
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Large-Scale 3D Reconstruction on the GPU

Permalink
https://escholarship.org/uc/item/9zn4d4xk

Author
Mak, Jason

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9zn4d4xk
https://escholarship.org
http://www.cdlib.org/

Large-Scale 3D Reconstruction on the GPU

By

JASON MAK

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

John D. Owens, Chair

Zhaojun Bai

Nina Amenta

Committee in Charge

2022

i

Copyright c© 2022 by

Jason Mak

All rights reserved.

CONTENTS

Title Page i

List of Figures vi

List of Tables viii

Abstract x

Acknowledgments xi

1 Introduction 1

2 Background 5

2.0 Introduction . 5

2.1 Camera Calibration . 7

2.2 Feature Detection and Matching . 7

2.3 Pose Estimation . 9

2.4 Triangulation . 10

2.5 Bundle Adjustment . 11

2.6 Dense Stereo . 12

2.7 GPUs and Reconstruction . 12

3 Large-Scale Triangulation on the GPU 15

3.0 Definition of Triangulation in the Context of Computer Vision 15

3.1 Related work . 17

3.2 Methodology . 19

3.2.1 Triangulation cost function . 20

3.2.2 GPU implementation . 24

3.3 Results . 27

3.3.1 Synthetic tests . 27

iii

3.3.2 Evaluation on real data . 28

3.4 Conclusion and Future Work . 30

4 Parallax Paths on the GPU 33

4.0 Parallax Paths Definition . 33

4.1 Related Work . 35

4.1.1 Degeneracies in Angular Triangulation 36

4.2 Methodology . 36

4.2.1 Parallax Paths—A Further Analysis 37

4.2.2 Obtaining the Correct Scale . 39

4.2.3 Methods on the GPU . 41

4.3 Results . 43

4.3.1 Synthetic Tests . 44

4.3.2 Tests On Real Datasets . 46

4.4 Conclusion and Future Work . 47

5 Efficient Dense Reconstruction on the GPU via Progressive Image Consistency

Constraints 50

5.0 Dense Reconstruction Problem Definition . 50

5.1 Related Work . 52

5.2 Methodology . 53

5.2.1 Densification Algorithm . 54

5.2.2 GPU Implementation . 57

5.3 Results . 58

5.3.1 Window Size Justification . 58

5.3.2 Results on Real Datasets . 60

5.4 Conclusion and Future Work . 61

6 Parallel Bundle Adjustment 63

6.0 Problem Definition . 63

6.0.1 Bundle Adjustment . 63

iv

6.0.2 GPU Bundle Adjustment . 67

6.1 Related Work . 69

6.2 Methodology . 70

6.2.1 Algorithm . 70

6.2.2 Partitioning the Scene Graph . 72

6.2.3 Framework . 75

6.2.4 GPU Acceleration . 75

6.3 Results . 82

6.3.1 Accuracy Results . 82

6.3.2 Performance Results . 92

6.4 Conclusion and Future Work . 97

7 Conclusion 99

v

LIST OF FIGURES

2.1 Example 3D reconstructions of the skull dataset [24]. 6

2.2 Example of feature matching. 8

2.3 The CUDA programming model and architecture. 13

3.1 The triangulation problem in the context of computer vision. 16

3.2 The Fast Triangulation Method. 23

3.3 Two approaches to parallelizing our triangulator. 25

3.4 GPU fast triangulation performance vs varying track lengths. 29

3.5 GPU fast triangulation performance vs varying track error. 29

3.6 Results of our GPU triangulator alongside an image from each dataset. 31

4.1 Parallax paths method . 34

4.2 Correcting feature tracks . 35

4.3 Parallax paths stages on the GPU, including parallelism P per stage. 43

4.4 Parallax paths runtime performance with an increasing number of tracks. 44

4.5 Parallax paths ground truth error vs. feature track error for synthetic data. . . . 44

4.6 Reconstructions of three scenes using parallax paths and fast triangulation. . . . 48

5.1 A sparse and dense reconstruction of the dinosaur object. 51

5.2 Searching for the correct depth of a pixel. 59

5.3 Reconstruction of the Temple Dataset using our proposed method. 61

5.4 Reconstruction of Brown22 using our proposed method. 61

5.5 Reconstruction results of various scenes using our proposed method. 62

6.1 The Jacobian matrix J and JTJ . 66

6.2 Example of partitioning a visibility graph. 71

6.3 Error reduction over time using two different partitionings: min-cut and random. 74

6.4 Dataflow to and from GPUs during optimization. 80

6.5 The ground truth cameras and points for synthetic datasets sphere and grid. . . 88

vi

6.6 A comparison of three parallel and one serial BA method. 89

6.7 Convergence to an unoptimal solution for the grid dataset. 90

6.8 The runtime and obtained error for the Venice dataset with increasing partitions. 93

6.9 The runtime and obtained error for the Ladybug dataset with increasing partitions. 94

6.10 Venice dataset: error reduction over time and max speedup. 94

6.11 Final dataset: error reduction over time and max speedup. 95

6.12 Rome09 dataset: error reduction over time and max speedup. 95

6.13 Ladybug dataset: error reduction over time and max speedup. 96

6.14 Error reduction over time and max speedup of a synthetic dataset 96

vii

LIST OF TABLES

3.1 Times and error for the serial, multicore, and GPU triangulation implementations. 30

4.1 Runtime results for fast triangulation and parallax paths on real data. 47

5.1 Obtained 3D error vs window size and noise levels for our dense stereo method. 60

6.1 Number of boundary points in BA with different partitioning methods. 74

6.2 Maximum parallel speedup with the Fixed Boundaries method. 97

viii

LIST OF CODE LISTINGS

ix

ABSTRACT

Large-Scale 3D Reconstruction on the GPU

3D multiple-view reconstruction is an important topic with applications in robotics, surveil-

lance, augmented reality, and other fields. The ubiquity of reconstruction makes it a vital com-

ponent in many systems, which need hardware and algorithms capable of processing the vast

data found in reconstruction. In this dissertation, we first propose a method for performing

a stage of reconstruction, triangulation, on the GPU that does not require second-order opti-

mization and yields an order-of-magnitude speedup over a multi-core CPU processor. Next, we

accelerate triangulation further on the GPU by discussing a method that leverages the path of a

moving camera as a constraint and thus avoids doing non-linear optimization altogether. Subse-

quently, we shift to the problem of dense stereo, where we use GPU processing power to create

more complete dense reconstructions while again leveraging scene constraints to keep runtime

tractable. Finally, we devote a large portion of this dissertation to studying the use of multiple

GPUs to accelerate the most expensive stage in reconstruction, bundle adjustment. The strategy

is to partition the scene and optimize the subproblems in parallel. This approach minimizes

communication across GPUs and removes the need for multi-GPU synchronization, which can

be costly when there are many GPUs. We analyze multiple parallel, partitioned bundle adjust-

ment strategies and their advantages and disadvantages. We develop an alternate method that

parallelizes more efficiently and is scalable on large datasets with more GPUs. We compare the

performance of the partitioned, parallel implementation against that of the original, full-problem

implementation. We confirm our hypothesis that our approach can obtain large speedups with

competitive accuracy for certain scenes but is less robust to ill-conditioned problems and the

presence of local minima.

x

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. John Owens, as well as my other committee members,

Dr. Nina Amenta and Dr. Zhaojun Bai, for guiding me through research and providing me with

helpful comments for my dissertation. I would also like to thank anyone with whom I have

collaborated throughout my research. In particular, special thanks is given to my colleague, Dr.

Mauricio Hess-Flores, for all his insightful help and advice. During my time in graduate school,

my family has been supportive, for which I am grateful. Finally, I would like to thank the UC

Davis College of Engineering for providing me with a stimulating academic environment to

increase my knowledge and development in both teaching and research, and to the UC Davis

Music Department and in particular, the UC Davis Video Game Orchestra, for enriching my

studies with art and culture during my time in graduate school. Some of the work presented

in this material was supported by the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000. Any opinion, findings, and conclusions

expressed in this work are those of the author(s) and do not necessarily reflect the views of the

National Nuclear Security Administration or the U.S. government.

xi

Chapter 1

Introduction

Multi-view 3D reconstruction is a computer vision problem that aims to reconstruct 3D objects

or scenes using input images taken from cameras at different positions and angles. The prin-

ciples are similar to the way humans perceive depth and 3D structure using visual information

derived from two eyes. In the computer vision approach, 2D correspondences are located across

different images and, along with the camera information, the 2D correspondences are used to

solve 3D points. The output of reconstruction is often a point cloud, a set of 3D points that

are consistent across images and cameras when projected back into 2D. They satisfy relation-

ships based on the principles of trigonometry. Additional post-processing is often applied to a

resulting point cloud to remove noise and to create a mesh from the set of points.

Multi-view 3D reconstruction has become popular in research and industry, with many use-

ful applications including security, industrial design, virtual environment creation and enhance-

ment, mobile robotics, and reconstruction of cultural heritage sites. Reconstruction is ubiqui-

tous in scale ranging from large-scale aerial reconstruction, which focuses on images or video

frames taken by aircraft of an underlying scene, to small-scale reconstruction done by mobile

devices. Experts predict that unmanned aerial vehicles (UAV) will become common tools for

government and commercial use in the future, and giving them awareness of the environment

below allows for increased autonomy. On a different level, the mobile revolution has placed

a computer into millions of hands, and users are increasingly using their devices to give them

quick information about their world and surroundings. For example, Googles ARCore platform

can reconstruct a users 3D environment to provide the users mobile device with a human-scale

1

understanding of space and motion from which other information can be derived.

Increasing the accuracy, efficiency, and density of reconstructions are areas of ongoing re-

search in the community. VisualSfM [90, 91] is an open-source tool that uses bundle adjustment

for error correction and Patch-based Multi-view Stereo (PMVS) [24] to generate dense point

clouds. In addition, the popular open-source computer vision library, OpenCV, implements

many routines used in the reconstruction process including feature detection, pose estimation,

and bundle adjustment [11]. However, OpenCV is designed to be a general-purpose library used

for a variety of computer vision tasks. It falls on the users to design their own applications, such

as reconstruction, using the provided routines, with no awareness from the library of how data

flows through the application.

Many challenges exist in reconstruction, often resulting from the limitations in available

data or a lack of data. Poor lighting in images, shadows, and obstructed views can degrade the

techniques used in the correspondence problem. Certain properties of physical cameras, such

as distortion, may be unknown or hard to model, which causes issues. Some of these concerns

may become less of an issue over time as the size and availability of collected input data con-

tinues to increase. Cameras are easily accessible with ever-increasing pixel density. Consumer

smartphones are equipped with cameras that can capture pictures of many megapixels. Im-

proved storage systems have allowed for the immense collection of such pictures, and advanced

communication technologies make them widely accessible across vast distances. Furthermore,

the increased availability and efficiency of various types of sensors yield new types of input

data that add to the size of the reconstruction working set. Such data includes LIDAR scans and

GPS coordinates, which can help augment or increase the accuracy of reconstructions generated

using traditional multi-view stereo methods [5].

With improved data collection, the scale of many reconstruction problems has grown due to

the types of scenes that are increasingly common to model, such as those of terrain and cities.

Since the time photography was invented, photogrammetry has been used, often manually, to

create topographic maps [56]. The mathematical principles are still valid today. More recently,

the advent of UAVs, both government and consumer, enable the bulk capture of aerial footage

at a large scale. Reconstructions derived from these images have increasingly diverse applica-

2

tions, such as reconnaissance, traffic monitoring, agriculture, and the creation of realistic virtual

worlds for entertainment purposes. Reconstruction from aerial footage offers some advantages,

since the aircraft may also be equipped with additional sensors, such as GPS and IMU, that

can aid in the accuracy of reconstruction. With the popularity of drones and mobile devices,

onboard processing is also becoming desirable, as wireless communication for passing data can

potentially be a huge bottleneck.

Software has been developed that target these types of large-scale scenes and applica-

tions. Google Earth reconstructs cities in 3D by leveraging large-scale data processing algo-

rithms [36]. The target development platforms include large computing clusters that are not

readily available to the average user. Pix4D can reconstruct scenes given an arbitrary set of

input images. Their algorithms work well with aerial photography and can generate highly

realistic reconstructions [80]. SocetGXP, a photogrammetry software developed by BAE Sys-

tems, is used by the military and other organizations to perform reconstructions using aerial and

satellite imagery, as well as other supporting data such as terrain maps. Although these software

tools can potentially produce high-quality results, the methods they use are often proprietary.

