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ABSTRACT

Adaptive-rank Fusion for Sentiment Analysis:

end-to-end training and generalization behavior

by

Keon Yong Lee

In multimodal sentiment analysis, a model learns to predict one’s opinion towards a certain entity after

observing data from multiple sources. As humans merge information from all five senses to read someone,

the model needs a proper fusion mechanism to utilize the data from multiple sources. Tensor fusion

networks have been proposed and have shown to perform well for multimodal sentiment analysis. However,

it suffers from the curse of dimensionality because they use the full tensor format. As a solution, low-rank

fusion networks have been proposed, but they require us to pre-determine the rank, which is an ill-posed

problem. Instead, we propose adaptive-rank fusion networks that can learn the rank in a data-driven way.

We compare the three models in terms of accuracy, complexity, and runtime. Then, we test how

adaptive-rank fusion networks react to being trained with a subset of the original training dataset.
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1 Introduction

Deep neural networks are demonstrating the states of art performance in many machine learn-

ing tasks such as computer vision and natural language processing. However, billions of model

parameters in modern deep neural networks are becoming problems in training and deploying on

devices with limited-resources such as mobile phones. Additionally, every floating point operations

(FLOPs) use electrical power and potentially release some carbon, causing environmental concerns

as well. Therefore, the motivation to train smaller networks that can perform comparably to the

larger networks is higher than ever.

A tensor fusion network is a deep neural network that is designed to process input features from

multiple modalities [17]. Humans express their feelings through various channels including voice and

facial expressions. Therefore, tensor fusion networks that can utilize information from multiple input

channels through tensor fusion have demonstrated excellent performance in the machine learning task

of understanding human opinions. A downside of tensor fusion networks is that they suffer from

the curse of dimensionality, which worsens as the number of input modalities increases [6]. The

low-rank fusion network is proposed to remedy the curse, but the rank of its fusion layer should be

pre-determined, which is an ill-posed problem [3],[12].

The low-rank tensor decomposition of the model parameters is one of many proposed com-

pression methods for the deep neural networks [1],[2],[6],[7],[9],[10]. Most low-rank compression

algorithms for deep neural networks approximate the model parameters of the pre-trained models

into low-rank factors using tensor decomposition to remove redundancies in the parameters while

compromising on generalization performance [7]. We can set the rank of tensor decomposition to

control the trade-off between the accuracy and the complexity. Can we rather learn the rank of

tensor decomposition from data in an end-to-end training fashion? [2] proposed a training algorithm

with a Bayesian approach to the automatic rank determination for tensorized deep neural networks.

We propose adaptive-rank fusion networks and modify and adopt the training algorithm to learn the

rank of fusion layer through a data-driven approach.

We compare adaptive-rank fusion networks, tensor fusion networks, and low-rank fusion net-

works in terms of accuracy, number of parameters, training time, and test time. Interestingly, com-

pressed adaptive-rank fusion networks perform better than uncompressed tensor fusion networks.

Moreover, we test the generalization performance of adaptive-rank fusion networks and witness that,

compared to other two networks, they are more immune to being trained with a subset of original

training dataset. Finally, we try to find the explanation for these findings from the information

theory.

1



2 Background

2.1 Tensor

Tensors are multi-way collections of numbers that can be thought of as matrices extended to

higher dimensions [3],[12]. The number of dimension of a tensor is called the order, also known as

ways or modes. Therefore, scalars can be considered as zeroth-order tensors, vectors as first-order

tensors, and matrices as second-order tensors. Tensors with three or more modes are referred to as

higher-order tensors. The scalars are denoted by lower case letters, e.g., a, the vectors by boldface

low case letters, e.g., a, the matrices by boldface upper case letters, e.g., A, and the higher-order

tensors by boldface Euler script, e.g., A. The i-th element of the vector is denoted by a(i), the

(i, j)-th element of the matrix by A(i, j), and the (i, j, k)-th element of the tensor by A(i, j, k) given

that A ∈ RI×J×K . Fibers refer to the one-dimensional sub-arrays of tensors and slices represent the

two-dimensional sub-arrays of tensors. For the 3-way tensor A, A(:, j, k) is a mode-1 fiber, A(i, :, k)

is a mode-2 fiber, and A(i, j, :) is a mode-3 fiber. Its slices are given as A(:, :, k), A(:, j, :), and

A(i, :, :) [3],[12]. More generally, for N -way tensors, their n-way subsections are created by fixing all

but n indices.

2.2 Tensor Computations

Let us go over some tensor computations that are used in this paper.

2.2.1 Tensor inner Product

The inner product between an N -way tensor A ∈ RI1···×IN and an M -way tensor B ∈

RI1×···×IN×···×IM is defined as

A ·B =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

A(i1, ..., iN )B(i1, ..., iN , :, ..., :) (1)

where the resulting tensor is an (M − N)-way tensor in RIN+1×···×IM . Therefore, the result is a

scalar if M = N .

2.2.2 Tensor-matrix Product

The n-mode product between an N -way tensor A ∈ RI1×···×In×···×IN and a matrix B ∈ RJ×In

is denoted as A ×n B where its output is an N -way tensor in RI1×···×In−1×J×In+1×···×IN [3],[12].
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Format CP TT Full

Memory Cost R
∑N

n=1 In
∑N

n=1 Rn−1InRn

∏N
n=1 In

Table 1: The memory cost of storing A ∈ RI1×I2×···×IN in CP format with the CP rank of R (CP),
in TT format with the TT rank of (R0, R1, ..., RN ) (TT), and in full tensor format (Full).

Elementwise, it is given as

(A×n B)(i1, ..., in−1, j, in+1, ..., iN ) =

In∑
in=1

A(i1, ..., iN )B(j, in). (2)

Intuitively, each mode-n fiber of A is multiplied by B. Note that if J = 1, this becomes a tensor-

vector product that results in an (N − 1)-way tensor in RI1×···×In−1×In+1×···×IN .

