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Abstract

Sample-specific cancer pathway analysis using PARADIGM
by

Stephen C. Benz

Identifying key somatic alterations in cancer is a critical step in understanding the mech-
anisms that ultimately determine a patient’s treatment outcome. High-throughput data
are providing a comprehensive view of these molecular changes for individual samples,
and new technologies allow for the simultaneous genome-wide assay of genome copy
number variations, gene expression, DNA methylation, and epigenetics of patient tu-
mor samples and established cancer cell lines. Analyses of current datasets find that
genetic alterations between tumors can differ but often involve common pathways. It
is therefore critical to identify relevant pathways involved in cancer progression and
detect how they are altered in different patients. This work presents a novel method
called PARADIGM for inferring tumor-specific genetic pathway activities incorporating
curated gene-pathway interactions. A gene is modeled by a factor graph as a set of
interconnected variables encoding the expression and known activity of itself and its
upstream and downstream products, allowing the incorporation of many types of -omic
data as evidence. The method predicts the degree to which a given pathway’s activities
(e.g. internal gene states, interactions, or high-level outputs) are altered in the tumor
sample using probabilistic inference. Compared to a competing pathway activity in-
ference approaches, PARADIGM identifies altered activities in cancer-related pathways

xii



with fewer false-positives, as shown in glioblastoma multiform (GBM), ovarian (OV)
and breast cancer datasets. PARADIGM also identified consistent pathway-level ac-
tivities for subsets of the GBM and ovarian serous cystadenocarcinoma patients that
are overlooked when genes are considered in isolation. Furthermore, grouping GBM
and OV patients based on their significant pathway perturbations divides them into
clinically-relevant subgroups having significantly different survival outcomes. Further
analysis was done using an integrated pathway termed the SuperPathway that gives
a more consistent global view of biology, illustrated through the analysis of ovarian,
breast, and cross-cancer analysis. Finally, PARADIGM was used to simulated knock-
downs in a pathway model as an approach to understand drug effects and provide a
rational approach towards combination therapies. These findings suggest that thera-
peutics might be personalized and chosen to hit target genes at critical points in the

commonly perturbed cancer pathway(s) of specific patients using this model.
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Chapter 1

Introduction

There is no doubt about the importance of cancer - the World Health Orga-
nization has identified it as the leading cause of death worldwide (13% in 2004) [84].
Although all cancers are deadly, individual cancer frequencies and mortality rates vary
widely. Lung cancer is currently the most deadly, responsible for an estimate 1.3 million
deaths a year, with stomach, colorectal, liver and breast cancer close behind. It is pro-
jected that approximately 30% of life-threatening tumors are preventable and caused
by avoidable risk factors [16], with early detection potentially capable of preventing
another third. However, even after detection, standard therapies are only capable of
successfully curing a minor proportion of all malignancies.

Cancer is fundamentally a disease of the genome, often defined by three main
traits: uncontrolled growth, invasiveness, and potential for metastatic dissemination.
Although genetically inherited germline alterations have been shown to be responsible

for a subset of cancers, the majority of new cancers develop through somatic alterations



within a tissue. These alterations can occur as a series of spontaneous mutations during
cell division or, alternatively, from the effects of DNA carcinogens such as chemicals
(exogenous or endogenous), tobacco smoke or viral infection. In addition, resulting ge-
nomic changes can effect two main classes of genes (oncogenes and tumor suppressors),
with alterations often being required in both in order for a cell to undergo full tumor-
genesis. It has become increasingly clear that in order to successfully treat tumors,
identification of these genomic alterations is required so more directed therapies can be

applied.

1.1 Identifying Genomic Alterations

While several high-throughput technologies have been available for identifying
these alterations within each cancer, only a handful of successes have been achieved
based on these advances. For example, 25% of breast cancer patients presenting with
a particular amplification or overexpression of the ERBB2 growth factor receptor ty-
rosine kinase can now be treated with trastuzumab, a monoclonal antibody targeting
the receptor [82]. However, even this success story is complicated by the fact that
fewer than 50% of patients with ERBB2-positive breast cancers actually achieve any
therapeutic benefit from trastuzumab, emphasizing our incomplete understanding of
this well-studied oncogenic pathway and the many therapeutic-resistant mechanisms
intrinsic to ERBB2-positive breast cancers [55]. This overall failure to translate mod-

ern advances in basic cancer biology is in part due to our inability to comprehensively
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Figure 1.1: TCGA GBM samples show overall alterations across GBM pathway, but
changes to specific genes are limited. Part A) shows an OncoPrint profile of the
122 GBMs with complete genomic information. Part B) illustrates the underlying
pathway connections that explain why alterations within any single node can deac-
tivate TP53 function. OncoPrint generated from The cBio Cancer Genomics Portal
(http://www.cbioportal.org/).

organize and integrate all of the omic features now technically acquirable on virtually
any cancer sample. Despite overwhelming evidence that histologically similar cancers
are in reality a composite of many molecular subtypes, each with significantly different
clinical behavior, this knowledge is rarely applied in practice due to the lack of robust
molecular signatures that correlate well with prognosis and treatment options.

High-throughput functional genomics have made tremendous progress in the



past decade towards understanding the alterations that lead to disregulation of cellular
function [31, 1, 79]. However, the challenges of integrating multiple data sources to
identify reproducible and interpretable molecular signatures of tumorigenesis and tumor
behavior remain elusive. Recent pilot studies by TCGA and others [56, 74] make it clear
that a pathway-level understanding of genomic perturbations is needed to understand
the functional changes observed in cancer cells. These findings demonstrate that even
when patients harbor genomic alterations or aberrant expression in different genes, these
genes often participate in a common pathway (Figure 1.1). In addition, and even more
striking, is that the alterations observed (e.g. deletions versus amplifications) often
alter the pathway output in the same direction, either all increasing or all decreasing
the pathway activation.

Approaches for interpreting genome-wide cancer data have focused on identi-
fying gene expression profiles that are highly correlated with a particular phenotype or
disease state, and have led to promising results [78, 20, 2]. Methods using analysis of
variance [41], false-discovery [69] and non-parametric methods [77] have been proposed.
However, these methods often result in sets of genes that are difficult to generalize
between studies and have weak associations with known cellular processes.

Several pathway-level approaches use statistical tests based on overrepresenta-
tion of genesets to detect whether a pathway is perturbed in a disease condition. In these
approaches, genes are ranked based on their degree of differential activity, for example as
detected by either differential expression or copy number alteration. A probability score

is then assigned reflecting the degree to which a pathway’s genes rank near the extreme



ends of the sorted list, such as is used in Gene Set Enrichment Analysis (GSEA) [70].
Other approaches include using a hypergeometric test-based method to identify Gene
Ontology [4] or MIPS Mammalian Protein-Protein Interaction [54] categories enriched
in differentially expressed genes [71].

Overrepresentation analyses are limited in their efficacy because they do not
incorporate known interdependencies among genes in a pathway that can increase the
detection signal for pathway relevance. In addition, they treat all gene alterations as
equal, which is not expected to be valid for many biological systems. Because of these
factors, overrepresentation analyses often miss functionally-relevant pathways whose
genes have borderline differential activity. They can also produce many false positives

when only a single gene is highly altered in a small pathway.

1.2 Pathway Analysis

Our collective knowledge about the detailed interactions between genes and
their phenotypic consequences is growing rapidly. While the knowledge was tradition-
ally scattered throughout the literature and hard to access systematically, new efforts are
cataloging pathway knowledge into publicly available databases. Some of the databases
that include pathway topology are Reactome [39], KEGG [53], and the NCI Pathway
Interaction Database [62]. Updates to these databases are expected to improve our
understanding of biological systems by explicitly encoding how genes regulate and com-

municate with one another. A key hypothesis is that the interaction topology of these
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Figure 1.2: NCI Pathway interactions in TCGA GBM data. For all (n=462) pairs where
A was found to be an upstream activator of gene B in NCI-Nature Pathway Database,
the Pearson correlation (x-axis) computed from the TCGA GBM data was calculated in
two different ways. The histogram plots the correlations between the A’s copy number
and B’s expression (C2E, solid red) and between A’s expression and B’s expression
(E2E, blue). A histogram of correlations between randomly paired genes is shown for
C2E (dashed red) and E2E (dashed blue). Arrows point to the enrichment of positive
correlations found for the C2E (red) and E2E (blue) correlation.

pathways can be exploited for the purpose of interpreting high-throughput datasets.
The hypothesis of pathway-based approaches is that the genetic interactions
found in pathway databases carry information for interpreting correlations between gene
expression changes detected in cancer. For example, if a cancer-related pathway includes
a link from a transcriptional activator A to a target gene T, we expect the expression
of A to be positively correlated with the expression of T (E2E correlation). Likewise,
we also expect a positive correlation between A’s copy number and T’s expression (C2E

correlation). Further, we expect C2E correlation to be weaker than E2E correlation



because amplification in A does not necessarily imply A is expressed at higher levels,
which in turn is necessary to upregulate B. In this way, each link in a pathway provides
an expectation about the data; pathways with many consistent links may be relevant for
further consideration. We tested these assumptions and found that the NCI pathways
contain many interactions predictive of the recent TCGA GBM data [52] (Figure 1.2).
As expected, C2E correlations were moderate, but had a striking enrichment for positive
correlations among activating interactions than expected by chance. E2FE correlations
were even stronger and similarly enriched. Thus, even in this example of a cancer that
has eluded characterization, a significant subset of pathway interactions connect genomic
alterations to modulations in gene expression, supporting the idea that a pathway-level
approach is worth pursuing.

Until recently, few computational approaches were available for incorporating
pathway knowledge to interpret high-throughput datasets. However, several newer ap-
proaches have been proposed that incorporate pathway topology [21] . One approach,
called Signaling Pathway Impact Analysis (SPIA) [73], uses a method analogous to
Google’s PageRank to determine the influence of a gene in a pathway. In SPIA, more
influence is placed on genes that link out to many other genes. SPIA was success-
fully applied to different cancer datasets (lung adenocarcinoma and breast cancer) and
shown to outperform overrepresentation analysis and Gene Set Enrichment Analysis for
identifying pathways known to be involved in these cancers. While SPIA represents a
major step forward in interpreting cancer datasets using pathway topology, it is limited

to using only a single type of genome-wide data. Newer computational approaches are



needed to connect multiple genomic alterations such as copy number variation, DNA
methylation, somatic mutations, mRNA and microRNA expression. Integrated pathway
analysis is expected to increase the precision and sensitivity of causal interpretations
for large sets of observations since no single data source is likely to provide a complete
picture on its own.

In the past several years, approaches in probabilistic graphical models (PGMs)
have been developed for learning causal networks compatible with multiple levels of
observations. Efficient algorithms are available to learn pathways automatically from
data [25, 51] and are well adapted to problems in genetic network inference [24]. As an
example, graphical models have been used to identify sets of genes that form “modules”
in cancer biology [63]. They have also been applied to elucidate the relationship between
tumor genotype and expression phenotypes [45], and infer protein signaling networks
[60] and combinatorial gene regulatory codes [8].

More recently, a generalization of many existing graphical models (bayesian
networks, markov random fields, etc.) called “factor graphs” has become popular in
the field [43]. In particular, factor graphs have been used to model expression data
[27, 28, 26]. A factor graph is a bipartite graph representing a set of factors, or functions,
whose domain is a set of variables and range is the real numbers. By representing
pathways as factor graphs, we avoid many issues often seen with bayesian networks
(the problem of cycles in particular), and although we have chosen to use probability
distributions in this work, we are able to use any function to represent the factors.

Very efficient exact and approximate inference methods have been developed that allow



graphs of thousands of nodes to be run quickly, making this solution attractive for
analyzing thousands of samples in parallel. Armed with this approach, it is possible to
determine the critical pathways altered in individual tumor samples and across cancer
patient cohorts. In the following chapters, I will describe initial efforts to interpret
integrated genomics data and a novel pathway approach that exploits the multiple
measurements to provide a powerful tool for understanding misregulated networks in

cancer.



Chapter 2

Methods to Integrate Cancer (Genomics

Data

Prior to 2008, very few tools were available to visualize and analyze cancer
genomics data, and the few tools that did exist (Oncomap, Ingenuity) required expensive
subscriptions and only handled individual types of data. Given the rich history of UCSC
and the success of the genome browser for viewing annotations across genomes, we
wanted to establish if a similar experience could be provided for cancer genomics data
that would give users access to compare and contrast multiple high throughput genomic
datasets. Without the appropriate tools, researchers are typically required to pass
data back and forth via Excel or other text-based formats, which makes interpretation
difficult. State of the art visualization techniques at the time included clustering and
heat map analysis, so we wanted to replicate views that would be familiar to users,

and add on top the ability to group by clinical information and compute genome-wide
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statistics at the push of a button. This chapter describes the creation of the UCSC
Cancer Genomics Browser and subsequent analysis pipeline coined the Biolntegrator

for interpretation of multiple genomic data points across a set of samples.

