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ABSTRACT

Integrated particle size distribution (IPSD) is a promising alternative method for estimating
particulate matter (PM) emissions at low levels. However, a recent light-duty vehicle (LDV) emissions
study showed that particle mass estimated using IPSD (Mpsp) with the TSI Engine Exhaust Particle
Sizer (EEPS) Default Matrix was 56-75% lower than mass derived using the reference gravimetric
method (Mg,a,) over the Federal Test Procedure (FTP). In this study, Mpsp calculated with a new
inversion matrix, the Soot Matrix, is compared with Mc,,, and also photoacoustic soot mass (Msey),
to evaluate potential improvement of the IPSD method for estimating PM mass emissions from
LDVs. In addition, an aerodynamic particle sizer (APS) was used to estimate mass emission rates
attributed to larger particles (0.54-2.5 um in aerodynamic diameter) that are not measured by the
EEPS. Based on testing of 10 light-duty vehicles over the FTP cycle, the Soot Matrix significantly
improved agreement between Mpsp and Mg,y by increasing slopes of Mipsp/Mgay from 0.45-0.57 to
0.76-1.01 for gasoline direct injected (GDI) vehicles; however, for port-fuel injection (PFI) gasoline
vehicles, a significant discrepancy still existed between Mpsp and Mg,.,, With Mpsp accounting for
34 4+ 37% of Mgay. For all vehicles, strong correlations between Mjpsp and Ms,., Were obtained,
indicating the IPSD method is capable of capturing mass of soot particles. The discrepancy between
the Mipsp and Mg, for PFI vehicles, which have relatively low PM emissions (0.22 to 1.83 mg/mile),
could be partially due to limited size range of the EEPS by not capturing larger particles (0.54—
2.5 ;#m) that accounts for ~0.08 mg/mile of PM emission, uncertainties of particle effective density,
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and/or gas-phase adsorption onto filters that is not detected by in situ aerosol instrumentation.

1. Introduction

There is a growing interest in determining vehicle partic-
ulate emissions using in situ real time aerosol instru-
ments due to their potential advantages such as high
temporal resolution, sensitivity, cost-effective, and mini-
mal artifact interference. Maricq et al. (2016) evaluated
ability of three aerosol instruments (Dekati Mass Moni-
tor, Engine Exhaust Particle Spectrometer, and Micro
Soot Sensor) to measure regulatory metrics such as
PM,s mass for the U.S. regulation and solid particle
number (SPN) for E.U regulation, Mohr et al. (2005)
evaluated 16 different particle measurement systems to
measure both regulatory (PM mass and SPN) and non-
regulatory metrics (black carbon (BC), particle surface
area, PN, etc.). BC mass from light-duty vehicles are of

current interest due to its implication to climate change
and traffic-related emissions, and it was determined by
Bahreini et al. (2015) and Kamboures et al. (2013) in
addition to gravimetric method.

The Integrated Particle Size Distribution (IPSD)
method is a promising alternative for measuring particu-
late matter (PM) emissions at low emission levels
(Maricq and Xu 2004; Liu et al. 2009; Giechaskiel et al.
2012; Xue et al. 2015). This method determines real-time
particulate mass by multiplying the particle volume con-
centration derived from the particle size distribution and
size-dependent particle effective densities. Additionally,
real-time IPSD data help better understand the transient
nature of emissions, such as during cold-start events.
The IPSD method was initially conceptualized by Maricq
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and Xu (2004) and further evaluated by Liu et al. (2009).
Liu et al. (2009) showed that mass obtained using IPSD
were within 10 to 20% of gravimetric PM for heavy-duty
diesel engines using the Engine Exhaust Particle Sizer
(EEPS, TSI Inc., Shoreview, MN, USA). However, we
found more recently that Mipsp mass was persistently
lower than the gravimetric mass by 37-75% over Federal
Test Procedure (FTP) tests for a large dataset of more
than 182 tests from 40 light-duty vehicles when using
the same EEPS model (Li et al. 2014; Quiros et al. 2015b).