2.3 Tensor Decomposition

The motivation behind tensor decomposition comes from matrix factor analysis, which breaks

down a matrix into two factor matrices that contain latent information [12]. Formally, a matrix

M ∈ RI×J can be described by two matrices A ∈ RI×R and B ∈ RJ×R as M = AB⊤, where R

is the number of latent variables or the rank of M. This type of matrix factorization is called the

matrix rank decomposition. Additionally, M can be approximated by or compressed to M̂ with a

low-rank [12].

2.3.1 Rank-1 Tensor

An N -way tensor A ∈ RI1×···×IN is a rank-1 tensor if it can be expressed as the outer product

of N vectors:

A =

N⊗
n=1

u(n) (3)

where u(n) ∈ RIn are called the factor vectors [3],[12]. Elementwise,

A(i1, ..., iN ) = u(1)(i1) · · ·u(N)(iN ). (4)

Note that a rank-1 tensor can be stored with linearly increasing
∑N

n=1 In compared to the exponen-

tially increasing
∏N

n=1 In elements of its full tensor form.

2.3.2 CP Decomposition

CP decomposition expresses an N -way tensor A ∈ RI1×···×IN as the sum of R, the rank-1

3



(a) (b)

(c)

Figure 1: The representations of (a) full tensor, (b) CP, and (c) TT decomposition. In (b), the
vectors in different colors represent U(n)(:, r) from different factor matrices. In (c), the purple lines
and squares indicate different G(n)(:, in, :) (original figures from [2]).

tensors [3],[12]:

A =

R∑
r=1

N⊗
n=1

U(n)(:, r) (5)

where R is called the CP rank of A and U(n) ∈ RIn×R. A tensor in CP format can be stored with

R
∑N

n=1 In elements (Table 1).

The minimum value of R that achieves equation (5) is called the rank of A [3],[12]. Determining

the rank of a given tensor is an NP-hard problem. In addition, CP decomposition at a fixed CP

rank can be ill posed. Therefore, CP decomposition algorithms are not guaranteed to converge for

a given tensor [3],[11],[12].

2.3.3 TT Decomposition

The TT decomposition of an N -way tensor A ∈ RI1···×IN expresses its elements as a train of

matrix products:

A(i1, ..., iN ) = G(1)(:, i1, :)G(2)(:, i2, :) · · ·G(N)(:, iN , :) (6)

where G(n)(:, in, :) is an Rn−1 ×Rn slice of the mode-n factor tensors (cores) G(n) ∈ RRn−1×In×Rn .

A tuple (R0, ..., RN ) is called the TT-rank of A, where by default R0 = Rn = 1, and its maximum is

called the maximal TT rank of A. A tensor in TT format can be stored with with
∑N

n=1 Rn−1InRn

elements (Table 1) [1],[9],[11].

TT decomposition is a generalization of matrix rank decomposition to tensors, and a TT de-

composition algorithm based on singular value decomposition is very stable compared to the CP

decomposition algorithms [1],[9],[11].
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2.4 Tensorized Neural Network

Modern neural networks contain more than billion parameters which lead to high storage and

computational cost [2],[7]. With the increased focus on deployment on edge devices, the incentive to

compress neural networks has grown in recent years. There are various approaches to reduce the size

of neural networks such as weight sharing, network pruning, knowledge distillation, quatization, and

low-rank tensorization [7]. The goal of tensorizing neural networks is to decompose their weights into

low-rank factors [2],[7] and to directly use the low-rank factors during forward propagation [1],[9].

2.4.1 Tensorized Linear Layer

A linear layer is defined as

h = z ·W + b (7)

where h ∈ RJ is an output, z ∈ RI is an input, W ∈ RI×J is a weight, and b ∈ RJ is a bias. To

tensorize the linear layer, we reshape z intoZ ∈ RI1×···×Id andW intoW ∈ RI1×···×···Id×J1×···×···×Jd

and b into B ∈ RJ1×···×Jd where I =
∏d

n=1 In and J =
∏d

n=1 Jn. The reshaping involves two bi-

injective mapping functions

u : RI ↔ RI1×···×Id (8)

v : RJ ↔ RJ1×···×Jd (9)

that uniquely map i to (i1, ..., id) and j to (j1, ..., jd), and visa-versa. Then, the output of tensorized

linear layer is given as

H = Z ·W +B (10)

where H ∈ RJ1×···×Jd [9]. To compress the linear layer, W can be saved as its low-rank factors after

performing CP or TT decomposition (Table 2) [1],[2],[9].

Note that both equations (7) and (10) have the computational complexity of O(IJ) (Table 2)

[9]. To speed up equation (10), we directly use the low-rank factors instead of reconstructing W

from them.

2.4.2 Tensorized Convolutional Layer

In many deep learning frameworks, to improve their computational efficiency, convolution oper-

ations are reformulated as matrix-matrix products, where their weight (kernel) tensors are converted

to Toeplitz matrices. Therefore, convolutional layers can be tensorized as linear layers [1].
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Format CP TT Full (Recon.)

Memory Cost O(dRImax) O(R max(I, J)) O(IJ)

Comp. Cost O(dRImaxJ) O(dR2Imaxmax(I, J)) O(IJ)

Table 2: The memory and computational cost of linear layers in the CP format (CP), the TT format
(TT), and the full tensor format, i.e., the original weight is reconstructed, (Full (Recon.)), where
Imax = maxdn=1In.

A convolutional layer transforms the 3-dimensional input tensor X ∈ RW×H×C into the output

tensor Y ∈ RW ′×H′×C′
, H ′ = H− l+1 and W ′ = W − l+1, by convolving X with the kernel tensor

K ∈ Rl×l×C×C′
:

Y(w′, h′, c′) =

l∑
i=1

l∑
j=1

C∑
c=1

K(i, j, c, c′)X ((w′ + i− 1), (h′ + j − 1), c). (11)

First, we introduce a matrix X ∈ RW ′H′×l2C with its row corresponding to the l × l × C patch

of X :

X(w′ +W ′(h′ − 1), i+ l(j − 1) + l2(c− 1)) = X (w′ + i− 1, h′ + j − 1, c) (12)

where i, j = 1, ..., l. Then, we reshape the kernel tensor K into a matrix K ∈ Rl2C×C′
:

K(i+ l(j − 1) + l2(c− 1), s) = K(i, j, c, c′). (13)

Finally, we compute Y = XK and reshape Y ∈ RW ′H′×C′
into the output tensor Y :

Y(w′, h′, c′) = Y(w′ +W ′(h′ − 1), c′). (14)

2.4.3 CP Forward Propagation

If a layer is in CP format, its weight is decomposed into a set of factor matrices {U(n)}2dn=1.