2.1 UCSC Cancer Genomics Browser

The UCSC Cancer Genomics Browser is a tool designed to allow hypothesis
generating exploration in an intuitive and real-time fashion. The browser was originally
designed as an extension to the widely popular UCSC Genome Browser and currently
benefits from much of the underlying technology developed for the genome browser.
The Cancer Genomics Browser was conceived in collaboration with I-SPY lead investi-
gator Laura Esserman, a breast cancer surgeon at UCSF. The browser was designed to
display the multidimensional I-SPY data and allow other researchers in the consortium
to manipulate and explore the data through a web browser. In the summer of 2008, the
browser was completely overhauled and the interface was re-written as a “Web 2.0” ap-
plication utilizing asynchronous javascript (AJAX) to dynamically load only the parts
of the browser that changed. This overhaul was written as a programming collabora-
tion between myself and Zack Sanborn, with later assistance from Chris Szeto, Jing
Zhu, and Larry Meyer. Zack primarily designed and wrote the C-based backend and
drawing code, while I designed the interface and wrote the client-side Javascript. The
AJAX-powered browser allows for a much more fluid user experience while providing

scalability capable of handling hundreds of datasets viewed simultaneously. The browser
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was published in April of 2008 in Nature Methods [86], but I will discuss many of the
features in more detail in the follow sections.

The default view of the UCSC Cancer Genomics browser is the “chromosome
view,” which enables researchers to view high-throughput genomic data in the form of
a heatmap across a set of patients for the entire genome. The X-axis represents the
chromosomal position with the Y-axis representing the set of patients. Thus, a single
patient’s set of tumor data across the genome is a single pixel slice of the heatmap as
you move from the left to the right at a single Y value. Alongside the genomic heatmap
is a clinical heatmap, visually representing key clinical data across the entire patient
cohort. These data are generally colored according to the relative values, with bright
yellow representing the highest value and black representing the lowest. The sample
order is conserved between the genomic and clinical heatmaps in order to facilitate
comparison between the two. The browser supports click-to-zoom, as well as click-to-
sort functionality allowing researchers to reorder and focus on regions of interest in the
genomic heatmap and visually identify clinical attributes that may correlate with the
genomic observations. In addition, data for an entire cohort can be visualized in a
summary view allowing the user to find regions of conserved copy number or expression
data.

The true power in the cancer browser is the ability to simultaneously visualize
multiple datasets allowing users to find global patterns that apply between cancers.
When we look across three different cancer types (Figure 2.1) at chromosome 9 in

the summary view, we see a large blue peak in the middle of the p arm. This peak
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Figure 2.1: UCSC Cancer Genomics Browser proportions view of chromosome 9 across
three copy number variation datasets. The yellow box represents the genomic region

that is commonly deleted across all three datasets and contains the tumor suppressor
CDKN2A/B.
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represents concurrent copy number loss across all three datasets and is centered on the
gene CDKN2A /B, a well documented tumor suppressor that has been shown to often
be deleted in cancer [42]. By visualizing the data across the three datasets, it is possible
to identify other regions where there is concurrent loss or gain across a large subset of
samples across multiple cancers.

While the chromosome view provides a means to visualize cancer genomics
data at the whole-genome or chromosomal level, it is becoming increasingly clear that
functional groups of genes (such as those found in a pathway) offer a more useful view
into the development of tumorigenesis. Copy number alterations or expression changes
in any of several genes in the same pathway can cause equivalent disturbance of a cellular
process. Pathways, therefore, provide a more robust and biologically meaningful way to
summarize genomic data by grouping genes that may act in a similar fashion. The cancer
browser supports a flexible geneset view that allows researchers to visualize differences
within and between these pathways across multiple datasets. When we begin exploring
the TCGA GBM data using this tool (Figure 2.2) we can easily recognize the systematic
alterations to three main pathways across the entire cohort. Indeed, alterations in these
three pathways were identified by the TCGA Research Network as being obligatory
in most, if not all, glioblastomas. This type of visualization is powerful in helping
researchers understand the complex relationships that occur in cancer and disease in

general.
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Figure 2.2: Integrative visualization of TCGA glioblastoma multiforme (GBM) genomic
data across four separate pathways. (a,b) Histogram of non-silent mutations (e.g. mis-
sense, insertion, deletions, etc.) per sample per base in GBM somatic and germ line
tissues, respectively. (c) Copy number variation (CNV) in GBM tumor and normal
samples. Red or blue color represents amplified or deleted genes. Note that the clinical
data to the right of (c) are sorted by tissue type: tumor (black) vs. normal (yellow).
The vast majority of copy number alterations seen in the heatmap occur in the tumor
samples. (d) A Bonferroni-corrected t-test comparing the distribution of CNV in tumor
versus normal samples. A green bar represents a significantly deleted gene (p < 0.05,
after Bonferroni correction) and a red bar represents a significantly amplified gene in
the tumor samples.
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Figure 2.3: Biolntegrator web interface, designed to allow users to access both raw and
analytical results in an exploratory fashion. Part A highlights the ability to flexibly
search for genes and clinical features, as well as drag and drop reordering. Part B
shows the dynamic nature of the sorting, allowing discrete clinical features to be placed
at top with the data summarized under each label, allowing intuitive visualization of
differences.

2.2 Biolntegrator

While the UCSC Cancer Genomics browser is a user-friendly tool for visualiza-
tion and exploratory analysis, large scale genomic datasets need a more comprehensive
analysis process in order to discover complex alterations that drive tumorigenesis. The
Biolntegrator is a semi-automated pipeline written in conjunction with Zack Sanborn
that can process any data available on the UCSC Cancer Genomic Browser and func-
tions in three main stages. In the first stage, gene-level perturbations are calculated by
integrating data from several platforms (copy number, expression, etc.) using a variety
of methods. These gene-level perturbations are fed into the second stage where they are

combined with the perturbations values of other genes in genesets or structured path-
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ways. Informative gene- and set-level perturbations are then used as features in the
final stage to predict sample characteristics (e.g. outcome, response, etc.) using various
machine learning techniques. The pipeline is a flexible analysis framework designed to
incorporate external analytical algorithms (GISTIC, SPIA, etc.) at any stage in the
pipeline, and geneset level analyses are run over thousands of genesets and pathways
collected from MSigDB [70], BioCarta, KEGG [53], NCI-Nature [62], and Gene Ontol-
ogy [4]. Analytical results from each stage are stored in a MySQL relational database
that enables rapid access to any slice of patient data, with results being passed to a
series of proven machine learning techniques for training and classification. On top of
this powerful analytical pipeline, the Biolntegrator offers its own unique web-based vi-
sualization allowing researchers to view the results of each stage of the pipeline. The
Biolntegrator web-based user interface (Figure 2.3) provides quick and interactive access
to both raw and analytical results that allows researchers to explore their data intu-
itively. Both clinical and genomic data can be explored in a variety of ways, including
free-text search and correlation analysis.

By using this Biolntegrator on a set of gene expression and copy number data
in melanoma [47], it is possible to identify a set of genes that are modulated in response
to a mutation of BRAF in patient samples. Although BRAF mutation status can be
determined trivially using sequencing, by asking a machine learning algorithm to try
and determine the set of features responsible for splitting those samples we can find a
useful set of features associated with BRAF mutation status that may help interpret

the underlying biology of BRAF activation. Because BRAF is an important predictive
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Figure 2.4: Genes were scored independent of sample labels using both gene expression
and copy number data from a melanoma cohort [47] in the Biolntegrator. Samples were
split 80/20 into training and test sets and feature selection was performed on the training
data thresholding on correlation coefficient [15]. Samples were run through SVM-light
[38] using default settings, and the top 20 models (minimum 91% accuracy) were selected
for downstream analysis. Part A shows the top 35 features selected by the SVMs, with
both SVM weight and frequency plotted. When those top 35 features were run through
NCI’s Pathway enrichment analysis, both Caspase Cascade in Apoptosis (p < 4e-6,
Part B) and Fas Signaling Pathway (CD95) (p < 0.001) were found to be significantly
enriched. The color of nodes in Part B illustrate the average enrichment towards the
mutated class (red) or non-mutated class (blue) as calculated by the Biolntegrator gene
level perturbation score. Nodes seen in both Part A and Part B are denoted with an

orange asterisk.
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marker for a class of targeted therapies in melanoma, understanding associated genes
may provide a set of features that are functionally equivalent as well as reveal the un-
derlying tumorigenic pathways responsible for sensitivity to the therapy. In fact, when
the melanoma samples were run through SVM-light [38] and the corresponding features
with the highest weights were analyzed, there was a clear functional enrichment for the
caspase cascade in apoptosis (p < 4e-6) and Fas signaling pathway (p < 0.001) (Fig-
ure 2.4). This result illustrates the added pathway information that the Biolntegrator

is capable of providing in an automated fashion.
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Figure 3.1: Overview of the PARADIGM method. PARADIGM uses a pathway
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for further downstream analysis.

Chapter 3

Pathway Analysis Using PARADIGM

In collaboration with Charles Vaske under the advisement of Joshua Stuart, we

have developed a sample-specific probabilistic graphical model (PGM) based on factor
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graphs that we refer to as PARADIGM (PAthway Recognition Algorithm using Data
Integration on Genomic Models). This algorithm allows us to infer the activities of
genetic pathways from integrated genomic patient data, giving us a more in-depth view
of pathways than was capable with tools like the Biolntegrator. Figure 3.1 illustrates
the overview of the approach. Multiple genome-scale measurements on a single patient
sample are combined to infer the activities of genes, products, and abstract process
inputs and outputs for a single NCI pathway. PARADIGM produces a matrix of inte-
grated pathway activities (IPAs) A where A;; represents the inferred activity of entity ¢
in patient sample j. The matrix A can then be used in place of the original constituent
datasets to perform downstream analysis, including unsupervised clustering paired with
survival analysis[81]. I will discuss aspects of the algorithm in more detail and some of

the analysis that has been done using this method in the next subsections.

3.1 Method

The correlations seen in Figure 1.2 clearly show that useful information is
encoded in the pathway structures provided by NCI’s pathway database, and so we
began by convertering each NCI pathway into a distinct probabilistic model that can be
used by PARADIGM. A toy example of a small fragment of the p53 apoptosis pathway is
shown in Figure 3.2 where we have a pathway diagram from NCI that was converted into
a factor graph, including both hidden and observed states. The factor graph integrates

observations on gene- and biological process-related state information with a structure
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describing known interactions among the entities.

To represent a biological pathway with a factor graph, we use variables to
describe the states of entities in a cell, such as a particular mRNA or complex, and use
factors to represent the interactions and information flow between these entities. These
variables represent the differential state of each entity in comparison to a “control”
or normal level rather than the direct concentrations of the molecular entities. This
representation allows us to model many types of high-throughput datasets, such as
gene expression detected with DNA microarrays, that often either directly measure the
differential state of a gene or convert direct measurements to measurements relative
to matched controls. It also allows for many types of regulatory relationships among
genes. For example, the interaction describing MDM2 mediating ubiquitin-dependent
degradation of p53 can be modeled as activated MDM2 inhibiting p53’s protein level.

The factor graph encodes the state of a cell using a random variable for each
entity X = {z1,22,...,z,} and a set of m non-negative functions, or factors, that con-
strain the entities to take on biologically meaningful values as functions of one another.
The j* factor ¢; defines a probability distribution over a subset of entities X; C X.
The entire graph of entities and factors encodes the joint probability distribution over

all of the entities as:

1 m
Px) = ] 65 (X)), (3.)
j=1
where Z = Hj Ysc X, ®(8S) is a normalization constant and S — X denotes that S is a

“setting” of the variables in X.
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Each entity can take on one of three states corresponding to activated, nominal,
or deactivated relative to a control level (e.g. as measured in normal tissue) and encoded
as 1, 0, or -1 respectively. The states may be interpreted differently depending on
the type of entity (e.g. gene, protein, etc). For example, an activated mRNA entity
represents overexpression, while an activated genomic copy entity represents more than
two copies are present in the genome. Figure 3.2 shows the conceptual model of the
factor graph for a single protein-coding gene. For each protein-coding gene G in the
pathway, entities are introduced to represent the copy number of the genome (Gpya),
mRNA expression (G, rn 4), protein level (Gprotein), and protein activity (Gaetive) (ovals
labeled “DNA”, “mRNA”, “protein”, and “active” in Figure 3.2). For every compound,
protein complex, gene family, and abstract process in the pathway, we include a single
variable with molecular type “active.” While the example in Figure 3.2 shows only
one process (“Apoptosis”), in reality many pathways have multiple such processes that
represent everything from outputs (e.g. “Apoptosis” and “Senescence”) to inputs (e.g.
“DNA damage”) of gene activity.