To better understand the discrepancy between Mipsp
and Mg,.,, Quiros et al. (2015a) and Xue et al. (2015)
evaluated the accuracy of size distributions measured by
the EEPS relative to scanning mobility particle sizer
(SMPS) reference measurements under steady-state con-
ditions. The Default inversion matrix used by the EEPS
underestimated particles with mobility diameter larger
than 100 nm, which generally contributes notably to the
total PM mass. Quiros et al. (2015a) derived and applied
an ad hoc correction to the EEPS data based on SMPS
measurements, which increased Mipsp by approximately
14%, which was insufficient to resolve the observed
underestimation. When adding the mass contribution of
larger particles between 0.54 and 2.5 yum in aerodynamic
diameter measured by the Aerodynamic Particle Sizer
(APS, TSI Inc., Shoreview, MN, USA), the corrected
EEPS and APS data virtually eliminated the bias between
Mipsp and Mg,y Similar size underestimations for soot
particles were observed with the Cambustion DMS500
Fast Particle Analyzer (Cambustion Ltd., Cambridge,
UK), which measures particle size distributions with the
same principle as the EEPS (Symonds et al. 2007). Cali-
bration with soot particles and lognormal fitting to the
size distributions were employed to improve the DMS
number and mass concentration agreement with refer-
ence instruments (Combustion 2007; Symonds and
Reavell 2007). A fundamental study conducted by Wang
et al. (2016a,b) demonstrated that the EEPS Default
Matrix was deficient in its ability to measure accurate
size distributions of vehicle exhaust particles, especially
those with substantial carbonaceous aggregates, which
tend to acquire more charge during the unipolar diffu-
sion charging process. To address this shortcoming, the
authors conducted additional measurements to charac-
terize the charge distribution of particles with varying
morphologies, and improve the accuracy of the EEPS
inversion matrix (Wang et al. 2016a,b). Using these
measurements, TSI recently developed and released a
new matrix, the Soot Matrix (TSI 2015; Wang et al.
2016b), for measuring vehicle exhaust particles. We
recently demonstrated that application of the Soot
Matrix improves the accuracy of EEPS size distributions
substantially for four types of vehicles under steady-state

conditions, and increases Mipsp by 33-53% compared to
the baseline determined by the Default Matrix (Xue et al.
2015).

Although the Soot Matrix has been demonstrated to
improve the accuracy of particle size distributions from
vehicle exhaust, the evaluation conducted by Xue et al.
(2015) was under steady-state conditions and had no
comparison to gravimetric reference measurements. In
this study, we evaluate improvements to the IPSD
method over transient certification test cycles using the
Soot Matrix, and compare mass estimates to gravimetric
filter measurements. Ten light-duty vehicles were tested
for this study, including six gasoline direct injection
(GDI) vehicles, three port fuel injection (PFI) vehicles,
and one light-duty diesel vehicle (LDD) equipped with a
diesel particulate filter (DPF). To further explore the
nature of PM mass determined by different methods, we
also compared Mipsp with the soot particle mass deter-
mined by the AVL Micro Soot Sensor (MSS) (Mseop)-
Additionally, an Aerodynamic Particle Sizer (APS) was
used during three tests to quantify the contribution of
PM mass from larger particles (0.54-2.5 um in aerody-
namic diameter) during transient operation.

2, Experimental
2.1. Instrumentation and laboratory setup

Testing was conducted at two labs, the Vehicle Emissions
Research Laboratory (VERL) at the Bourns College of
Engineering-Center for Environmental Research and
Technology (CE-CERT) at the University of California
at Riverside, and at the ARB Haagen-Smit Laboratory
(HSL) in El Monte, California. Both facilities are
equipped with a 48-inch single-roll electric dynamome-
ter for testing light-duty vehicles.

The same model and individual unit of a TSI EEPS
(Model 3090, firmware version 3.11, manufactured by
TSI Inc.) was used to measure particle size distributions
at both laboratories, and a Micro Soot Sensor (MSS,
model 483 manufactured by AVL Inc., Graz, Austria)
was used to measure soot concentrations at VERL.
Because the size measurement range of the EEPS spans
from 5.6 to 560 nm, and gravimetric filter measurements
are downstream of a cyclone that allows penetration of
the particles up to around 2.5 pum, an APS (0.54 to
19.81 um, model 3321, manufactured by TSI Inc.) was
used for tests at HSL to investigate the contribution of
PM mass by larger particles (0.54-2.5 um). At both labo-
ratories, parallel gravimetric filter measurements were
conducted for all tests, and real-time instruments (EEPS,
MSS, and APS) sampled aerosol without any additional
dilution downstream of the CVS. At VERL, real-time



instruments were directly connected to the CVS as
shown in Figure 1, whereas at HSL a sampling manifold
was used, which included cyclonic removal of PM larger
than ~2.5 um.

The EEPS uses a unipolar charger to induce a high
degree of charge onto particles that are subsequently clas-
sified by electrical mobility (Mirme 1994; Biskos et al.
2005). In this study, the measured electrometer currents
over 22 electrometers are inverted to particle size distri-
butions into 32 bins using two inversion matrices, known
as Default Matrix and Soot Matrix (Xue et al. 2015;
Wang et al. 2016a,b). A detailed mathematical descrip-
tion of how the inversion matrix converts electrometer
signals to size distributions is given by Wang et al.
(2016a). The AVL MSS is based on the photo-acoustic
measurement method where the light-absorbing PM
components (such as soot particles) are exposed to laser
light that is periodically modulated at the acoustical reso-
nant frequency (Schindler et al. 2004). Warming and
cooling of particles due to light absorption results in
pressure waves that are recorded with a microphone. The
instrument is capable of measuring particles up to
10 pm. The MSS is factory calibrated to a filter-collected
PM standard that is composed of at least 95% elemental
carbon using a Combustion Aerosol Standard (CAST)
burner manufactured by Matter Engineering (Kasper
2009; W. Silvis 2016, personal communication, 9 October
2015; AVL Inc.). The APS determines aerodynamic parti-
cle size using a time-of-flight method over two overlap-
ping laser beams (Holm et al. 1997; Peters and Leith
2003). All instruments (EEPS, MSS, and APS) captured
transient emissions at 1 Hz or faster.