The increasing scale of reconstruction problems has also spurred research into the creation

of large benchmarks with ground truth that can be used to evaluate different software and meth-

ods. Strecha et al. [82] created the EPFL benchmark, which features outdoor building facades

and uses LiDAR scans for ground truth. The dataset of Merrell et al. is of a single building,

but the input is large-scale in that it consists of a dense collection of video frames [54]. In more

recent works, Schps et al. developed a new benchmark for two and multi-view stereo algo-

rithms [75]. Knapitsch et al. developed benchmarks of both indoor and outdoor environments

to test full reconstruction pipelines [40]. They use a laser scanner to create ground-truth refer-

ence models. A common goal of the last two benchmarks is to not only provide ground truth for

measuring accuracy, but also to be future-proof by using high-resolution cameras (large images)

and video data (numerous images). This ensures that the benchmarks will continue to remain

representative of modern, data-intensive Structure-from-Motion problems.

As a trade-off, improved data collection capabilities and larger-scale problems leads to an

increase in runtime. With performance becoming a greater issue, the advent of GPU computing

3

has not been ignored in the 3D reconstruction community. GPUs were traditionally designed to

target computer graphics workloads, but have since evolved to perform general-purpose com-

puting, including scientific simulations, linear algebra, and computer vision. Many operations

in reconstruction are highly parallel, involving image-processing tasks and workloads simi-

lar to those used in computer-graphics, GPUs are well-equipped to process a large amount of

streaming data with their high memory bandwidth and numerous cores. Many of the stages

of reconstruction have been accelerated on the GPU. These include the mapping of existing

algorithms and the development of new ones, as will be discussed later.

The contributions of this dissertation focus on increasing the performance of 3D reconstruc-

tion stages through GPU parallelization while maintaining or exceeding the accuracy of existing

methods. Some ideas are designed to exploit the domain-specific structure of 3D reconstruction

problems. The following is a layout of our contributions.

• In Chapter 3, we implement large-scale triangulation by using the angles between camera-

point rays to produce a massively parallelizable implementation and avoid second-order

optimization.

• In Chapter 4, we use the path of a single moving camera in a scene as a strong constraint

that allows us to avoid doing non-linear optimization altogether and is easily paralleliz-

able.

• In Chapter 5, we use the assumption that depth values for each object in an image can

vary smoothly. This allows us to pick a good starting point when doing a brute-force

search to find the correct depth of each pixel.

• In Chapter 6, we do large-scale bundle adjustment by taking advantage of the fact that

reconstruction problems can be partitioned spatially. Using this approach to parallelize

the large non-linear optimization problem minimizes the communication needed across

multiple GPUs. We release the parallel bundle adjustment source code on Github.

In the next chapter, we introduce a basic 3D reconstruction pipeline and provide an overview

of each stage.

4

Chapter 2

Background

In this chapter, we first give a brief introduction to the reconstruction problem. In the following

sections, we provide an overview of each stage in a basic reconstruction pipeline. The layout of

this chapter is arranged as follows.

1. Introduction [Section 2.0]

2. Camera Calibration [Section 2.1]

3. Feature Detection and Matching [Section 2.2]

4. Pose Estimation [Section 2.3]

5. Triangulation [Section 2.4]

6. Bundle Adjustment [Section 2.5]

7. Dense Stereo [Section 2.6]

8. GPUs and Reconstruction [Section 2.7]

2.0 Introduction
There are many variations of the reconstruction pipeline. Reconstruction across the literature

usually involves a common base set of stages that includes feature tracking, self-calibration,

camera pose estimation, structure computation, and parameter optimization [30]. First, camera

5

(a) sparse (b) dense

Figure 2.1: Example 3D reconstructions of the skull dataset [24].

calibration is used to determine a cameras intrinsic parameters, such as the focal length and the

principal point. Next, feature detection is performed, using popular methods such as SIFT [51]

and SURF [6]. Mappings between corresponding features in different images of the scene are

computed. The next step is to compute the epipolar geometry, which can be estimated from

the matches in a feature track. Pose estimation is then used to obtain the cameras’ extrinsic

parameters: translation and rotation. With the obtained camera parameters and a set of chosen

feature tracks, triangulation is used to compute the 3D structure. There is the possibility for

inaccuracies to occur in the steps leading to the computation of the 3D structure. A further step,

bundle adjustment, can be used to solve an optimization problem, ensuring that the different

parameters of the solution are as consistent with each other as possible. In the next sections,

we provide a brief overview of each of these steps. They are more formally defined in the

well-known book by Hartley and Zisserman [30]. The final section also discusses the use of

GPUs in reconstruction. Example reconstruction results from the skull dataset [24] are shown

in Figure 2.1.

6

2.1 Camera Calibration
To begin reconstruction, we need to perform camera calibration, also known as camera resec-

tioning. The goal is to retrieve the relevant intrinsic parameters of the cameras used to take

the images. Common intrinsic parameters include focal length, principal point, and pixel skew.

These are fundamental properties of the camera determined by the manufacturers, which affect

how a scene is mapped onto a 2D plane, forming an image. Often, this information can be found

in specifications that come with the camera. In addition, they may be stored in the metadata of

an image, i.e. through EXIF tags in the taken images. If the data is not stored with images

and the source cameras for the images are unknown, then we must perform manual calibration.

We must use a camera model that encapsulates all the necessary parameters, and then through

feature detection and matched features, we can solve for the unknown parameters. The typical

model for the intrinsic properties of a camera is a 3x3 matrix often labeled as K, as shown in

Equation 2.1. Here, f is the focal length, fku is the scaling in the x-direction, fkv is the scaling

in the y-direction, and (u0, v0) is the principal point.

K =


fku 0 u0

0 −fkv v0

0 0 1

 (2.1)

2.2 Feature Detection and Matching
The goal of feature detection is to find and label points of interest, or keypoints, in the input

images. Corners or bright spots that stand out in the images are often points that can be used as

features. Figure 2.2 shows an example of detected features in images of a food package. Each

keypoint, along with other information, such as surrounding pixels, make up a feature. The

same feature and its different locations in multiple images make up a feature track, as we are

tracking the feature throughout these images.

There are both sparse and dense methods for feature representation and detection. Popular

sparse methods use neighborhood gradient magnitude and direction information to represent a

feature. SIFT is one of the more robust ways to represent and detect features. SIFT first finds

keypoints in the image by finding maxima and minima of the differences of Gaussian functions

7

(a)

Figure 2.2: Example of feature matching. The colored lines connect matched pixels corre-
sponding to the same scene point in two images of two different views of a food package.

applied to smoothed and resampled images. For each keypoint, SIFT creates a 128D vector

based on local gradient information, and this, combined with the keypoint’s 2D location, is

used to distinguish a feature. For each feature in a reference image, finding the corresponding

feature in other images involves matching features that have the minimal Euclidean distance

between their 128D vectors. A feature matched across multiple images creates a feature track.

Figure 2.2 shows a feature track with matched features across different images. In addition

to sparse methods, there are dense feature matching algorithms such as those based on optical

flow, which try to exploit motion cues [6]. While the contributions in this dissertation do not

utilize them, an overview of dense feature methods can be found in the work of Scharstein [74].

Creating accurate feature tracks can be a challenge due to ambiguities caused by occlusions,

shadows, specular highlights, and repeated textures. A good reconstruction pipeline needs to

account for such inaccuracies and seek to correct them. In Chapter 4, we introduce a method that

uses the path of a moving camera as a constraint to produce a 3D structure, while simultaneously

correcting inaccurate feature tracks. We also map this highly parallelizable method to the GPU

to obtain faster results than previous methods.

8

2.3 Pose Estimation
In addition to the intrinsic parameters for a camera described previously, one also needs the

extrinsic parameters, such as its position and rotation. These data values may be provided by

other sensors, such as IMU and GPS, and certain reconstruction apparatuses, like those in aerial

reconstruction and modern mobile computer vision platforms, are more likely to include such

additional sensor data, which augment the images taken by cameras. Traditionally, for the most

generalized reconstruction applications, these camera values are not available and need to be

calculated relative to each other post-image collection. This is done via pose estimation. To

perform pose estimation, we first have to discuss the concept of epipolar geometry. When con-

sidering two different images of the same scene, the epipolar geometry is the intrinsic projective

geometry between the two views and is encapsulated in a 3x3 matrix called the fundamental ma-

trix. In the previous section, we discussed the 3x3 camera matrix. The fundamental matrix can

be computed from the camera matrices in the left and right images (K and K ′) and another

matrix E, the essential matrix, as shown in Equation 2.2. The essential matrix holds informa-

tion about the relative rotation and translation between a pair of cameras. How do we find the

fundamental matrix? Feature matches in two images enables us to to solve for the fundamental

matrix between two cameras. Without delving into much detail, the 2D positions of 8 feature

matches can be used to create a linear system, where the unknowns are the entries of the funda-

mental matrix. Fewer than 8 feature matches can be used as well, but this may require solving

a non-linear system.

F = K−TEK ′−1 (2.2)

Once we have the matrices K and K ′ from the intrinsic camera parameters and the funda-

mental matrix F , it is easy to see that the essential matrix E can be derived. Afterwards, the E

matrix can be decomposed into a relative 3x3 rotation matrix R and a relative 3x1 translation

vector T using Singular Value Decomposition. The process can lead to four possible solutions

of (R, T). We choose the correct solution through a simple test that ensures depths of the scene

points are positive in both cameras. The first camera is typically used as the reference, with its

position placed at the origin and its orientation set at zero rotation. R and T for other cameras

9

are solved with respect to the reference camera.

With the intrinsics and extrinsics for a given camera, we can now create a final matrix for this

camera called a camera projection matrix. Here, we keep the rotation matrix R and translation

vector T as separate entities within a single matrix. Then, we multiply the camera intrinsic

matrix by this matrix to get a camera projection matrix P , shown in Equation 2.3. This matrix

describes the mapping of a 3D point X in the scene to a 2D point x in the image produced

by that camera, as shown in Equation 2.4. The camera projection matrix is a data format for

cameras frequently used in the literature and the one we use for work throughout this proposal.

More details on the fundamentals of epipolar geometry and the camera projection matrix can

be found in the book of Hartley and Zisserman [30].

P = K

R T

0 1

 (2.3)

x = P

X
1

 (2.4)

2.4 Triangulation
Triangulation computes the 3D structure of a scene using the projection matrices and the 2D

information contained in the feature tracks. For a given feature track, the 2D positions of the

features in the track and the projection matrices can be used to solve for the 3D position of

the scene point in world space, To visualize this, assume that a feature track and the projection

matrices are perfectly correct. For each image in the track, if we shoot a ray from each image’s

camera center through the pixel corresponding to the feature, the rays for all cameras should

intersect perfectly at one point. In practice, due to error in various parts of the process, the rays

will not perfectly intersect and a best-fit point must be found based on minimizing some sort of

error metric.

A more detailed review of triangulation and its various implementations will be discussed

later. Triangulation is an important step in reconstruction as it produces a 3D scene structure for

the first time. Furthermore, the result of triangulation acts as a starting point for the next stage,

bundle adjustment, in which the feasibility of a non-linear optimization depends greatly on the

10

starting point. Triangulation can be done multiple times throughout the reconstruction process

to help maintain accuracy. Therefore, reconstruction pipelines aim to use a triangulator that is

both accurate and fast. In Chapter 3, we introduce a GPU-based triangulator that maintains or

exceeds the accuracy of common methods. Our triangulator uses an easily parallelizable L1

cost function and obtains large speedups.

2.5 Bundle Adjustment
A resulting reconstruction might have errors accumulated from multiple stages. In the absence

of ground truth data, reprojection error is the only valid metric to assess the accuracy of a re-

construction. Reprojection error is the sum of squares of the Euclidean distances between a

computed 3D point’s 2D projection and its corresponding feature track locations across all im-

ages in which the point is visible. A common final stage in reconstruction is bundle adjustment,

which is an optimization of these parameters, such that the reprojection error is minimized. The

minimization is achieved using non-linear least-squares algorithms, among which Levenberg-

Marquardt has proven to be one of the most successful. Harley and Zisserman provides further

information on bundle adjustment [30].

It is difficult to analyze reprojection error to determine the cause of such error. Total repro-

jection error does not provide any information regarding the sources of the error. For instance,

a small number of feature tracks with high reprojection error could be the main component of

total reprojection error, and bundle adjustment optimization, despite its expensive computation,

may not be able to lower its value. Bundle adjustment performs a non-linear optimization of the

sum-of-squares reprojection error function, which is prone to miring in local minima and may

not converge to the global optimal solution. If inaccurate feature tracks could be removed or

corrected, total reprojection error may be much lower, and bundle adjustment would converge

much faster with a greater probability of obtaining the global minimum.