In order to simplify the construction of factors, we first convert the pathway
into a directed graph, with each edge in the graph labeled with either positive or negative
influence. First, for every protein coding gene G, we add edges with a label “positive”
from Gpna to GprNa, from G rva t0 Gprotein, and from Gprotein 10 Gactive to reflect
the expression of the gene from its number of copies to the presence of an activated
form of its protein product. Every interaction in the pathway is converted to a single

edge in the directed graph.
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Using this directed graph, we then construct a list of factors to specify the
factor graph. For every variable x;, we add a single factor ¢(X;), where X; = {z;} U
{Parents(z;)} and Parents(z;) refers to all the parents of x; in the directed graph. The
value of the factor for a setting of all values is dependent on whether z; is in agreement
with it’s expected value due to the settings of Parents(z;). For this study, the expected
value was set to the majority vote of the parent variables. If a parent is connected by a
positive edge it contributes a vote of +1 times its own state to the value of the factor.
Conversely, if the parent is connected by a negative edge, then the variable votes -1
times its own state. The variables connected to x; by an edge labeled “minimum” get
a single vote, and that vote’s value is the minimum value of these variables, creating
an AND-like connection. Similarly the variables connected to z; by an edge labeled
“maximum” get a single vote, and that vote’s value is the maximum value of these
variables, creating an OR-like connection. Votes of zero are treated as abstained votes.
If there are no votes the expected state is zero. Otherwise, the majority vote is the
expected state, and a tie between 1 and -1 results in an expected state of -1 to give
more importance to repressors and deletions.

Given this definition of expected state, ¢;(z;, Parents(x;)) is specified as:

1 —€ x; is the expected state from Parents(z;)
oi(x;, Parents(x;)) =

% otherwise.

For the results shown here, € was set to 0.001, but orders of magnitude differences in
the choice of epsilon did not significantly affect results.
Finally, we add observation variables and factors to the factor graph to com-
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Figure 3.2: Conversion of a genetic pathway diagram into a PARADIGM model. A.
Data on a single patient is integrated for
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hibitor MDM2, and the high level P53 determined cell process, apoptosis as represented
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a single gene using a set of four different
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plete the integration of pathway and multi-dimensional functional genomics data (Fig-
ure 3.2). Each discretized functional genomics dataset is associated with one of the
molecular types of a protein-coding gene. Array CGH/SNP estimates of copy number
alteration are associated with the “genome” type. Gene expression data is associated
with the “mRNA” type. Though not presented in the results here, future expansion
will include DNA methylation data with the “mRNA” type, and proteomics and gene-
resequencing data with the “protein” and “active” types. Each observation variable is
also ternary valued. The factors associated with each observed type of data are shared
across all entities and the associated parameters are learned from the data using a

standard Expectation Maximization (EM) procedure[19].

3.2 Comparisons

In order to assess the viability of the integrated factor graph approach, PARADIGM
was compared to three competing methods across three biological scenarios, done in
collaboration with Vinay Varadan, Prateek Mittal, and Charles Vaske[80]. An initial,
more detailed comparison between SPIA and PARADIGM was done using two datasets
spiked with decoys, designed as a more conservative comparison technique. The first
two biological scenarios focus on the identification of pathways that differentiate be-
tween two pre-defined cohorts, while the third scenario identifies pathways that can
best stratify patient survival. For these applications, we considered two datasets cor-

responding to ovarian and breast carcinoma. Copy number data (Agilent 244K CGH
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platform), gene expression data (Affymetrix U133A platform), and associated patient
clinical information was obtained from the high-grade serous ovarian carcinoma dataset
at TCGA. Overall, we used 423 ovarian cancer samples and 8 normal samples. The
breast cancer data for a total of 113 patients was obtained from two public sources -
copy number data derived from the publication by Chin et al. (GEO accession GPL5737)
and the gene expression data for the same samples from the publication by Naderi et
al. (MIAMIExpress accession E-UCon-1). Pathway information was derived from the
NCI-PID database. The spiked datasets were generated from the same breast cancer
data and the glioblastoma multiforme data available from TCGA. The implementations
of GSEA and PathOlogist were obtained from their respective authors’ websites. All
of these implementations ship with inbuilt support for NCI-PID pathways. The official
SPIA implementation works only with KEGG pathways, so we used a modified imple-
mentation developed by Dent Earl that supports NCI-PID pathways in order to provide

a fair comparison between these approaches.

3.2.1 Distinguishing True Networks From Decoys

Because of the similarities in approach between SPIA and PARADIGM, we
first asked whether the integrated activities could be obtained from arbitrary genes
connected in the same way as the genes in the NCI pathways in each method. To
do this, we estimated the false discovery rate and compared it to SPIA in the breast
cancer and TCGA GBM cohorts. Because many genetic networks have been found to

be implicated in cancer, we chose to use simulated ”decoy” pathways as a set of negative
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PARADIGM and SPIA were then used to compute the perturbation of every pathway.
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decoy pathways using the perturbation ranking. In breast cancer, the areas under the
curve (AUCs) are 0.669 and 0.602 for PARADIGM and SPIA, respectively. In GBM
the AUCs are 0.642 and 0.604 respectively.
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controls. For each NCI pathway, we constructed a decoy pathway by connecting random
genes in the genome together using the same network structure as the NCI pathway. We
then ran PARADIGM and SPIA to derive IPAs for both the NCI and decoy pathways.
For PARADIGM, we ranked each pathway by the number of IPAs found to be significant
across the patients after normalizing by the pathway size. For SPIA, pathways were
ranked according to their computed impact factor.

We found that PARADIGM excludes more decoy pathways from the top-most
activated pathways compared to SPTA (Figure 3.3). For example, in breast cancer,
PARADIGM ranks 1 decoy in the top 10, 2 in the top 30, and 4 in the top 50. In
comparison, SPTA ranks 3 decoys in the top 10, 12 in the top 30, and 22 in the top 50.
The overall distribution of ranks for NCI IPAs are higher in PARADIGM than in SPIA,

observed by plotting the cumulative distribution of the ranks (P < 0.009, K-S test).

3.2.2 Tumor versus Normal - Pathways associated with Ovarian Can-

cer

One of the first applications of PARADIGM to a large-scale cohort with ad-
jacent normal tissue was in collaboration with The Cancer Genome Atlas during the
analysis of high-grade serous adenocarcinoma. In serous ovarian cancer, the FOXM1
transcription factor network was found to be differentially altered in the 330 tumor
samples compared to the normal controls in the highest proportion of the patient sam-
ples (Figure 3.4). Pathways with recurrently high IPAs reveal fundamental mechanisms

dysregulated in serous ovarian cancer, particularly interesting because of the aggressive
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Figure 3.4: Summary of FOXMI1 integrated pathway activities (IPAs) across all sam-
ples. The arithmetic mean of IPAs across tumor samples for each entity in the FOXM1
transcription factor network is shown in red, with heavier red shading indicating two
standard deviations. Gray line and shading indicates the mean and two standard devi-
ations for IPAs derived from permuted data.
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Figure 3.5: Summary of IPAs of FOXM1 and all tested transcription factors. Histograms
of each sample’s IPA in FOXM1 or in any other transcription factor from the PID. A.
Histogram of [PAs, with IPAs of 0 removed. By a Kolmogorov-Smirnov test, FOXM1
shows a different distribution with a p-value < 1072?°. B. Histogram IPAs including 0
valued TPAs. By a KS test, FOXM1 has a different distribution of IPAs with a p-value
< 10726,
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Figure 3.6: Expression of FOXM1 Transcription Factor Network genes in high grade
vs. low grade carcinoma. Using data from Etemadmoghadam et al (2009) we plotted
expression of genes in the FOXM1 transcription network in either low grade (I) or high
grade (II/IIT) ovarian carcinomas. A student’s t-test was used to assess the significance

of differential expression between high grade and low grade, with the p-value below each
pair of boxplots.

nature of the disease. In order to validate the highly activated nature of FOXMI, we
asked whether the IPAs of the FOXMI1 transcription factor were more highly altered
than other transcription factors. We compared the FOXM1 level of activity to all of
the other 202 transcription factors in the NCI-PID to validate the signature was not an
artifact of the highly-connected nature of transcription factors in general. Even com-
pared to other transcription factors in the NCI set, the FOXM1 transcription factor
had significantly higher levels of activity (p < 0.0001) suggesting further that it may be

a important signature (Figure 3.5).

31



Because the entire cohort for the TCGA ovarian were high-grade serous, we
asked whether the FOXM!1 signature was specific to high-grade serous or a more general
marker of both low- and high-grade. To determine whether the signature is associated
with serous ovarian cancer, we obtained the expression of FOXM1 and several of its
targets from the dataset of [22] in which both low- and high-grade ovarian tumors had
been transcriptionally profiled. This independent data confirmed that FOXM1 and
several of its targets are significantly up-regulated in serous ovarian, even relative to
low-grade ovarian cancers (Figure 3.6).

We next wanted to understand how this result compares with competing meth-
ods using the TCGA ovarian cancer dataset[13]. Using a larger set of 423 ovarian cancer
samples against 8 normal samples, we attempted to identify pathways that were dys-
regulated in ovarian cancer using GSEA, PathOlogist, SPTA and Paradigm. We used
a FDR cutoff of 0.25 to capture only the statistically significant pathways. Table 3.1
presents the top pathways that were found to be upregulated in ovarian cancer samples
when compared to adjacent normal ovarian tissue. The FOXM1 transcription factor
network from the NCI-PID is consistently found to be upregulated by all four method-
ologies. Figure 3.7 captures the level of activity in this pathway using PathOlogist’s
activity metric across all the ovarian samples, while all the normal samples have low
activity levels, a majority of the ovarian cancer samples show high activity levels.

FOXM1’s role in many different cancers, including breast and lung, has been
well documented but its role in ovarian cancer has not been investigated. FOXM1 is a

multifunctional transcription factor with 3 known dominant splice forms, each regulating
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Table 3.1: The FOXM1 transcription factor network shows up as being upregulated in
ovarian tumors compared to normal consistently across pathway methodologies.

GSEA Pathologist SPIA PARADIGM
Activity Consistency

Validated tar- | Signaling by Au- Aurora A signal- | FOXM1 tran- | Influence of Ras

gets of C-MYC | rora Kinases ing scription fac- | and Rho pro-

transcriptional tor network teins on G1 to S

activation transition

E2F transcrip- | FOXM1 tran- Signaling events | PLK1 signaling | IL2-Mediated

tion factor | scription fac- mediated by | events signaling events

network tor network PRL

FOXM1 tran-
scription fac-
tor network
FOXO  family
signaling

AuroraB signal-
ing

PLK1 signaling
events

PLK1 signaling
events

AuroraB signal-
ing

BARD1
ing events

signal-

Class I PI3K sig-
naling events

Signaling Events
Mediated by
VEGFRland
VEGFR2

A6B1 and A6B4
integrin signal-
ing

PRC2 complex
sets  long-term
gene silencing
C-MYB  tran-
scription factor
network
Regulation  of
cytoplasmic
and nuclear
SMAD2/3
signaling
Signaling events
mediated by

VEGFR1 and
VEGFR2
mTOR signaling
pathway

A6B1 and A6B4
integrin signal-
ing

IGF1 pathway

AuroraB Signal-
ing

1L2 signaling
events mediated
by PI3K

E2F Transcrip-
tion factor net-
work

c-MYC Pathway

BCR  signaling
pathway

Signaling events
mediated by
PRL

Signaling events
mediated by
TCPTP
FOXM1 tran-
scription fac-
tor network
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distinct subsets of genes with a variety of roles in cell proliferation and DNA repair. The
FOXMIlc isoform directly regulates several targets with known roles in cell proliferation
including AUKB, PLK1, CDC25, and BIRC5 [48]. On the other hand, the FOXM1b
isoform regulates a completely different subset of genes that include the DNA repair
genes BRCA2 and XRCC1 [72]. CHEK2, which is under indirect control of ATM,
directly regulates FOXM1’s expression level. In addition to increased expression of
FOXMI1 in most of the ovarian patients, a small subset also have increase copy number
amplifications detected by GISTIC (< 5%). Thus the alternative splicing regulation of
FOXM1 may be involved in the control switch between DNA repair and cell proliferation.
Furthermore, recent evidence has shown FOXMI1 is a target of p53-mediated repression
[6], which is consistent with P53 mutational rates close to 100% in these samples. The
observation that PARADIGM detected the highest level of altered activity centered on
this transcription factor suggests that FOXM1 resides at a critical regulatory point in
the cell, and the mutational rates of P53 may offer an explanation for the consistency
of the signal across all the samples.

