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Abstract

This retrospective cohort study examined associations of autism spectrum disorder (ASD) with 

prenatal exposure to major fine particulate matter (PM2.5) components estimated using two 

independent exposure models. The cohort included 318,750 mother-child pairs with singleton 

deliveries in Kaiser Permanente Southern California hospitals from 2001-2014 and followed 

until age five. ASD cases during follow-up (N=4559) were identified by ICD codes. Prenatal 

exposures to PM2.5, elemental (EC) and black carbon (BC), organic matter (OM), nitrate (NO3
−), 

and sulfate (SO4
2−) were constructed using (i) a source-oriented chemical transport model 

and (ii) a hybrid model. Exposures were assigned to each maternal address during the entire 

pregnancy, first, second, and third trimester. In single-pollutant models, ASD was associated with 

pregnancy-average PM2.5, EC/BC, OM, and SO4
2− exposures from both exposure models, after 

adjustment for covariates. The direction of effect estimates was consistent for EC/BC and OM, 

and least consistent for NO3
−. EC/BC, OM and SO4

2− were generally robust to adjustment for 

other components and for PM2.5. EC/BC and OM effect estimates were generally larger and 

more consistent in the first and second trimester and SO4
2− in the third trimester. Future PM2.5 

composition health effects studies might consider using multiple exposure models and a weight of 

evidence approach when interpreting effect estimates.

Graphical Abstract
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PM2.5; PM2.5 chemical components; autism spectrum disorders; prenatal exposures; exposure 
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INTRODUCTION

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized 

by social communication impairments, sensory disturbances and repetitive behaviors with 

restricted interests; approximately one-third have intellectual disability 1-4. ASD imposes 

substantial lifetime social and economic costs on affected families and communities 5. In the 
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United States, lifetime cost of supporting an individual with ASD with intellectual disability 

is an estimated $2.4 million 6. Early etiologic studies on ASD focused on the role of genetic 

risk factors because there is high heritability. However, only 20% of diagnoses are due 

to spontaneous single gene or chromosomal mutations 7,8; the remaining causes are likely 

multifactorial.

A growing number of epidemiological studies have reported associations between prenatal 

exposure to particulate matter (PM) with aerodynamic diameter < 2.5 μm (PM2.5) and 

increased risk for ASD 9-11. In all prior studies on this relationship, PM2.5 has been 

considered as a homogenous pollutant, but in reality PM2.5 is comprised of a heterogeneous 

mixture of solid and liquid particles with varying chemical composition that reflects sources 

of particles and may determine toxicity 12-16. Elemental carbon/black carbon (EC/BC), 

organic matter (OM), nitrate (NO3
−), and sulfate (SO4

2−) are the major components 17. 

Understanding the effects of different chemical components of PM2.5 on ASD risk could 

lead 1) to better understanding of mechanisms underlying PM effects on the brain and 

2) to better prevention strategies, improved health impact assessments, and potentially to 

source-specific ambient air quality standards.

In recent years, exposure assessment methods have been developed to characterize the PM2.5 

composition at fine spatial and temporal resolution. Several models for estimating PM2.5 

composition have been developed and applied to studying mortality but results have not 

been consistent 14,18-22. This inconsistency might be explained in part by methodological 

differences in exposure assessment methods 23-27. In the current study, we used exposure 

component estimates from two independent exposure models: (i) a source-oriented chemical 

transport model (CTM) and (ii) a hybrid model that uses a chemical transport model, 

satellite observations, and ground-based measurements. The aim of this study was to assess 

the association of ASD with prenatal exposure to PM2.5 and its major components, including 

EC/BC, OM, NO3
−, and SO4

2−, at residences in a large population-based pregnancy cohort. 

In addition, we assessed the consistency of associations with components estimated with 

each of the two modeling approaches.