The factorized forward propagation of the layer in CP format is given as

H =

R∑
r=1

(
Z ×1 U

(1)(:, r)×2 U
(2)(:, r)×3 · · · ×d U

(d)(:, r)
)

⊗U(d+1)(:, r)⊗U(d+2)(:, r)⊗ · · · ⊗U(2d)(:, r) +B

(15)

and its computational complexity is O(dRImaxJ) where Imax = maxdn=1In (Table 2).
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2.4.4 TT Forward Propagation

If a layer is in TT format, its factorized forward propagation is given as

H(j1, ..., jd) =

I1∑
i1=1

· · ·
Id∑

id=1

Z(i1, ..., id)G(1)(:, i1, :) · · ·G(d)(:, id, :)G(d+1)(:, j1, :) · · ·G(2d)(:, jd, :)

+B(j1, ..., jd)

(16)

where {G(n)}2dn=1 are the TT cores of W . The computational complexity of TT forward propagation

is O(dR2Imaxmax(I, J)) (Table 2) where R is the maximal TT rank of W [11].

2.5 Tensorized LSTM

Long-short term memory (LSTM) is a recurrent neural network designed to process a sequence

of data [x1 x2 · · · xT ] [15],[17]. To have a sense of time, LSTMs have feedback connections from their

memory cell states c and hidden cell states h from the previous sequence t− 1. For each element in

the input sequence, each layer computes

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf)

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ot = ot ⊙ tanh ct

(17)

where it, ft, gt, and ot are input, forget, cell, and output gates, respectively. σ is the sigmoid

function, and ⊙ is the elementwise (Hadamard) product. In many deep learning frameworks, the

input-to-hidden weights and biases and the hidden-to-hidden weights and biases for all gate are

concatenated [10]:

Wi = [Wii Wif Wig Wio]
⊤

Wh = [Whi Whf Whg Who]
⊤

bi = [bii bif big bio]
⊤

bh = [bhi bhf bhg bho]
⊤.

(18)
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Then, equation 17 can be expressed as a sequence of two linear layers:



it

ft

gt

ot


=



σ

σ

tanh

σ


Wh


Wixt + bi

ht−1

+ bh. (19)

Therefore, tensorizing a single layered LSTM is equivalent to tensorizing two linear layers [10].

2.6 Bayesian Low-rank Neural Network

Bayesian low-rank neural networks are tensorized neural networks trained with a Bayesian

approach to automatic rank determination from [2]. While most tensorized neural network training

algorithms try to tensorize a pre-trained neural network or train at a fixed rank [1],[2],[6],[7],[9],[10],

this algorithm let neural networks to learn the ranks during training [2]. First, we initialize a

tensorized neural network with “high”-rank tensorized layers. Then during training, we regularize

the ranks through a loss function that penalizes “high”-ranks.

In a Bayesian framework, a model learns to represent a posterior distribution over its parameters

after observing some data. The posterior distribution p(θ|D) is given by the Bayes’ rule:

p(θ|D) ∝ p(D|θ)p(θ) (20)

where p(D|θ) is the likelihood of dataset D given by the model with parameters θ and p(θ) is a prior

distribution that reflect our prior knowledge about θ.

Given that our model f is a tensorized neural network with L layers, θ is given as {Φl,bl,Λl}Ll=1

where Φl is the set of low-rank factors, bl is the bias, and Λl is the set of rank controlling parameters

corresponding to the layer l. Then, the prior distribution over θ is given as

p(θ) =

L∏
l=1

p(Φl,Λl)p(bl) (21)

where

p(bl) ∝
∏
j

1

σ2
0

exp

(
bl(j)

2σ2
0

)
(22)

is a weak normal prior distribution that is not significant during optimization [2].

The joint factor prior distribution p(Φl,Λl) depends on the decomposition type of layer l [2].

8



Figure 2: The distribution of U(n)(i, r) when p(λ(r)) is LogUniform(
√
λ(r)|0,∞) (LU),

HalfCauchy(
√
λ(r)|0, η) where η is 1.0 (HC 1.0), 0.1 (HC 0.1), and 0.01 (HC 0.01) (original fig-

ures from [2]).

(a) (b)

Figure 3: The rank pruning of (a) {U(n)}Nn=1, if in the CP format, and (b) G(n), if in the TT format
(original figures from [2]).

In case of CP decomposition, from equation (5), we can notice that R can be decreased by 1 by

reducing the number of rank-1 tensors in the sum, which is equivalent to setting the r-th columns

of {U(n)}Ni=1 to zero. Therefore, we assign prior distributions that have high probability around

zero to the columns to reflect our prior belief that the model can be compressed. More specifically,

{U(n)}Nn=1, are initialized as matrices with R ≥ R∗ columns, i.e., U(n) ∈ RIn×R, where R∗ is

the optimal CP rank of the weight. Its rank controlling parameter is initialized as a vector with

R positive elements: Λ = λ ∈ RR
+. As a rank pruning prior, we place a zero-mean Gaussian prior

distribution with variance λ(r) for {U(n)(:, r)}Ni=1 where λ(r) has a prior distribution that prioritizes

small positive values near zero (Figure 2). Then, the joint factor prior distribution is given as [2]:

p(Φ,Λ) = p(Λ)p(Φ|Λ)

= p(λ)

N∏
n=1

p(U(n)|λ)

=

R∏
r=1

p(λ(r))

N∏
n=1

In∏
i=1

R∏
r=1

p(U(n)(i, r)|λ(r))

=

R∏
r=1

p(λ(r))

N∏
n=1

In∏
i=1

R∏
r=1

N (U(n)(i, r)|0,λ(r))

(23)
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where

p(λ(r)) =


HalfCauchy(

√
λ(r)|0, η) or

LogUniform(
√

λ(r)|0,∞).