It is interesting to note here that PLK1 signaling events and AuroraB signaling
were also identified as upregulated in ovarian cancers by the GSEA and PathOlogist
methodologies. Since FOXM1 is known to positively regulate both PLK1 and Aurora
B, this is consistent with the FOXM1 network being upregulated[57]. Another pathway
consistent with the hypothesis of increased cell proliferation, the c-Myc pathway was
found by both GSEA and Paradigm. Amplification of c-Myc is a common event in

HGSOCs and a recent study has shown that c-Myc transformation is sufficient to induce
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oncogenicity in normal fallopian tube tissue[40]. Similarly Signaling events mediated by
VEGFR1 and VEGFR2 and mTOR signaling was identified by PathOlogist, but not by
GSEA. This is again consistent with prior studies that have reported that the VEGF
pathway via VEGFR2 stimulates the AKT/mTOR pathway in ovarian cancer[76].
This kind of consistency and interpretability of the gene expression changes
in tumor samples compared to normal tissues across multiple pathways highlights the
explanatory power of the pathway-based methodologies. However, the fact that some
pathways listed in Table 3.1 occur only in one of the methodologies illustrates the
complex nature of this problem. It is an open question whether all of these pathways
are indeed biologically relevant to ovarian cancer, or whether some of these pathways
were false positives, identified only as a result of some assumptions underlying the

specific the computational methodology.

3.2.3 Differentially Regulated Pathways in ER+ve vs ER-ve breast

cancers

Our second application involves identifying pathways associated with specific
subtypes of breast cancer. Estrogen receptor positivity is a major facet of luminal breast
cancers and is typically associated with better prognosis and responsive to tamoxifen
treatment. Understanding the molecular mechanisms that differentiate estrogen recep-
tor positive (ER+ve) breast cancers from other subtypes could help identify potential
modulators of cancer aggressiveness and novel therapeutic targets. We looked at path-

ways that were differentially regulated in 74 ER+ve samples when compared to the
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Table 3.2: FOXA1 transcription factor network is upregulated in ER+ve tumors whereas
the Hif-1-alpha transcription network and Syndecan-1 mediated signaling events are
down-regulated.

GSEA Pathologist SPIA PARADIGM
Activity Consistency
FOXA1l tran- | C-MYB tran- EPO signaling | Cellular roles of | FOXA1  tran-
scription factor | scription factor pathway Anthrax toxin scription factor
network network network
Validated tar- | EPO signaling C-MYB  tran- | Glucocorticoid Syndecan-
gets of C-myc | pathway scription factor | receptor regula- | 1-mediated
transcriptional network tory network signaling events
activation
Hiv-1 nef: neg- | CXCR3- IL6-mediated E2F  transcrip- | C-MYB  tran-
ative effector of | mediated signal- signaling events | tion factor | scription factor
fas and tnf ing events network network
AuroraB signal- | IFN-gamma ARF6 traffick- | Hif-1-alpha Erbb recep-
ing pathway ing events transcription tor signaling
factor network network
Hif-1-alpha Syndecan-1 me- PLK3 signaling | IL4  mediated | Hif-1-alpha
transcription diated signaling events signaling events | transcription

factor network

events

PLK1 signaling
events

Class I Pi3K sig-
naling events
Caspase cascade
in apoptosis

TCR signaling
in nave CD4+ T
cells

FAS  signaling
pathway (cd95)

FOXO  family
signaling
FOXA1l  tran-

scription factor
network
Proteogylcan
Syndecan-
mediated signal-
ing events

ErbB1 down-

stream signaling

factor network
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39 ER-ve tumor samples in the Chin-Naderi cohort. Table 3.2 depicts the comparative
analysis of the pathways identified using the four pathway-based methodologies. We can
see from Table 3.2 that FOXA1 transcription factor network is identified as upregulated
in ER4ve tumors by the GSEA, PathOlogist and Paradigm methodologies. FoxAl is
a key determinant of estrogen receptor function, and has been shown to influence dif-
ferential interactions between ER and chromatin, thus mediating the transcriptional
activity of ER and the action of tamoxifen, which is the frontline targeted therapy for
ER+ve breast cancer patients[36]. FoxA1l expression is also correlated with the lumina
A subtype of breast cancer[5], and among the ER-positive subgroup treated with ta-
moxifen, FOXA1 was found to be an independent prognostic marker whose expression

was associated with low risk of recurrence[49].

3.2.4 Therapy response prediction using pathways (Platinum Free In-

terval in Ovarian Cancer)

In our third application, we demonstrate an example of how pathway based
methodologies can be used to predict patient survival outcome. For this analysis, we use
PathOlogist and Paradigm on the ovarian cancer dataset. We first compute pathway
activity /consistency levels and gene IPAs for all tumor samples using PathOlogist and
Paradigm respectively, and then use clustering algorithms on these metrics for each
pathway to group patients. In case of PathOlogist, for each pathway, we use the k-means
clustering algorithm on the patient pathway activity/consistency levels to cluster patient

samples into two groups. This approach works best for the one-dimensional nature of
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Table 3.3: Pathways associated with platinum-free interval in ovarian carcinoma.

Pathologist PARADIGM
Activity Consistency
Pathway P-value Pathway P-value Pathway P-value
(FDR) (FDR) (FDR)
Downstream sig- | 0.018 Alkl  signaling | 0.023 Stablization and | 0.003
naling in naive | (0.78) events (0.79) expansion of | (0.21)
cd8+ t-cells E-cadherin  ad-
herens junction
Alkl  signaling | 0.023 Hif-2-alpha 0.036 Arf6  signaling | 0.020
events (0.78) transcription (0.79) events (0.72)
factor

PathOlogist Activity scores, which only provides a single score value per pathway. In
case of Paradigm, for each pathway, we use hierarchical clustering with average linkage
on all gene IPAs belonging to that pathway to cluster patients into two groups. This
approach better accounts for the two-dimensional nature of the Paradigm results which
provide a score per feature per sample within each pathway. Platinum free survival
data was available for a total of 113 samples in the ovarian dataset and was associated
with the pathway-based clustering of the patients. Pathways that led to clusters with
less than 30 samples were eliminated from consideration for survival analysis. Kaplan-
Meier curves were estimated for each cluster of the selected pathways and the differences
between survival curves were estimated using the Mantel-Haenszel test.

Stratifying ovarian cancer patients into responders or non-responders using ge-
nomic features is known to be an extremely difficult problem, with no reliable predictor
currently available in the clinic. This is reflected even in the pathway analysis, as can
be seen from Table 3.3. PathOlogist did not find any significant pathways after cor-

recting for multiple testing, while Paradigm found just one pathway that had marginal
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Figure 3.8: PathOlogist reveals that patients with higher activity levels in the Down-
stream signaling in naive cd8+t cells pathway are associated with improved response to
platinum therapy. ((©2012 IEEE)

stratifying capability in terms of differences in the platinum free interval. Figure 3.8
captures PathOlogist’s top pathway activity level across all patients, and the corre-
sponding k-means clustering of these samples into two clusters. Figure 3.8B depicts the
Kaplan-Meier survival curves associated with these clusters. The relative differences in
platinum free interval is quite small, as already highlighted in Table 3.3.

Paradigm successfully found a single pathway as being significant after mul-
tiple testing to identify patient clusters with different response outcomes to platinum
therapy - the E-cadherin adherens junction pathway. Figure 3.9 depicts the dendrogram
corresponding to the hierarchical clustering analysis and Figure 3.9 shows the Kaplan-
Meijer curves for these clusters. We find that patients with lower IPAs in the genes

associated with the E-cadherins adherens junction pathway have a better response to
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Figure 3.9: Clustering analysis of ovarian samples using Paradigm shows that that
patients with lower IPA’s for genes in the E-cadherin adherens junction pathway are
associated with better response to platinum therapy (p=0.003). (©2012 IEEE)

platinum therapy (p= 0.003). E-cadherin has been rather controversial as a prognostic
factor in serous ovarian cancer with some studies identifying it as being only marginally
associated with prognosis[83], while other studies pointing to a deeper role suggestive of
a novel subtype of serous ovarian carcinoma harboring a mesenchymal phenotype[75].
This particular subtype of serous ovarian carcinoma was associated with slightly im-
proved relapse-free survival, which would correspond to our finding of slightly better
response to platinum therapy. These results suggest that a pathway-level framework is
likely to provide deeper insights on mechanisms underlying clinically-relevant subtypes
when compared to evaluating the expression levels of just one or more genes, even if

they were chosen from within the same pathway.
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3.3 Unsupervised Stratification of Cancer Patients by Path-
way Activities

While finding consistently altered pathways across sample cohorts can provide
clues to globally misregulated processes within known cancer subtypes, it does not
help us find new pathways that might successfully stratify patients into more useful
prognostic subgroups based on survival or treatment response. Gene expression data
has been used successfully to define molecular subtypes for various cancers, and cancer
subtypes have been found that correlate with different clinical outcomes such as drug
sensitivity and overall survival. We asked whether we could identify new, informative
subtypes for GBM and Serous Cystadenocarcinoma using PARADIGM IPAs rather than
the raw expression data. The advantage of using IPAs is they provide a summarization
of copy number, expression, and known interactions among the genes and may therefore
provide more robust signatures for elucidating meaningful patient subgroups.

We first determined all IPAs that were at least moderately recurrently acti-
vated across the GBM samples and found that 1,755 entities had IPAs of 0.25 in at
least 75 of the 229 samples. We collected all of the IPAs for these entities in an activity
matrix. The GBM samples and entities were then clustered using hierarchical clus-
tering with uncentered Pearson correlation and centroid linkage (Figure 3.10). Visual
inspection revealed four obvious subtypes based on the IPAs with the fourth subtype
clearly distinct from the first three. The Serous Cystadenocarcinoma samples contained

less obvious clusters and thus were determined by running HOPACH with uncentered
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Pearson correlation, finding five consistent clusters across the samples (Figure 3.11).

The fourth cluster in GBM exhibits clear downregulation of HIF-1-alpha tran-
scription factor network as well as overexpression of the E2F transcription factor net-
work (also shared by cluster 3). HIF-1-alpha is a master transcription factor involved
in regulation of the response to hypoxic conditions. In contrast, two of the first three
clusters have elevated EGFR signatures and an inactive MAP kinase cascade involving
the GATA interleukin transcriptional cascade. Interestingly, mutations and amplifica-
tions in EGFR have been associated with high grade gliomas as well as glioblastomas
[44]. Amplifications and certain mutations can create a constitutively active EGFR
either through self stimulation of the dimer or through ligand-independent activation.
The constitutive activation of EGFR may promote oncogenesis and progression of solid
tumors. Gefitinib, a molecule known to target EGFR, is currently being investigated
for its efficacy in other EGFR-driven cancers.

In OV, it is clear the red cluster is defined by high PIK3CA levels, an upstream
kinase of AKT2 for which therapies are currently being explored in ovarian cancer [68].
The yellow cluster shows high HIF-1-alpha related activity, for which there is increasing
evidence that high levels of HIF-1-alpha is prognostic for lower overall survival [17].
Overall, the purple cluster was mostly defined by lower activities in histone deacetylase
class IIT (NAD-dependent) related proteins, in particular EP300, a protein which has
previously been shown to be mutated in a subset of epithelial cancers [30]. In light of
these well defined clusters, qualitatively they appeared to be honing in on biologically

meaningful themes that can stratify patients.
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Figure 3.12: Kaplan-Meier survival plots for the GBM clusters from Figure 3.10.
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To quantify these observations, we asked whether the different GBM and OV
subtypes identified by PARADIGM coincided with different survival profiles. We cal-
culated Kaplan-Meier curves for each of the sets of cluster clusters by plotting the
proportion of patients surviving versus the number of months after initial diagnosis.
We plotted Kaplan-Meier survival curves for each of the sets of clusters to see if any
cluster associated with a distinct IPA signature was predictive of survival outcome (Fig-
ure 3.12). The fourth cluster in GBM is significantly different from the other clusters
(P < 2.11 x 1075; Cox proportional hazards test). Half of the patients in the first three
clusters survive past 18 months; the survival is significantly increased for cluster 4 pa-
tients where half survive past 30 months. In addition, over the range of 20 to 40 months,
patients in cluster 4 are twice as likely to survive as patients in the other clusters. In
OV, when the purple cluster is compared to the remaining samples, we see a signifi-
cantly better overall survival curve even when corrected for all possible single-cluster
comparisons (p < 0.0213 with bonferroni correction). On average, approximately 20%
more patients are alive in the purple cluster at any one time-point during the four years
following diagnosis.