MATERIALS AND METHODS

Study Population

This population-based retrospective pregnancy cohort study included mother-child pairs of 

singleton deliveries at Kaiser Permanente Southern California (KPSC) hospitals between 

January 1, 2001 and December 31, 2014. KPSC is a large integrated healthcare system with 

over 4.5 million members across Southern California. KPSC membership is diverse and 

broadly representative of the region’s sociodemographic characteristics 28. Maternal social 

and demographic characteristics, pregnancy health information, and maternal residential 

address history were extracted from KPSC’s well-established, integrated electronic medical 

records (EMR) system. Maternal addresses during pregnancy were geocoded using ArcGIS, 

and geocodes were assessed for exposure assignment suitability 29. Addresses based only 

on street name, 5-digit postal code, locality, or administrative unit were considered too 

uncertain to be geolocated into the correct grid used for exposure assignments.
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Singleton births with KPSC membership at age 1 (n=370,723) were eligible to be included 

in this study. Children were routinely screened for potential ASD risk starting at age 18 

months during regular well-child visits at KPSC. A total of 51,973 births was excluded due 

to 1) missing gender, maternal race/ethnicity and age at delivery, implausible age of delivery 

or birth weight (n=666); 20) maternal age at delivery (n=159); 3) incomplete maternal 

residential address history in pregnancy or geocodes not suitable for exposure assignment 

(n=51,148). The final data analysis included 318,750 mother-child pairs with complete data 

on residential estimates of PM2.5 composition exposures. Derivation of study sample size is 

shown in Figure S1 in the supplement.

Both KPSC and University of Southern California Institutional Review Boards approved this 

study with waiver of individual subject consent.

Outcome ASD

The outcome was ASD diagnosis before age 5. Children were followed from birth through 

the EMR until clinical diagnosis of ASD, loss to follow-up, or age 5, whichever came 

first. ASD diagnosis was identified by International Classification of Diseases (ICD) - 9 

codes 299.0, 299.1, 299.8, 299.9 for EMR records before October 1, 2015 (date of KPSC 

implementation of ICD-10 codes) or ICD-10 codes F84.0, F84.3, F84.5, F84.8, F84.9 for 

EMR records after October 1, 2015. Codes from at least two separate visits were required to 

establish an ASD diagnosis, as described previously 30-33.

Exposures to PM2.5 and Components

Air pollution exposure estimation was conducted using two methods: i) Source-Oriented 

Chemical Transport Model (SO-CTM) developed by University of California Davis/

California Institute of Technology (UCD/CIT); and ii) hybrid model that integrates CTM 

outputs, satellite observations, and ground-based measurements developed by Atmospheric 

Composition Analysis Group now at Washington University in St. Louis (WUACAG). We 

estimated ASD associations with PM2.5 and four major PM2.5 chemical components (EC 

and conceptually equivalent BC; OM, the mass of oxygen, hydrogen, and nitrogen together 

with organic carbon 34; NO3
−; and SO4

2− that are available from both exposure models.

Monthly estimates of PM2.5, BC, OM, NO3
−, and SO4

2− with a 1 km spatial resolution 

were obtained from the WUACAG hybrid model (version V4.NA.02) 35. This modelling 

framework integrates satellite observations of aerosol optical depth from multiple satellite 

products (MISR, MODIS Dark Target, MODIS and SeaWiFS, Deep Blue, and MODIS 

MAIAC) and PM2.5 simulated by GEOS-Chem (http://geos-chem.org) chemical transport 

model with 12.5 km resolution to estimate ground-level mass concentrations of PM2.5. 

Ground level observations of PM2.5 were then incorporated via geographically weighted 

regression to produce final PM2.5 surfaces for North America between 2000 and 2016 

at 1 km × 1 km resolution. Later, GEOS-Chem chemical transport model simulation 

was used to partition this PM2.5 into seven PM2.5 chemical components (i.e., BC, NO3
−, 

OM, ammonium [NH4
+], SO4

2−, dust, and sea-salt). These PM2.5 components were then 

statistically fused into corresponding ground-level measurements, to produce a spatially 

complete representation over North America for the study period. The model performances 
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of monthly estimates over the United States assessed by 10-fold cross validations were 

highest for SO4
2− (R2 = 0.90, bias= 0.03 μg/m3, root mean standard deviation =0.3 μg/m3), 

followed by NO3
− (R2 = 0.78, bias= 0.01 μg/m3, RMSD= 0.3 μg/m3), BC (R2 = 0.68, bias= 

0.01 μg/m3, RMSD= 0.1 μg/m3), OM (R2 = 0.55, bias= −0.01 μg/m3, RMSD= 0.6 μg/m3).

BC was available as EC from the SO-CTM model. Monthly estimates of PM2.5, EC, OM, 

NO3
−, and SO4

2− with a 4 km spatial resolution were obtained from SO-CTM model for 

the time between 2000 and 2014. This model was developed for the California region only. 