For large-scale problems, the non-linear optimization required by bundle adjustment can

pose a challenge, especially since bundle adjustment can be done multiple times periodically

throughout the reconstruction process. Ongoing research seeks to use parallel computing to re-

duce the runtime of bundle adjustment. In Chapter 6, we present a divide-and-conquer approach

11

to the bundle adjustment problem, where we partition the problem into subproblems separated

by boundary points. We alternate optimizing the subproblem parameters with the boundaries

fixed and optimizing the boundaries with the subproblem parameters fixed. The method takes

advantage of a multi-GPU system to gain large speedups.

2.6 Dense Stereo
Another stage of reconstruction, dense stereo, produces a dense reconstruction and is optional

depending on the application. Figure 2.1 shows an example of a sparse and dense reconstruction

of the same object. For some applications, such as Simultaneous Localization and Mapping

(SLAM), a sparse reconstruction can be adequate. In other cases, such as computer graphics

and augmented reality, it is desirable to turn a sparse reconstruction into a realistic 3D object

or scene. For dense stereo, the accuracy of the cameras are highly important and are largely

determined by the outcomes of the previous stages. With accurate enough cameras, the pixels

in each image can be used to “fill in the gaps” in the sparse reconstruction to produce a dense,

realistic 3D object. Some strategies use geometric meshing to create a dense reconstruction,

while others might simply add more points to the sparse point cloud to create a dense point

cloud. Since it is desirable to leverage as much image data as possible, dense stereo can be

computationally expensive due to the amount of images available in a large-scale reconstruction

dataset. In Chapter 5, we introduce a method that leverages 2D scene information found in the

images along with multiple GPUs to produce highly dense point clouds within a reasonable

time.

2.7 GPUs and Reconstruction
As mentioned previously, GPUs are useful tools for accelerating a variety of applications. The

most popular GPU computing platform, with a unique architecture and its corresponding pro-

gramming model, is NVIDIA’s Compute Unified Device Architecture (CUDA). We will be

using this programming model throughout this proposal. CUDA is well-known today, so we

will only explain it briefly here and defer to Nickolls et al. [60] to describe the model in more

detail. CUDA programs are called kernels, which are run on a collection of parallel blocks,

each of which contains up to 1024 threads. The GPU assigns blocks of threads to one of its

12

Figure 2.3: The CUDA host-device-kernel relationship and grid-block hierarchy is shown on
the left. The block-thread hierarchy and memory hierarchy is shown on the right. These images
are taken from the CUDA Programming Guide [63].

many streaming multiprocessors (SMs), which runs groups of 32 threads called warps in lock-

step under SIMD control. Threads within a block can also share data through a small shared

memory that is over 100 times faster than off-chip DRAM (global memory). Another type of

memory, texture memory, is potentially faster than global memory if the memory accesses are

irregular but have 2D spatial locality. Efficient GPU programs must fill the machine with work

by launching a large number of threads; must minimize thread divergence (threads that take

different control flows) within warps; and must efficiently use the memory hierarchy, using fast

shared memory in preference to global memory if at all possible. Throughout the evolution of

the CUDA, new features have been added to give developers more flexibility. Support for global

atomic operations on various data types enable programmers to synchronize computation glob-

ally within a kernel. Introduced in CUDA 9, cooperative groups allow a programmer-specified

number of threads in a thread block up to the size of the block to communicate and synchronize

with each other. Previously, such granularity of control existed only within a warp or across the

entire block.

Many stages of reconstruction, especially those that are computationally expensive, have

been implemented on the GPU. For feature detection, Wu developed the first GPU implemen-

13

tation of SIFT in 2007 [89]. The basics of the implementation are straightforward, as SIFT is

highly parallel, since blurring images and taking image differences are essentially image pro-

cessing tasks. Bjorkman et al. created a more recent implementation of SIFT on the GPU opti-

mized for newer NVIDIA GPUs [9]. Bundle adjustment is another computationally-expensive

stage in reconstruction, and non-linear solvers, particularly Levenberg-Marquardt (LM), have

been implemented on the GPU. The most expensive step in LM is solving a linear system per

iteration for multiple iterations. An iterative method, preconditioned conjugate gradient (PCG),

is often used as the solver. Wu et al. and Zheng et al. both implement this method on the GPU

for bundle adjustment, as the algorithm maps well to a highly parallel architecture [91, 97]. The

most expensive step in PCG is sparse matrix-vector multiply, which is straightforward on the

GPU. Other steps also involve basic linear algebra routines.

Other reconstruction applications, particularly those that target aerial and large-scale scenes,

have been implemented on the GPU. Zhu et al. designed a end-to-end pipeline to go from aerial

images to disparity images in real-time using the GPU [98]. Their workflow is simple and

regular, and due to their domain of reconstruction based on aerial imagery, they have GPS

coordinates to help with calibration. They perform a brute-force search for each pixel to find

the best depth value. Yang et al. and Hane et al. used variations of the plane-sweeping stereo

method to implement dense stereo reconstruction on the GPU [34, 93]. Plane-sweeping stereo

discretizes the 3D scene into a stack of planes, providing a straightforward way to assign work

among different parallel threads. OpenCV provides GPU backends for some of its routines,

mainly those that involve image-processing algorithms. The transfers of data between host and

device at the beginning and end of the routines are hidden to the user but may incur overhead.

VisualSfM also provides the option of using the GPU for certain stages of reconstruction. Like

OpenCV, data transfers must occur at the beginning and end of a stage.

In this dissertation, we focus on leveraging GPUs to accelerate the triangulation stage, bun-

dle adjustment stage, and dense stereo stage of 3D reconstruction. In the following chapters,

we cover our methods and their GPU implementation details. The next chapter introduces a

GPU-based triangulator that is both fast and accurate.

14

Chapter 3

Large-Scale Triangulation on the GPU

In this chapter, we present a GPUN -view triangulator that maintains or exceeds the accuracy of

common existing methods. Our method uses a parallelizable L1 cost function and achieves up

to 39x speedup over a serial implementation. Section 3.0 gives a definition of the triangulation

problem, while Section 3.1 gives an overview of previous work on triangulation. Section 3.2

provides the details of our implementation, including the definition of the cost function, a anal-

ysis of its convexity, the use of statistical sampling, and the granularity of our parallelization on

the GPU. Section 3.3 presents the results of running our implementation on synthetic and real

data.

3.0 Definition of Triangulation in the Context of Computer
Vision

Multi-view scene reconstruction involves a number of stages applied sequentially, where the

output of one stage directly affects accuracy in the following steps. Triangulation is a key step in

reconstruction. Its accuracy is a direct function of previously-computed feature tracking, camera

intrinsic calibration, and pose estimation [30]. Typically, 3 × 4 projection matrices are used to

encapsulate all camera intrinsic and pose information. Triangulation aims to determine the 3D

location of a scene point, X , from its imaged pixel location, xi, in two or more images. When

X reprojects exactly onto its xi coordinates, such that epipolar constraints [30] on the matches

are perfectly satisfied, triangulation is trivial through even the simplest methods. However,

in the presence of image noise, the reprojected coordinates of X will not coincide with each

15

Figure 3.1: Across three images, a set of rays originating from the camera positions are passed
through 2D features F1, F2, and F3 in an attempt to recover the 3D world point W . When
zooming in on the rays’ closest point of intersection, we will often see that there is no perfect
solution. Triangulation is used to estimate the most likely position of the 3D world point.

respective xi. In settings with an arbitrary number of cameras, noisy camera parameters, and

inexact image measurements (feature tracks), the goal becomes finding the point X that best

fits a given track.

The main issue with all previous triangulation algorithms is scalability. Improved data col-

lection capabilities are increasing both the quality and quantity of data used as input for trian-

gulation. Advancements in camera technology produce high-resolution images and the mobile

revolution coupled with improved data storage and sharing techniques enable numerous users

to generate images of the same scene. As the image resolution, number of images, and number

of features within images grow, the process of triangulation can become intractable with cur-

rent methods. Such issues arise for example in aerial reconstruction from UAVs. In addition,

the ability to perform real-time processing is becoming desirable. Addressing issues of per-

formance requires embracing modern tools for high-performance computing in software and

hardware.

16

3.1 Related work
To this end, linear triangulation [30] is a fast method that is most widely used in the literature.

The method solves for 3D points based on linear least squares, but given noisy inputs, the final

result can be very inaccurate. A system of the form AX = 0 is solved by eigen-analysis or

Singular Value Decomposition, where the A matrix is a function of feature track and camera

projection matrix values. The obtained solution is a direct, best-fit solve, regardless of how

noisy the inputs are. The solution is not optimal in that it doesn’t minimize the L2-norm of

reprojection error. Numerical stability issues are also possible, especially with near-parallel

cameras. The midpoint method [30] is by far the fastest method given two views, but it is

very inaccurate in general. More recent methods have focused on achieving higher accuracy,

typically by minimizing the L2-norm of reprojection error through non-convex constrained op-

timization to achieve an optimal solution. This norm corresponds to the maximum-likelihood

estimate for the point assuming independent Gaussian image noise.

There exist a number of optimal triangulation algorithms in the literature. One class of al-

gorithms is based on polynomial methods [31], where all stationary points of a cost function are

computed and evaluated to find the global minimum. The cost function must be expressed as a

rational polynomial function in the parameters. The function’s extrema are located where the

derivatives with respect to the parameters become zero. The degree of the polynomial grows

cubically with the number of views [81]. This implies a cubic growth in the number of lo-

cal minima to evaluate, so this procedure has only been feasible for two and three views so

far. Hartley and Sturm’s optimal two-view method [29] applies an epipolar geometry-based

Sampson correction on feature match positions x and x′ to correct them such that they lie at

the closest positions to epipolar lines. The correction requires solving for the stationary points

of a 6th-order polynomial and then evaluating each real root. Lindstrom’s “fast triangulation”

algorithm [49] expresses the same set of equations in terms of Kronecker products, which by

allowing terms to cancel out reduces the function to a quadratic equation and results in a one-to-

four order-of-magnitude performance increase. Polynomial methods for three-views differ from

two-view methods in that feature track positions are left intact. Kanatani et al. [38] develop a tri-

angulator that outperforms Hartley and Sturm’s method by avoiding singularities at the epipole

17

and using an iterative approach to get much faster performance. Stewénius et al. [81] applied the

Gröbner basis method for solving polynomial equation systems. The real solutions for 47× 47

action matrices are evaluated, where up to 24 minima may exist. Arithmetic operations are per-

formed with 128 bits of mantissa to avoid round-off error accumulation. The method by Byröd

et al. [12] alleviates such numerical issues by using the relaxed ideal modification for Gröbner

bases, but at the expense of an even greater processing time.

A second class of algorithms is based on optimizing a cost function without seeking a direct

solution like the polynomial-based algorithms. Some of these methods support N views. In

general, these methods are promising but lack solid experimental results as far as error and pro-

cessing time against different noise and camera configurations. Agarwal et al. [2] use fractional

programming and a branch and bound algorithm to find a position arbitrarily close to the global

optimum. There are also a few methods based on convex optimization on an L∞ cost function.

Hartley and Kahl [31] as well as Min [57] perform convex optimization on an L∞ cost func-

tion making use of second-order cone programming (SOCP). Dai et al. [17] describe an L∞

optimization method based on gradually contracting a region of convexity towards computing

the optimum. In general, it is not clear how algorithms based on L∞ behave under noise and

for arbitrary numbers of cameras. It is also not justified why L∞ was chosen over L1, which

behaves very well in Dai et al. [17].

N -view triangulation has traditionally been treated in two phases, where an initial linear

method such as N -view linear triangulation [30] is applied to obtain an initial point followed

by non-linear bundle adjustment optimization to reduce the sum-of-squares L2-norm of repro-

jection error [50]. This procedure is prone to local minima, so a very accurate initialization is

required.

A triangulator presented by Recker et al. [67] optimizes a L1-based error cost function de-

rived from the angles between camera rays. The method obtains an initial position through the

midpoint method and applies adaptive gradient descent [79] on the angular cost function. This

function is smoothly varying in a large basin in the vicinity of the global optimum, making it

more robust to outliers and local minima than the L2 norm of reprojection error. Furthermore, a

statistical sampling component is introduced to increase efficiency without sacrificing accuracy.

18

A significant speed increase and better reprojection errors were obtained than with other trian-

gulators, including N -view linear triangulation. However, the results are not provably optimal,

and rely on a possibly inaccurate midpoint-based initialization.

There have also been triangulation algorithms developed for GPUs. Sánchez et al. [71, 72]

present a GPU triangulator based on Monte Carlo simulations. Compared against Levenberg-

Marquardt, they achieve the same precision but in much less time. However, the authors neither

test their implementation on large-scale images with many features nor analyze how noise af-

fects their results. Most reconstruction pipelines still use triangulators that run on CPUs. A

more comprehensive overview and comparison of various triangulation methods is given in

Strecha et al. [82].