The survival analysis in GBM revealed that the patients in cluster 4 have a
significantly better survival profile. Cluster 4 was associated with an inactivity of the
HIF-1-alpha transcription factor. The inactivity in the fourth cluster may be a marker
that the tumors are more oxygenated, suggesting that they may be smaller, newer, or
simply better vascularized. These vascularized tumors with increased E2F may have

allowed chemotherapy to more effectively reduce the aerobic state, suppressing the tu-
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mor’s high E2F and proliferation, effectively slowing its growth and allowing for longer
patient survival. In Ovarian, as previously mentioned, the purple cluster is defined
by low HDAC-III signaling-related activities, in particular EP300. EP300 has been
shown to have truncating mutations in many epithelial cancers, including ovarian, and
is a known tumor suppressor. Because these ovarian patients were given platinum-based
treatments, having reduced tumor suppressor levels (and higher proliferation levels) may
have resulted in increased effectiveness of the treatment. It is clear that PARADIGM
IPAs are pointing to novel and clinically meaninfgul pathways that can now be experi-
mentally evaluated for their relation to treatment response and/or patient outcome.
To confirm the novelty of pathways identified by PARADIGM, we also at-
tempted to cluster the patients in GBM using only expression data or CNA data to
derive patient subtypes. No obvious groups were found from clustering using either of
these data sources, consistent with the findings in the original TCGA analysis of this
dataset [74] (Figure 3.14). This suggests that the interactions among genes and result-
ing combinatorial outputs of individual gene expression may provide a better predictor

of such a complex phenotype as patient outcome.
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Figure 3.14: Clustering glioblastoma multiform (GBM) datasets with HOPACH did
not reveal any obvious patient sub-types when using either gene-level copy number or
expression data. Patient samples (columns) were clustered according to gene-level copy
number or expression (rows). Clustering may be dominated by the nearly patient-wide
amplifications and deletions (and correlated high and low expression) for a subset of
the genes in the genome (large blue and red swaths in the heatmaps). A. Copy number
estimates from competitive genome hybridization for 17,508 probes across 267 tumor
(left) and 170 normal (right). B. Microarray gene expression data for 11,240 probes
across 243 tumor (left) and 10 normal (right) samples.
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Chapter 4

SuperPathway - A Global Pathway

Model for Cancer

The original implementation of PARADIGM is an important tool for interpret-
ing multi-dimensional datasets at a single-sample resolution. However, that algorithm
heavily relied on a single pathway source (NCI PID) and two input datatypes (genomic
copy number variations and transcriptome data). In order to more accurately reflect
the underlying biology in the system, additional pathway representations are critical.
Currently NCI PID contains pathways central to the mechanisms of cancer, including
functional processes such as DNA repair, cell cycle regulation, and angiogenesis. There
are large classes of pathways that are missing from this database that we must also
model, such as metabolic and cellular differentiation processes. Although NCI PID is
one of the highest quality pathway databases available, many other pathway databases

that represent additional cellular mechanisms could be utilized by PARADIGM to suc-
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cessfully infer activities and stratify patient populations. In particular, Biocarta and
Reactome [39] offer large databases of interactions from both curation and experimental
assays.

This raises an important question about the fundamental information being
modeled in PARADIGM. In it’s original form, each pathway was modeled as an indepen-
dent collection representing a set of cellular entities related to each other in a particular
process. Because of this independence, a particular protein or complex with multiple
functions may be represented separately in each pathway. This results in the model
inferring multiple values for certain proteins that appear in more than one pathway in
the database. While modeling these pathways independently allows us to deconvolute
differentially activated processes within cancer, multifunctional proteins are intrinsically
tied to all their roles within the cell, and each pathway is not acting in its own compart-
ment. This naturally raised the question of whether of not it is possible for PARADIGM
to model a more “global” pathway model in the cell, representing thousands of genes
and interactions in a singular context that would more accurately represent a snapshot
of a cancer cell.

Other groups have successfully built databases designed to combine pathways
sources, such as Pathway Commons. Pathways Commons is a collaborative database
powered by cPath [14] and run by MSKCC and University of Toronto that consolidates
nine pathway databases onto a single cellular network. As of May 2010, they repre-
sent 1,400 pathways containing 420,000 interaction and 88,500 cellular entities across

440 organisms. Unfortunately, the approach taken by Pathway Commons is focused
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Table 4.1: Features and Interactions in SuperPathway (July 2011 version)

Concepts Interactions
Protein 6906 Protein Activation 7269
Complex 7345 Protein Inhibition 1005

Family 1449 | Transcriptional Activation 1963
Abstract 582 | Transcriptional Inhibition 386

miRNA 15 Complex Formation 23132
RNA 55 Family Membership 6559
Total 16352 Total 40314

Figure 4.1: Topographical visualization of the SuperPathway.

primary on integration, and thus their representation of the cellular network contains
only undirected interactions. Because of this limitation, their database is unsuitable
for a method that relies on direction and sign of interactions to propagate information.
Furthermore, there are huge computational implications in representing and modeling

thousands of interactions and entities simultaneously.
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Because of the incomplete nature of Pathway Commons, I built a superimposed
version of the collection of pathways we have termed the SuperPathway. 1321 Pathways
were obtained on July 25th, 2011 in BioPax Level 2 format from NCI-PID, Reactome
and BioCarta. Genes, complexes, families and abstract processes (e.g. "cell cycle”
and ”apoptosis”) were unified by Uniprot ID (genes) or name across the three sources,
created a definitive list of what we call ”pathway concepts.” Across the three sources,
this list contained 16,352 total concepts, including 6,906 genes, 7,345 complexes, 1,449
families and 582 processes and 40,314 interactions as outlined in Table 4.1. Links were
combined if they consisted of the same parent, child and interaction type, and the overall
topology of the network can be see in Figure 4.1.

Across the initial set of pathways, an additional concept type of small molecule
was present and represented over 800 unique concepts. The small molecule type is
reserved for biochemical products that are byproducts of enzymatic or kinase activities,
including molecules such as HoO and ATP/ADP. While maintaining these elements in
the pathway might increase our ability to understand the metabolic flux that is occurring
in the tumor, these elements have a disproportionately higher degree than other concepts
in the pathway. As a result, these concepts tend to connect aspects of the network that
would normally be several links away, causing inappropriate propagation of belief to
nodes. Although future versions of PARADIGM may attempt to model these reactions
using techniques such as flux-balance analysis [23], that work is outside the scope of
the original intention of PARADIGM and so these nodes were removed from the final

SuperPathway. This results in a loss of just over 1500 concepts across all the categories
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due to them only being connected in the pathway through the small molecules that were
removed. The net effect resulted in a much more computationally tractable pathway
that forms the basis for the studies in this chapter.

In order to efficiently compute activities across this network, a number of opti-
mization techniques were required beyond the removal of small molecules. Of particular
interest, exact inference was no longer possible due to a number of cycles and contrac-
tions within the network. Instead, loopy belief propagation can be used to compute
probabilities with a tolerance of 1e-9 and a maximum of 10,000 iterations. Because this
method can be run on cycles and with contradictory information, all interactions in
the network were considered and no attempt to resolve them was made. The final Su-
perPathway was built by performing a breadth-first traversal starting from the concept
with the highest number of interactions, which resulted in capturing a majority of the

concepts, effectively capturing the largest possible connected network.

4.1 SuperPathway in Ovarian Cancer

Our previous studies had shown the importance of FOXMI1 in the TCGA
Ovarian Cancer cohort, so as a first test of the SuperPathway I asked if we could
recapture this information given the new overall pathway structure. Using both the
SNP 6.0 copy number data and Agilent 244k mRNA expression data from the 316 high
grade serous cystadenocarcinoma samples found in the TCGA publication, I computed

pathway IPAs across the SuperPathway. Because of the reduced I/O and number of
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Table 4.2: Top TCGA Ovarian Concepts from SuperPathway

Concept OV Avg | OV StdDev | NA Avg | NA StdDev | -Log(TTest)
FOXM1 3.7861 1.0077 0.3327 0.9395 209.5321
SKP2 3.2782 0.9818 0.5409 0.8146 169.2913
DSP 3.2318 1.9157 1.0678 2.0729 52.5983
MAPK 3.2180 1.9049 1.0429 2.0814 53.3704
E2F3 3.1120 0.7703 0.5761 0.8801 211.2003
BCAT1 3.0954 0.8581 0.5739 0.8689 184.4879
CKS1B 3.0590 0.7361 0.4401 0.6965 217.3218
CENPF 2.9807 0.7310 0.4242 0.6916 214.0751
NEK?2 2.9700 0.7703 0.4466 0.6898 199.4847
MINA 2.7870 1.2480 0.5661 0.8791 102.9586
PIK3C2A -1.3275 0.4235 | -0.3690 0.6195 137.2294
chromatin re- | -1.3311 0.5115 | -0.4604 0.6970 93.0525
modeling

Alpha v beta | -1.3901 0.4417 | -0.3998 0.6296 136.1474
3 : Vitronectin

complex

Alpha v beta | -1.3901 0.4417 | -0.3998 0.6296 136.1474
5 : Vitronectin

complex

Alpha v beta | -1.3901 0.4417 | -0.3998 0.6296 136.1474
8 : Vitronectin

complex

WNT7B /| -1.3950 0.7056 | -0.4736 0.7383 66.4470
FZD10 /

LRP5

FOXA1 -1.4200 0.8062 | -0.2365 0.8047 79.5173
WNT5A /| -1.4550 0.7294 | -0.4981 1.1383 57.9418
FZD4 / LRP5

WNT5A /| -1.4550 0.7294 | -0.4981 1.1383 57.9418
ROR2

VTN -1.5199 0.5141 | -0.3677 0.7677 134.8298
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processes required, the overall run time was more efficient at approximately 5 minutes
per sample versus the approximately 1 minute per pathway per sample across 1300
pathways. Due to there only being a single pathway, the traditional analysis methods
of comparing individual pathways no longer apply in an analogous fashion. Instead,
features can be compared with a more traditional Student’s T-Test for the real samples
versus the cohort of permuted samples (generated as outlined earlier).

Table 4.2 lists the top features found in the SuperPathway versus the null
model, where activity is ranked according to the average IPA value across the real sam-
ples. Again, FOXM1 appears as the top entry, confirming that despite large scale struc-
tural changes of the underlying pathway data, PARADIGM can identify consistently
overactive features across a cohort. SKP2, the second highest activity across all the sam-
ples, has recently been indicated as a prognostic factor in ovarian adenocarcinoma|64].
The appearance of WNT signaling towards the bottom of the activity list is interesting,
given there are increasing numbers of papers implicating WNT signaling and the differ-
ences between normal ovarian and cancerous tissue, despite the lack of mutations[29].
PIK3C2A, a critical subunit of the PI3K Complex has been clearly implicated in ovarian
cancer, however as a oncogene[29] - a feature that appears to contradict the appear-
ance towards the bottom of the activity list. However, primary alteration of PI3K is
through mutational alterations, a feature that was not provided to PARADIGM in this
context. The discrepancy may be explained as a result of parent nodes attempted to
downregulate PIK3C2A activity as the cell detects overactive PI3K levels.

Although looking at top concepts across the patient cohort can offer insight into
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Figure 4.2: Number of subnets found for a variety of IPA cutoffs. The red line repre-
sents actual samples, with the black line representing the permuted samples. The max
difference of 156 subnets between these two populations was found at IPA cutoff of 3.3.
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Table 4.3: Top pathway concepts consistently found in subnets across the OV samples
using TPA cutoff 3.3. Only HSP90AA1 has more null samples than real, indicating a
likely false positive.

Concept NA Sum | OV Sum
FOXM1 9 157
SKP2 8 154
MYC/Max 13 150
CKS1B 6 148
NEK2 7 138
CENPF 5 137
BCAT1 2 116
E2F3 6 116
MINA 7 115
DDX18 7 107
PFKM 8 105
PEG10 5 93
BMI1 4 92
CCNB2 4 85
MYC/Max/RPL11 6 82
MTDH 5 81
TAF4B 7 72
HSP90AAL 98 57
PRDX3 7 52
BRCA2 3 49
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highly over- or under-active pathway processes, this approach doesn’t take advantage
of the connected nature of the resulting pathway concepts. One alternative approach
is to reconstruct small subnetworks within the larger pathway context, retaining the
information regarding interactions and taking advantage of the existence of concepts
that span cellular contexts to obtain a better understanding of the interconnected nature
of the cell. As an initial approach to a cohort-level subnet analysis, I looked for regions
of the network above a certain IPA score continuing to expand as long as connected
components met the cutoff. Subnets were only retained if they contained at least 5
concepts. Figure 4.2 shows the number of subnets found for each IPA cutoff possible,
both for real samples and permuted samples.