(24)

Note that

HalfCauchy(x|0, η) ∝
(
1 +

x2

η2

)−1

(25)

LogUniform(x|0,∞) ∝ x−1 (26)

return high values if x is near 0. As λ(r) approaches zero, the entries in {U(n)(:, r)}Nn=1 goes to zero

leading to the decrease in CP rank (Figure 3a) [2].

If our layer in TT format, it requires mode-specific rank controlling vectors because each TT

core has its own rank. The TT cores {G(n)}Nn=1 are initialized as Rn−1 × In × Rn tensors where

Rn ≥ R∗
n, and (R0, R

∗
1, ..., R

∗
n−1, RN ) is the optimal TT rank of the weight [2]. Since R0 = RN = 1

by default, we need N − 1 positive-valued rank controlling vectors: Λ = {λn ∈ RRn
+ }N−1

n=1 . Then, the

TT layer’s joint factor prior distribution is given as

p(Λ)p(Φ|Λ)

= p(λN−1)p(G(N)|λN−1)

N−1∏
n=1

p(λn)p(G(n)|λn)

=

RN−1∏
r=1

IN∏
i=1

RN∏
k=1

p(λN−1(r))p(G(N)(r, i, k)|λN−1(r))

N−1∏
n=1

Rn−1∏
k=1

In∏
i=1

Rn∏
r=1

p(λn(r))p(G(n)(k, i, r)|λn(r))

=

RN−1∏
r=1

IN∏
i=1

RN∏
k=1

p(λN−1(r))N (G(N)(r, i, k)|0,λN−1(r))

N−1∏
n=1

Rn−1∏
k=1

In∏
i=1

Rn∏
r=1

p(λn(r))N (G(n)(k, i, r)|0,λn(r))

(27)

where the prior distribution for λn(r) is equation (24). As λn(r) approaches zero, the G(n)(:, :, r)

becomes extremely sparse leading to the TT rank pruning in the n-th mode (Figure 3b) [2].

2.7 Multimodal Sentiment Analysis

Sentiment analysis is the study on the underlying disposition that one holds towards a certain

entity [6],[13],[17]. It has many practical applications such as recommendation system, stock mar-

ket prediction, and election outcome prediction [13]. Text-based deep neural networks have been

dominating the field due to a large corpus of research available on natural language processing.

10



Figure 4: The network architecture of tensor fusion networks.

However, text alone has its limits as some words have different meanings depending on a person’s

facial expression or intonation [13].

Recently, with the rich availability of data from various sources (modalities), multimodal sen-

timent analysis is emerging. The motivation behind multimodal sentiment analysis is to combine

information from multiple modalities to make better predictions [6],[13],[17]. Thus, the main chal-

lenge of multimodal sentiment analysis is in modeling two types of interactions: the intermodal

interactions between different modalities and intramodal interactions within each modality [17].

Most works on multimodal sentiment analysis do early-fusion at the input layer or late-fusion

at the decision layer [8],[16],[17]. Two approaches involve simple concatenation of vectors and fail

to learn either inter or intramodal dynamics. The first approach makes it hard to learn itra-modal

relationship because the training is dominated by intermodal interactions. The later limits the neural

network’s ability to learn intermodal dynamics. To resolve this issue, Zadeh et al. proposed tensor

fusion network that can effectively learn both inter and intramodal dynamics [17].

2.8 Tensor Fusion Network

Tensor fusion networks are deep neural networks designed for end-to-end multimodal tensor

fusion [17]. A tensor fusion network consists of three major building blocks: embedding subnetworks

for each modality, a tensor fusion layer, and a sentiment inference subnetwork (Figure 4). The

embedding subnetworks take unimodal features as inputs and each outputs a vector that contain

intramodal dynamics. Given the unimodal vectors, the tensor fusion layer extracts a vector that

encodes both intramodal and intermodal dynamics. Then, the extracted vector is fed to the inference

subnetwork to make a prediction.
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Type TFL LRFL ARFL

Memory Cost O(dM+1(dmax)
M ) O(dM+1dmaxRM) O(dM+1dmaxRM)

Comp. Cost O(dM+1(dmax)
M ) O(dM+1dmaxRM) O(dM+1dmaxRM)

Table 3: The momory and computational cost of tensor fusion layers (TFL), low-rank fusion layers
(LRFL), and adaptive-rank fusion layers (ARFL), where dmax = maxMm=1dm.

2.8.1 Tensor Fusion Layer

Given a set of vectors {zm}Mm=1 from M different input modalities, a tensor fusion layer first

creates an M -way fusion tensor:

Zfusion =

M⊗
m=1

z
′

m (28)

where z
′

m = [z⊤m 1]⊤ ∈ Rdm and Z ∈ Rd1×···×dM [17]. Note that by appending 1, we allow Z to

model every intra and intermodal interactions in {zm}Mm=1 that are given as {z1, z2, ..., zM , z1 ⊗

z2, z1 ⊗ z3, ...,
⊗M

i=m zm}. In other words, if each zm represents a probability distribution, Zfusion

contains every marginal and joint probability distributions we can derive out of them. Then, Zfusion

is passed through a linear layer to produce a vector representation that summarizes the embedding

vectors:

hfusion = Zfusion ·Wfusion + bfusion (29)

where hfusion ∈ RdM+1 is a fusion output, Wfusion ∈ Rd1×···×dM×dM+1 is a fusion weight, and bfusion ∈

RdM+1 is a fusion bias.

Despite their powerful modeling ability, tensor fusion layers have a major drawback [6]. The

computational complexity of tensor fusion layers, which combines equations (28) and (29), is given

by 2
∏M+1

m=1 dm and increases exponentially with the number of input modalities (Table 3). As a

result, tensor fusion layers become less efficient as we try to fuse with more modalities.