Calculated meteorological fields and emissions estimates for different sources were used to 

predict airborne PM concentrations. Using the extensive emissions inventory in California, 

the model calculations track the mass and number concentrations of PM components in 

particle diameters ranging from 0.01 to 10 μm through calculations that describe emissions, 

transport, diffusion, deposition, coagulation, gas- and particle phase chemistry, and gas-to-

particle conversion 36,37. Good correlations between predictions and measurements (r > 

0.8) were demonstrated for many of the PM2.5 species at most of the monitoring stations, 

particularly for the monthly, seasonal, and annual averages. Monthly SO-CTM predicted 

PM2.5 EC, OM, NO3
−, and SO4

2− was correlated with measurements with r = 0.96 (bias= 

−0.05 μg/m3, root mean squared error, RMSE= 0.17 μg/m3), 0.97 (bias= 0.11 μg/m3, 

RMSE= 0.46 μg/m3), 0.75 (bias= −1.24 μg/m3, RMSE= 2.16 μg/m3), and 0.67 (bias= −0.81 

μg/m3, RMSE= 1.75 μg/m3), respectively, in the Los Angeles Basin.

Exposures to PM2.5 and these selected components were assigned to maternal address 

during the entire pregnancy, first trimester, second trimester, and third trimester. Monthly 

exposure estimates that did not correspond exactly to a trimester were assigned 

proportionally based on overlap of the trimesters. Exposures were also time-weighted to 

account for changes of maternal addresses during pregnancy.

Covariates

Covariates were selected a priori based on past literature on air pollution exposures and 

ASD 3,30,38, including child sex, maternal parity, maternal self-reported education and 

race/ethnicity, maternal history of comorbidity [>=1 diagnosis of heart, lung, kidney, or 

liver disease; cancer], maternal age at delivery, median family household income in census 

tract of residence, birth year, and an indicator variable for season (Dry= April-October; 

Wet= November-March)]. Birth year was included as a non-linear term with 4 degrees of 

freedom to adjust for the non-linear relationship between birth year and ASD. Maternal 

pre-pregnancy obesity (BMI ≥ 30 kg/m2) and diabetes during pregnancy were also included 

as covariates, as both were shown to be risk factors for ASD in our study cohort 31.

Statistical Analyses

The associations of ASD with PM2.5 and its major components were evaluated using 

Cox-proportional hazard models (HR) and 95% confidence intervals (CI). We first fitted 

single pollutant models. The HRs of the associations were scaled to the interquartile range 

(IQR) increase in concentration of PM2.5 and of each component of PM2.5 during the entire 

pregnancy, so that the population HRs for each pollutant were for conceptually similar 

pollutant increments. Children from families with more than one ASD child were included 
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in the study sample. Standard errors were estimated using robust sandwich estimators to 

control for potential correlation for families. Timing of the exposure and associated windows 

of vulnerability are important issues for air pollution neuro-epidemiology, because they have 

potential to guide preventive interventions. We previously reported that increased prenatal 

PM2.5 exposure during the first two trimesters (up to 27 gestational weeks) of pregnancy was 

associated with subsequent risk of ASD in childhood 39. Susceptible windows of exposure 

to PM2.5 components may be different from those for PM2.5. Therefore, we fitted models 

with trimester specific average exposures of each component. To evaluate the independence 

of PM2.5 and component associations, we adjusted the single component models for the 

total PM2.5. So that estimates were comparable across trimesters and entire pregnancy, 

the trimester-specific estimates were also scaled to the entire pregnancy interquartile range 

(IQR) increase in concentration for PM2.5 and each component of PM2.5. We also subtracted 

each component’s mass separately from PM2.5 mass (denoted as ‘remainder PM2.5’) and 

included the ‘remainder PM2.5’ in the model. Because the results of adjustment for total 

PM2.5 and for remainder PM2.5 were very similar, for parsimony we have shown only 

the adjustment for remainder PM2.5, because unlike PM2.5, the remainder PM2.5 does not 

include the component. We assessed the consistency of the direction and magnitude of 

associations between ASD and specific PM2.5 components across both exposure modeling 

strategies. We also examined correlations of components in each exposure model; in 

exploratory analyses we ran multi-component models. All models were adjusted for the 

covariates described above. The proportional hazards assumption of the Cox proportional 

hazard model was assessed using the Schoenfeld residual plot. No clear non-random patterns 

against follow-up time were observed.