At the optimal cutoff of abs(IPA) >= 3.3, there were 156 more subnets in the
real samples versus the permuted samples. Every concept was then ranked across all the
samples to compute the most prevalent features within the subnets, the results of which
appear in Table 4.3. Again, FOXM1 appears as the most consistent concept across
approximately half of the ovarian samples, showing that the high IPA of this concept
is supported by data from interactions in at least half of the cases. Reassuringly, many
of the same concepts from this subnet analysis are also seen in the previous, single
concept analysis. However, some of the concepts that appeared to have high overall
pathway activity do not appear, such as DSP and MAPK. These concepts also have
lower t-test p-values than the other members in the list, indicating they are less likely
to be pathway specific drivers and instead may be due to technical artifacts from the

arrays that measured them. From this study it is clear the SuperPathway provides an
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exciting new view of oncogenic pathway activities while still recapitulating previously
established biology, and presents a framework that allows us to build new analysis

methods to understand differential activities in a global scope.

4.2 SuperPathway in Breast Cancer

4.2.1 Chin-Naderi Cohort

The success of the SuperPathway to identify key pathway activities and sub-
nets across a cohort of samples provides a useful framework for finding key differential
activities within a subset of a cohort. To explore this idea, we asked if we could use
the activities generated in the SuperPathway to identify key subnetworks that corre-
spond with a particular clinical feature. We re-ran the previously analyzed Chin-Naderi
breast cancer cohort on the SuperPathway, and used the clinical annotation of ER+ve
and ER-ve, as provided in the publications. Using the non-parametric Wilcoxon rank
sum test, we assigned each node in the network a differential score of the negative log10
p-value, signed by the group with the higher mean. We then removed any node with
an absolute negative logl0 value below 1.3 as a method to trim activities to only those
found significant. This resulted in a series of subnets, the largest consisting of 141 nodes
and 188 edges, which were visualized using Cytoscape[66].

Figure 4.3 captures the output of the SuperPathway subnet analysis on the
Chin-Naderi breast cancer, showing the regulatory networks of genes that are signifi-

cantly differentially expressed in the ER+ve compared to the ER-ve subgroups of breast
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cancer. The FoxAl network is clearly seen as highly differentially expressed, followed
by the Hif-1-alpha transcription factor network, which was also identified by SPIA and
GSEA as being downregulated in ER+ve tumors. This is concordant with recently
published evidence that that Hif-1-alpha represses the transcription of the estrogen re-
ceptor gene, ESR1, in breast cancer cell lines and thus could play a role in ER-ve breast
cancers[59]. This is particularly important given that Hif-1-alpha is an important reg-
ulator of the cellular response to hypoxia and has been shown to be an independent

prognostic factor in breast cancer|[11].

4.2.2 TCGA Breast Cancer

Using the same approach as in the Chin-Naderi cohort, I wanted to validate
these findings on an independent cohort using a more prognostic clinical feature, in hopes
to understand the molecular basis of prognosis in breast cancers. Using 463 samples
in the TCGA breast cancer dataset, PARADIGM was run on the SuperPathway utiliz-
ing the SNP 6.0 copy number and Agilent 244k gene expression platforms. Resulting
features were ranked using the same approach as in the Chin-Naderi cohort, this time
using the intrinsic expression subtypes (as previously calculated by the Perou group) of
Luminal A and Basal as the clinical feature of interest. Because of the large number of
features found differential by this clinical attribute, the subnet creation was modified to
a more stringent approach to ease with visualization. Links were only kept if the parent
of the link had at least 10 children concepts in the SuperPathway and the child of the

link had at least 5 children concepts in the SuperPathway. Effectively termed ”hubs”,
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these concepts are key features in the SuperPathway that are responsible for regulating
a disproportionally high number of other nodes, given the average number of neighbors
of 4.864 and network density of close to 0 across the entire pathway. Figure 4.4 shows
these hubs colored by the class with the higher mean activity across the samples (or-
ange for Basal, cyan for Luminal). Features of note include basal enrichment in the
proliferative markers FOXM1, MYC/Max, AURKB and the mitosis abstract process.
Overall a much more limited set of concept hubs appear to have increased activity in the
luminal samples, consistent with the known aggressiveness of basal tumors compared to
luminals[12].

It is then interesting to ask if it is possible to use the same analysis to distin-
guish between mutations within a single protein that occur in different domains. There
is increasing evidence of the importance of PI3K mutations in breast cancer, and recent
studies have suggested that the effect of the mutation is highly dependent on the pro-
tein domain that is altered[85]. Using the same subnetwork hub analyses, TCGA breast
cancer samples were split on kinase versus non-kinase domain mutants. The resulting
subnetwork with the mutational visualization can be seen in Figure 4.5. Although less
significant than the split done with the intrinsic subtypes, the kinase domain mutants
appear to be enriched for proliferation-related activities, while non-kinase domain mu-
tants appear to be enriched in proteins responsible for cellular migration (ACTN1) and
adhesion (E-cadherin). Mutation distribution was independent of subtype and TP53
status, indicating these results are unlikely to be confounded by alternative factors. Al-

though the clinical implications of these results are unclear, this methodology provides
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a useful mechanism for understanding even subtle sample differences that can effect re-
gions of the pathway, allowing researchers to focus on subnetworks that are more easily

interpretable.

4.3 Cross-Cancer SuperPathway

Recurrent pathways that are commonly activated in subsets of tissue-specific
cohorts are particularly interesting, as these may indicate shared molecular mechanisms
for oncogenesis. If common pathways can be detected and correlated with response to
known therapies, it may be an indication that the molecular profile of those tissues is
more important than the tissue of origin. Diseases such as breast cancer are good candi-
dates for this type of analysis, as there are well documented molecular heterogeneity and
survival-based subtypes describing this heterogeneity [67]. As the TCGA has promised
to produce expression and copy-number data for over twenty thousand patients across
more than twenty tissues of origin, that sample population represents a powerful dataset
to explore the molecular origins of cancer. The consistency of datatypes and platforms
that are used for measuring mRNA expression and copy-number alterations (Agilent
244K arrays and Affymetrix SNP 6.0 arrays, respectively) limits the effect of batch ef-
fects that can confound cross-cohort analyses. However, these samples have stringent
purity and size requirements which may result in other unknown confounding effects.

In order to ask if molecular mechanisms resulting in the observed subtypes in

breast cancer can be found in other tissues, I first ran PARADIGM across the entire
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TCGA cohort. Expression data was median centered across all tissues for each gene to
assure a common reference when comparing samples, and copy-number data remained
normalized to blood normal for each sample. Figure 4.6 visualizes the resulting activity
heatmap for close to 1400 samples across the 8 available tissues of origin at the time of
analysis. Hierarchical clustering for the samples was performed, resulting in a surprising
mixture of tissues across the dataset. Of particular interest, the breast appears to cluster
into two distinct groups, each having similarities with a lung subset.

Because of the similarity in features between the breast and lung cancer sam-
ples within TCGA, I decided to focus my analysis on comparing breast intrinsic subtypes
with the two classes of lung cancer (squamous and adenocarcinoma). Intrinsic subtypes
for breast cancer were obtained from the Perou lab using their previously published
methods, and were the same as used in the previous breast cancer analysis. Only sam-
ples labelled Luminal A were considered as the luminal class, and all basal labelled
cancers were used, resulting in 250 samples. The two lung subtypes contained a total of
138 samples. Based on conversations with Dr. Eric Collison of UCSF and other collab-
orators, I decided to focus this analysis by asking if a machine learner can distinguish
subtypes regardless of tissue of origin.

Using SVM-Light[38], I trained a linear SVM using default parameters on the
entire set of breast cancer samples, where Basal samples were labelled ”-1” and Luminal
samples were labelled ”+1”. I then labelled lung squamous ”-1” and lung adenocarci-
noma ”+1” and asked the SVM to classify these samples. Using 63 support vectors, the

SVM classified 130 out of 138 lung samples correctly, resulting in an accuracy of 94.2%,
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Figure 4.7: Receiver operating characteristics of SVM-Light classifications done across
tissue types. The Cyan ROC indicates a linear SVM that was trained on lung squamous
versus adenocarcinoma and given breast samples labelled basal or luminal for classifi-
cation (AUC=0.971751). The orange ROC indicates the performance of a linear SVM
that was trained on breast basal versus luminal and tested on lung squamous versus
adenocarcinoma (AUC=0.894994).
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precision of 84.21% and recall of 76.19%. A plot of the resulting ROC can be seen in
Figure 4.7 and the resulting AUC was 0.894994.

I then reversed the experiment, asking if breast samples can be distinguished by
training on lung. I passed all 138 lung samples to a linear SVM light trainer with default
parameters, and asked it to classified the 250 breast samples. Using 53 support vectors,
the SVM was only capable of classifying 173 of the 250 samples correctly, resulting in an
accuracy of 69.2%, however with a precision of 100% and recall of 56.5%. A plot of the
resulting ROC can also be seen in Figure 4.7 with a surprising AUC was 0.971751. The
large AUC with corresponding low accuracy likely indicates a non-optimal cut point was
chosen by the SVM, something that could likely be improved with additional training
or parameters.

Given the classifier was capable of achieving high AUCs in both classification
tasks, it is interesting to explore the features that were used by the SVM to help
understand what might best distinguish the two subtypes. Figure 4.8 is a subnetwork
analysis using SVM-weights assigned by training on the lung subtypes (the same weights
that were used to classify on the breast samples). A concept was required to have a
weight greater than 2 standard deviations from the mean of all weights in order to
appear in the resulting network, in addition to the hub restrictions. A majority of
concepts pulled out through this analysis have positive weights, as expected, with the
most discriminative features being P53 (arguably the most famous tumor associated
protein), HGF, VDR, SERPINE1 and HIFlalpha. The common basal / luminal markers

of FOXA1, MYC/Max, and DNA Damage also appear. This analysis clearly shows that
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there are corresponding molecular subtypes that can help explain origin of disease better
than tissue of origin. As molecular classification becomes more prevalent in the clinic,
it will be increasingly important to understand treatment from the aspect of molecular
features instead of tissue of origin, and PARADIGM provides a powerful framework for

that type of analysis.
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Chapter 5

Pathway Analysis of Drug Effects

Detecting commonly perturbed pathways either across an entire cohort or that
can successfully stratify patients is critical to understanding the underlying misregula-
tion within a cancer type. However, we ultimately need to understand how these mis-
regulated pathways can be fixed in order to provide clinically actionable information
to healthcare providers. By examining the pathway activities in conjunction with drug
responses in a model system such as cell lines, it is possible to identify key pathway
activities that correspond with treatment response. These key pathways and activi-
ties can be used for *in silico® knockout experiments to find combinational therapies
that will increase drug response within the subset of cell lines that did not respond.
PARADIGM can provide a unique insight into the possible functional implications of
pathway alterations, and may provide the information necessary to model these combi-

nation therapies.
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5.1 SuperPathway on Breast Cell Lines

In order to asses the ability of pathway activities to provide a novel mechanism
to study drug effects, it is critical to show both that pathway activities accurately
capture the molecular signatures of samples, and that these molecular signatures can also
be mirrored in a model system allowing interrogation with therapeutic agents. Cell line
studies done in collaboration with Dr. Joe Gray, Laura Heiser, Ted Goldstein, Sam Ng,
and Dr. Josh Stuart allow us to establish the ability of PARADIGM to accurate model
the molecular profile of breast cancer cells. Using combined copy-number profiles and
exon expression measures, PARADIGM IPAs were calculated for 46 breast cancer cell
lines, including lines from each intrinsic subtype. Using the PARADIGM IPAs, cell lines
were clustered together with TCGA tumor samples to determine if cell lines were similar
to tumor samples of the same subtype. Well-studied areas of the SuperPathway contain
genes with many interactions (hubs) and large signaling chains of many intermediate
complexes and abstract processes for which no direct data is available. In order to
prevent noise introduced from the integration of multiple sources of arrays, pathway
concepts with highly correlated vectors (Pearson correlation coefficient > 0.9) across
both the cell line and tumor samples were unified into a single vector prior to clustering.
This unification resulted in 2351 non-redundant vectors from the original 8768 pathway
concepts.

Samples were clustered using the resulting set of non-redundant concepts. The

matrix of inferred pathway activities for the 46 breast cancer cell lines and 183 TCGA
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Figure 5.1: Clustering of TCGA samples with breast cancer cell lines.
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tumor samples was clustered using complete linkage hierarchical agglomerative clus-
tering implemented in the Eisen Cluster software package version 3.0(2). Uncentered
Pearson correlation was used as the metric for the pathway concepts and Euclidean
distance was used for sample metric (Figure 5.1).

