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A CONFIGURAL-CUE NETWORK MODEL OF
ANIMAL AND HUMAN ASSOCIATIVE LEARNING

Mark A. Gluck Gordon H. Bower Michael R. Hee

Department of Psychology
Stanford University

ABSTRACT

We test a configural-cue network model of human classification and recognition
leamming based on Rescorla & Wagner’s (1972) model of classical conditioning. The
model extends the stimulus representation assumptions from our earlier one-layer
network model (Gluck & Bower, 1988b) to include pair-wise conjunctions of
features as unique cues. Like the exemplar context model of Medin & Schaffer
(1978), the representational assumptions of the configural-cue network model
embody an implicit exponential decay relationship between stimulus similarity and
and psychological (Hamming) distance, a relationship which has received substan-
tial independent empirical and theoretical support (Shepard, 1957, 1987). In addi-
tion to results from animal leaming, the model accounts for several aspects of com-
plex human category learning, including the relationship between category similar-
ity and linear separability in determining classification difficulty (Medin &
Schwanenflugel, 1981), the relationship between classification and recognition
memory for instances (Hayes-Roth & Hayes-Roth, 1977), and the impact of corre-
lated attributes on classification (Medin, Altom, Edelson, & Freko, 1982).

In earlier papers, we have explored a simple adaptive network as a model of human learning
(Gluck & Bower, 1986, 1988a, 1988b; Gluck, Corter, Bower, & Kyleberg, 1988). We have used
Rescorla and Wagner’s (1972) description of classical conditioning and extended it to human
classification learning. The learning rule is the same as the least mean squares (LMS) learning rule
for training one-layer networks (proposed by Widrow & Hoff, 1960). The model has been fit to data
from experiments on probabilistic classification learning with multiple cues. While this simple
model can be applied to only a restricted range of experimental circumstances, it nas shown a
surprising accuracy in predicting human behavior within that range--people’s choice percentages
during learning, the relative difficulty of learning various classifications, as well as their responses to
generalization tests involving novel combinations of cues.

This paper extends the stimulus representation assumptions used previously. We assume in
this “configural-cue" model that pair-wise conjunctions of stimulus features are encoded as unique
clements. This configural cue assumption is common in the animal leamning literature (e.g., Wagner
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and Rescorla, 1972), and has been used to explain a range of results (€.8., Rescorla, 1972, 1973).
This paper shows how this extended model accounts for several aspects of complex category leam-
ing by humans.

BACKGROUND

The ingredients of the basic network model are shown in the left side of Figure (1A).
Presentation of a stimulus or pattern of cues corresponds to activating one or more of the sensory
elements on the left. They send their activations to a single output unit along associative lines which
have amplifier weights, the w;. The weighted inputs are summed at the output node, and this output

E‘wJ a;, is converted into some response measure. In a classical conditioning situation, the inputs
J!

are single to-be-conditioned stimuli such as lights and bells that are paired with the unconditional
stimulus, such as food for a hungry dog; the output node reflects the animal’s expectation of the
unconditional stimulus given the cues presented. [n a classification experiment involving human
adults as subjects, the stimuli might be pattemns of, say, medical symptoms displayed by a patient,
and the output reflects the degree to which the model expects such a patient to have some target
disease (classification) versus alternative diseases.

The network operates in a training environment in which reinforcing feedback (the UCS or
the correct classification) is given just after each stimulus pattern. The central axiom of the model is
its learning rule, which is that the weights, the w; s, change on each trial according to Equation 1:

" 1
ﬂW£=Ba"(l—J;Wja}) ( )