3.2 Methodology
We introduce a fast and accurate GPU N -view triangulator. Our method is based on the cost

function of Recker et al. [67], which is ideal for parallelization because it consists of abundant

independent work. The following are the main contributions of our work:

• Using the CUDA programming model, we develop and compare two parallelization ap-

proaches for the GPU: using one thread to process one track and using one thread block

to process one track. We show that the better-performing approach for a given dataset

depends on the number of tracks and track lengths.

• Our algorithm uses statistical sampling based on confidence levels to successfully reduce

the quantity of feature track positions needed to triangulate an entire track. We discuss

how this sampling aids in our parallel implementation by improving load balancing and

exploiting the GPU memory hierarchy.

• Finally, we test our GPU implementation on synthetic and real data. Our runtimes are

up to 39x and 9x faster than contemporary serial and multi-core CPU implementations

respectively, with final reprojection errors that are comparable to existing triangulators.

This opens the door to triangulating large data very accurately and efficiently, a combina-

tion yet unseen in the triangulation literature.

19

3.2.1 Triangulation cost function

There are a number of cost functions in the vision literature. The L2 least-squares solution is the

maximum likelihood (ML) estimate under Gaussian image noise, but typically contains many

local minima. The L∞ model assumes uniform bounded noise and commonly results in a single

solution. However, the L1 norm measures the median of noise and is more robust to outliers

than L2 or L∞, with desirable convergence properties.

Recker et al. [67] proposed an L1 triangulation cost function, shown in Eq. 3.1, based on an

angular error measure. Given Ci cameras, T the set of all feature tracks, and a 3D evaluation

position p = (X, Y, Z), the cost function for p with respect to a track t ∈ T can be defined.

ft∈T (p) =

∑
i∈I(1− v̂i · ŵti)
||I||

(3.1)

The inputs are a set of feature tracks across N images and their respective 3× 4 camera projec-

tion matrices Pi. The method to compute the error for p is shown in Fig. 3.2(a) and explained

as follows. A unit direction vector vi is first computed between each camera center Ci and p.

A second unit vector, wti, is computed as the ray from each Ci through its 2D feature track t in

each image plane. Since t generally does not coincide with the projection of p in each image

plane, there is frequently a non-zero angle between each possible vi and wti. Finally, the aver-

age of the dot products vi · wti across all cameras is obtained. Each dot product can vary from

[−1, 1], but only points that lie in front of the cameras are taken into account, corresponding to

the range [0, 1].

In Eq. 3.1, I = {Ci|t “appears in” Ci}, ~vi = (p − Ci), and ~wti = P+
i ti. The right pseudo-

inverse of Pi is given by P+
i , and ti is the homogeneous coordinate of track t in camera i. The

equation can be expanded with vi = (vi,X , vi,Y , vi,Z) = (X − Ci,X , Y − Ci,Y , Z − Ci,Z), with

normalized v̂i = vi
||vi|| and ŵti = wti

||wti|| . In the absence of noise, Eq. 3.1 evaluates to zero at its

minimum. However, the function is not convex and therefore must be solved iteratively as a

non-linear optimization problem. The following defines the gradients along the X , Y , and Z

directions [67], where each gradient is defined by an expression a, b, or c, and d is a common

20

denominator in all expressions.

∇ft∈T = (

∑
i∈I a

||I||
,

∑
i∈I b

||I||
,

∑
i∈I c

||I||
) (3.2)

a = (−C2
i,Ywt̂i,X − C

2
i,Zwt̂i,X − Ci,Xwt̂i,Y Y + wt̂i,YXY − wt̂i,XY

2+

Ci,Y (Ci,Xwt̂i,Y − wt̂i,YX + 2wt̂i,XY)− Ci,Xwt̂i,ZZ + wt̂i,ZXZ−

wt̂i,XZ
2 + Ci,Z(Ci,Xwt̂i,Z − wt̂i,ZX + 2wt̂i,XZ))/d

(3.3)

b = (−C2
i,Xwt̂i,Y − C

2
i,Zwt̂i,Y − Ci,Ywt̂i,XX − wt̂i,YX

2 + wt̂i,XXY+

Ci,X(Ci,Ywt̂i,X + 2wt̂i,YX − wt̂i,XY)− Ci,Ywt̂i,ZZ + wt̂i,ZY Z−

wt̂i,YZ
2 + Ci,Z(Ci,Ywt̂i,Z − wt̂i,ZY + 2wt̂i,YZ))/d

(3.4)

c = (−C2
i,Xwt̂i,Z − C

2
i,Ywt̂i,Z − Ci,Zwt̂i,XX − wt̂i,ZX

2 − Ci,zwt̂i,Y Y)−

wt̂i,ZY
2 + wt̂i,XXZ + wt̂i,Y Y Z + Ci,X(Ci,Zwt̂i,X + 2wt̂i,ZX−

wt̂i,XZ) + Ci,Y (Ci,Zwt̂i,Y + 2wt̂i,ZY − wt̂i,YZ))/d

(3.5)

d = ((Ci,X −X)2 + (Ci,Y − Y)2 + (Ci,Z − Z)2)3/2 (3.6)

Our method and its parallelization are summarized in Algorithm 1. The pseudo-code refers

to the version of our implementation that uses optional statistical sampling, which is discussed

further in Section 3.2.1.2. In addition, this version uses the parallelization granularity of assign-

ing a whole CUDA thread block to triangulate each point. Further details specific to the GPU

implementation are given in Section 3.2.2.

3.2.1.1 Convexity Analysis

To analyze the convexity properties of this function, we apply a practical procedure. Fig-

ure 3.2(c) shows a scalar field for Eq. 3.1 after measuring a dense set of test positions near

a known ground truth position in Figure 3.2(b). The scalar field shows a very smooth variation

in a large vicinity surrounding this position, where the cost has zero value. This is key since

there is a high chance of convergence to the global optimum even from large distances. Such

21

Algorithm 1 GPU Triangulation Pseudo-Code
1: procedure GPUTRIANGULATION(cameras, feature_tracks)
2: for all track ∈ tracks do in parallel
3: candidate_point← MIDPOINTMETHOD(cameras, feature_track) . Initial guess
4: repeat
5: ∇cost← COMPUTEGRADIENT()
6: candidate_point← candidate_point− step_size · ∇cost
7: for all featurei ∈ SAMPLED(feature_track) do in parallel
8: camera← CAMERALOOKUP(featurei)
9: v̂i ← COMPUTERAY(camera, candidate_point)

10: ŵti ← COMPUTERAY(camera, featurei)
11: angular_costi ← 1− v̂iŵti

12: angular_costs.APPEND(angular_costi)
13: end for
14: . Sum all the angular costs using a parallel reduce.
15: do in parallel
16: cost← REDUCE(angular_costs)
17: end
18: until cost < εthreshold

19: end for

scalar field renderings are not as mathematically rigorous as a direct convexity analysis, but the

large basin typically seen in all of our tests indicate a strong convergence towards the global

minimum. A dot product varies from [−1, 1], but if we choose to deal only with points that

lie in front of the cameras, the range becomes [0, 1], over which the dot product is convex. A

sum of convex functions is convex, as depicted in Fig. 3.2(c). Optimization is performed with

adaptive gradient descent [79], starting from an initial midpoint estimate [67].

3.2.1.2 Statistical sampling

We use a statistical sampling procedure to choose a statistically meaningful sample of rays as

opposed to the entire available set, N . We use Cochran’s formula [16] to compute sample size

n0, as shown in Eq. 3.7. The value σ2 is an estimate of the variance contained in the sampled

data, and we used σ = 0.5 as the fixed value. Cochran’s formula assumes that it is constant

and known. In the general case, we do not know how far off the feature tracks are from the

ground truth position, so σ = 0.5 says that these positions may vary from the ground truth with

a standard deviation of ±0.5 pixels.

22

Evaluation position p

C1

C2

C3

t t

t
wt1 wt2

wt3

v1
v2

v3

(a) Fast triangulation (b) Bounding box

(c) Scalar field (d) Sample size

Figure 3.2: (a) In fast triangulation, rays are shot through a candidate point and through feature
locations. (b) Multi-view reconstruction of the castle-P19 dataset [82], with cameras in dark
blue. (c) A volume view of a scalar field representing an L1 cost function [67] evaluated at a
dense grid inside a bounding box encasing a position in the reconstruction, with purple closer
to zero cost. (d) Sample size (y-axis) using Cochran’s formula [16] with a 95% confidence level
on different population sizes (x-axis).

The value for d in Eq. 3.7 corresponds to the maximum error of estimate for a sample mean,

which we fix at 5%, or 0.05. In case the obtained sample size exceeds 5% of N , Cochran’s

correction formula [16] should be used to calculate the final sample size, n, as shown in Eq. 3.7.

In our algorithm, a 95% confidence level with a 5% margin of error is used. The variable t is

the t-value, in which for a given confidence level, the corresponding percent area of a normal

distribution is within t standard deviations of the mean. The t-values are typically looked up in

a table, and for a 95% confidence level, t = 1.96. Notice in Figure 3.2(d) that the sample size

stabilizes with large numbers, which is key towards our algorithm’s speed.

23

Another option is to use RANSAC [21] to help choose a more representative sample of

rays. We avoid this procedure due to iterative nature of RANSAC and its lack of an upper

bound on runtime. When implementing such a method in parallel on the GPU, there could be

load balancing issues because different threads could be assigned vastly different amounts of

work. On the other hand, taking a single random sample of rays is fairly straightforward on the

GPU, as a GPU-based random number generator can be used to select a random subset of items

in an array. Furthermore, we are less concerned with outliers because our cost function is L1 as

opposed to L2.

n0 =
t2σ2

d2
n =

n0

1 + n0

N

(3.7)

3.2.1.3 Initialization based on clustering

It is worth noting that we attempted implementing a much more robust and exhaustive initial-

ization than that of Recker et al. [67], which is a simple midpoint start with a fixed threshold.

First, the total possible number of pairs between N cameras is computed, which corresponds to

N(N − 1)/2. Next, the midpoint algorithm is used to compute a point between every possible

camera pair from the sample. Then, clusering is applied on the computed midpoints. If there are

no outliers, a single cluster should result. With the presence of outliers, due either to inaccurate

feature tracking or a track “jumping” to a different scene point, multiple clusters could result,

each of which is triangulated separately.

Unfortunately, this procedure leads to an order of magnitude slowdown. Also, due to the

nature of the cost function and its single (global) minimum, this initialization does not lead to

better accuracy. Therefore, we consider it a very important result that the original initialization

method is in general better because of speed and equal accuracy than this seemingly more robust

procedure.

3.2.2 GPU implementation

Our triangulation method exploits GPU properties to efficiently perform arithmetic computa-

tions derived from the L1 cost function and its gradients. There are two main ways in which

parallelization can be achieved, as discussed further in Sections 3.2.2.1 and 3.2.2.2. The simple

approach is to parallelize across tracks and triangulate each track independently in a separate

24

Block 0

t0 ...t1 t2 tn

Block 1 Block m

...t0 ...t1 t2 tn t0 ...t1 t2 tn

(a) One thread per track

Block 0

t0 ...t1 t2 tn

Block 1 Block n

...t0 ...t1 t2 tn t0 ...t1 t2 tn

(b) One block per track

Figure 3.3: Two approaches to parallelizing our triangulator.

thread. Each thread is responsible for recomputing the gradient term for its assigned track. A

second approach exploits parallelism within a track. The gradient of the cost function is com-

puted as a sum of per-feature terms formed from the angles between rays. Instead of assign-

ing one thread per track, an entire block of threads is assigned to each track, where individual

threads compute the term for each feature in the track. The terms are then summed via a parallel

reduction.

3.2.2.1 One Thread Per Track

The first implementation, shown in Figure 3.3(a), is straightforward and parallelizes across

tracks, since each track can be triangulated independently of others. Each thread is responsible

for recomputing the gradient for the cost function of its assigned track until convergence is

reached. Considering the GPU’s SIMD model, there are two drawbacks to this approach. First,

some tracks may converge in fewer iterations of gradient descent than others. Second, since

25

different tracks can vary widely in length, as is the case in many real datasets, the gradient

term may be more expensive to recompute for some tracks than for others. This creates a load-

balancing issue, as threads in a warp that have finished computing its term would have to wait

idly for other unfinished threads in the same warp. Some threads could perform a substantially

larger amount of work than other threads.