2.9 Low-rank Fusion Network

Low-rank fusion networks are tensor fusion networks with their fusion layers decomposed in

CP format. In addition, they perform factorized forward propagation to improve the computational

efficiency of multimodal tensor fusion [6].
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2.9.1 Low-rank Fusion Layer

Given Wfusion from equation (29), it is decomposed into M + 1 low-rank factor matrices:

Wfusion =

Rfusion∑
r=1

M+1⊗
m=1

U
(m)
fusion(:, r) (30)

where U
(m)
fusion ∈ Rdm×Rfusion [6]. Consequently, equation (29) can be rewritten into its factorized

version as

hfusion =

Rfusion∑
r=1

M⊗
m=1

z
′

m ·
M+1⊗
m=1

U
(m)
fusion(:, r) + bfusion

=

Rfusion∑
r=1

(
M⊗

m=1

z
′

m ·U(m)
fusion(:, r)

)
⊗U

(M+1)
fusion (:, r) + bfusion

=

Rfusion∑
r=1

(
M⊙

m=1

z
′

m ·U(m)
fusion(:, r)

)
⊗U

(M+1)
fusion (:, r) + bfusion

=

(
M⊙

m=1

z
′

m ·U(m)
fusion

)
⊗U

(M+1)
fusion + bfusion

(31)

where
⊙

denotes elementwise product. It has the computational and the memory cost ofRfusion

∑M+1
m=1 dm

(Table 3) [6].
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3 Adaptive-rank Fusion Network

Low-rank fusion layers can reduce the computational complexity and memory cost of tensor

fusion but have a major drawback that Rfusion from equation (31) needs to be pre-determined. As

a solution to the problem, we propose adaptive-rank fusion networks that have adaptive-rank fusion

layers. Compared to low-rank fusion layers, adaptive-rank fusion layers can learn the optimal rank

of their weights.

3.1 Adaptive-rank Fusion Layer

An adaptive-rank fusion layer can be seen as a low-rank fusion layer that can learn its rank

with the algorithm from [2]. Therefore, it has a rank controlling parameter vector λfusion ∈ RM+1

and its forward propagation is identical to that of a low-rank fusion layer in equation (31) (Table 3).

Since adaptive rank fusion layers are essentially linear layers in CP format, their joint factor prior

distribution is given by equation (23).

3.2 TT Text Embedding Subnetwork

TT text embedding subnetworks are tensorized text embedding subnetworks with their LSTMs

and linear layers tensorized in TT format.

3.3 Prior Distribution

Adaptive-rank fusion networks are not fully tensorized neural networks in a sense that they

have some layers that are not tensorized. Let θ be the parameters of an adaptive-rank fusion network

f with L non-tensorized layers. Then, its prior distribution is given as

p(θ) = p(θfusion)p(θTT)
L∏

l=1

p(θl) (32)

where θfusion is the adaptive-rank fusion layer parameters, θTT is the TT text embedding subnetwork

parameters, if applicable, and θl is the parameters of non-tensorized layer l. For layer l that is not

tensorized, its parameters are given as θl = {Wl,bl}, and their joint prior distribution is defined as

p(Wl)p(bl) =
∏
i,j

p(Wl(i, j))
∏
j

p(bl(j)) (33)

where p(Wl(i, j)) ∝ 1
σ2
0
exp

(
Wl(i,j)

2σ2
0

)
and p(bl(j)) ∝ 1

σ2
0
exp

(
bl(j)
2σ2

0

)
are the weak normal prior dis-

tributions that are not significant during optimization.
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3.4 Maximum a Posteriori

The maximum a posteriori (MAP) optimization finds the set of model parameters that maximize

a point estimate of the posterior distribution from equation (20). The MAP optimization for the

adaptive-rank fusion network f is given as

θMAP = argmax
θ

P (θ|D)

= argmin
θ

− logP (θ|D)

∝ argmin
θ

− logP (D|θ)P (θ)

∝ argmin
θ

− logP (D|θ)− logP (θ)

∝ argmin
θ

− logP (D|θ)− logP (θfusion)− logP (θTT)−
L∑

l=1

logP (θl)

∝ argmin
θ

− logP (D|θ)− logP (θfusion)− logP (θTT)

(34)

where − logP (D|θ) is also known as the negative log likelihood. Given that f is designed for binary

classification with logistic regression, its prediction is given as ŷ = f((x, y)|θ) = p(y|x, θ) where

(x, y) ∈ D is an input-label pair. Then, the negative log likelihood is computed as

− logP (D|θ) = − log
∏

(x,y)∈D

ŷy(1− ŷ)1−y

= −
∑

(x,y)∈D

y log ŷ + (1− y) log(1− ŷ), (35)

which is also known as the binary cross entropy (BCE) loss.

3.5 Training Tips

There are factors that may cause the training to fail. Since the domain of the priors for the

rank controlling vectors in equation (24) is positive, the rank controlling vectors should be clamped

to a very small number such as 1×10−10 if their elements become negative during training. The

initialization of low-rank factors is also very important. If a layer is in CP format, we calculate σf

the target standard deviation for its factor matrices

σf =
4N

√
σ2
w

R
(36)

where σ2
w is the target variance of the original weight matrix. Otherwise, if a layer is in TT format,
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the target standard deviation is given as

σf =
2N

√
σ2
w

Rprod
(37)

where Rprod is the product of its TT rank. Then, we initialize all the factors ∼ N (0, σ2
f ) [15].

As mentioned before, it is important to set the rank of a layer high enough so that the rank

is not lower than the true rank of its weight. A safe bet is to initialize the rank with a value that

preserves the number of parameters after decomposition.