To quantify the degree to which cell lines clustered with tumor samples of
the same subtype, we compared two distributions of t-statistics derived from Pearson
correlations (Figure 5.2). Let Cs be the set of cell lines of subtype s. Similarly, let Ts
be the set of TCGA tumor samples of subtype s. For example, Cbasal and Tbasal are
the set of all basal cell lines and basal tumor samples respectively. The first distribution
was made up of t-statistics derived from the Pearson correlations between every possible
pair containing a cell line and tumor sample of the same subtype; i.e. for all subtypes s,
every pairwise correlation t- statistic was computed between a pair (c, t) such that ¢ €
Cs and t € Ts. The second distribution was made of correlation t-statistics between cell
lines of different subtypes; i.e. computed over pairs (¢, ¢’) such that ¢ € Cs and ¢/ € C¢/
and s # s’. We performed a Kolmogorov-Smirnov test to compare the distributions. We
repeated this analysis using samples from the same source (cell line or tumor) to verify
that cells of the same subtype have overall pathway activities that are more similar than
cells of different subtypes. As above, the first distribution was made up of t-statistics
between pairs of samples of the same subtype and the same origin (cell line or tumor).
The second distribution was made of correlation t-statistics between samples of different
subtypes again from the same origin.

Focusing on the collection of breast cancer cell lines, it was possible to detec-

78



B Claudin-low
PN
. POLR3 D

;L IF4A CAT/
\
7 @MM/&
CIMAX
C

R
N s \:\V@ @7 // . DX18
w e S e

(

OXM1
C Luminal D ERBB2AMP
M/-\
scgiyes (6H) s
RQ“EF? \ —
YA e )
</ .
1 _
“TCFAE/CTNNBT

\

\
W CTNNB1/PITX2

\ \_\
F’osmve regulation of
CZ : Wht signaling

Figure 5.3: Cell-line subtypes have unique SuperPathway network features. In all pan-
els, each node represents a pathway concept corresponding to a protein (circle), a mul-
timeric complex (hexagon), or an abstract cellular process (square). Node sizes are
drawn in proportion to the DA score; larger nodes correspond to concepts more corre-
lated with a particular subtype than with all other subtypes. Color indicates whether
the concept is correlated positively (red) or negatively (blue) with the subtype of in-
terest. Lines represent interactions, including proteinprotein interactions (dashed lines)
and transcriptional interactions (solid lines). Interactions are included if they connect
concepts whose absolute level of DA is higher than the mean absolute level. Labels on
some nodes are omitted for clarity. (A) An ERK1/2 subnet preferentially activated in
basal breast cancer cell lines. (B) A MYC/ MAX network activated in claudin-low cell
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tion subnets that differed in activity between transcriptional subtypes. As an example,
comparison of subnet activities between basal cell lines and all others in the collection
identified a network comprised of 965 nodes connected by 941 edges, where nodes repre-
sent proteins, protein complexes, or cellular processes and edges represent interactions,
such as protein phosphorylation, between these elements, including several subnetworks
that were up- or down-regulated. Figure 5.3A, for example, shows up-regulation of the
MYC/MAX subnetwork associated with metabolism, proliferation, angiogenesis, and
oncogenesis[58]; and up-regulation of the ERK1/2 subnetwork controlling cell cycle,
adhesion, invasion, and macrophage activation[37]. The FOXM1 and DNA damage
subnetworks also were markedly up-regulated in the basal cell lines. The claudin-low
network showed up-regulation of many of the same subnetworks as well as up-regulation
of the beta-catenin (CTNNB1) network in Figure 5.3B, a network already implicated in
tumorigenesis and associated with poor prognosis[9, 32]. Comparison of the luminal cell
lines with all others showed down-regulation of an ATF2 network, which inhibits tumori-
genicity in melanoma[5], and up-regulation of FOXA1/FOXA2 networks that control
transcription of ER-regulated genes (Figure 5.3C) and are implicated in good progno-
sis luminal breast cancers[50, 46]. ERBB2AMP subnetworks were similar to those for
luminal cells, which is not surprising because most ERBB2AMP cells also are classified
as luminal. However, Figure 5.3D also shows down-regulation centered on RPS6KBP1
in ERBB2AMP cell lines.

SuperPathway analysis of differential drug response among the cell lines also

revealed subnet activities that provide information about mechanisms of response. For
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Basal breast cancer cell lines respond preferentially to the DNA-dam- aging agent cis-
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example, basal cell line sensitivity to the DNA damaging agent, cisplatin, was associated
with up-regulation of a DNA-damage response subnetwork that includes ATM, CHEK1
and BRCA1, key genes associated with response to cisplatin[65] (Figure 5.4A). Likewise,
ERBB2AMP cell line sensitivity to geldanamycin (HSP90 inhibitor) was associated with
up-regulation of an ERBB2-HSP90 subnetwork (Figure 5.4B). This is consistent with
the known ERBB2 degradation induced by geldanamycin binding[10, 7].

The potential clinical utility of these findings is supported by concordance of
in vitro-derived molecular predictors of response to therapeutic compounds and clinical
results. For example, ERBB2-amplified cell lines are preferentially sensitive to ERBB2-
targeted agents, and basal subtype cell lines are preferentially sensitive to platinum salts,
as observed clinically. That said, additional work remains before the signatures reported
in this study can be used to select patients for clinical trials. Such future work would
include the development of robust and reliable molecular assays that can be applied to
clinical samples, establishment of predictive algorithms with decision-making thresholds
optimized for clinical use, and validation of predictive power in multiple independent
studies. To initiate this process, we suggest that the response-associated signatures
identified in this study be developed into standardized assays that can be assessed for
clinical predictive power in early-stage clinical trials and used to design trials that are
properly powered to detect the responses in the clinical subsets predicted by the in vitro
studies. Assays that show positive predictive power in early clinical trials then can be

locked down and tested for predictive power in follow-on clinical trials.
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5.2 Culling Targets Using Machine Learning

Although the SuperPathway and subnet analysis allow us to identify potential
networks that might correspond with response or sensitively, attempting to find the
optimal location for combinatorial interventions requires a more automated approach.
Supervised learning methods such as support vector machines (SVM) or non-negative
matrix factorization (NMF') can be designed to identify these key activities, and would
intrinsically provide a mechanism for assessing how well these activities map to response.
By attempting to predict response to each therapy in a cross validation setting, these
machine learners will attempt to identify activities that can best separate the responders
and non-responders, learning weights for each feature given. By examining the weights
each machine learner has assigned, and evaluating each learning in a cross-validation
setting using a receiver operating characteristic (ROC) curve and calculating an area
under the curve (AUC), it is possible to assign a score both to how well the learner is
modeling the data corresponding to drug response, and which features were optimal for
separation beween the classes. The top features within the top classifiers are ones that
offer a clear separation between the two classes (responders and non-responders), and

can be passed to PARADIGM in a series of knockout simulations.

5.3 Simulating Knockdowns in PARADIGM

Figure 5.5 shows the approach taken to simulate siRNA knockdowns within

PARADIGM. In brief, once EM has converged a final run of paradigm is performed first
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without the knockdown. The factor graph is then modified to clamp the mRNA node
internal to the dogma structure for the specified protein node. This causes a fluctuation
of probabilities in the vicinity of the node, and belief propagation is performed one final
time. Although this falls short of a true causative model, the corresponding nodes in
the network are sufficiently perturbed to assess the initial viability of this approach.

In order to assess if these changes correspond with actual siRNA knockdowns
down in model systems, gene expression data from House et al [35] was obtained from the
authors containing GFP-controls and post-knockdown expression for colon cancer cell
lines treated with siRNAs covering 29 genes. The expression data was normalized for
PARADIGM as previously described, and all analysis used the SuperPathway model
generated from BioPAX Level 3 pathways obtained on Feb 27, 2012 from NCI-PID,
BioCarta and Reactome pathway databases. Inference and EM learning were performed
consistent with the previously described methods using the SuperPathway, and learning
parameters converged in 5 iterations. GFP-control cell line paradigm values were re-
computed using a simulated knockdown model for each of the five tier 3 gene knockdowns
that had pathway context available. Samples were only kept if they had a .75 tau or
larger correlation to the medoid of the other knockdowns for that same gene in the
original expression data. The simulated knockdown model was computed by clamping
the mRNA to the -1 state within the central dogma and regenerating inference and IPL
values.

Integrated Pathway Levels (IPLs) were computed for each element in the path-

way for GFP-control (GFPc), GFP-simulated-siRNA (GFPssi) and true-siRNA (siR-
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Table 5.1: Correlations between simulated knockdowns and true siRNA knockdowns for
a series of genes in a colon cancer cell line.

GFP KO KO Effectiveness % Real Null Diff
GFP_scrCvsHR GNAI3_06_1vsHR 97.61% 0.5544 0.5526 0.0018
GFP_scrAvsHR GNAI3_06_1vsHR 95.02%  0.5475 0.5472 0.0003
GFP_scrCvsHR GNAI3_05_2vsHR 97.13% 0.4330 0.4288 0.0043
GFP_scrCvsHR UBE2L6.05_1vsHR 78.23%  0.4258  0.4258 0.0000
GFP_scrAvsHR SEC24D_10_2vsHR 78.58%  0.4188 0.4188 0.0000
GFP_scrCvsHR SEC24D_10_2vsHR 79.30%  0.4103 0.4103 0.0000
GFP_scrAvsHR GNAI3_05_2vsHR 95.41%  0.4084 0.4058 0.0026
GFP_scrAvsHR UBE2L6.05_1vsHR 77.94%  0.4058  0.4058 0.0000
GFP_scrCvsHR SEC24D_12_1vsHR 77.94% 0.3744 0.3744 0.0000
GFP_scrAvsHR GNAI3_06_2vsHR 90.69% 0.3744 0.3740 0.0003
GFP_scrCvsHR GNAI3_06_2vsHR 93.53% 0.3703 0.3693 0.0009
GFP_scrAvsHR SEC24D_12_1vsHR 76.97%  0.3698  0.3698 0.0000
GFP_scrAvsHR EIF2AK2_11_1vsHR 94.73%  0.3611 0.3601 0.0010
GFP_scrCvsHR SEC24D_12_2vsHR 74.53%  0.3425 0.3425 0.0000
GFP_scrCvsHR EIF2AK2_11_1vsHR 93.35% 0.3242 0.3236 0.0005
GFP_scrCvsHR SEC24D_10_1vsHR 73.88% 0.3104 0.3104 0.0000
GFP_scrAvsHR SEC24D_12_2vsHR 75.51%  0.3093  0.3093 0.0000
GFP_scrAvsHR SEC24D_10_1vsHR 75.31% 0.2721 0.2721 0.0000
GFP_scrCvsHR UBE2L6.05_2vsHR 73.19%  0.1488  0.1488 0.0000
GFP_scrAvsHR UBE2L6_06_1vsHR 73.43% 0.1361 0.1361 0.0000
GFP_scrCvsHR SCN5A_AvsHR 75.75%  0.1299  0.1299 0.0000
GFP_scrAvsHR UBE2L6.05_2vsHR 73.28%  0.1291  0.1291 0.0000
GFP_scrAvsHR SCN5A_AvsHR 74.74%  0.1246  0.1246 0.0000
GFP_scrCvsHR SCN5A_BvsHR 76.75%  0.1128  0.1128 0.0000
GFP_scrCvsHR UBE2L6.06_1vsHR 75.02%  0.1062 0.1062 0.0000
GFP_scrAvsHR SCN5A_BvsHR 75.92%  0.1051 0.1051 0.0000
GFP_scrAvsHR EIF2AK2_11_2vsHR 92.97% 0.0823 0.0814 0.0009
GFP_scrCvsHR EIF2AK2_11_2vsHR 91.15% 0.0807 0.0802 0.0005
GFP_scrCvsHR SCN5SA_CvsHR 74.02%  0.0523 0.0523 0.0000
GFP_scrAvsHR SCN5A_CvsHR 74.79%  0.0365 0.0365 0.0000
GFP_scrCvsHR UBE2L6.06_2vsHR 73.46% -0.0116 -0.0116 0.0000
GFP_scrAvsHR UBE2L6.06_2vsHR 75.31% -0.0433 -0.0433 0.0000
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Figure 5.6: Visualization of IPLs for the region around GNAI3 for the best Knockdown
effectiveness from Table 5.1: A) GFPc of GFP_scrCvsHR, B) GFPssi of GFP_scrCvsHR

and C) siRNAt of GNAI3_.06_1vsHR
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NAt) samples. Using a Kendall Correlation of the top 2500 variable genes across both
GFPc and siRNAt samples, it was possible to assess the knockdown models ability to
simulate IPLs that more closely resemble the IPLs in the true knockdowns (siRNAt).
All pairwise-correlations were calculated between siRNAt and GFPc IPL vectors and di-
rectly compared to the corresponding pairwise-correlations between siRNAt and GFPssi
IPL vectors, the result of which can be seen in Table 5.1. A one-sided pairwise t-test
between the two populations of correlations was computed to assess the effectiveness
of the simulated knockdown, which resulted in a p-value of 0.008133. Knockdown ef-
fectiveness (KE) for each simulated knockdown is calculated by simulating knockdowns
for all possible genes in the pathway and measuring the change in correlation for each.
The correlation changes for the simulated knockdowns were ranked among the true gene
correlation change and the effectiveness is calculated as the percentage of genes resulting
in worse correlations than the intended target.