Differing convergence rates among tracks cannot be addressed easily, as it is difficult to

estimate beforehand the number of gradient steps needed for convergence. However, we can

improve load balancing among threads. One way to accomplish this is already inherent in our

algorithm: the use of sampling. By sampling with a 95% confidence level, an upper bound

is placed on the number of features used to triangulate a track, greatly reducing track length

variation since it stabilizes with large numbers. Even after sampling, however, different tracks

may vary widely in length, leading to excessive thread divergence within a warp. To handle

this problem, we opt to do a prior sorting of the tracks based on track length, so that threads

within the same warp are likely to be assigned tracks with similar length. We can use the track

lengths as integer sort keys, which allows us to use radix sort, an algorithm that maps well to the

GPU [73]. We use the radix sort routine from the GPU Thrust library [7] for sorting. Sorting can

reduce the divergence within warps, thereby improving performance. Figure 3.4(a) compares

the performance of triangulating randomly generated, variable-length tracks with and without

prior sorting. Radix sort on the GPU is fast, and we find that sorting contributes an insignificant

amount of time to the overall process.

3.2.2.2 One Block Per Track

Although the GPU can support thousands of concurrent threads, individual threads have high

latency. Even with sampling, a single thread that is assigned a long track could be overburdened

with work. In addition, if there are few tracks, assigning one thread per track would not fully

utilize the large number of available threads on the GPU. To address this, a second approach to

parallelizing the triangulator assigns a block of threads to process each track. This implemen-

tation, shown in Figure 3.3(b), is more suitable for data with long feature track lengths. Each

thread in a block is responsible for one feature in the gradient computation, and a parallel sum

reduction produces the final gradient value for the track. Since the amount of work to compute

26

the gradient depends on track length, and the gradient may have to be recomputed multiple

times until convergence, this approach can improve performance in long tracks. Another ad-

vantage of this approach is that it allows us to use GPU shared memory. In Kepler GPUs, each

thread block has access to 48KB of shared memory. When assigning one track per thread, there

is not enough shared memory to store track data for all the tracks in the thread block, even when

we use sampling. Assigning an entire block to a track, combined with sampling, reduces the

amount of memory needed per thread. Thus, a block’s working set of track and camera data

can fit in shared memory, enabling it to be used as a cache. We also perform the parallel sum

reduction for the gradient in shared memory, as threads within the block must communicate to

perform the reduction.

3.3 Results
The processing times and general behavior of the proposed GPU triangulator were compared

against a serial CPU triangulator and a multi-core CPU triangulator on both synthetic and real

data. The tested CPU was a 4-core 3.40 GHz Intel Xeon E3-1275, and the GPU was a NVIDIA

Tesla K20, which features 15 SMs, for a total of 2496 cores. Tesla data center GPUs have

improved performance for double-precision arithmetic, a feature we use in our triangulator. For

the parallel implementation of the triangulator on the CPU, we use the OpenMP programming

model to assign a group of tracks to each CPU thread. Furthermore, our CPU code uses the

Eigen library for matrix and vector operations [48]. Eigen takes advantage of the SIMD units in

modern CPUs (provided by SSE instructions) by using separate SIMD lanes to add or multiply

more than one element in a vector or matrix for some extra parallelism. This SIMD parallelism

is small, however, compared to that offered by our GPU implementation.

3.3.1 Synthetic tests

The first test on synthetic data measures the processing times as the number of tracks is in-

creased, for the GPU implementation that assigns one thread per track vs. the multi-core CPU

implementation. Track count is increased in increments of 50000, while a constant length of

100 is used for all tracks. We add image plane noise of 1% of the image diagonal dimension to

the ground truth tracks, in random directions, to ensure that gradient descent requires multiple

27

iterations to converge. Results are shown in Figure 3.4(a,b). The performance of the GPU scales

better than that of the multi-core CPU as the number of tracks increases.

Next, we test GPU runtime vs track error using four types of camera configurations: circle,

semi-circle, line and random. For example, in circle, the cameras form a circle looking at the

features in the center. The random configuration represents a set of unstructured images such as

those on the internet, where images are not acquired sequentially. Track length is fixed at 100,

and the number of tracks is fixed at 10000. Figure 3.5(a) shows that runtime is hardly affected

with small increases of track error.

Finally, we compare the performance of the two GPU implementations. A variable track

length in the range 10–100 were used, and the number of tracks tested were 20000 and 100000.

In Figure 3.5(b), notice a staircase pattern for runtime in the one-block-per-thread case. This

is due to the fact that a block always consists of a multiple of 32 threads (a warp). When a

track length is not a multiple of 32, the extra threads are idle, so performance spikes right after

multiples of 32. After 64 threads, this is no longer a problem since the fraction of idle threads

in the block is small. Therefore, the performance crossover point occurs between track lengths

of 32 and 64. In addition, if the number of tracks is small, the performance penalty for idling

threads is small because there are fewer blocks, and therefore fewer idling threads. One-thread-

per-track works better for track lengths less than 32 (a warp) and with lots of tracks. Otherwise,

one-block-per-track is more scalable.

3.3.2 Evaluation on real data

For real scenes, processing time and reprojection error were evaluated, as displayed in Table 3.1.

For the GPU implementation, we use the one-thread-per-track implementation with sorting be-

cause most of the tracks in the data did not exceed 100 cameras and usually had varying length,

except for Brown12, where one-block-per-track was used. We found that the GPU implementa-

tion was at best approximately 9x times faster than multi-core and 39x times faster than serial.

The general trend shows greater speedups with an increase in track count, more importantly so

than the variation in track length. In the specific case of Dinosaur and Stockton, the multi-core

CPU implementation is faster than the GPU, due to the fact that the track length and the number

of points is too small for the GPU to make a difference. No track length is greater than 21 in

28

(a) (b)

Figure 3.4: (a) GPU performance on varying track lengths (1–100) with and without sorting.
(b) Performance of a multicore CPU vs. a GPU for an increasing number of tracks.

(a) (b)

Figure 3.5: (a) GPU performance with increasing track error for different camera configura-
tions. (b) GPU performance on varying track lengths (1–100) with and without sorting.

either. In contrast, in Canyon Dense, all tracks are of length two, but there are hundreds of thou-

sands of them, leading to a great speedup. When comparing to other triangulators, Stewénius

et al. [81] took 20 hours on the Dinosaur dataset [64] and Byröd et al. took 2.5 minutes, but

ours takes less than 4 ms. Finally, obtained reconstructions are shown in Figure 3.6. For the

Notre Dame dataset and ET dataset, shown in Figure 3.6(a) and Figure 3.6(c) respectively, the

runtime results are left out of Table 3.1 due to the times being too small to be meaningful.

29

Data set N C ε tserial tmc tgpu Smc Sgpu

Brown12 [68] 4429 337 1.541 51 15 22 3.4x 2.3x
Dinosaur [64] 4983 36 0.467 9 2 4 4.5x 2.3x
Canyon [67] 103153 90 0.226 288 86 17 3.3x 17x
Canyon Dense [67] 997115 2 1.838 1440 342 37 4.2x 39x
Palmdale [67] 13840 66 1.159 24 8 2 3.0x 12x
Stockton [67] 16179 10 2.214 9 2 4 4.5x 2.3x

Table 3.1: Times tserial, tmc, and tgpu and average reprojection error ε (pixels) with number of
tracksN and number of cameras C, where Smc and Sgpu show the speedups of a multicore CPU
implementation and a GPU implementation compared to a serial implementation.

3.4 Conclusion and Future Work
This work presents a framework for GPU-accelerated N -view triangulation in multi-view re-

construction that improves processing time and final reprojection error with respect to methods

in the literature. The framework uses an algorithm based on optimizing an angular error-based

L1 cost function and it is shown how adaptive gradient descent can be applied for convergence.

The triangulation algorithm is mapped onto the GPU and two approaches for parallelization are

compared: one thread per track and one thread block per track. The better performing approach

depends on the number of tracks and the lengths of the tracks in the dataset. Furthermore, the al-

gorithm uses statistical sampling based on confidence levels to successfully reduce the quantity

of feature track positions needed to triangulate an entire track. Sampling aids in load balanc-

ing for the GPU’s SIMD architecture and for exploiting the GPU’s memory hierarchy. When

compared to a serial implementation, a typical performance increase of 3–4x can be achieved

on a 4-core CPU. On a GPU, large track numbers are favorable and an increase of up to 39x

can be achieved. Results on real and synthetic data prove that reprojection errors are similar

to the best performing current triangulation methods but costing only a fraction of the compu-

tation time, allowing for efficient and accurate triangulation of large scenes. Our triangulator

is designed for large-scale reconstruction with ever-increasing image sizes and quantities, and

opens the door for very accurate and efficient performance. Future work would pursue fur-

ther performance enhancement by carefully employing both shared memory and registers to

hold intermediate data and reduce global memory traffic. Additionally, recent advances in the

30

(a) Notre Dame [78] (290 views)

(b) Brown12 [68] (337 views)

(c) ET [78] (7 views)

Figure 3.6: Results of our GPU triangulator alongside an image from each dataset.

31

CUDA programming model allow us to explore other parallelization granularities, such as using

multiple thread blocks and distributed shared memory to triangulate a single point with a long

feature track. This can help with load balancing, when statistical sampling is not desirable or

when tracks have large variations in length. Finally, all of these potential performance enhance-

ments would enable us to study the use of our triangulation method for real-time applications.

In the next chapter, we introduce another method for triangulation that uses the path of a moving

camera as a constraint and is parallelizable on the GPU.

32

Chapter 4

Parallax Paths on the GPU

In this chapter, we map parallax paths to the GPU and test its performance and accuracy as a

triangulation method for the first time. In Section 4.0, we provide an overview of the parallax

paths method. Then, in Section 4.1, we briefly discuss some related work, including degenera-

cies in the state-of-the-art angular triangulation method. Afterwards, in Section 4.2, we describe

our algorithm, go over some new insights in the parallax paths method, and present our GPU

implementation. In Section 4.3, we compare our method with angular triangulation and show

the results of our experiments. Finally, we end with our conclusions in Section 4.4.

4.0 Parallax Paths Definition
Recently, there is been great interest in reconstruction from aerial video. Accurate models de-

rived from aerial video can form a base for large-scale multi-sensor networks that support activ-

ities in detection, surveillance, tracking, registration, terrain modelling and ultimately semantic

scene analysis. Time-effective, accurate and in some cases dense scene models are needed for

such purposes. In addition, unmanned aerial vehicles may become common tools for govern-

ment and commercial use in the future, and allowing them to detect the underlying environment

will enable increased autonomy and the ability to perform the type of useful analysis mentioned

previously. One advantage of aerial reconstruction is the possible inclusion of sensors in addi-

tion to cameras on the reconstruction apparatus. These can include GPS and IMU, which allows

for the relative camera poses to be known at the time of image capture. The additional data can

act as useful constraints to improve the efficiency and accuracy of reconstruction.

33

X1

X2

C1

C2 C3

camera
path

parallax
paths

reconstruction
plane

(a) The parallax paths method

C1

C2

C3

C4
C5

C6

(b) 2D position-invariant reference

Figure 4.1: (a) Rays from cameras Ci. . .Cn through a scene point Xi intersect a plane, creating
a parallax path, which is a scaled version of the camera path. Points closer to the cameras create
bigger paths. (b) The camera path and parallax paths are translated to a position-invariant
reference, with a track’s path origin coinciding with the anchor camera for the track.

To this end, the parallax paths method is a promising framework developed by Hess-Flores

et al. [33] for aerial and turntable reconstruction. It uses the path of a moving camera as a strong

constraint that can be applied to various stages in reconstruction including camera calibration,

feature track correction, and final scene reconstruction. For each feature track of the reconstruc-

tion, a scale value is computed within the framework, which is a direct function of perceived

parallax for the corresponding scene point. The method, however, requires that the camera path

used in the reconstruction to be piecewise planar, and that it does not intersect the set of viewed

scene points.

First, the method for reconstructing a single point will be summarized. It is assumed that a

set of coplanar cameras and a set of feature tracks beginning at the first camera are the input.

For a given feature track, a ray is shot from each camera center position through the point’s

pixel feature location in that camera’s image plane. The intersection of this ray with a pre-

selected reconstruction plane “beneath” the scene, which is parallel to the camera plane, yields

a parallax path position. The set of all ray-plane intersections for a given feature track results in

its parallax path. There are two insights to this method: first, if a feature track is accurate, all

34

P1

C2

C3

C4

C5

C6

C1

P2

P3

P4 P5

P6

scale=

C1C2

P1P2

C1C2

P1P2

(a) Perfect tracks

C2

C3

C4
C5

C6

C1
P1

P2

P3

P4
P5

P6

(b) General case

Figure 4.2: (a) With perfectly correct tracks, a locus line passes through every projected feature
(a path point). (b) In general, features might not lie exactly on a locus line.

rays should intersect at a common scene point; and second, the ray-plane intersections should

be an exact yet scaled projection of the camera’s path projected onto the plane, as shown in

Fig. 4.1(a). The concept of scale is easily visualized when translating all parallax paths to a 2D

position-invariant reference, as shown in Fig. 4.1(b).

