEMMA 6.9
Proof: We prove by induction.
Whenn=2 det[ﬁ + i} _ oWt opn This establishes a base case
-7 ofwi ' of] —  wiofoF '

Suppose the lemma holds for all matrices of the above formzef (& — 1) x (k— 1), then observe that



dor| 1| VW w3 W | (1 1
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2 . 27 ~27
o2 : : 03’ 0%
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WiWo WiW3 WE _i_l
ofwi ofwi ofwi = of
A
= JAK)|
where|M| stands for the determinant of mati.
Then
2 2
A)| = O2WZ + O2W3 + - - + OPWE
Wio7 o5 - Of
k 2
- k 2
L
Now,
v L1 waws o WoW W2Wit 1
"19&1 9 "1;&1 Ulwl oW1
wawo HEE T Lt WaWy
ofwy oW 93 Ulwl oW1
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Wy Wo wws g L WiWc s 1
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WipaWo - WepaWs o Wi ik Ml 1
oWy oW1 oWT oW1 Ty

We prove in two cases depending on the valuavgfi.e. wy £ 0 andwy = 0.
1) Assumewy # 0




Then

2) Assumewy =

0.

[A(k+1)|
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(53)



Then,
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(54)

The second last equation is because of the induction aseamphnd the last equation is true consideriag= 0.
Therefore the Lemma is proved for both cases.