PM was collected onto 47 mm Whatman Teflon®-
membrane filters with a pore size of 2 um. Figure 1
shows the two laboratory setups that were used to collect
filter samples. In setup A, one filter sample was taken
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over the entire FTP cycle. The filter face velocity was
maintained at 100 cm/s, the maximum allowed by Code
of Federal Regulations (CFR) Part 1065 (CFR 2011).
Other provisions in CFR Part 1066 (CFR 2012), such as
control of filter face temperature to 47 £ 5°C, or flow-
weighting were not implemented for setup A. In setup B,
one filter was used per phase, and all regulatory and cer-
tification guidelines, including sampling temperature
control, filter weighting and calculations, followed those
described in CFR 1065 and 1066. Both setup A and B
were adopted in VERL, while HSL testing was conducted
using only setup B (Table 1). A pre-classifier (impactor
at VERL and cyclone at HSL) was used upstream of the
filter sampling in setup B to eliminate particles with
aerodynamic diameters larger than 2.5 um. A pre-classi-
fier was not used in setup A. Here, setup A and setup B
represent sampling setups without and with CFR Part
1066 requirement implementation, respectively.

Tunnel blanks for filter samples were obtained using
the same test protocols, but without vehicle exhaust. The
tunnel blanks for filter setup A and filter setup B at
VERL were approximately 0.13 & 0.12 and 0.07 & 0.07
mg/mile (average + standard deviation, the same as
below), respectively. The tunnel blanks for the filter setup
B at HSL was about 0.05 £ 0.12 mg/mile. US EPA has
measured a lower standard deviation which can be con-
verted to an emission rate of ~0.08 mg/mile under the
test condition with filter setup A in VERL (Hu et al.
2014). The relative higher standard deviation measured
in VERL is due to that one tunnel blank test had 13 ug
PM mass collected on the blank filter, while all other tests
had PM mass collected lower than 8 pg. Tunnel blanks
for the real time instruments were obtained using their
measurements before beginning of each cycle. The
tunnel blanks for the MSS was approximately
0.014+0.04 mg/mile. The tunnel blanks for IPSD using

——— HEPA filtered
‘ laboratory air
.

CVS Sampling System

Other instruments
Pump

<1 Mass flow controller

=l =
E

Jeyy ajbuig

T=47+5C

| J3yy- | aseyd
Z 19yy-z aseyd
£ Joyy-¢ eseyd

Setup B

Figure 1. Schematic of laboratory setup at VERL.



1230 J.XUE ET AL.

Table 1. Summary of the testing specification.

Vehicle ID* Make/Model Model year Mileage Emission category After-treatment®  No. of tests  Test lab  Filter setup
GDI-1 Kia Optima 2012 12K Tier 2 Bin 5 Cali. LEVII TWC 1 CE-CERT A
GDI-2 Mazda 3 2012 19K Cal. PZZEV TWC 4 CE-CERT A
GDI-3 Mercedes Benz 2012 10K Tier 2 Bin5/ Cal. ULEV II TWC 2 CE-CERT A
GDI-4 Ford Escape 2014 25K US EPA T2B5 LDT2 TWC 2 CE-CERT B
GDI-5 Ford Focus 2013 31K Cal.SULFVII TWC 1 HSL B
GDI-6 Chevrolet Traverse 2014 14K Cal. ULEV I TWC 1 HSL B
PFI-1 Nissan Versa 2012 2K Tier 2 Bin5/Cali. ULEV Il TWC 4 CE-CERT A
PFI-2 Honda Accord 2012 31K EPA: T2B2 LDV Cali. LEV Il SULEV/PZEV PC  TWC 2 CE-CERT B
PFI-3 Chevrolet Malibu 2012 27K ULEV I TWC 1 HSL B
LDD VW Jetta 2009 114K Cali. ULEV II DPF LNT 2 CE-CERT A

GDI: Gasoline direct injection; PFI: port fuel injection; LDD: light-duty diesel equipped with a DPF.

"TWC: Three way catalytic converter; DPF: diesel particle filter; LNT: lean NO, trap.

the EEPS were <0.03 £ 0.02 mg/mile at both VERL and
HSL, which is likely higher due to the summation of the
noise from 22 electrometers of the EEPS rather than
from suspended mass within the tunnel. This was con-
firmed by installing an HEPA filter (TSI. 801625 zero fil-
ter) directly onto the inlet of the TSI EEPS, which
resulted in a tunnel-blank level of around 0.02 mg/mile
for direct HEPA-filtered air.