Once the camera path and parallax paths are translated to this position-invariant reference,

with all paths beginning at a common origin as shown in Fig. 4.1(b), locus lines (shown in

light green) can be traced from the origin through all the parallax path points. In this case, it

is assumed that the first camera is the anchor camera and is used as reference to provide this

origin. However, any camera can be chosen as the anchor. For perfect feature tracks, a locus

line should perfectly intersect every path point corresponding to a feature seen by that camera,

as shown in Fig. 4.2(a). In this perfect setting, the scale of a parallax path is defined as the

intersection between a locus line and the parallax path. Notice that scale values grow when

moving from the reconstruction plane towards the camera plane.

4.1 Related Work
Like the previous chapter, the main subject of this chapter is triangulation. Related works on

triangulation are summarized in the previous chapter in 3.1. The method in this chapter is

within the class of algorithms relating to sequential reconstruction, where the images used for

reconstruction are sequentially taken from a single, moving camera. Within this field, Pollefeys

et al. [65] provides a method for reconstruction from hand-held cameras, Nistér [61] deals with

35

reconstruction from trifocal tensor hierarchies, and Fitzgibbon et al. [22] provides an approach

for turntable sequences.

4.1.1 Degeneracies in Angular Triangulation

In the previous chapter, we looked at Recker et al.’s angular triangulation method, which we

refer to from now on as fast triangulation [67]. There are specific degeneracies that can affect

this method. The first is an initial midpoint estimate which is very inaccurate. Despite the

sink behavior of the cost function, a very inaccurate starting position can lead adaptive gradient

descent in the wrong direction. Though Recker et al. [67] proved that this seldom occurs, very

erroneous feature tracks may need to be evaluated via RANSAC [21] or other robust methods

before triangulating. The second degeneracy occurs with small baselines. For near-parallel

cameras and/or small baselines, the obtained midpoint estimate can also be very inaccurate, and

similar convergence issues can result. Generally, triangulating with very short baselines should

be avoided, and algorithms such as frame decimation [62] can be used for this purpose.

4.2 Methodology
The parallax paths method has not been previously studied as a method for triangulation nor has

it been implemented with performance in mind. In this section, we aim to explore these topics.

The following are our contributions:

• We evaluate and compare the performance of triangulation based on the parallax paths

framework with another algorithm used for reconstruction, Recker’s angular error-based

triangulation algorithm [67]. Recker’s triangulation method (fast triangulation) is both

accurate and one of the fastest known in the literature, and has been successfully paral-

lellized on the GPU. This is the first comparison analysis between these two promising

tools for solving the structure-from-motion problem.

• To perform the study on the most state-of-the-art high-performance hardware, we develop

the first GPU implementation of the parallax paths method to compare it with the GPU

implementation of the fast triangulation method.

36

• We further define and evaluate the effect of different path scales with respect to the origi-

nal method.

• Although parallax paths requires sequential and piecewise-planar camera positions, in

such scenarios, we can achieve a speedup of up to 14x over fast triangulation, while

maintaining comparable accuracy.

One thing to note about parallax paths is that the method assumes the input feature tracks can

be inaccurate and works to correct them. In a sense, parallax paths is not strictly a triangulation

method because it alters the feature tracks themselves. However, the method does not alter

the cameras and works to output the same desired result as triangulation: an accurate set of

3D scene points. The algorithm to compute parallax paths and triangulate points is outlined

in Algorithm 2. In cases where there is a parallel for-loop nested inside another parallel for-

loop, the maximum parallelism is the number of iterations in the outer loop times the number of

iterations in the inner loop. More details about the algorithm, including the method to determine

the path scales, are discussed in the following subsections.

4.2.1 Parallax Paths—A Further Analysis

The main advantage of parallax paths is that it allows for the correction of inaccurate feature

tracks given constraints arising from the path of the moving camera and the projected path of

a feature track as a replica of the camera path up to a scale. However, it is not clear from the

original method if there is a direct way to compute accurate scale values in general, nor what the

effect of scale actually is on the final computed 3D position. Also, the performance of triangula-

tion based on the corrected tracks is not directly analyzed, and no attempts at parallelization are

made. Given the way feature tracks are corrected in this method, it provides the advantages that

the final triangulation can be performed efficiently, but this was not exploited by Hess-Flores et

al. [33].

scale =
|
−−→
P1P2|
|
−−−→
C1C2|

=
|
−−→
P1P3|
|
−−−→
C1C3|

=
|
−−→
P1P4|
|
−−−→
C1C4|

=
|
−−→
P1P5|
|
−−−→
C1C5|

= · · · = |
−−−→
P1PN |
|
−−−→
C1CN |

. (4.1)

The original work by Hess-Flores et al. [33] did not mathematically define a direct way to

obtain the scale of a parallax path. Here, we provide an efficient way to compute its value. For

37

Algorithm 2 Parallax Paths Pseudo-Code
Input: cameras, feature_tracks
Output: triangulated_points

1: procedure PARALLAXPATHS(cameras, feature_tracks)
2: for all i← 0 to num_tracks− 1 do in parallel
3: track← feature_tracks[i]
4: for all j← 0 to NUMFEATURES(track) do in parallel
5: feature← track.features[j]
6: camera← track.camera()
7: ray_plane_intersections[i][j]← COMPUTERAYPLANEINTERSECTION(camera, feature)
8: end for
9: end for

10: for all i← 0 to num_tracks− 1 do in parallel
11: track← feature_tracks[i]
12: for all j← 0 to NUMFEATURES(track) do in parallel
13: scales[i][j]← COMPUTELOCUSLINESANDSCALE(ray_plane_intersections[i][j])
14: end for
15: end for
16: for all i← 0 to num_tracks− 1 do in parallel
17: track← feature_tracks[i]
18: sum_scales[i]← 0

19: for j← 0 to NUMFEATURES(track) do
20: sum_scales[i] += scales[j]
21: end for
22: average_scales[i]← sum_scales[i] ÷ NUMFEATURES(track)
23: end for
24: for all i← 0 to num_tracks− 1 do in parallel
25: track← feature_tracks[i]
26: correct_paths← CORRECTPATHS(average_scales[i], cameras, track)
27: end for
28: for all i← 0 to num_tracks− 1 do in parallel
29: track← feature_tracks[i]
30: triangulated_points[i]← TRIANGULATE(cameras, correct_paths)
31: end for

38

the first locus line in Figure 4.2(a), the scale of the parallax path is the ratio of the lengths of two

line segments: the segment
−−→
P1P2 from the parallax path origin point P1 and a second path point

P2; and the segment
−−−→
C1C2 between the anchor cameraC1 and the next cameraC2 corresponding

to the second path point. This is applicable to all the locus lines, as shown in Eq. 4.1.

The value of the ratio equals the scale of the path and is consistent for all locus line and

parallax path intersections. Note that the camera path does not need to be circular or any deter-

minable shape for this to be true, as long as all the cameras can be fitted by a common plane (are

coplanar) by segments. For long camera trajectories that are non-planar, parallax paths must be

computed and concatenated across segments to obtain the final reconstruction.

4.2.2 Obtaining the Correct Scale

The scale value is significant because it tells us how each feature track—and therefore each

point in the reconstructed scene—relates to the camera path. In practice, there are errors in

the feature tracks, and so the projected camera path or ray-plane intersections are incorrect, as

shown in Figure 4.2(b). If the correct scale value for a parallax path is known, this fixes the

locations of its parallax path positions along respective locus lines. For example, if we know

a parallax path has a 0.5 scale of the camera path, each parallax path position on the position-

invariant plot should lie halfway along the locus line segment traced between the origin and

the respective camera projection. Once the correct scale value and position along locus lines

have been determined, we can easily triangulate the correct 3D scene point as follows. First,

the parallax path is translated back to its original position on the reconstruction plane. We then

pick any two points on the path, shoot a ray from each point back to its associated camera, and

compute the intersection point. This intersection is guaranteed to be unique, since all point-to-

camera segments must intersect at a common 3D point given correct parallax paths, as shown

in Figure 4.1(a).

In practice, there is no easy way of obtaining the absolute correct scale. However, we

now propose two simple methods to approximately obtain the correct scale. The first involves

averaging all the scales derived from a potentially incorrect track. In this case, the ratios in

Eq. 4.1 would likely not be equal across the track, but the average of all ratios approximates

the scale value. We then use this consensus scale value to correct this track. If the cameras

39

used in the reconstruction are too numerous, this approach could hinder performance, but we

can employ statistical sampling the way fast triangulation does and use only a random subset

of the features in each track to obtain an average scale. Note that there are robust methods such

as RANSAC [21] that can be applied to detect highly inaccurate feature tracks. However, this

adds undesired overhead to the method, and our main focus is on runtime performance.

In the second method, rather than averaging the scales derived from all cameras, or a ran-

domly sampled subset, we only average scales for the first M cameras of the track. The rea-

soning behind this approach is that long feature tracks are known to sometimes experience

degradation [33]. Therefore, if we assume that the first M feature track positions are more

likely to be accurate, using a sequence of early cameras would yield a more accurate scale.

In addition, parallax paths is less likely to suffer from degeneracy problems when the baseline

between cameras is small because an intersection is enforced given the constraints no matter

what the camera baseline is. However, small baselines can still introduce numerical instability

for computations involving the two adjacent cameras. Therefore, care should be taken when

using the first M cameras. One possible approach is to skip cameras, such as selecting cameras

1, 4, 7...etc. As long as only a subset of the cameras in the track are used, one can still achieve

a fast runtime. Similar to angular triangulation, another possible approach is to use frame deci-

mation to remove cameras from the feature track, prior to selecting a subset, so that consecutive

frames have a wide enough baseline between them [62]. For our experiments on real datasets,

we test the approach of using only the first 2 cameras of the track to recover the scale. Our real

datasets do not have small baselines, and this test allows us to demonstrate the fastest achievable

runtime.

The parallax paths method is very powerful because it provides additional constraints to

yield an accurate reconstruction, which are not present in bundle adjustment [50] or traditional

multi-view reconstruction. However, its application space is more limited than that of fast

triangulation, since parallax paths is constrained to certain types of scenes. First, the cameras

used in the reconstruction must all lie on a common plane, a case that can often be found in aerial

image and turntable datasets, but that is only a subset of all possible reconstruction scenarios.

Second, a proper reconstruction plane parallel to the camera trajectory must be chosen, and the

40

scene cannot intersect either plane. The method also needs accurate camera calibration, both

extrinsics and intrinsics, since the method relies exclusively on camera information to create

parallax paths and correct them. It is potentially sensitive to very inaccurate feature tracks as

well. However, state-of-the-art packages such as VisualSfM [15] and Bundler [78] can provide

accurate feature tracking and camera projection matrices, so this has become less of a concern.

Also, accurate camera positions can be obtained from external tools like GPS and for aircraft,

IMU.

As a triangulator, parallax paths can work alongside bundle adjustment to produce more

accurate reconstructions. One use is to provide a good initial guess for bundle adjustment,

which can increase the likelihood of converging to an accurate, optimal solution. Software such

as VisualSfM [15] and Bundler, for example, use existing triangulation methods to initialize a

starting point for bundle adjustment. In incremental SfM pipelines, bundle adjustment can be

done multiple times throughout the reconstruction process. Like traditional triangulation meth-

ods, parallax paths can also be interleaved with periodic bundle adjustment to possibly provide

better accuracy. The speed and simplicity of the method enables it to run repeatedly without

a significant increase in runtime. In addition to triangulation, parallax paths can potentially

be used for other purposes such as pose estimation and compression of scene information, but

these are outside the scope of this work.

4.2.3 Methods on the GPU

In this section, we discuss an existing GPU fast triangulation implementation, followed by the

introduction of a novel GPU implementation of the parallax paths framework, where we discuss

high-level implementation details. We use the CUDA programming model to implement code

and analyze performance on the GPU.

4.2.3.1 Fast Triangulation GPU Implementation

In the previous chapter, we provide a GPU implementation of Recker’s fast triangulation al-

gorithm using two different approaches. The first approach, one-thread-per-track, parallelizes

across tracks and assigns one thread to each track to perform gradient descent for that track.

This approach can potentially lead to high thread divergence. In one scenario, different tracks

can vary widely in length, so the gradient term may be more expensive to recompute for some

41

tracks than for others. We propose that this problem can be mitigated to an extent by a prior

sorting of the tracks, which increases the likelihood that threads within the same warp will be

assigned tracks of similar length. Another case is when some tracks converge in fewer itera-

tions of gradient descent than others. Both of these load-balancing problems cause threads in a

warp that have finished processing their work to have to wait for other unfinished threads in the

same warp. The authors also propose another approach to parallelizing the triangulator: one-

block-per-track. This approach assigns a block of threads to process each track, which makes

it more appropriate for datasets with long feature tracks. Each thread in a block computes one

per-feature term in the gradient computation, and a parallel reduction sums these terms to GPU

shared memory to obtain the final gradient value. In terms of the amount of parallelism during

execution, this approach is an improvement over the previous.