The negative log prior terms, − log p(θfusion) and − log p(θTT), in equation (34) can be over-

whelming and put too much emphasis on sparsity during training. Therefore, we multiply a hyper-

parameter β to them to control the accuracy-sparsity trade-off.
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4 Experiments

4.1 Dataset

Multimodal Opinion Sentiment Intensity (CMU- MOSI) dataset is an annotated dataset of 93

opinion video opinions from YouTube movie reviews [6],[17]. Each video consists of multiple opinion

segments, and each segment is annotated with the sentiment in the range [−3, 3]. The train dataset

contains 1284 samples, the validation dataset contains 229 samples, and the test dataset contains

686 samples. Acoustic and visual features of CMU-MOSI are extracted at respective sampling rates,

while text data are segmented per word. The text features are given by Xtext ∈ R300×T where T is

the number of words in an utterance and xtext,t ∈ R300 is a GloVe word vector embedding. For each

opinion utterance audio, a set of acoustic features are extracted using COVAREP acoustic analysis

framework. These extracted features capture different characteristics of human voice and have been

shown to be related to emotions. For each opinion segment with multiple audio frames, we perform

mean pooling over frames to obtain the expected acoustic features xacoustic ∈ R5. The speaker’s

facial emotion indicators for each frame of video are extracted using FACET facial expression analysis

framework. A set of 20 Facial Action Units indicating detailed muscle movements on the face, are

also extracted using FACET. We perform mean pooling over the frames to obtain the expected visual

features xvisual ∈ R20 [6],[17].

4.2 Network Architecture

A general tensor fusion network for multimodal sentiment analysis with CMU-MOSI dataset

consists of a text embedding subnetwork, an acoustic embedding subnetwork, a visual embedding

subnetwork, a fusion layer of your choice (tensor fusion, low-rank fusion, or adaptive-rank fusion), and

an inference subnetwork (Figure 4). It takes inputs from three modalities: text, acoustic, and visual,

which are processed through the corresponding subnetworks. The outputs from the subnetworks

are merged together by the fusion layer into a single output that contains multimodal information.

Then, the fusion layer output is used by the inference subnetwork to make a prediction (Figure 4).

The text embedding subnetwork is composed of a long short-term memory (LSTM) followed by

2 linear layers with rectified linear unit (ReLU) activation functions [17]. The input to the LSTM

is Xtext. The LSTM is single layered and has the input size of 300, the sequence length of 20, and

the hidden size of 128. Input to the first linear layer is the hidden state output of the LSTM. The

first linear layer has the size of (128×128). The second linear layer has the size of (128×128) as well

[17]. If it is tensorized in to a TT text embedding subnetwork, the two linear layers in the LSTM

are tensorized into TT layers with the sizes of (4×5×15×4×8×16) and (4×5×8×4×8×16), and the
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other two linear layers into TT linear layers with the size of (4×4×8×4×4×8).

The acoustic embedding subnetwork is a 3-layer fully-connected neural network with ReLU

activation functions after each layer [17]. Input to the network is xacoustic. Its input layer has the

size of (5×32). The following layers have the size of (32×32). The visual embedding subnetwork

is identical to the acoustic embedding subnetwork except for the first layer due to the difference in

input feature sizes. Input for the visual embedding subnetwork is xvisual, and its input layer has

the size of (20×32). Since they are so small in size, it is hard to find the benefit of tensorizing the

acousting and visual embedding subnetworks [17].

Once, ztext, zacoustic, and zvisual, the outputs of the embedding subnetworks, are gathered,

they are concatenated with 1 into z
′

text = [z⊤text 1]⊤ ∈ R129, z
′

acoustic = [z⊤acoustic 1]⊤ ∈ R33, and

z
′

visual = [z⊤visual 1]
⊤ ∈ R33. Then, they are fed forward through the fusion layer with the size of

(129 × 33 × 33 × 128) to output hfusion ∈ R128 that encodes intra and intermodal interactions in

ztext, zacoustic, and zvisual. Finally, the inference subnetwork has an input layer of size (128×128)

with the ReLU and an output layer of size (128×1) with the sigmoid activation [17]. It takes hfusion

as an input to make a prediction ŷ ∈ R for binary classification task.

4.3 Training Adaptive Rank Fusion Networks

Let us look into the rank-adaptive training of an adaptive-rank fusion network with the initial

fusion rank of 100 (ARFN 100) to gain better insight to the rank reduction mechanism and training

tips.

Figure 5a is the validation loss and Figure 5b is the estimated rank during its training. We can

notice that the training does converge to a model with the lowest validation loss but to a model with

a higher validation loss but less number of parameters (lower rank). This is because equation (34)

involves minimizing the loss and the rank at the same time.

In Figure 5d, the average column-wise l2-norm (Avg. Col. L2-norm) v̄ =
∑N

n=1 v
(n) is com-

puted, where v(n) ∈ RRfusion is the column-wise l2-norm of each factor matrix U(n). The histogram

of v̄ shows the distribution of the elements of v̄ at epochs 1, 5, and 10. From Figure 5b, we can

guess that the number of columns with v̄ ≈ 0 should increase as the training proceeds. Indeed, the

histogram gets more concentrated around 0 as we progress from epoch 1 to epoch 10.

Similarly, ḡ ∈ RRfusion , the average column-wise l2-norm of their gradient (Avg. Col. Grad. L2-

norm) is computed. Figure 5c plots the number of columns with high gradient norm, or the number

of elements with high value in ḡ, and the amount of change in Rfusion (|∆Rfusion|) per epoch. We

can notice that the two proxies are highly correlated indicating that our rank controlling framework
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Acc-2 (%) F1 (%) # Params Rfusion Tra. Time (s) Inf. Time (s)

TFN 74.74 55.79 1.83×107 - 5.31 .0292

LRFN 100 74.64 64.49 3.07×105 100 1.31 .0050

LRFN 79 73.47 65.92 3.01×105 79 1.31 .0044

ARFN 100 75.22 64.73 3.01×105 79 1.46 .0045

ARFN-T 100 72.74 65.43 7.24×104 78 17.04 .0474

Table 4: The binary accuracy (Acc-2), the f1 score (F1), the number of model parameters (#
Params), the fusion rank (Rfusion), the training time per epoch (Tra. Time), and the inference time
per sample (Inf. Time) are measured for TFN, LRFN 100, LRFN 79, ARFN 100, and ARFN-T 100.

TT Full (Recon.)

Fwd. Time (s) 2.06×10−3 7.01×10−4

Table 5: The forward propagation time per sample for the linear layers (128×128)in TT format and
in original format (Full (Recon.)).

is working as expected.