All statistical analyses were performed in R Statistical Software (v3.5.2; R Core Team 

2021).

RESULTS

Participant demographics are shown in Table 1. Among the cohort, 4559 (1.4%) were 

diagnosed with ASD before age 5. Boys were over 4 times more likely to have ASD 

(n=3703) than girls (n=856). Children diagnosed with ASD were more likely to have 

older, nulliparous mothers with maternal comorbidities, pre-pregnancy diabetes, and pre-

pregnancy obesity than children who were not diagnosed with ASD.

The relative contribution of components to the total PM2.5 mass during pregnancy is shown 

in Figure 2 in the supplement. These contributions varied between the two models. For 

the SO-CTM model, the four major components (excluding “other”) accounted for 60% of 

PM2.5 mass. For the hybrid model, these components accounted for 83.5%. OM accounted 

for 41.3% of the hybrid model predicted PM2.5 but only for 17.8% of the SO-CTM PM2.5. 

BC accounted for 12.2% of hybrid predicted PM2.5; EC for 4.6% of SO-CTM PM2.5. In 

contrast, the contributions of NO3
− and SO4

2− to the hybrid PM2.5 were a little smaller than 

the proportion contributed to the SO-CTM PM2.5.

The estimated mean (14.2) and IQR (5.6) μg/m3 of the predicted SO-CTM PM2.5 differed 

from the hybrid model (15.2; 3.7 μg/m3). (See Figure 1). The greatest discrepancy between 
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the models was for carbon, for which the EC mean (0.7 μg/m3) and IQR (0.4 μg/m3) 

were about half as large as for BC (mean 1.9 (0.8) μg/m3). EC and BC represent similar 

components; there is no universally agreed conversion, but the two-fold difference probably 

represents both differences between mass of EC and BC, and differences between modeling 

approaches. SO-CTM OM mean 2.5 (IQR 1.4) μg/m3 also differed markedly from hybrid 

OM, 6.3 (2.0) μg/m3; SO-CTM NO3
− mean 3.6 (IQR 2.1) μg/m3 differed a little from 

hybrid NO3
−, 3.1 (1.2) μg/m3; and SO-CTM SO4

2− mean 1.7 (IQR 0.5) μg/m3 differed 

minimally from hybrid SO4
2− (1.5 (0.5) μg/m3. The exposure distribution during each 

trimester window for PM2.5 and its major components was similar to the pregnancy average 

distribution (Supplementary Figures 3A-3C).

In each exposure modeling approach, pregnancy-average PM2.5 was highly correlated with 

each of its components, highest with NO3
− (R=0.87) and lowest with SO4

2− (0.69; Table 

2). Between the components, correlations were low to moderate within each exposure 

model, with the exception of SO-CTM EC and OM (R=0.85). Between exposure models, 

the correlation for PM2.5 was 0.80. Components from the two models were moderately 

correlated (EC with BC 0.61, OM 0.63, SO4
2− 0.46), with the exception of NO3

− (0.78). The 

patterns of correlations for PM2.5 and its major components in each trimester were similar to 

those observed during the entire pregnancy (Supplementary Tables 1-3).

The pregnancy-average ASD HR point estimates scaled per IQR increase corresponding 

to each component are shown in Table 3. Adverse associations with OM and SO4
2− were 

observed using either exposure model and effect estimates across models were generally 

similar after adjustment for the remainder PM2.5. The EC HR 1.12 (95% CI 1.07, 1.18) 

using the SO-CTM model was larger than the equivalent BC (1.06; 95% CI 1.02, 1.10), 

using the hybrid exposure model, but CI overlapped. EC effect estimates were robust to 

co-adjustment, BC was attenuated by adjustment for remainder PM2.5. NO3
− was inversely 

associated with ASD in models adjusted for remainder PM2.5 and this was statistically 

significant for the SO-CTM model.

In exploratory models, associations of ASD with each PM component adjusted for all other 

components simultaneously generally were similar to associations adjusted for remainder 

PM2.5, with some exceptions (Table 3). To understand the marked attenuation of the OM 

SO-CTM multicomponent-adjusted exposure estimate, compared with the model adjusted 

for remainder PM2.5, we examined which of the three co-pollutant components was 

responsible for the attenuation of the OM effect, by running 2-component models with 

OM. Adjustment for NO3
− or SO4

2− did not change the OM effect estimate; adjustment for 

EC reduced the OM HR to 0.99 (95% CI 0.92. 1.07), suggesting that it may be an artifact of 

the high correlation of EC with OM (0.85 from Table 2).