Although the fast triangulation method obtains large speedups when run on the GPU, it still

has issues fully utilizing the highly-parallel GPU programming model. The method relies on

gradient descent, an iterative algorithm, making it hard to predict the amount of work needed

per feature track until convergence. The step size for gradient descent must also be carefully

considered due to its impact on the convergence rate and the stability of the algorithm. Further-

more, the one-block-per-track implementation can leave threads idling uselessly in a block if

the track lengths are not long enough to fill a block, which must be a size that is a multiple of

the warp size (32).

4.2.3.2 Parallax Paths GPU Implementation

The parallax paths method is a highly parallelizable method because the bulk of the computation

involves two main stages: (1) computing ray-plane intersections for determining an initial set of

parallax paths; and (2) computing all the scale values to be used in the per-track average scale. If

N is the number of tracks and C is the number of cameras, there would be maxN×C ray-plane

intersections andN×C scale values. For computing ray-plane intersections and individual scale

values, we can compute each work-item completely independently and have a maximumN×C-

way parallelism running on a highly-parallel GPU. In the third stage, to compute the average

scales, we need to sum all the scales within each track. Although it is possible to parallelize

a sum reduction, we opt to have each thread compute the sum in serial, since we only need to

42

Ray-plane
intersections

P = N x C

Compute scales
P = N x C

Sum scales
P = N

parallax
paths

scales
average
scales

Correct parallax
paths
P = N

corrected
paths

Intersect rays
P = N

3D scene
points

Figure 4.3: Parallax paths stages on the GPU, including parallelism P per stage.

perform the reduction once, and it is an insignificant portion of the runtime. Next, we correct

the parallax path for each track. In practice, we only need to correct two points on the path

because in the next and last stage, we recover the 3D position by intersecting two corrected

rays from two corrected path points. Figure 4.3 shows a high-level overview of the parallax

paths streaming workflow on the GPU. Although the last three stages are shown as separate,

they can be combined into one GPU kernel to preserve data locality, since they all operate per

track and therefore all exhibit N -way parallelism. Unlike gradient descent in fast triangulation,

parallax paths on the GPU does not require multiple iterations and multiple sum reductions,

instead providing a faster, more direct solution.

4.3 Results
We compare the processing times and general behavior of fast triangulation and parallax paths

on both synthetic and real data. Our test computer has 2 Intel Xeon E5-2637 v2 CPUs, each

with 4 cores clocked at 3.5 GHz, for a total of 8 cores that we use for multicore tests. Our GPU

is an NVIDIA Tesla K40c, which features 15 SMs, for a total of 2880 ALUs. For running the

serial tests on real data, we use a different CPU, the Intel Core i7-3630QM at 2.4GHz, since

we found it had the best single-core performance. We use the OpenMP programming model

to implement a multi-core parallelization of parallax paths by partitioning the set of feature

tracks among the CPU threads. The following abbreviations are used throughout the section:

PP stands for parallax paths with scale determined from an average across an entire track; PP2

indicates parallax paths with scaling determined from only the first two features of a track; and

FT refers to fast triangulation. MC denotes multi-core, while NU indicates that the tracks are of

non-uniform length. We do not perform statistical sampling for any tests, except for some FT

error tests, where sampling can help avoid degeneracies of close adjacent cameras.

43

(a) (b)

Figure 4.4: (a) Runtime performance with an increasing number of tracks. The number is
increased up to 1,000,000, in increments of 50,000. Track length is fixed at 100 cameras, except
for the NU cases, where it is varied from 2–100. (b) Runtime performance with an increasing
number of cameras. Cameras are varied up to 400, in increments of 50, and track length is fixed
at 100,000.

(a) (b)

Figure 4.5: Ground truth error vs. feature track error for synthetic data. (a) All features in each
track subject to error. (b) No error in first feature of each track.

4.3.1 Synthetic Tests

The goal of synthetic testing is to compare fast triangulation versus parallax paths runtime

performance on large-scale data and their accuracy in a ground truth sense, with ground truth

not typically being available in real datasets.

44

Figure 4.4(a) shows runtime performance scaling with an increasing number of tracks. In

this test, we use the one-thread-per-track GPU implementation of FT. With increasing tracks,

Figure 4.4(a) shows that PP on the GPU scales better than its multi-core version and also scales

better than FT on the GPU. We do not display FT on multi-core because its runtime is much

higher than other tests. PP2 unsurprisingly has an insignificant runtime since it only triangulates

with the first 2 cameras. For the FT NU test, we sort the tracks to aid in load balancing. Even

so, compared to FT on the GPU, PP on the GPU has a much higher improvement in runtime (a

max 55% vs 22% drop) when processing non-uniform (NU) tracks instead of uniform tracks.

The reason is that PP has more parallelism, with more independent work across tracks. Unlike

FT, it does not have load-balancing issues that nullify some of the runtime reduction expected

due to an overall decrease in the number of features to process.

Figure 4.4(b) shows runtime performance scaling with an increasing number of cameras. In

this test, we use the one-block-per-track GPU implementation of FT, since it is more suitable

for longer track lengths. As we discussed in Section 3.3.1, using one-block-per-track yields

a staircase pattern in the runtime results, due to the warp size being 32 threads. We do not

include PP2 in these results because the method only uses 2 cameras regardless of track length.

Figure 4.4(b) shows that PP also scales better than FT with increasing cameras.

In the error tests shown in Figure 4.5, we use three types of camera configurations: circle,

where cameras were placed on a circular configuration above the scene, line, for a linear camera

configuration, and random, where cameras are randomly placed in 2 dimensions above the scene

while all still lying on a common flat plane. Track length is fixed at 100, and the number of

tracks is fixed at 10,000.

Figure 4.5(a) shows ground truth error versus feature track error, where all features in a

track are subject to error. Error is introduced to the perfect synthetic tracks by adding noise

of 0.5–5% of a unit on the uncalibrated image plane diagonal in random directions. For all

camera configurations, PP is less accurate than FT. Figure 4.5(b) shows the results for the same

analysis, but in this case the first feature in each track (feature first seen in the anchor camera)

is kept noiseless, which is a more realistic scenario. Now, we observe an improved accuracy

in PP comparable to that of FT. This test demonstrates that having accurate features in anchor

45

frames is critical for good parallax path reconstructions.

4.3.2 Tests On Real Datasets

For real datasets, we measure performance and reprojection error, including speedup across

implementations. It is important to note that the concept of reprojection error may not be ap-

plicable for parallax paths. The reason is that the camera path constraint in parallax paths

enables it to be used as a means to correct feature tracks [33]. Once the scales are obtained, the

tracks can be corrected and reprojected back into images, changing the features themselves and

leading to a zero reprojection error. Although in the table we show reprojection error versus

original feature tracks, it is not a good indicator of parallax path accuracy given that it can be

forced to 0, but it’s the best that can be done in the absence of ground truth information. For

the tests, the real datasets were rotated to align with a vertical axis to make it easier to select a

reconstruction plane for parallax paths. Table 4.1(a) displays results for fast triangulation (FT),

Table 4.1(b) for parallax paths (PP), and Table 4.1(c) for PP2. For all three triangulators, larger

datasets lead to larger speedups of the GPU over a serial implementation. PP and PP2 are both

faster than FT, with up to 14x and 39x speedup respectively for a meaningfully sized dataset

(Canyon). However, they have higher reprojection error, though this may not be a meaningful

comparison.

Finally, Figure 4.6(a)-(c) shows the reconstruction of the Dinosaur dataset [64] using re-

spectively FT, PP, and PP2 from left to right. Figure 4.6(d)-(f) displays the same but for the

Canyon dataset [67]. For the smaller Dinosaur dataset, there are no obvious major differences

for different methods. One limitation of parallax paths versus fast triangulation is that the scene

is not allowed to intersect the plane of the cameras. To display the problems that occur, Fig-

ure 4.6(g) shows a good reconstruction obtained from FT for the Horse [58] dataset, whereas

Figure 4.6(h)–(i) show the bad result obtained from parallax paths. For this scene of a horse,

the camera plane intersects the top of the scene, causing some rays to be nearly parallel to

the reconstruction plane, which leads to ill-conditioned problems and inaccurate reconstructed

points. To obtain good parallax path reconstructions, the camera plane should be separate from

the scene.

46

Table 4.1: Times in milliseconds for serial, multi-core (MC), and GPU with number of tracksN
and total number of cameras C. Speedup is the speedup of the GPU over the serial implemen-
tation and ε is the average reprojection error in pixels. For the parallax path results, the speedup
over fast triangulation (SU vs FT) is also shown. Some runtimes for Horse are left out because
they were too small to measure.

(a) Fast triangulation

Data set N C serial MC GPU Speedup ε

Dinosaur 4983 36 8 2 3 3x 0.467
Canyon 103,153 90 272 70 14 19x 0.226
Canyon Dense 997,115 2 1258 273 23 55x 1.838
Horse 9509 73 27 7 7 3.8x 0.770

(b) Parallax paths

Data set N C serial MC GPU Speedup ε SU vs. FT

Dinosaur 4983 36 2 0.7 0.13 15x 0.668 23x
Canyon 103,153 90 75 16 1 75x 0.354 14x
Canyon Dense 997,115 2 351 64 3 117x 1.847 7x
Horse 9509 73 7 1.8 – – 8.6 –

(c) Parallax paths first 2 cameras

Data set N C serial MC GPU Speedup ε SU vs. FT

Dinosaur [64] 4983 36 2 0.5 0.07 28x 1.246 42x
Canyon [67] 103,153 90 37 7 0.36 102x 0.863 39x
Canyon Dense [67] 997,115 2 351 64 3 117x 1.847 7x
Horse [58] 9509 73 3.4 0.8 – – 1.232 –

4.4 Conclusion and Future Work
In this chapter, we present a comparison of a novel GPU implementation of a triangulator based

on the parallax paths method versus the state-of-the-art multi-view triangulation method, angu-

lar error-based (“fast”) triangulation. The main contributions of the work are the following. We

map the parallax paths method to the GPU and analyze its performance as an efficient triangu-

lation method for the first time. To this end, we compare it with the existing fast triangulation

GPU implementation for both performance and accuracy. We make further developments to

parallax paths from the original method, with more analysis on the effect of scaling. We also

demonstrate the importance of having an accurate first feature in a feature track to yield an ac-

47

(a) FT (b) PP (c) PP2

(d) FT (e) PP (f) PP2

(g) FT (h) PP (i) PP2

Figure 4.6: Reconstructions of three scenes: (a)-(c) Dinosaur [64]. (d)-(f) Canyon [67]. (g)-(i)
Horse [58]. Parallax paths performs poorly on Horse due to the camera plane intersecting part
of the scene. To obtain good parallax path reconstructions, the camera plane should be separate
from the scene, as is the case in Dinosaur and Canyon.

curate parallax path reconstruction. Overall, the parallax paths method is highly parallelizable

and efficient, but requires that the cameras used in reconstruction be piecewise-planar and not

intersect the scene itself. Though limited to applications with sequential camera motion, such

as aerial video or turntable sequences, it yields a substantial speedup over fast triangulation,

as demonstrated on real and synthetic testing, while maintaining comparable accuracy. If ac-

curacy is absolutely critical, fast triangulation may still be a more preferable method. Future

work involves mainly attempting to obtain more accurate scales in parallax paths, by taking into

account further constraints such as intensity consensus at candidate scales. In the next chapter,

48

we look at a different stage of reconstruction, dense stereo, and propose a multi-GPU method

that produces dense point clouds without incurring significant runtime.

49

Chapter 5

Efficient Dense Reconstruction on the
GPU via Progressive Image Consistency
Constraints

In this chapter, we introduce a multi-GPU method for creating very dense reconstructions of

datasets. An overview of the dense multi-view stereo problem and existing algorithms are

provided in Section 5.0 and Section 5.1. The proposed algorithm is detailed in Section 5.2,

followed by results in Section 5.3 and conclusions in Section 5.4.

5.0 Dense Reconstruction Problem Definition
In this chapter, we discuss the problem of creating a dense 3D reconstruction from multiple

views. Previous chapters have discussed methods that work towards obtaining a sparse recon-

struction, namely feature tracking and triangulation. Figure 5.1 shows the difference between a

sparse and a dense reconstruction. The sparse reconstruction, however accurate, is not complete

and contains “holes”, which may be beneficial to fill in. The goal is to obtain a dense structure

that is both complete and accurate.