2.2. Vehicle, fuel, and driving cycle

Ten vehicles were tested in this study, including six GDI
vehicles, three PFI vehicles, and one LDD vehicle,
selected to provide a variety of different emission levels
and engine technologies used in modern vehicles.
Detailed specifications of the vehicles are listed in Table 1.
At VERL, the vehicles were all tested with either the fuel
in the tank at the time it was received (in-use California
gasoline) or number 2 diesel fuel purchased from a local
gas station (for the LDD vehicle). For the PFI and GDI
vehicles tested at HSL, Phase III certification-grade gaso-
line fuel was used.

The vehicles were tested over the FTP driving cycle,
the primary chassis dynamometer certification cycle for
light-duty vehicles in the U.S., which consists of three
phases. The first phase is the “cold start,” which repre-
sents operation when the vehicle is first started following
a soak lasting between 8 and 24 h. Phase 2 is the stabi-
lized phase, which represents driving when the engine
and aftertreatment system are warmed up. Phase 3 is
identical to phase 1, but follows a hot-soak period lasting
between 9 and 11 min. The vehicles were preconditioned
using the first two FTP phases (the LA-4 preparation
cycle) at VERL, and a full three-phase FTP cycle at HSL.
No preconditioning was conducted on vehicle PFI-1. A
speed time trace for the FTP is presented as Figure S1 in
the online supplemental information (SI). Vehicles were
tested in this study over the FTP cycle between one and
four times (Table 1).

2.3. IPSD method

The IPSD method obtains the PM mass by multiplying
the particle volume concentration with the size-depen-
dent particle effective densities, as follows:

nD?.
Mipsdzzpeﬁ,i'<6w> i (1]
i

where D, ;, n;, and peg; are the particle mobility diameter,
particle number concentration, and the effective density
of the particles in size bin i, respectively.

The effective density varies with particle composition
and morphology. We apply effective density according
to a power fit model and data measured by Quiros et al.
(2015a). Equation (2) shows the particle effective density
expressed by mass and mobility scaling exponent (D,,),
and a dimensionless constant A derived from experimen-
tal data:

Dm—3
Peff = Aby 7 (Dy > 55nm). (2]
/6
In this study, we adopt Equation (2) to calculate the
particle effective density of particles with mobility diam-
eters equal or larger than 55 nm. For the GDI vehicles,
the D,, = 2.3 and A = 9.4. These values are derived by
fitting the data reported in Maricq and Xu (2004) using
Equation (2). For the PFI vehicles, the effective density is
used according to that reported by Quiros et al. (2015a),
where D, = 2.67 and A = 1.23. For the LDD vehicle, we
adopted values for the GDI vehicles because effective
density varies dramatically with the engine operating
condition (Quiros et al. 2015a). For particles with mobil-
ity diameters between 30 and 55 nm, a constant effective
density of particles with D, of 55 nm was used. A con-
stant effective density of 1.46 g/m’ was applied to par-
ticles with mobility diameters equal or smaller than
30 nm, following Zheng et al. (2012). This is the density
of hydrated sulfuric acid at room temperature.



The accuracy of the Mpsp depends on the accuracy of
the effective density profile adopted. According to Quiros
et al. (2015a,b), the particle effective density varied at dif-
ferent steady-state loads. The application of particle
effective density achieved at different steady-state loads
to the FTP cycle had less than a 1% impact on final mass
estimates with the IPSD method. Use of the effective
density profile adopted by other researchers (Liu et al.
2009; Quiros et al. 2015a) led to up to a 20% impact on
the IPSD mass estimation. The profile of the effective
densities applied in this study is shown in Figure S2 in
the SI.

3. Results and discussion
3.1. Emission rate of total particle mass and soot

Figure 2 shows PM emission rates determined by the
gravimetric method (Mg;.,), the IPSD method with
EEPS Default (Mpsp pefaurr)> and Soot Matrix
(Mipsp,_soot) for the individual FTP tests for each vehicle.
For tests using filter setup B, the PM emission rates were
weighted by phase according to typical regulatory meas-
urements of 0.43, 1.00, and 0.57 for phases 1, 2, and 3,
respectively (e.g., CRF Part 1066.815(b)) with both

-
o
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gravimetric filter and real-time measurement methods.
However, for the tests with filter setup A, phase weight-
ing was not applied.