Associations of ASD with EC/BC and OM across exposure modeling approaches in 

single pollutant models were similar to the pregnancy-average associations in the first and 

second trimester and were generally robust to adjustment for remainder PM2.5 and other 

components (Supplement Tables 4-6). As during the entire pregnancy, OM was highly 

correlated with EC and adjustment of the OM effect estimate for EC and other components 

resulted in marked attenuation of the HR in the first (to HR 1.02; 95% CI 0.96, 1.08) and 
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second trimester (to HR 1.00; 95% CI 0.94, 1.07). Associations with SO4
2− were stronger 

in the third trimester, moreso for the hybrid model (HR 1.10; 95% CI 1.04, 1.16 in single 

pollutant model robust to co-pollutant adjustment) than for the SO-CTM exposure effect 

estimate.

In single-pollutant models, increased exposures to PM2.5 during the entire pregnancy were 

associated with increased ASD risk (Supplementary Table 7). In two-pollutant models 

the PM2.5 effect estimates were markedly attenuated by adjustment for OM using either 

exposure model; there was an inverse association of PM2.5 with ASD in models adjusted 

for EC (HR 0.92; 95% CI 0.83, 1.02) but not for BC (HR 1.05; 95% CI 0.98, 1.12). 

Effect estimates were similar or larger than in single pollutant models after adjusting for 

other components. ASD associations with single-pollutant PM2.5 were also consistently 

positive using both exposure modeling approaches in each trimester, and associations were 

statistically significant except for the third trimester SO-CTM model. As for the pregnancy 

average exposures, PM2.5 effect estimates were attenuated by adjustment for components, 

especially by EC or OM and in the SO-CTM models.

DISCUSSION

Average exposure to PM2.5 component EC/BC, OM and SO4
2− during pregnancy in a large 

population-based cohort was associated with small increases in ASD risk using both the 

SO-CTM and hybrid exposure models, although estimates from some health models were 

attenuated by adjustment for remainder PM2.5. Associations of prenatal PM2.5 itself with 

ASD were consistently positive using both exposure modeling approaches in single pollutant 

models, but were markedly attenuated in models adjusted for EC and OM. Associations 

using different modeling approaches were generally similar, at least in direction. A notable 

exception was NO3
−, which had very different ASD associations depending on the modeling 

approach. Trimester-specific analysis revealed that EC/BC and OM exposure in the first and 

second trimester had significant associations with ASD; SO4
2− showed stronger associations 

with ASD in the third trimester.

Our results suggest that associations of PM2.5 with ASD previously observed in this 

cohort may be explained by components rather than by total PM2.5 mass 30,39. PM2.5 was 

highly correlated across exposure modeling approaches and showed the most consistent 

positive associations in single pollutant models. However, PM2.5 associations were markedly 

attenuated by adjustment for components, in particular by EC and OM in the SO-CTM 

model and by BC or OM in the pregnancy average and first and second trimester models. 

These components were only moderately correlated with PM2.5 (from Table 2) and the large 

data set provides more confidence that PM2.5 effects were confounded by these components 

and that attenuation of PM2.5 effect estimates was not due to high correlation.

There were differences between the SO-CTM and hybrid modeling approaches that could 

have affected the health associations in both magnitude and direction. For example, 

the SO-CTM model was developed for California only, whereas the hybrid model was 

developed for all North America. The state-specific model might be considered superior 

for this application, because the information available in California may better capture the 
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intra-regional variability of the PM2.5 components. However, the SO-CTM model provide 

estimates at 4km spatial resolution. Primary EC and BC, in particular, have steep spatial 

gradients from major roadway sources, so exposure misclassification might be less in the 

hybrid model with 1km resolution. In contrast, SO4
2−, which occurs as a result of secondary 

formation from precursor sulfur dioxide, has comparatively smoother spatial variation than 

other PM2.5 components, so the spatial resolution should have little impact on the accuracy 

of the exposure assignment from each model. OM includes both primary and secondary 

particles, including emissions from vehicular and industrial fuel combustion and natural 

sources, and secondary organic carbon produced by photochemical reactions of gaseous 

precursors in the atmosphere. A limitation of the current study is that only primary OM from 

the SO-CTM was used in the exposure analysis because predictions of secondary OM were 

judged to be uncertain. This likely explains part of the markedly larger estimated exposure 

from the hybrid model than from the SO-CTM model. Thus, each exposure model has 

qualitative strengths and weaknesses, which are difficult to assess quantitatively.