Figure 5e is the bar graph of the average of ḡ (Avg. Avg. Col. Grad. L2-norm) over the

training epochs. Therefore, it shows the average amount of gradient that columns experience over

the training. Columns 0 and 35 experienced the most gradient during the training, so we can guess

that those columns are likely to be subject to the rank reduction. In Figure 5f, we compare their

average column-wise l2-norms to those of columns 2 and 40, which experience small amount of

gradient during the training according to Figure 5e. By epochs 9, the average column-wise l2-norms

of columns 0 and 35 go to 0 while those of column 2 and 40 converge to approximately 0.75 and

0.2, respectively, by the end of the training. Indeed, columns 2 and 40 were not pruned out in the

final compressed model. Additionally, the evolution of column 2 shows that some columns may come

back to life, and so, it is wise to wait till the convergence to prune the model (Figure 5e).

After the training of adaptive-rank fusion networks, we prune the sparsified factors for in-

significant columns or slices and discard the rank controlling vectors to get compressed models for

inference.

4.4 Comparison with other Models

In this experiment, a tensor fusion network (TFN), a low-rank fusion network with fixed fusion

rank 100 (LRFN 100), a low-rank fusion network with fixed fusion rank 79 (LRFN 79), and an

adaptive-rank fusion network with the initial fusion rank of 100 (ARFN 100), and an ARFN 100

with TT text embedding subnetwork (ARFN-T 100). They are compared in terms of binary accuracy,

f1 score, the number of model parameters, fusion rank, train time per epoch, and inference time per
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sample, which are measured on a CPU (Table 4). The TFN is trained at the learning rate of 5×10−4.

The low-rank fusion networks are trained at the learning rate of 1×10−3. The ARFN 100 are trained

at the learning rate of 1× 10−2 with the negative log prior coefficient β of 1× 10−1. The ARFN-T

100 is trained with the learning rate of 5×10−4 for the TT text embedding subnetwork and 5×10−3

for the fusion layer and 1× 10−3 for the rest with β of 1× 10−3. All networks are trained using the

Adam optimizer with the batch size of 32 and the learning rate scheduler that reduce learning rates

by ×10 if a model’s validation loss does not decrease for two training epochs in a row.

The TFN contains 1.83 ×107 parameters, where 1.80 ×107 (98%) belongs to its tensor fusion

layer. Since tensor fusion layers are so big, adaptive-rank fusion networks with Rfusion ≈ 60000 have

the same number of parameters as the tensor fusion network (Table 4). Therefore, the ARFN 100

with Rfusion = 100 is already a very compressed model compared to the TFN. However, we were able

to confidently set Rfusion = 100 since the prior work reported that low-rank fusion networks perform

well at Rfusion ≤ 100 [6]. The ARFN 100 is compressed to a model with ×60 less parameters at better

binary accuracy and f1 score than the TFN . Additionally, its training time per epoch is reduced

by more than ×2 compared to that of the TFN. Compared to LRFN 100, the ARFN 100, despite

having the same number of parameters, trains slightly slower due to the time spent on computing

the negative log prior term in equation 34 (Table 4).

The ARFN-T 100 was trained to test the impact of having more tensorized layers compared

to the ARFN 100. We were able to train a model with ×4 less parameters than the ARFN 100

due to the compression from the TT linear layers of the TT text embedding subnetwork (Table 4).

However, a downside of adding TT linear layers is that it takes considerable time to compute the

negative log prior over their parameters because their factors are order-3 tensors instead of order-2

tensors in CP linear layer cases. Therefore, the training time per epoch of the ARFN-T 100 turns

out to be slower than that of the TFN (Table 4). Its slower inference time can be explained by Table

5 where we measure the forward propagation time of linear layers in TT format (TT) and in original

format (Full (Recon.)) for a single data sample, i.e., the batch size is 1. The original linear layer has

the shape of (128×128), and the TT linear has the shape of (4× 4× 8× 4× 4× 8) with the TT rank

of (1, 21, 32, 32, 21, 32, 1), so that it has the same complexity (number of elements) as the original

linear layer. In Table 5, we can witness that the linear layers TT formats are significantly slower

than the ones in the original format due to many implementation tricks behind the modern deep

learning frameworks that are evolved to speed-up large-sized matrix-matrix multiplication (especially

on GPUs). In order to reflect the gain in computational complexity of the TT forward propagation,

we need to develop deep learning frameworks that are specialized in accelerating the computations

in the units of low-rank factors.
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4.5 The Generalization of Adaptive-rank Fusion Networks

In this experiment, we train all the models from the previous experiment (TFN, LRFN 100,

ARFN 100, and ARFN-T 100), a low-rank fusion network with fixed rank 1000 (LRFN 1000), and

an adaptive-rank fusion network with initial fusion rank 1000 (ARFN 1000). The LRFN 1000 and

the ARFN 1000 were tested as models with higher capacities than their lower rank versions, LRFN

100 and ARFN 100. All models are trained under the same optimization settings from the previous

experiment. To test their generalization performance, we measure their accuracy when they are

trained with 100%, 90%, 80%, and 70% of the training dataset.

Table 6 summarizes 5 different training results and their average for each case. In Figure 6a, we

plot the average binary accuracy of the models versus the proportion of the original training dataset

used to train the model. Our obvious expectation is that all models experience drop in their test

accuracy as we provide them with less data. However, when we have 70% of training dataset, the

ARFN-T 100 actually converged to a better model (Figure 6a). This observation was unexpected,

and so, we repeated the experiment and still got the same result. Nevertheless, the accuracy decays

with 90% and 80% of training dataset are much less compare to other models (Figure 6b), which

shows that the ARFN-T 100 has an excellent generalization ability. Generally, the models with

adaptive-rank layers (ARFN 1000, ARFN 100, and ARFN-T 100) seem to be more robust to being

trained with less data than the one without adaptive-rank layers (Figure 6b).