Here, A is the training signal which might be +1 for the correct category and O for an incorrect
category. The cue-intensity parameter, a; is assumed to be 1 if cue i is present on the trial, and 0 if
it's not. The learning rate, B, is a parameter (on the order of .01 in most simulations) that determines
how much the weights change when the output differs from the training signal, A.
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Figure 1. (A) A simple one-layer network which can learn the associations between three cues (CSs)
and one outcome (US). (B) A configural-cue network with the cues for a small white square activated.
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Equation 1 is variously called the delta rule, the least-mean-square (LMS) rule, or the
Rescorla-Wagner conditioning rule (for a discussion, see Gluck & Bower, 1988a). Importantly, it
corrects all weights according to the degree of error between the network's current output and what
was desired for this pattern. This defines a learning process whereby the weights on the input lines
converge to values that reflect the relative correlations of the stimulus features with the feedback sig-
nal. Ina medical setting, these weights reflect the diffcrential validity of each symptom (cue) for
each disease (category). We have applied this baseline model to a variety of classification experi-
ments (see Gluck & Bower, 1986, 1988a, 1988b). In each case, the simplest identifications have
been used, viz., presentation of a specific medical symptom (e.g., stomach cramps) corresponded in
the model to turning on a specific input node. Thus, a pattern of medical symptoms exhibited by a
patient was represented by activation of the corresponding input nodes in the model. These
identifications were successful in fitting the data of the early experiments by us and others (Estes et
al., in press; MacMillan, 1987; Nosofsky, personal communication).

However, this approach, of theoretically identifying each experimental stimulus cue with a
single input node in the model, encounters several difficulties. Most familiarly, one-layer networks
with such manifest stimulus identifications are incapable of leamning classifications that are not
"linearly separable”. An example is the exclusive-or (XOR) problem, wherein stimulus patterns
(0,0) and (1,1) belong to one category, while patterns (1,0) and (0,1) belong to another. A common
approach for solving such non-linear classification problems is to postulate additional, "hidden units"
which connect between the input and output units (Parker, 1986; Rumelhart, Hinton, & Williams,
1986). While these multi-layer networks have great power for learning complex discriminations,
they are insufficiently constrained to serve yet as testable, psychological models of simple learning.
They require large numbers of assumptions regarding their structure (e.g., the basic representation of
stimuli and responses, the number and connectivity of hidden units, etc.), their learning rule, and
their method for calculating response probabilities.

For such reasons, we preferred initially to explore the viability of a simple extension of the
elementary model, one which postulates that conjunctions of elementary stimulus features can serve
as "higher-order" features of a stimulus pattern. Thus, given the presentation of an experimental pat-
tern consisting of elementary featurcs BCD, we will assume that this is reflected in activation of
input nodes corresponding to the single elements B, C, and D, and the pair-wise conjuncts BC, BD,
and CD. As another illustration, Figure 1B shows a network that is leamning to classify geometric
patterns varying in size, color, and shape: presentation of a "small white square” causes activation of
the input nodes blackened in the figure for single and pair-wise cues.

We will assume that such "configural” features obey the same activation and leaming rules
as do the single features, viz., Eq.1. The inclusion of such configural featurcs as "inputs” now
enables the one-layer model to learn the XOR problem as well as other non-linearly separable
discriminations.

To include configural cues is hardly a novel move for theories of discrimination leaming.
Learning theories have traditionally recognized configural leaming (Pavlov, 1927; Woodbury, 1943).
Wagner and Rescorla (1972, p. 306) explicitly expanded their theory of conditioning to include
configural cues; and in a scries of studies, Rescorla (1972, 1973) found that configural cues have
many of the same associative properties as single cues. In particular, Rescorla found that configural
cues can acquire both excitatory and inhibitory associations, that their associative strengths summate
with those of single cues to determine behavior, that configural cues can modify the effectiveness of
a given reinforcing event, and that their strength can be attenuated by making them irrelevant to the
discrimination being trained. Thus, our introduction of configural cues into the one-layer network is
supported by a considerable history.
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We will impose one arbitrary limitation upon the configural cue model tested in this paper,
namely, that only pair-wise conjunctions of elementary features will be allowed. An alternative,
proposed by Reitman & Bower (1973), Hayes-Roth & Hayes-Roth (1977), and Gluck & Bower
(1988a), is to introduce as higher-order features the entire power-set of all subsets of each n-
dimensional stimulus presented in the experiment. This power-set model rapidly becomes unwieldy,
so we have restricted our explorations to the pair-wise conjunction version of it.

In the following, the predictions of the configural cue model are compared to the data from
three representative, critical experiments from the literature on human classification leaming. The fit
of the configural cue model to the observed data will be compared to the fit of two other models: (1)
the single-cue-only model, and (2) an alternate extension of the network model recently proposed by
Estes (in press). Estes suggested using as inputs only the single cues and the full pattemns, so that
presentation of BCD would activate input nodes B, C, D, and (BCD). We will call this the "feature-
pattern” model.