In spite of the differences between exposure models, we found generally consistent results 

using both models, at least in the direction of the association of components with ASD. An 

exception was NO3
− (which was positively associated in the hybrid model and inversely 

associated in the SO-CTM model). NO3
− prediction is particularly challenging because it 

is largely secondary aerosol, originating from the atmospheric oxidation of NOx (nitrogen 

dioxide, NO2 and nitrous oxide), and in addition is semi-volatile; it is possible that the 

two measurement sites in southern California are insufficient to support accurate NO3
− 

predictions in the hybrid modeling system, and/or some systematic error in the SO-CTM 

predicted NO3
− may have led to bias. Mechanisms for NO3

− associations with autism (either 

protective or increased risk) have not been published in peer-reviewed literature. Further 

investigation is needed to assess the reasons for this divergence in exposure estimates 

between the two models.

The general consistency of associations with other components estimated using different 

exposure methods increases the level of confidence in the observed ASD associations. 

Using different modeling approaches also helps prevent over- or under-interpretation of the 

importance of associations based on a single exposure models. For example, the pregnancy 

average HR for EC (1.12; CI 1.07, 1.18) from Table 3, which was not attenuated by 

adjustment for other components and remainder PM2.5, might be interpreted as robust 

evidence for a causal effect; however, if only the BC hybrid model were used, the conclusion 

might be that effects were confounded by the remainder PM2.5 (with a reduction of HR 

from 1.06 (1.02, 1.10) in the single pollutant BC model HR to 1.03 (0.98, 1.09) after 

adjusting for remainder PM2.5. A few previous studies of other outcomes reported some 

heterogeneity in component effect estimates in terms of statistical significance, magnitude, 

and direction of association, depending on the exposure assessment method used 23-27. 

Modeling components at local spatial scale for epidemiological studies is relatively new 

compared to well validated models of PM2.5. Future PM2.5 composition health effects 

studies might consider using multiple exposure models and a weight of evidence approach 

when interpreting effect estimates of associations.
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There have been few studies on the developmental neurotoxicity of PM2.5 components 40,41, 

compared with a large emerging body of work examining PM2.5 mass 9-11, and none to 

our knowledge has examined the association with ASD risk in children. There has been 

limited prior epidemiological study of neurotoxicity of EC/BC exposure, and results were 

not consistent 42-46. Exposure to prenatal EC/BC or PM2.5 absorbance (a proxy for EC) 

was associated with increased hyperactivity/inattention among adolescents 44 and worse 

memory in urban children 42, no association with childhood cognitive and psychomotor 

development 43, and with verbal IQ in minimally adjusted, but not in fully adjusted models 
45. Rodent studies of EC neurotoxicity (largely from diesel exhaust particles) have also 

been inconclusive 47,48,49,50. Mechanisms for effects are not clear, although several studies 

reported high oxidative potential of EC particles 51-53. EC/BC effects may also be a proxy 

for other co-emissions, such as semi-volatile organic compounds and polycyclic aromatic 

hydrocarbon, that are adsorbed onto the EC core 54-58. To the best of our knowledge, 

neurodevelopmental effects of prenatal OM exposure has not been examined either in 

epidemiological or animal studies. The pregnancy average and third trimester association 

with SO4
2− is also novel. There is little SO4

2− in Southern California; emissions from ships 

in the Long Beach/Los Angeles port complex are a major source.

Our study has several strengths. First, it leveraged a large, diverse pregnancy cohort with 

standard diagnostic criteria for ASD. The KPSC cohort is representative of the Southern 

California population 59, and thus results are relevant to similar populations across the 

United States; the regulated air pollutants in the region (with the exception of SO4
2−) 

encompass most of the entire range and mixture across the U.S. Exposure was assigned 

from validated prediction models, accounting for change of address during pregnancy. ASD 

associations with PM components were adjusted for key confounders such as maternal 

pre-pregnancy health status, season of conception, and year of birth, obtained from the 

high quality KPSC EMR. Finally, the multi-pollutant modelling strategies accounted for 

effects of the remainder PM2.5. We acknowledge some limitations. Mother’s time-activity 

patterns were not available for this analysis. Knowledge of the accuracy and uncertainty of 

the exposure model estimates of PM chemical components is limited by the much smaller 

observational database than is available for PM2.5 mass.