PM mass emission rates varied from among vehicles.
The GDI vehicles had the highest Mg,.,, ranging from
0.25 to >6 mg/mile, with GDI-3 having the lowest PM
emission rates (<1 mg/mile). The PFI vehicles had lower
gravimetric emissions, with Mg,,, ranging from 0.22 to
1.83 mg/mile. Three of the tests of the PFI-1 had emis-
sion rates less than 0.6 mg/mile, while the first test with
the PFI-1 had emission rate of ~2 mg/mile, which did
not include a preconditioning cycle. Note the first data
from the PFI-1 shows the importance of preconditioning
and included in this article to be consistent with our pre-
vious study. However, it was excluded from many forth-
coming analyses because no preparation cycle was used.
Further studies are needed to fully understand the effect
of preconditioning on PM emission from LDVs. PM
emission rates obtained without phase weighting
(setup A) were typically 20-40% higher than the PM
emission rates obtained with phase weighting (setup B).
It is because PM emitted during the cold start phase
(phase 1) generally dominates the overall PM emission
over the FTP cycle and the filter face velocity weighting
factor for this phase is only 43% of the nominal with

2.0

(a) with filter setup A

GDI
N R O ®

Emission rate (mg/mile)
o

GDI-2

(b) with filter setup B

. GDI

Emission rate (mg/mile)

GDI-5

GDI-4
H MGrav

1

GDI-6
MIPSD_Default Mipad Soot

1 2 1
S—

PFI-3
EMSS

PFI-2

Figure 2. PM emission rate determined by gravimetric method (Mg.,), IPSD method with Default (Mipsp pefaurr): @and Soot Matrix
(Mipsp_soot), @and soot emission rate determined by MSS (M) for the individual test with each test vehicle. For tests in (a), the gravimet-
ric method adopted filter setup A. For tests in (b), the gravimetric method adopted filter setup B. Emission rates of the PFI and LDD

vehicles were presented on the right y-axis.
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setup B. Note, that tests with setup A have been already
reported for comparison of gravimetric method and
IPSD method using EEPS Default Matrix in Li et al
(2014).

The PM mass emission rates obtained by the IPSD
method (Mipsp) also varied among vehicles, which
were virtually always lower than paired Mg,,, values.
Most tests and vehicles had Mipsp values below
1 mg/mile, except four GDI vehicles: the GDI-1 that
had Mjpsp of ~8 mg/mile, the GDI-2 that had Mipsp
on the order of ~1-3 mg/mile, the GDI-4 that had
Mipsp of 1-2 mg/mile, and the GDI-6 that had Mipsp
of 2 mg/mile. Mpsp values were very low
(<0.1~0.2 mg/mile) for all PFI and LDD vehicles,
except the first test of PFI-1 that did not undergo the
regulatory preparation cycle.

Mipsp shows better agreement with Mg, for all types
of vehicles when using EEPS Soot Matrix. On average,
Mipsp estimated by EEPS Default Matrix accounted for
57 £ 13% of the gravimetric mass for the GDI vehicles.
When the EEPS Soot Matrix was applied, the Mipsp
accounted for 94 + 23% of the Mg, for the GDI
vehicles.

For the PFI, Mipsp estimated with the Default Matrix
accounted for 22 + 23% of the M,,,. The estimation of
Mipsp was substantially improved to 34 £ 37% using the
Soot Matrix. These improvements are proportional to
the improvements achieved for GDI vehicles. This indi-
cates that the Soot Matrix reduced the underestimation
of mass using IPSD method for PFI vehicles; however,
other uncertainty or limitations appear associated with
its equivalency to the gravimetric reference method.

Figure 2 also shows the emission rates of soot particles
based on the MSS measurements (Mg,,,) for the individ-
ual test for each tested vehicle. Ms,,. was constantly
lower than Mg,,,, except the second test with the GDI-3.
Moo accounts for 76 £ 19% and 29 + 22% for the GDI
and PFI vehicles, respectively. Mg,o accounted for 79 £
3% of Mgy by Maricq et al. (2016) in their combined
results of GDI and PFI where dominant data were
believed to be those by GDI vehicles. These ratios found
in the current study appear similar to those calculated
between M;psp and Mg, with the Soot Matrix.

3.2. Cycle-averaged patrticle size distributions

Figure 3 shows the cycle-averaged size distributions for a
test from three selected vehicles (GDI-2, PFI-2, and
LDD) for both matrices, and bi-modal lognormal fits to
the distributions when Soot Matrix was used. The geo-
metric mean diameter (GMD) and geometric standard
deviation (GSD) of the lognormal fits for the nucleation
and accumulation modes are listed in Table 2.

For GDI-2, both Default and Soot Matrix resulted in
similar GMD for nucleation mode and accumulation
mode particles. The GMD for accumulation mode par-
ticles (56 nm) was larger than the GMD measured under
60-mph steady-state conditions with a 2% road grade
(~40 nm) using the same vehicle (Xue et al. 2015). This
is likely due to higher emission rate of soot during the
cold start phase that could lead to more coagulation or
particle growth. The observation is further confirmed
when comparing the GMD measured during the cold
start and the hot start. During the cold start, the GMDs
of accumulation mode particles were 60, 33, and 68 nm
for vehicle GDI-2, PFI-2, and LDD, respectively, consis-
tently larger than those during the hot start, which were
44, 22, and 43 nm. In addition, the EEPS Soot Matrix
broadened the accumulation size distribution compared
to the EEPS Default Matrix (GSD = 1.60 versus 1.93),
and increased the concentration of the nucleation mode
by 45% at the peak.