We also wanted to see if the compression ratio of the models are affected by the decrease in

the number of training samples. The compression ratio is measured by dividing the final number of

model parameters by the initial number of model parameters. In Figure 6c, we plot the compression

ratio of ARFN 1000, ARFN 100, and ARFN-T 100 at different training dataset settings. The models

tend to compress less when trained with less training samples (Figure 6c).
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(a) (b)

(c) (d)

(e) (f)

Figure 5: The training of ARFN 100. (a) The validation loss (BCE loss) of ARFN at different
training epochs. (b) The fusion rank of ARFN 100 at different training epochs. (c) The number of
columns (Num. of Cols.) with high gradient (Grad.) and |∆Rfusion| at different training epochs. (d)
The histogram of average column-wise l2-norm (Avg. Col. L2-norm) of different columns at epochs
1, 5, 10. (e) The bar graph of the average average column-wise l2-norm of gradient (Avg. Avg. Col.
L2-norm) over training epochs. (f) The column-wise l2-norm of gradient of columns (Col.) 2, 40, 0,
and 35 at each epoch is plotted.
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(a)

(b)

(c)

Figure 6: The binary accuracy (Acc-2) (a) and the decay in binary accuracy (b) of TFN, LRFN
1000, LRFN 100, ARFN 1000, ARFN 100, and ARFN-T 100 trained with 100%, 90%, 80%, and
70% of the training dataset. The compression ratio (c) of ARFN 1000, ARFN 100, and ARFN-T
100 trained with 100%, 90%, 80%, and 70% of the training dataset.
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TFN LRFN 1000 LRFN 100 ARFN 1000 ARFN 100 ARFN-T 100

100%

73.04 75.51 73.75 74.49(.53) 75.35(.54) 73.90(.81)

73.76 75.07 76.09 75.07(.60) 74.78(.53) 70.85(.77)

73.03 74.05 75.21 72.59(.54) 71.87(.57) 72.45(.86)

74.05 73.62 74.34 74.34(.55) 71.87(.66) 69.97(.74)

71.59 74.20 74.20 74.93(.55) 72.01(.68) 73.03(.78)

73.09 74.49 74.71 74.20(.54) 73.15(.60) 72.04(.79)

90%

73.47 72.01 71.57 71.57(.59) 72.01(.69) 73.33(.71)

72.59 72.01 70.99 75.07(.59) 72.16(.65) 74.34(.88)

71.72 69.38 70.55 72.01(.65) 73.47(.50) 70.26(.88)

69.97 68.80 70.84 72.74(.59) 73.32(.50) 70.84(.59)

70.70 70.26 72.44 70.41(.52) 73.76(.57) 69.83(.74)

71.69 70.49 71.28 72.36(.59) 72.94(.58) 71.72(.76)

80%

71.43 67.78 70.70 70.99(.58) 71.57(.72) 70.70(.72)

68.95 72.44 69.97 73.91(.62) 71.57(.65) 69.97(.77)

71.28 70.12 71.43 72.30(.59) 71.28(.71) 73.03(.78)

72.89 69.96 69.68 71.14(.60) 73.03(.71) 75.35(.95)

68.99 67.20 68.37 72.74(.62) 70.99(.69) 73.18(.92)

70.71 69.05 70.03 72.22(.60) 71.69(.70) 71.52(.83)

70%

68.99 69.24 69.83 70.12(.60) 70.55(.63) 73.03(.90)

71.57 70.41 67.06 71.14(.61) 69.68(.68) 73.90(.88)

68.22 68.95 66.18 71.82(.62) 72.24(.60) 75.32(.94)

68.66 66.90 67.49 70.26(.60) 70.99(.61) 71.72(.77)

68.68 67.64 68.08 70.55(.61) 71.28(.69) 73.03(.91)

69.22 68.63 67.78 70.78(.60) 70.95(.64) 73.03(.82)

Table 6: The binary accuracy of TFN, LRFN, LRFN 100, ARFN 1000, ARFN 100, and ARFN-T
100 are measured when they are trained with 100%, 90%, 80%, and 70% of the training dataset.
The bold numbers are the average accuracy over 5 different runs, and the compression ratio is in the
parenthesis, if applicable.
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5 Discussion

Surprisingly, the ARFN 100, which is ×60 compressed compared to the TFN, scored higher

testing accuracy than the TFN (Table 4). We also found out that the models trained with adaptive-

rank training, including the ARFN 100, are less dependent on the size of the dataset (Figure 6b).

Therefore, we conjecture that the CMU-MOSI being a small dataset with 1284 training samples

could have played a role in the increased testing accuracy of the compressed model.

Most intelligent people think abstractly and simply. Therefore, the hidden motivation for com-

pression is in finding models that are smaller in size but generalize better. Previous works found that

training a smaller network from scratch has poorer generalization performance than training a larger

network and pruning it to the same size [5],[4],[18]. Intuitively, larger networks have larger capacity,

i.e., more degrees of freemdom, and offer larger sets of possible solutions. Moreover, more parameters

means smoother loss function leading to better generalization performance [4]. To support these ob-

servations theoretically, the information theory is used to show that compression is required for good

generalization if a model is trained with a finite set of training samples [14]. Therefore, we should

try to optimize for the generalization gap and the complexity gap during the training of deep neural

networks [14]. While other compression/pruning algorithms reduce pre-trained networks, during

the training of our adaptive-rank fusion networks, we optimize jointly for the generalization gap,

represented by the BCE loss, and the complexity gap, represented by the log prior over tensorized

layer parameters, in equation (34). Therefore, we think that the models with adaptive-rank layers

have better generalization performance than the ones without because they are optimized for both

generalization and complexity gaps at the same time.
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6 Conclusion

This work proposes adaptive-rank fusion networks that are trained with the MAP version of

the training algorithm proposed in [2]. We show that adaptive-rank fusion networks can perform

better than tensor fusion networks and low-rank fusion networks. Additionally, our work profiles

the training and inference time of different adaptive-rank networks and report that the gains in

FLOPs of the factorized forward propagation are not reflected in the training and the inference

time of the adaptive-rank networks due to the way that the deep learning libraries are implemented.

Finally, we observe that the generalization power of the models trained with the rank-adaptive

training algorithm is better than the models that did not. In the future, we would like to test if our

observation extends to other dataset and other architectures. Also, we want to compare the gain

in generalization performance of general pruning and of the rank pruning in order to see the role of

tensor decomposition in the gain.
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