LINEAR SEPARABILITY IN CLASSIFICATION LEARNING

We provide three illustrations extending the configural-cue model to account for several
aspects of complex human category leaming. First, the inability of the simple network model to
solve non-linearly-separable classifications has historically been a major reason for introducing
configural cues into one’s theory. Therefore, we wished to apply the configural-cue model to such a
non-linear leaming task. An experiment by Medin & Schwanenflugel (1981) provides relevant data.
Figure 2 schematizes the 6 stimulus patterns that two groups of college students learned to classify
as A’sor B's. The two values of the four stimulus dimensions are denoted 1 and 0. To recognize
the linear separability of the left-hand classification, note that the number of 1’s in Dimensions 1, 3,
and 4 equal 2 for the A-stimuli, but is less than 2 for any B stimulus; however, no such linear combi-
nation of feature valves will separate the two classes of pattemns in the right-hand classification.
Note too that the two classifications are perfectly balanced in terms of the average number of shared
features among patterns within each class (average of 1.33 shared features) and shared features of
patterns across different classes (average of 1.78). Medin and Schwanenflugel found that their sub-
Jects leamed this nonlinearly-separable problem more easily than their linearly-separable problem
(see Figure 3A). Their model predicted this because it calculates the similarity of two patterns in a
nonlinear fashion, so that confusions of a test pattern with memories of two A-pattems with which it
shares 1 and 3 features will be much greater than its confusions with two B-pattems with which it
shares 2 features each.

We attempted to simulate the Medin & Schwanenflugel results with the network model
using three different representations of the stimuli: the single-cue (baseline) model, the pair-wise
configural-cue model, and the feature-pattern model. In all the simulations, we used a learning rate
of B = 0.01, one output node, and reinforced the network with A = +1 for category A exemplars, and
A = -1 for category B exemplars. Each network had two cue nodes for each dimension -- one node
represented the presence of a cue, the other its complement. The configural-cue network had addi-
tional nodes for all pair-wise combinations of feature values.

Linearty Separable Task Non-linearly Separable Task

Exemplar Dimension Exemplar Dimension

1234 1234
Al o111 Al 1100
Category A A2 1110 A2 0011
Al 1001 Al 1111
Bl 1000 Bl 0000
Category 8 B2 0001 B2 0101
B3 0110 :«] 1010

&

Figure 2. Classification tasks in Medin & Schwanenflugel (1981), Experiment #3.
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Figure 3B shows the average mean squared error for each training epoch for the single-cue
model. The average MSE for the single-cue model trained on the non-linearly-separable task never
reaches zero, meaning that this discrimination is not perfectly learnable by the single-cue model.
The pair-wise configural-cue model does, however, predict the correct ordering of the results: it
leams the non-linear task faster than the linear one (Figure 3C). Thus, the addition of feature pairs to
the input nodes improved the network performance. These theoretical results suggest that the
configural-cue model, like Medin & Schaffer’s context model, is more sensitive to exemplar similar-
ity (as computed by a non-linear multiplicative similarity rule) than to the linear separability of the
patterns in the different categories. As noted by Nosofsky (1984), the multiplicative similarity rule
is equivalent to assuming stimulus generalization is an exponential decay function of psychological
distance, the latter indexed by the number of featural mismatches. This exponential relationship
between similarity and psychological distance has received substantial independent empirical and
theoretical support (Shepard, 1957, 1987). That the configural-cue model embodies the same
similarity-distance relationship can be seen by computing how the number of overlapping active
nodes (similarity) changes as a function of the number of overlapping component cues (distance). If
two triplet patterns share one feature (ABC, XYC), they will have only one active node in common
and five nodes nonoverlapping; if they share two features (ABC, XBC), they will have three active
nodes in common (two component cues and one configural-cue node) and three nonoverlapping
nodes; if they share three features in common, they will have six active nodes in common (three
component cues and three configural-cue nodes). This implies that the configural-cue network, like
the context model, will judge a test pattern to be more similar to a category of two exemplars with
which it shares 1 and 3 features (for an average of 3.5 nodes in common), than an alternate category
of two exemplars with which it shares 2 features each (for an average of 3 nodes in common).