For PFI-2, the Default and Soot matrices resulted
in a higher fraction of nucleation mode particles com-
pared to GDI-2 (39% versus 27%), indicating PM
emitted from PFI vehicles could have a higher com-
position of semi-volatile constituents (e.g., hydrocar-
bons and sulfuric acid). The PFI vehicle accumulation
mode had a smaller GMD than the GDI vehicle (30
versus 57 nm); this indicates that less and smaller
PM was emitted from PFI-2 compared to GDI-2.
This may be due to the stratified compared to
cleaner-burning premixed flame used by PFI engines.
Figure 3b also shows a larger GSD and wider size dis-
tribution for the accumulation mode particles when
the EEPS Soot Matrix was used (2.31 versus 1.91 with
the EEPS Default Matrix). The EEPS Soot Matrix also
increased the concentration of nucleation mode par-
ticles by approximately 50% compared to the Default
Matrix. For the LDD, again, the Soot Matrix lead to
broader distributions of the accumulation mode rela-
tive to those determined by the Default Matrix (GSD
= 2.08 versus 1.79).

3.3. Mg,q, versus Mpsp

Correlations between Mg,,, and Mipsp calculated by
the Default and Soot Matrix are shown in Figure 4
separated by filter setup and vehicle technology. For
GDI vehicle tests, the intercepts of the regression
lines were set to be zero in order to better present
the ratios between Mpsp and Mg,,,. Similar regres-
sion lines with intercepts are presented in Figure S6
in the SI. The relationship between Mipsp and Mg ay
has a moderate to strong correlation for the tests
with the GDI vehicles, with R* varying from 0.53 to
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Figure 3. FTP cycle-averaged particle size distributions for vehicle
(a) GDI-2, (b) PFI-2, and (c) LDD with EEPS Default and Soot Matri-
ces. Dashed and solid lines present lognormal fitted size distribu-
tion of nucleation and accumulation mode particles, respectively,
by EEPS Soot Matrix.

0.87. No improvement in the correlation was obtained
using the Soot Matrix compared to the Default
Matrix; however, the slopes of the best-fit lines when
forcing intercepts to zero were much closer to a one-
to-one ratio with the Soot Matrix. In the SI, we show
stronger correlations (R* = 0.67-0.90) when consider-
ing non-zero y-intercepts (Figure S6). This result is
consistent with that by Maricq et al. (2016).

For GDI vehicles where intercepts are set to zero,
the Default Matrix results in slopes of 0.57 and 0.56
for filter setups A and B, respectively. However, the
slope for filter setup A is heavily influenced by one
data point from GDI-1 that emitted 6.7 mg/mile,
which is higher than the relevant limit allowed under
any LEV III PM standard. If this test is excluded, the
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slope of the test with filter setup A decreased from
0.57 to 0.45, more consistent with earlier findings for
light-duty vehicles reported in Quiros et al. (2015b).
When the Soot Matrix is applied, the Mipsp agrees
much better with Mg,,, on the tests of the GDI
vehicles, and the linear regression slope for Mipsp ver-
sus Mg,., increases from 0.57 to 1.01 and from 0.45 to
0.76 for the tests with filter setup A, with and without
the test on GDI-1, respectively. For tests with filter
setup B, the slope for linear regression line increased
from 0.56 to 0.92. The subset of tests conducted under
filter setup A and B both demonstrate how the Soot
Matrix improves results in a closer one-to-one rela-
tionship between IPSD and gravimetric mass for GDI
vehicles. However, the IPSD method still underesti-
mates gravimetric mass by between 8% or 24% for
GDI vehicles, which needs to be further explored.

Correlations between M., and Mipsp are negative or
absent for the tests for the PFI vehicles as shown in
Figures 4b and d. These correlations and figures exclude
the first test of PFI-1 because it was not preconditioned
using the same test procedures. The lack of positive cor-
relation between Mg,,, and Mipsp may be due to the
uncertainty of the gravimetric method during this test
program, variable effective density functions, uncharac-
teristic size distributions measured during transient
operation, or a limited number of tests evaluated. Even
when applying the Soot Matrix, the IPSD method sys-
tematically underestimates the PM mass for PFI vehicles.
Similar correlations were not explored to LDD vehicle
due to limited vehicle number of tests.

3.4. MIPSD versus MSoot

The relationship between Mipsp and suspended soot
measured by the MSS (Ms,o.) is compared in Figure 5 to
evaluate the soot fraction of suspended particles.
Although it is possible to apply phase-weighting to real-
time data collected during tests with filter setup A, no
adjustment to the real-time data was conducted for con-
sistency with Figures 2 and 4; tests using filter setup B
are presented with the flow-weighted emission rate,
while tests using filter setup A are presented with flow
unweighted emission rates.