In summary, prenatal exposure to some PM2.5 component EC/BC, OM, and to a lesser 

extent SO4
2−, were associated with increased ASD risk. However, the strength and statistical 

significance of some effect estimates differed between exposure models. The results of 

this study are consistent with the emerging literature indicating that different exposure 

assessment models may be responsible for some of the heterogeneity in effect estimates 

across studies using different PM composition exposure models. Unlike PM2.5, which has 

been studied in epidemiological studies for decades, models for most PM2.5 components for 

use in epidemiological studies are only recently available. Better understanding of the role of 

PM2.5 components and their sources could lead to targeted regulatory interventions to reduce 

the health effects of particulate air pollution. Eventually, component-specific air pollution 

control policies merit consideration in regulatory strategies for reducing adverse effects of 

PM2.5 60.
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SYNOPSIS

This study provided novel evidence of ASD risk resulting from prenatal exposure to fine 

particle components.
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Figure 1. 
The distribution of PM2.5 and its major components during entire-pregnancy based on A) 

source-oriented chemical transport model and B) hybrid model, during the study period from 

2001 – 2014.
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Table 1.

Characteristics of children, with and without autism spectrum disorder (ASD)

Children, No. (%) or median (interquartile range)

Characteristics Overall
(n =318 750)

With ASD
(n= 4559)

Without ASD
(n= 314 191)

Sex; N (%)

 Male 163 181 (51.2) 3703 (81.2) 159 428 (50.7)

 Female 155 569 (49.8) 856 (18.8) 154 763 (49.3)

Follow-up year after birth, median [IQR*], years 4.0 [4.0, 4.0.] 3.0 [2.3, 3.7] 4.0 [4.0, 4.0]

Maternal age at delivery, median [IQR*], years 30.4 [26.3, 34.3] 31.3 [27.5, 35.2] 30.4 [26.2, 34.3]

Parity; N (%)

 0 111 981 (35.1) 1844 (40.4) 110 137 (35.1)

 1 104 561 (32.8) 1495 (32.8) 103 066 (32.8)

 >2 84 176 (26.4) 903 (19.8) 83 273 (26.5)

 Unknown 18 032 (5.7) 317 (7.0) 17 715 (5.6)

Maternal Education; N (%)

 High school or lower 112 096 (35.2) 1335 (29.3) 110 761 (35.3)

 Some college 94 524 (29.7) 1477 (32.4) 93 047 (29.6)

 College graduate or higher 109 087 (34.2) 1713 (37.6) 107 374 (34.2)

 Unknown 3043 (1.0) 43 (0.7) 3009 (1.0)

Household annual incomea; N (%)

 <$30,000 24 027 (7.5) 325 (7.1) 23 710 (7.5)

 $30,000-$49,999 100 575 (31.6) 1436 (31.5) 99 139 (31.6)

 $50,000-$69,999 98 015 (30.7) 1415 (31.0) 96 593 (30.7)

 $70,000-$89,999 55 611 (17.4) 801 (17.5) 54 816 (17.4)

 > $90,000 40 512 (12.7) 582 (12.8) 39 933 (12.7)

Race/ethnicity; N (%)

 Non-Hispanic white 81 050 (25.4) 956 (21.0) 80 094 (25.5)

 Non-Hispanic black 29 773 (9.3) 477 (9.8) 29 326 (9.3)

 Hispanic 161 414 (50.6) 2300 (50.4) 159 114 (50.6)

 Asian/Pacific Islander 39 974 (12.5) 744 (16.3) 39 230 (12.5)

 Other 6539 (2.1) 112 (2.5) 6427 (2.0)

Any history of maternal comorbidityb; N (%) 46 717 (14.6) 839 (18.4) 45 878 (14.6)

Pre-pregnancy diabetesc; N (%) 10 248 (3.2) 242 (5.3) 10 006 (3.2)

Pre-pregnancy obesityd; N (%) 53 354 (16.7) 1049 (23.0) 52 305 (16.6)

Year of birth, N (%)

 2001-2007 152 750 (47.9) 1802 (39.5) 164 198 (52.2)

 2008-2014 166 000 (52.1) 2757 (60.5) 149 993 (47.2)

*
Abbreviations: IQR, interquartile range.

a
Census tract level median household income.

b
>=1 diagnosis of heart, lung, kidney, or liver disease; cancer.
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c
Type I and Type II diabetes diagnosed before pregnancy.

d
Pre-pregnancy BMI>=30
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Table 2.