(A) (8)

probabelty of emor
02 03 04

o1

1.0

Mean SQuaned smor
o8

02

Figure 3. Predicted difficulty of non-linearly versus linearly separable classification tasks in Medin &
Schwanenflugel (1981), Experiment #3. LS: linearly separable classification task. NLS: non-linearly
separable task. The mean squared error (MSE) represents the absolute difference (squared) between
the acrual and predicted category classifications averaged over all presentation exemplars. Task
difficulty is predicted by the rate at which the model reduces the MSE to zero. (A). The data on per-
centage errors, showing that the LS problem is more difficult (slower to leamn); adapted from Medin &
Schwanenflugel (1981). (B). The incorrect predictions of the one-cue network model showing that
only the LS task is leamable. (C) The closer predictions of the “pair-wise” configural-cue model show-
ing that the LS category is more difficult (slower to learn). (D). The less accurate predictions of the
"feature-pattern” model.
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Interestingly, the feature-pattern model which uses only single cue plus full pattemns (see
Fig. 3D) mispredicts the ordering of the data. Although the addition of nodes representing entire
patterns allows the model to leamn complex, non-linear discriminations, it expects the non-linearly
separable task to be leamed more slowly than the linearly-separable one--contrary to fact.

RECOGNITION MEMORY VERSUS CLASSIFICATION

In testing models of category leaming, we may examine how the classification of a given
test pattern depends on the subjects’ remembering specific exemplars that were shown during train-
ing. Such "recognition memory" can be tested by asking subjects to judge whether each test pattern
is an "old" training instance, or a "new" instance not experienced before. Prototype theories, which
assume that people extract only a mean centroid from the training exemplars, expect a strong corre-
lation between the classification and “old"” judgments for test exemplars, since both decisions could
presumably only be based on the distance of the exemplar from the prototype.

An experiment by Hayes-Roth and Hayes-Roth (1977) examined this issue; they found a
surprisingly low correlation between subjects’ classifications and their Old (vs. New) judgments over
a variety of test patterns. It was of interest to see whether the configural-cue model could duplicate
this surprising lack of correlation between classification and recognition memory.

In the Hayes-Roth & Hayes-Roth task, subjects learned to classify into three categories
(Club 1, Club 2, or Neither) descriptions of people who varied along three dimensions with four
values per dimension (labeled 1-4). The presence of a majority of 1's withno 4’s (e.g., 112,131)
signified membership in club 1, whereas a majority of 2's withno 4's (e.g., 212, 221) indicated club
2. An equal number of 1’s and 2's with no 4’s indicated membership in either category. If any 4's
were present, the person belonged to neither category. The 3's were irrelevant. Specific patterns
("persons") were presented with widely varying frequencies. For example, the most prototypical
category members (e.g., 111,222, 333, 444) were never presented during the training phase; how-
ever, they were shown on subsequent recognition and classification tests.

As noted, Hayes-Roth & Hayes-Roth found that classification of an exemplar correlated
poorly with its recognition. For instance, subjects gave the non-presented category prototypes /171
and 222, the highest classification ratings; in contrast, these prototypes were rarely recognized as
"old" training instances. Also, certain exemplars which were presented often during training (e.g.,
112, 121) received the highest recognition ratings, but weaker classification responses.

Nosofsky (1988) suggested that an exemplar model could predict these results if recognition
was based on the summed similarity of that pattem to all stored exemplars. Using this rule within
his model, Nosofsky fit the Hayes-Roth & Hayes-Roth data. His amended model correctly predicted
both the high classification of category prototypes /1] and 222, along with the high recognition of
frequently-presented exemplars (see Figures 4A and 4B).

We fit the single-cue and configural-cue models to the data of the Hayes-Roth and Hayes-
Roth experiment. As before, the exemplars were presented in a random order to the network (f =
0.01) for one complete pass through all the exemplars. The network had four input nodes (cue
values) for each of the three dimensions (12 total) connected to three output nodes (Club 1, 2 or Nei-
ther). The probability of assigning a test pattern to Club 1 vs Club 2 was set equal to the strength of
the one output activation divided by the summed strength of the output activations for both clubs
(with negative activation values being converted to 0). In contrast, the recognition-memory rating of
a test pattern was predicted from the summed activation of all three output nodes (including the Nei-
ther node) to that pattern, which is a rule similar to Nosofsky's (1988). Figure 4A illustrates the net-
work model’s recognition and classification responses to test patterns (averaged over 10000 simulations),
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Figure 4. Predicted responses of subjects in the Hayes-Roth & Hayes-Roth (1977) learning task. Pred-
ictions of various models are plotted against subject's performance (z-scores) for both the classification
(4A) and the recognition (4B) phases of the experiment. The Spearman rank-order correlation between
a model's predictions and the subjects’ performance is reported. Each number on each plot represents
the z-score for classification (4A) or for recognition (4B) for one of the 28 test parterns. (A)
Classification ratings for Nosofsky's context model, the single-cue coding model, and the configural-
cue network model. (B) Recognition ratings for the three models.