Figure 5 shows very strong correlations between Mg,
and Mpsp, for both GDI and PFI vehicles, and using
either the Soot or Default Matrix. For GDI tests, R is
0.99, notably higher than those fitted for Mpsp and
Mgray (0.53-0.87). For PFI tests, R* is 0.88 with the
Default Matrix and 0.89 with the Soot Matrix. Analysis
of the slopes between Mipsp using the Soot Matrix and
Msoor using the MSS indicates that the methods are
nearly equivalent to within 5%.
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Table 2. Parameters for bi-modal fit of FTP cycle from three vehicles.

Nucleation mode

Accumulation mode

Test vehicle Instrument/Matrices Fraction(%)® GMD(nm)b GSD¢ Fraction(%) GMD(nm) GSD
GDI-2 EEPS Default 25 14 177 75 56 1.60
EEPS Soot 29 15 1.66 71 57 1.93
PFI-2 EEPS Default 39 10 1.39 61 38 1.91
EEPS Soot 38 10 1.31 62 30 231
LDD EEPS Default 25 7 1.80 75 65 1.79
EEPS Soot 27 7 1.80 73 69 2.08

“Number fraction of particles in this mode; bgeometric mean diameters (GMD); “geometric standard deviations (GSD).

Figures 6-8 present real-time and cumulative mass emis-
sions (Mipsp with Soot or Default Matrix, and M) for the
selected GDI, PFI, and LDD tests presented in Figure 3, and
also show the correlation of 1 Hz data EEPS and MSS data
for these tests as a second panel. The three vehicle technolo-
gies showed similar PM emission trends (slopes within 10%
of a one-to-one ratio using the Soot Matrix) and R’ values of
0.91, 0.99, and 0.99 are obtained for tests with GDI, PFI, and
LDD vehicles, respectively. Additionally, the cumulative
emission rates for IPSD using Soot Matrix and Mg, were
highly correlated at all points during the FTP cycle. There-
fore, the ratio of IPSD to MSS mass is nearly equivalent
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even during highly transient operations during the test cycle,
and holds true for the GDI, gasoline PFI, and LDD vehicle
tests evaluated. These observations could indicate that the
IPSD method can capture the solid particles well. It may
also indicate that the volatile fraction emitted from these
tests was very low. Figures 6-8 reiterate that when using the
EEPS Default Matrix, Mipsp is 38%, 57%, and 40% lower
than Mg, for the tests on the GDI, PFI, and LDD vehicles,
respectively. When applying the newer EEPS Soot Matrix,
Mipsp was only 1 and 9% lower than Mg, for the GDI and
PFI vehicles, and 1% higher for the LDD vehicle. EEPS
measures particles regardless of their chemical composition.

-
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Figure 4. Correlation of PM mass emission rate determined by IPSD method (Mpsp) and gravimetric filter (Mgay): () tests with filter
setup A for GDI vehicles, (b) tests with filter setup A for PFI vehicles, the first test on PFI-1 is excluded; (c) tests with filter setup B for GDI
vehicles; and (d) tests with filter setup B for the PFI vehicles. Two green lines in (a) represent the regression lines excluding the test
with vehicle GDI-1, which has an emission rate of 6.7 mg/mile. Regression lines with intercepts are presented in Figure S6 in the SI.
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Figure 5. Correlation of PM mass emission rate determined by IPSD method (Mpsp) and micro soot sensor (Ms.q) () tests with the GDI
vehicles, (b) tests with the PFl vehicles. LDD vehicle is not included because of limited test number ( = 2).

Therefore, the strong one-to-one relationship between
Mipsp and Mg, for PFI vehicles indicates that these PFI
engines, under these conditions, may have mostly produced
EC particles. This is different from the results shown by
Fujita et al. (2007) who measured EC/OC composition emit-
ted from PFI vehicles with a quartz filter and showed a pre-
dominant OC fraction of PM mass. The regression of 1 Hz
data in Figures 6-8 show the correlations between Mipsp
and Mg, weaken for data with mass emission rates below
~1 pg/s. The instrument detection limit of MSS measure-
ment is 10 ;g/m’. This limit can be translated into the emis-
sion rate unit using CVS flow rates to 2.1 pg/s for the GDI-2
and LDD, and 0.6 pg/s for the PFI-2. The detection limit of
Mipsp with the Soot Matrix is 0.2 ug/s for the GDI-2 and

LDD, and 0.1 pg/s the PFI-2 Therefore, the observed dis-
crepancies between Mipsp and Mg, at low emission levels
are likely due to higher detect limit and lower measurement
resolution of the MSS. (Note MSS was recently upgraded by
the manufacturer to MSSplus, which has 1 j1g/m” therefore
it may have nearly equal sensitivity compared to the IPSD
PM mass determined using EEPS, but this needs to be con-
firmed by a separate test in the future.)