Pearson correlation matrix of entire-pregnancy estimates of PM2.5, EC/BC, OM, NO3
−, and SO4

2− from a 

source-oriented chemical transport model and a hybrid model.

UCD/CIT SO-CTM Model WUACAG Hybrid Model

PM2.5 EC OM NO3
− SO4

2− PM2.5 BC OM NO3
− SO4

2−

UCD/CIT SO-CTM Model

PM2.5 1.00

EC 0.75 1.00

OM 0.74 0.85 1.00

NO3
− 0.87 0.55 0.44 1.00

SO4
2− 0.69 0.40 0.31 0.47 1.00

 

WUACAG Hybrid Model

PM2.5 0.80 0.68 0.67 0.67 0.46 1.00

BC 0.56 0.61 0.56 0.43 0.26 0.78 1.00

OM 0.57 0.59 0.63 0.35 0.32 0.81 0.48 1.00

NO3
− 0.82 0.65 0.59 0.78 0.46 0.91 0.61 0.62 1.00

SO4
2− 0.52 0.34 0.27 0.43 0.46 0.59 0.17 0.47 0.59 1.00
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Table 3.

Associations of ASD with entire-pregnancy average exposures to EC/BC, OM, NO3
−, and SO4

2− from a 

source-oriented chemical transport model and a hybrid model.

UCD/CIT SO-CTM Model WUACAG Hybrid Model

Primary
Exposure
of Interest

Adjusted
Pollutant (s) HR (95% CI)

Primary
Exposure
of Interest

Adjusted
Pollutant (s) HR (95% CI)

EC Single pollutant 1.12 (1.07, 1.18) BC Single pollutant 1.06 (1.02, 1.10)

Remainder PM2.5 1.15 (1.09, 1.23) Remainder PM2.5 1.03 (0.98, 1.09)

OM+NO3
−+SO4

2− 1.13 (1.06, 1.21) OM+NO3
−+SO4

2− 1.04 (0.98, 1.09)

OM Single pollutant 1.09 (1.04, 1.15) OM Single pollutant 1.08 (1.03, 1.13)

Remainder PM2.5 1.09 (1.03, 1.16) Remainder PM2.5 1.08 (1.02, 1.15)

EC+NO3
−+SO4

2− 1.02 (0.95, 1.10) BC+NO3
−+SO4

2− 1.05 (0.99, 1.13)

NO3
− Single pollutant 0.85 (0.79, 0.93) NO3

− Single pollutant 1.05 (1.00, 1.09)

Remainder PM2.5 0.76 (0.70, 0.84) Remainder PM2.5 0.98 (0.92, 1.05)

EC+OM+SO4
2− 0.79 (0.72, 0.86) BC+OM+SO4

2− 0.97 (0.91, 1.03)

SO4
2− Single pollutant 1.05 (1.00, 1.11) SO4

2− Single pollutant 1.08 (1.02, 1.14)

Remainder PM2.5 1.04 (0.99, 1.10) Remainder PM2.5 1.05 (0.99, 1.12)

EC+OM+NO3
− 1.05 (0.99, 1.10) EC+OC+NO3

− 1.06 (0.99, 1.13)

*
All the models were adjusted for child sex, maternal race/ethnicity, maternal age at delivery, parity, education, maternal comorbidities, household 

income (census tract level), birth year (non-linear), season (wet/dry), and pre-pregnancy diabetes. The hazard ratios were scaled to the inter-quartile 

(IQR) increase in concentration of each air pollutant during pregnancy. Based on UCD/CIT SO-CTM, the IQRs (μg/m3) for PM2.5, EC, OM, 

NO3−, and SO42− during pregnancy were 5.56, 0.38, 1.38, 2.07, and 0.52, respectively. Based on WUACAG Hybrid Model, the IQRs (μg/m3) for 

PM2.5, BC, OM, NO3−, and SO42− during pregnancy were 3.73, 0.84, 1.98, 1.15, and 0.50, respectively.
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