plotted against the observed ratings (transformed z-scores) by subjects. While the single-cue, base-
line model correctly predicted subject’s classificatory responses (a rank order coefficient of 0.91), it
predicted recognition memory less successfully (rank order coefficient of 0.83).

In contrast, the configural cue model was more successful overall. Figure 4 shows its pred-
ictions for these data. Predictions of classificatory responses are accurate (rank order correlation =
0.96); importantly, the accuracy of recognition predictions improves over that of the single-cue
model (rank order correlation = 0.89). Thus, the configural-cue model accounts for both
classification and recognition memory with only a single parameter, viz., the leaming rate, p.

Despite this overall success, the configural cue model evidences shortcomings similar to
Nosofsky’s. Both models, for example, predict a much lower recognition of the "Neither” prototype
444 than was actually obtained. Similarly, both models predict chance classification of the "Neither"
(444) and the "Unknown" (333) prototypes, whereas subjects were biased towards one particular
category. Examination of the data reveals no reason for these discrepancies.

Finally, we compared the predictions of Estes’ feature-pattern encoding model to the results
of the configural-cue network for the Hayes-Roth & Hayes-Roth data. The feature-pattern model’s
predictions for both sets of data were very similar to those for the pair-wise configural cue model,
and yielded no discriminating comparisons.
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CORRELATED ATTRIBUTES AND CATEGORY LEARNING

An obvious limitation of the single-cue model is that it is insensitive to the predictive vali-
dity of pairs of features. The weights attached to each single cue reflect the associations between it
and the several categories, but these cannot capture correlations between cue-combinations and the
categories. People, on the other hand, are sensitive to predictive combinations of features. Medin,
Altom, Edelson, & Freko (1982) tested subject’s use of combinations of symptoms in a simulated
medical classification task. Their Experiment #3 put people’s classification of patterns according to
co-occurring features into opposition to their tendency to classify patterns according to the number
of singly representative cues. Subjects first leamed to classify patterns of symptoms into a single
disease category. Each pattemn consisted of five binary dimensions; these are illustrated in Figure SA
where a ‘1" or a ‘0’ on each dimension indicated a symptom value or its complement.

The fourth and fifth symptom dimensions were perfectly correlated with each other. Also,
for any dimension, the total number of ‘1’s across presented pattems exceeded the total number of
‘0’s. Thus, the presence of a "1’ in a particular dimension indicated its more typical or characteristic
value. The goals of the study were (1) to assess whether people would use the correlation between
symptom-dimensions four and five to classify instances, and (2) to see how this information would
be combined with information about the typicality of the individual features to determine choice.

Subjects studied the individual cases shown in Figure SA and subsequently received transfer
test pairs containing both new and old pattemns (Figure SB). For each transfer test pair, subjects had
to decide which exemplar was more likely to be a member of the category defined by the collection
of training instances in Figure SA . On the critical transfer tests, subjects chose between some
exemplar preserving the relationship between the fourth and fifth dimensions versus another exem-
plar that violated this correlation but had more characteristic features (more ‘1°s).

Because the single-cue model, like all independent cue models, considers each feature
separately, it predicts that subjects will select the transfer pattern containing more characteristic attri-
butes as the more likely member of the category. However, the data showed that people preferred
the pattern containing the correlated features as more likely to be a member of the category. Thus,
even though a test pattern had fewer diagnostic features present, subjects were more likely to say it
was a member of the category when the fourth and fifth symptoms preserved the correlation
presented during training

(A) Exemplar Dimension
123 4585 (B)
a 010 11 Exemplar A network Exemplar B network
b 110 11 Activation more 'l's gl
c 001 11 111 o0 1.017 vs. 111 01 0.923
d 101 11 001 11 0.992 vs. 111 01 0.923
e 111 11 010 11 0.991 vs. 111 10 0.923
f 111 11 o001 00 0.914 ve. 001 01 0.860
g 100 00 100 o0 0.981 vs. 100 10 0.887
I IR T L T o