3.5. PM mass contributed by larger particles

Although it is widely accepted that particles emitted
from the vehicles mainly contain nucleation and accu-
mulation mode particles, there is a possibility that a low
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Figure 6. Time series and correlations of Mipsp and Ms,o; Over an FTP cycle of vehicle GDI-2.
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number concentration but significant mass concentra-
tion of particles are collected onto filter media that are
above mobility diameters larger than measurable using
the EEPS (5.6-560 nm). Several previous studies have
shown particles that previously deposited on the wall can
later re-entrain into the exhaust and form coarse mode
particles with mobility diameters typically larger than
1000 nm (Kittelson 1998; Maricq et al. 2011; Quiros
et al. 2015a). The coarse mode particles were estimated
to contribute 5-20% of the total PM mass for diesel
emissions (Kittelson 1998).

Figure 9 compares the Mipsp calculated using the
EEPS data (with Soot Matrix) and the APS data. Here,
we note lower bound of APS (540 nm in aerodynamic
diameter) can be converted to mobility diameter for
GDI and PFI vehicles as 1700 and 1240 nm, respec-
tively, assuming power-law fit effective density of 0.12
and 0.22 g/cm’. However, such conversion cannot be
made to the upper bound of APS (2.5 um in aerody-
namic diameter), because accumulation mode that is
made of soot and so the power-law fit applies does not
extend to such large particles.

The results in Figure 9 show the PM mass determined
by APS contributed 3.7% and 8.7% of total Mipgp for the

25
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> Mgrav.
E15 -
% large particles 8.7%
c 10 1 contribute
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Figure 9. PM emission rate determined by EEPS Soot Matrix, APS,
and gravimetric filter during three tests conducted at HSL. The num-
bers on the accumulative columns represent the percentage of PM
mass determined by APS to total PM mass determined by size distri-
bution method (the summing of APS mass and EEPS mass).

tests on the GDI vehicle. This contribution was as high
as 22.5% for the test on the PFI vehicle. The contribu-
tions by large particles are nearly constant (0.08-
0.09 mg/mile) regardless of engine technologies during
these three FTP tests. This could suggest that the coarse-
mode particles may not be directly emitted from the
engine. Additionally, the sum of PM mass estimated
from size distributions measured by the EEPS (5.6 to
560 nm in mobility diameter) and the distributions mea-
sured by the APS (>0.54 um in aerodynamic diameter),
will not always provide a continuous distribution because
the conversion from mobility to aerodynamic diameter is
dependent upon the effective density. Based on the effec-
tive densities used for this study, we expect a gap
between the size distributions measured by the EEPS and
APS (Quiros et al. 2015a), and therefore the actual con-
tribution for particles larger than a 560 nm mobility
diameter can potentially be larger than the 4-23%
reported in this study. Notwithstanding the trends
shown here, the contribution of re-entrained or directly
emitted coarse mode particles to total PM emissions
deserves further evaluation for a larger sample of light-
duty vehicles compliant to the LEV III standards operat-
ing under transient conditions. Meantime, there is a gap
in measurement range (560-1700/1240 nm) in which
the PM were not captured by either EEPS or APS and it
could be a reason still for underestimating gravimetric
mass by IPSD method.

4, Conclusions

This study used real-time size distribution measure-
ments from the EEPS with two matrices (the Default
Matrix and a new released matrix, the Soot Matrix)
to estimate PM mass emission rates with the IPSD
method (Mppsp) and compares them with the stan-
dard filter-based gravimetric method (Mgay). Mipsp
was also compared to the soot emission rates esti-
mated by the AVL MSS, a photo-acoustic soot sensor
(Mgoor).- Twenty tests were conducted using 10 light-
duty vehicles over the transient FTP cycle. Results



show moderate to strong correlations between the
Mipsp and Mg, (R = 0.53-0.87 without intercept
and 0.67-0.90 with intercepts) from tests conducted
on GDI vehicles. Correlations were negative or insig-
nificant from tests conducted on PFI or LDD vehicles.
The Soot Matrix significantly improved the agree-
ments between the Mipsp and Mg,,, with the GDI
vehicle tests, by increasing the linear regression slopes
from 0.58 to 1.02 and from 0.57 to 0.93 with two dif-
ferent filter setups. The improvements on PFI vehicles
were about proportional to those on the GDI vehicles;
however, mass estimated using IPSD was still 43-91%
lower than the gravimetric reference method.

For all GDI, PF], and LDD vehicles, strong correlations
and one-to-one relationships were observed between
Mipsp and Mg, indicating the EEPS Soot Matrix is
robust for predicting PM mass when the emissions are
mostly comprised of solid soot particles. Additionally, the
emission rates from PFI and LDD vehicles (below 1 mg/
mile) were typically lower than GDI vehicles (greater than
1 mg/mile). Therefore, any fixed contribution of larger
coarse-mode particles emitted from the engine or re-
entrained from the sampling or semi-volatile contribution
onto filter media would have composed a larger propor-
tion of total PM mass. For example, an estimated 23% of
the PFI emissions, and only 4-8% of the GDI emissions
were beyond the EEPS measurement range as detected by
the APS during select tests.
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