Many of the knockdowns resulted in no detectable change to the resulting
correlations, however for many of these the KE was still relatively high, indicating
that for many genes a simulated knockdown reduces the correlation to the true siRNA
activities. The top result as ranked by KE is visualized as subnetworks in figure 5.6.
From the visualization, it appears as though the PTPN11 down regulation that’s seen
in the siRNAt sample for GNAI3 accounts for a large part of the positive correlation
shift. This result illustrates that the knockdowns are able to capture a small result
of the total overall changes between the networks in the immediate area of the target,

highlighting the need for accurate interaction information to successfully model the total
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effect. Another explanation for the lack of larger correlation increases may be due to
insufficient down regulation signaling by key regulatory paths, which might benefit from
the implementation of interaction strengths providing more accurate signal propagation.
Overall this method warrants testing on additional data and should be able to prioritize

the order of targets for testing in a laboratory setting.

5.4 Breast Cell Line Simulated Knockdowns

In a series of initial experiments preparing for validation, paradigm activities
were generated for the breast cell line panel using the previously discussed copy num-
ber, gene expression data, and drug sensitivity measure for 58 drugs. Four feature
selection methods, 10 classification algorithms, and 2 methods for subgrouping samples
into binary classes (responders vs. non-responders), were combinatorially used to build
a maximum of 80 fully-trained models for each drug response prediction problem. Due
to limited sampling in some drugs there was insufficient data to build the full compli-
ment of 80 models, so in these cases only a subset of these models were assessed. All
models were assessed using average accuracy in 5x5 fold cross-validation.

To create ranked lists of top candidates from these models we extracted feature
weights from the most accurate linear-kernel models in TopModel, a machine learning
system developed by Christopher Szeto that evaluates multiple machine learning algo-
rithms to find the best for a particular prediction problem. These included support-

vector machines [38], squential minimal optimization models [33] and NMF-based mod-
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els. We justify using only linear models by showing that, overall, these linear-kernel
models perform as well as higher-order models in our cross-validation experiments, and
are more easily interpreted biologically. For each drug, we selected the 200 most highly
weighted features (or fewer where applicable) from the most accurate linear-kernel mod-
els as candidates for likely optimal intervention points.

PARADIGM produced a new set of pathway activities that correspond to
the estimated levels if the protein of each knocked down feature. To establish the
effectiveness of these simulations, the vectors of resulting IPLs are applied back to the
classifier for sensitivity predictions. The shift in the classification value (resistance score)
is calculated; giving a score we refer to as Resistance Shift. The significance of this shift
is calculated by building a background distribution from classifying the IPLs derived
from knockdowns of genes picked for other drug classifications and not selected for the
drug being assessed.

The top results of the classification tasks and knockdowns can be found in Ta-
ble 5.2. Figure 5.8 highlights the top prediction score shift from resistant to sensitive,
found for the combination of QNZ (an NF-KB inhibitor) and E2F3. Previous studies
have shown that NF-KB may activate E2F family transcription factors [3], indicating
a mechanism by which the cells may have developed resistance to an NF-KB therapy.
Additionally, it appears as though treatments such as bortezomib, which function par-
tially by E2F3 downregulation, act independently of NF-KB activity [61] indicating
that this pair of targets may offer effectiveness in certain settings. It appears as though

all resistant lines may show some shift towards sensitivity with a knockdown like this,
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Table 5.2: Resitance shift and p-values for the top 20 simulated KO and drug combina-
tions ranked by shift score.

Drug KO Sample PreScore PostScore Shift P-Value
QNZ E2F3 MDAMBA468 1.3335 -0.327 1.6604 9.17E-144
Oxaliplatin MAPK3 HCC1419 1 -0.5927 1.5927 1.72E-132
Oxaliplatin FOXM1 CAMAI1 1.745 0.2027 1.5423 2.01E-124
Oxaliplatin MAPK1 BT483 0.6869 -0.8431 1.53 1.76E-122
Oxaliplatin GREB1 ZR75B 2.1429 0.6866 1.4563 3.13E-111
Oxaliplatin MAPK3 HCC1428 1.3238 -0.0655 1.3893 1.78E-101
Oxaliplatin MAPK1 MDAMB361 0.5662 -0.6577  1.2239 2.41E-79
Oxaliplatin FOXM1 HCC2185 0.2991 -0.8675 1.1667  2.48E-T72
Oxaliplatin  E2F3 MDAMB468 1.2147 0.1002 1.1146  3.12E-66
Baicalein CITED2 LY2 1 -0.0792 1.0792 2.98E-62
Oxaliplatin FOXA1 BT474 1 -0.0738 1.0738  1.19E-61
QNZ E2F3 HCC1500 0.9999 -0.0672  1.067 1.10E-25
QNZ GAPDH ZR75B 1.0292 -0.0292 1.0584  5.73E-60
Oxaliplatin MAPK1 MCF7 -0.0621 -1.0766 1.0144  2.73E-55
Baicalein GREB1 HCC1419 2.0221 1.0433 0.9788  1.22E-51
Oxaliplatin MAPK1 MDAMBA415 1.1615 0.1834 0.9781 1.44E-51
QNZ E2F3 CAMA1 0.8331 -0.1257 0.9588  7.07E-05
Oxaliplatin MYC HBL100 1 0.0662 0.9338  3.22E-47
JH175 GAPDH ZR75B 0.29 -0.6367 0.9267  1.55E-46
Oxaliplatin  AP1B1  LY2 -0.0936 -0.9751 0.8814  2.52E-42
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however MDAMB468 shows a shift of 1.66, the largest across the entire experiment.
When compared to a null model of other knockdowns and a p-value is computed, this
shift is highly significant (9.18e-144).

Many of the top hits across the cell lines and treatments are specific to treat-
ment with Oxaliplatin, a DNA damage agent. Literature searches indicate the impor-
tance of the MAPK cascade in sensitivity to platinum-based treatment across multiple
tissues[34, 18], a relationship illustrated in the simulated knockdowns for 6 of the top
20 that were ranked. In addition, some of the common markers of pathway activities
that differentiate basal and luminal subtypes in breast cancer appear with Oxaliplatin
(FOXM1, FOXAL, etc), a result that is not surprising given the preferred sensitivity
of platinum-based therapies towards basal tumors. Overall this top list of targets il-
lustrates a good place to start experimental validation of combinational therapies, and
should assist in searching an extremely large number of drug pairs in a more systematic

fashion.
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Chapter 6

Conclusion

6.1 Conclusions

As technological advances have increased the amount of data produced by
single experiments to thousands of gigabytes, it’s becoming increasingly clear the bot-
tleneck in making clinically relevant discoveries is distilling this information to under-
standable levels. The overall approach of PARADIGM aims to provide an intuitive
and scalable framework to understand these data in biologically relevant contexts in a
patient-specific manner. Combining the PARADIGM engine with the power of the Su-
perPathway’s representation of the cellular interactome offers an unprecedented ability
to understand the heterogeneity that exists within cancer. This method also moves us
away from preconceived curated pathway models that contain large amounts of study
bias and towards models that can accommodate the complexities of cellular signaling

and transcription networks. This is particularly critical in cancer where much of the
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misregulation occurs by bypassing standard cellular protective mechanisms, the un-
derstanding of which is necessary for understanding which therapies may be effective.
The PARADIGM simulated knockdown model will aid our thinking about combina-
tional therapies in help refine pathway models as functional testing begins. Overall
PARADIGM’s greatest strength is the extremely powerful and highly extensible engine
that is provided to model biology in intuitive ways that reduce the time it takes to test

biological phenomenon in a computational framework.

6.2 Future Expansions

Despite all of the work done to date, there are many enhancements to PARADIGM
that should increase our modeling resolution to provide more accurate results. The in-

corporation of the additional measurements currently taken about a particular cancer
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is still necessary to move to a more accurate model within PARADIGM. These include
DNA Methylation from the Illumina methylation arrays, mutational information from
sequencing, microRNA levels, and proteomics assays. Each of these datatypes presents
unique challenges to modeling that must be overcome, and one example of how we might
model methylation data can be seen in Figure 6.1.

For example, “driver” mutations within cancer are typically viewed as hitting
two types of proteins, tumor suppressors and oncogenes. If a mutation hits a tumor
suppressor, the typical result is to inactivate the protein so that it can no longer perform
its function. When we go to model these types of interactions in PARADIGM, we will
want to assume mutations to tumor suppressors are large negatively activating observa-
tions. However, when mutations hit oncogenes, they typically hit a consistent domain
across multiple patients and tumors, and generally cause the protein to be constitutively
activated. This would require modeling a large positively activation observation for the
protein that contains the mutation. In addition, there are a vast number of “passenger”
mutations that will be carried clonally in the tumor genome with the small number of
“driver” mutations. It may be possible to distinguish these two classes of mutations
using PARADIGM by sorting passengers into irrelevant pathways, with drivers only
appearing in cancer-dependent pathways.

MicroRNAs (miRNAs) present another technical challenge to modeling within
PARADIGM. It is clear that a single miRNA has the potential to modulate the tran-
script abundance of hundreds of different proteins. Simply attempting to add miRNA

levels to the model will likely result in highly linked networks that are no longer com-
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putationally tractable, and it may be necessary to find functional subsets of miRNA
targets that can be grouped together.

With the recent advances in sequencing technology, it’s rapidly becoming af-
fordable to sequence the entire genome and transcriptome of a cancer sample. Al-
though pathway modeling is generally not restricted to a particular type of data used
for observational variables, all of the work to this point has been done on array-based
technologies. These technologies provide measurements of RNA and DNA abundance
in relative light intensities, allowing researchers to compare these between samples af-
ter standard normalization techniques. Moving away from array-based measurements
into sequencing-based measurements is going to require modifying these normalization
techniques, but will ultimately provide a higher resolution of the biology and should
be capable of better informing the model. More importantly, sequencing-based mea-
surements allow modeling of gene fusions, splice variants, and allele-specific alterations
which may modify the underlying pathway structure. For example, despite our abil-
ity to identify FOXMI1 as a critical transcription factor in ovarian cancer, it is clear
that we will never be able to fully elucidate the mechanism of misregulation without
isoform-specific transcript levels provided by RNA-seq.

Sequencing data also may enable the ability to model allele-specific variations
and potential gene fusions that result in dysregulated pathways. Linking the results of
sequence analysis pipelines like BamBam, which can be used to detect allele specific
variations, to the pathway model may provide interesting evidence that helps proba-

bilistically explain discrepancies in the pathway. In order to model each allele, it will
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Figure 6.2: Allele and Isoform Specific Factor Graph Representation. An example of
how we might represent a gene (“GENE1”) with allele-specific data and two isoforms.
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be necessary to expand our current “central dogma” representation to an allele-specific
dogma. This new model will have genome, mRNA, and protein nodes specific to each
allele represented. An example of what this representation might look like is shown in
figure 6.2. If BamBam identifies an allele specific mutation, PARADIGM can dynami-
cally expand the standard dogma to this new variant, allowing inference on each allele
and eventually trying to consolidate those alleles at the active protein node. By linking
this information with functional mutation algorithms being developed by collaborators,
PARADIGM can further expand this to remove or create direct interactions depending
on the mutational type. For example, if a mutation is detected that might disable a
substrate binding site, PARADIGM could disconnect the appropriate interactions in an
attempt to consolidate the data and increase the likelihood of the model.

Beyond allele-specific variations, transcriptome sequencing data will allow PARADIGM
to identify gene fusions and splice-specific isoforms. As a simplistic initial analysis, we
can take the genes fused and form a new network with the union of the two pathways
in which each gene appears. This new pathway will represent the potential chimeric
function of this new protein, and we can assess the validity of this pathway compared
to each of the individual pathways by comparing the likelihood of the data given the
pathway structure. In addition, since splice variants are already annotated in our path-
way models, having splice-specific data we can attach will allow us to more accurately
represent the observational nodes for those isoforms. The combination of these new
types of data will hopefully build on PARADIGM’s ability to identify critical pathways

within each tumor.
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6.3 Final Thoughts

As we begin to unravel the molecular origin of each cancer, it becomes clear
that despite their shared hallmarks, no two cancers are misregulated using the same
combination of genes. Establishing molecular fingerprints for each tumor from pathway
models such as Paradigm is the only way to sanely approach treatment as we move
towards the future of personalized medicine. Despite the early stage, having the com-
putational power to simulate response to therapy on an individual basis should prove to
vastly increase the speed at which therapies are developed and tested. This excitement
of a new era where discovery and treatment are more closely coupled may prove to be

the method by which the war on cancer is finally won.
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