Figure 5. Schematic design of Medin, Altom, Edelson, & Freko (1982), Experiment #3. (A) Training
exemplars. A ‘1’ on a particular dimension indicates its more common, or characteristic, value.
Dimensions 4 and 5 are perfectly correlated with each other and with the correct category. (B) Transfer
choice test pairs. After raining, subjects were presented with each choice test pair and asked to choose
the exemplar most likely to be a member of the collection described by (A). The choice tests compared
exemplars preserving the correlation between dimensions 4 and 5, to those that violated the correlation,
but contained more characteristic values (more ‘1's). In all choice tests the configural model correctly
predicts that people will prefer the exemplar preserving the correlation berween dimensions 4 and 5 as
a more likely member of the category. 330
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Our simulation of this experiment with the configural cue model used all 10 single-cue and
all 32 cue pairs as input nodes linked to one output node representing category membership. Since
all presented exemplars were members of the category, all presentations were consistently reinforced
(A= +1). Figure 5B shows that the output activation of the configural-cue model is greater for the
exemplar that preserves the correlation between dimensions four and five compared to the activation
produced by the exemplar with more characteristic attributes. Because the network’s output activa-
tion translates into choice probability, the simulation will correctly predict that subjects will prefer
those patterns that preserve the correlation in the transfer choice tests. The model expects this result
because feature-conjuncts (4 & 5) are perfect predictors of category membership whereas single cues
are imperfect predictors; in such cases, the competitive nature of the LMS learning rule implies that
a more valid predictive feature (or conjunct) will dominate and beat down the leaming of less valid
features. This phenomenon, called "overshadowing”, is familiar in conditioning studies.

The ability of the configural cue modcl to predict this configural-cuc preference found by
Medin et al. is not completely trivial, because the predictions depend on the balance of associative
strength to the conjunct cues versus the more characteristic, single cues. Several plausible models do
not calculate the balance of these factors appropriately. For instance, we applicd to these data Estes’
feature-pattern model which has nodes representing the presence of entirc patterns as well as single
features. Although this is one way to add configural pattern information into the leaming process,
the outcome was unsuccessful in this case: in four of the five transfer tests, the feature-pattern model
expected subjects to prefer that stimulus with the greater number of characteristic features (1°s) to
the one preserving the correlation of features 4 and 5.

DISCUSSION

We have also applied the configural-cue model to explain and predict the priority of basic
levels in category hierarchies, and this is reported elsewhere (Corter, Gluck, & Bower, 1989). The
configural-cue model predicts that the basic-level categories of a hierarchy of categories are learned
more quickly than other levels, and examples are recognized faster at this level. These results are
consistent with much empirical data regarding both natural and artificially-learned categories (Jol-
icouer, Gluck, & Kosslyn, 1984; Corter, Gluck & Bower, 1988). In Gluck & Bower (1988a), we
also applied the configural-cue model to a classic experiment by Shepard, Hovland, & Jenkins
(1961) who studied the difficulty subjects had in leaming six classifications varying in complexity.
The model predicted the same order of difficulty of leamning the classification rules as was revealed
in the data, except for one slight misordering.

By expanding the representation of stimuli to include pair-wise configurations of features,
the network model appears to account for a wider range of leamning results from both the animal and
human leaming literatures. Some of this success can be traced to its using a similarity metric like
that of Medin & Shaffer, viz., an implicit exponential decay relationship between stimulus similarity
and psychological distance (number of feature mismatches). The configural-cue model has several
obvious limitations, including the exponential growth of input nodes with increasing pattern size.
Nevertheless, we belicve that this model is interesting for four reasons. First, it is simple, under-
standable, and accounts for a surprisingly wide range of empirical phenomena. Second, it is theoret-
ically parsimonious and uses assumptions for which independent evidence already exists. Third, its
successes are instructive in identifying empirical phenomena which can be explained as emergent
from the same elementary, associative processes found in lower species. Fourth, explanations of the
failures of this model can suggest more sophisticated versions of the network model. Such failures
may also indicate performances arising from an entirely different class of learning mechanisms, i.ce.,
the rule-based or symbolic processes which have been well studied by cognitive psychologists.
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