In the past several years the number of applications that benefit from dense and efficient

multi-view reconstruction has surged. Robotics, for example, has experienced an increased

interest in quadcopters and other personal drones due to their increased affordability. Similarly,

consumer attention to 3D printing has symbiotically led to increased 3D scanning needs. Both

50

Figure 5.1: An initial sparse reconstruction, with good camera estimation, on the left. It can be
made into a very dense version, on the right, by our method.

of these areas, and classical applications such as surveillance and terrain modeling, are made

possible by efficient, accurate, and dense modeling of the scenes and objects in their view. State-

of-the-art algorithms [26, 78, 90] are based mainly on sparse feature detection and matching,

utilizing the Scale-Invariant Feature Transform (SIFT) algorithm [51] and other feature trackers

inspired by its concept. For general scenes, these algorithms provide reasonably accurate feature

tracking, camera poses, and scene structure.

However, a key observation is that most of the data for the previously mentioned applications

consists of sequential images of a scene whose geometry varies gradually along a gradient, i.e.,

there are few sharp jumps in depth on a per pixel basis. Many prior algorithms have taken this

into account by doing region-based calculations [37, 86–88, 96]. Our proposed method revisits

this work by creating regions with a modern superpixel algorithm, SEEDS [84], interpolat-

ing iteratively for higher fidelity, and performing computation on multiple GPUs. Specifically,

it consists of a two-phase algorithm that iteratively solves for unknown pixels by interpolat-

ing and optimizing ray-distance values using a multi-image consistency check via the Colored

SIFT (CSIFT) descriptor [1]. The accuracy of the resulting reconstruction is only limited by

the accuracy and density of the initial known reconstruction and the accuracy of the camera

parameters. For example, the dinosaur dataset has very accurate camera positions and an initial

reconstruction produced using SIFT features can be made very dense via our method as shown

in Figure 5.1.

51

5.1 Related Work
There are a quite a number of dense reconstruction algorithms in the literature [14, 20, 23, 24,

27, 32, 37, 41–43, 53, 69, 85, 87, 88, 94, 96]. Perhaps the best known of these algorithms is

Patch-Based Multi-View Stereo (PMVS) [24]. This algorithm creates quasi-dense reconstruc-

tions by enforcing photo-consistency constraints on patch matching. The upgraded Clustering

Views for Multi-view Stereo (CMVS) version [23] provides higher efficiency by intelligently

grouping sets of images, and does not have memory limitations, but still suffers from non-

completeness and a lack of additional constraints. Both algorithms are part of the popular Visu-

alSfM program [90] for 3D reconstruction. There is even a further improvement, Tensor-Based

Multi-view Stereo (TMVS) [92], which suffers from the same problems.

Besides patch-based multi-view stereo, there are a number of image-based rendering meth-

ods in the literature and others that can provide a fully dense and watertight reconstruction.

Examples of this, in order, are shape from silhouettes [83], voxel coloring [76], and space carv-

ing [44, 46]. In summary, shape from silhouettes [83] is a form of voxel labeling, in which the

visual hull of the viewed shape is computed by intersecting the projected volumes of the object’s

silhouettes as they appear in each input image. Voxel coloring [76] differs in that it computes a

photo-consistent 3D shape by voxel projection followed by correlation of pixel colors amongst

the input images. Space carving [44, 46] uses a multi-pass sweep of a plane to eliminate voxels

that violate the photo consistency constraint, as does plane sweeping [25]. The main issue with

these algorithms is that they typically rely on an accurate knowledge of the viewed object’s

silhouette, and thus have a more restricted application space than multi-view stereo methods,

which do not have this requirement. Furthermore, since plane sweeping is based on homogra-

phies, there could be “drifting” of the obtained feature tracks, and inaccuracy in the 3D points.

An advantage of space carving is that it doesn’t depend on texture or color, and is capable

of producing a dense, water-tight reconstruction by virtue of the approach. However, because

of inaccuracies in the obtained silhouettes or input camera parameters, it is seldom accurate

enough to capture very fine details.

There also exist a number of volumetric methods [41, 42, 85]. Given the recent advances

in convex optimization, globally optimal formulations have been proposed for the multi-view

52

reconstruction problem [41, 42]. However, this line of research has so far mainly focused on

the optimization methods themselves. In order to obtain highly accurate reconstruction results,

the data term in energy formulations is just as important. Even the best currently available

approaches have major problems in low-textured image areas, leading to visible artifacts in

the obtained reconstructions. Kostrikov et al. present a formulation based on an analysis of

why volumetric approaches have problems in specific challenging regions [43]. They provide

a probabilistically well-founded formulation for the labeling cost that is more robust to outliers

and achieves improved reconstruction results. Though they obtain great results, their method

uses an outlier removal step that affects completeness and is still based on the use of a cost

function.

The Middlebury Multi-View Stereo Evaluation provides a benchmark for comparing dense

reconstruction algorithms [77]. This evaluation is based on completeness percentage and accu-

racy. According to the results, which are updated live through user input, PMVS/CMVS is still

the top performing method overall as far as completeness, with the method by Guillemaut and

Hilton [27] also performing very well. It is hard to see a clear trend in accuracy; both those

methods plus Kostrikov et al. [43] perform well in most evaluations. As far as runtimes, most

methods take several hours on the tested datasets, when runtimes are normalized to a 3.0 GHz

processor frequency. By far, the fastest overall are the methods by Zach [94], Merrell et al. [53]

and Chang et al. [14], which take on the order of just a few seconds, but have a lower accuracy

and completeness percentage overall than the top-performing methods in those categories.

Given the problems with the current literature, it is desirable to find a method that is accurate,

dense, efficient, and does not require additional image information, such as silhouettes. As will

be described, this can be achieved with a deceptively simple, highly parallelizable method that

isn’t far from a brute-force algorithm.

5.2 Methodology
We introduce a brute-force method for creating very dense reconstructions. Our densification

algorithm can begin with any initial reconstruction. The key behind the algorithm is that the

distance along the ray from the position of the 3D structure to the camera (ray-distance) varies

53

smoothly for image regions corresponding to the same object. Furthermore, these regions do not

have to be computed on a per-object basis since objects can be over-segmented by a superpixel

algorithm [84]. We make the following contributions:

• We introduce a novel two-pass algorithm that interpolates depth values in two-dimensional

image space within a superpixel region and then optimizes the interpolated value via im-

age consistency analysis across neighboring images in the dataset.

• Our method is modern in many ways, including its use of region segmentation via the

SEEDS SuperPixel algorithm [84] and its use of an effective and fast descriptor, CSIFT [1].

• Our method parallelizes well on a GPU. For the Middlebury Temple dataset, our proposed

GPU-accelerated method outperforms PMVS/CMVS in runtime (1.5 minutes vs. 4.5

hours).

The details of the algorithm are presented in Section 5.2.1, along with GPU implementation

details in Section 5.2.2.

5.2.1 Densification Algorithm

The goal of our densification procedure is to find a ray-distance value for each and every pixel in

the image sequence. This value, along with the pixel coordinate, uniquely defines the 3D loca-

tion in the scene for that pixel. Our algorithm depends on an initial reconstruction (input images,

camera projection matrices, and initial 3D structure), for which these distance values have been

computed. We compute a SuperPixel segmentation [84] of the input images to roughly segment

each image into regions corresponding to the same objects. Our algorithm then utilizes two

major procedures, (interpolate followed by optimize).

During interpolation, we use known ray-distances from the initial reconstruction to inter-

polate a distance for the given pixel being solved. This distance is used as a starting point for

optimization, where multiple distances are tested for the best image consistency after reproject-

ing back into the images. After the distance is optimized, we triangulate the point and add the

computed distance to the set of currently known distances. In addition, we add the triangulated

3D point to the reconstruction. This process can take one or more iterations depending on the

54

density of the initial reconstruction. Pseudo-code for the densification algorithm is shown in

Algorithm 3.

Algorithm 3 Densification Algorithm
1: procedure DENSIFY(images, init_recon)
2: for each image ∈ images do
3: known_dists← COMPUTEKNOWNDISTS(init_recon)
4: for each superpixel ∈ non_empty_superpixels do
5: for each pixel ∈ superpixel do
6: guess_dists← INTERPOLATE(known_dists, pixel)
7: dist← OPTIMIZE(guess_dists, images)
8: current_dists. APPEND(dist)
9: point← TRIANGULATE(dist)

10: end for
11: end for
12: known_dists← UPDATEKNOWNDISTS(current_dists)
13: while unsolved superpixels remain do
14: for each superpixel ∈ empty_superpixels do
15: neighbor_super_pixels← GETNEIGHBORSUPERPIXELS(superpixel)
16: for each pixel ∈ superpixel do
17: guess_dists ← INTERPOLATE(known_dists, neighbor_superpixels, pixel)
18: dist← OPTIMIZE(guess_dists, images)
19: current_dists.APPEND(dist)
20: point← TRIANGULATE(dist)
21: end for
22: end for
23: known_dists← UPDATEKNOWNDISTS(current_dists)

24: end for

5.2.1.1 Interpolation

The idea is that pixels within the same superpixel likely belong to the same object. Therefore, in

the first iteration, we can interpolate pixel distances using pixels within the same superpixel for

which the distances are known. This can help alleviate computational runtime by producing a

better starting point for each pixel and allowing for a smaller search space during the next stage.

For our datasets, we find that the initial sparse reconstructions are dense enough so that there are

no initial empty superpixels (superpixels in which there are no pixels with solved distances). In

the event that there are empty superpixels, our algorithm can enter another phase, where pixels

with known distances in neighboring non-empty superpixels can be used to interpolate the dis-

55

tances for the unsolved pixels. This can affect accuracy and/or increase computational runtime,

if the resulting interpolation is not an accurate starting point for the next stage. However, it

guarantees that all superpixels will eventually be solved.

5.2.1.2 Optimization

The optimize function fine-tunes the ray-distance estimate from the interpolation procedure for

the given iteration. This procedure defines a small ray-distance search space around the given

interpolation estimate to search for the best possible value. The best distance is determined

using image information from a window of neighboring images in the image sequence. The

effect of window size is explored in Section 5.3.1.

Specifically, the search space is set to the initial distance estimate plus/minus a user-defined

threshold. This space is quantized into n candidate distances. The density of this quantization

is limited by the desired computation time. For each candidate ray-distance, the corresponding

feature track is first computed for all images within the window. This is accomplished by

simply traversing the ray generated from the pixel location for the candidate ray-distance. In

other words, this procedure searches along epipolar lines in the image sequence.

To ensure the best possible match is obtained, the CSIFT [1] descriptor is evaluated at each

feature track location for each candidate ray-distance. This evaluation is essentially checking

for image consistency for a given pixel’s candidate structure point. The given pixel provides

a reference CSIFT descriptor, cref. The CSIFT descriptors at the feature track locations, ci,

(generated by the candidate ray-distances) should be very similar. The algorithm chooses the

candidate ray-distance that minimizes the L1 Euclidean distance between ci and cref, for all i,

across all the feature tracks generated from candidate values. Notice there could be occlusions

present at the correct distance; images at which these occur increase the error value. However,

the total error is not as high as in cases where the wrong distance is being evaluated since most

images will coincide.

Naturally, this optimization scheme works well when the camera parameters are perfect or

very accurate, and the desired feature is actually present on the epipolar line along which the

optimizer searched. To account for datasets where the camera parameters are not completely

accurate, the search can be expanded to include a variable number of lines parallel to the initial

56

epipolar line. The less accurate the camera parameters are, the more extra lines should be

searched, but this increases the likelihood of false positives. A good number of extra lines to

search could be congruent to the reprojection error of the initial reconstruction (i.e., 2 pixels of

reprojection error should require searching 2 extra lines above and 2 extra lines below).

5.2.1.3 Cleaning

As one might imagine, there may be a considerable amount of noise produced in failure cases

and also a large amount of redundancy. Luckily, since the algorithm has redundantly added

the “same feature” to the image multiple times (as many times as it appears in unique images),

noise can easily be removed by performing a statistical outlier removal and then merging close

points to minimize the size of the reconstruction. This optional functionality was implemented

using the Point Cloud Library [70]. Additionally, it might be necessary to perform background

segmentation on images from a turntable dataset to avoid reconstructing background pixels.

5.2.2 GPU Implementation

The method solves for the depth of every pixel in every image, a computation workload that can

be performed in parallel. Our implementation works on multiple GPUs, as the pixel-distance

pairs to solve can be split independently among multiple GPUs. OpenMP is used to manage the

separate GPUs.

Between the two major stages of our method, interpolate and optimize, the more expensive

is optimize. During this stage, hundreds of candidate ray-distances for each pixel are tested in

the search for the most optimal one. For each candidate ray-distance, a descriptor is computed

on the neighborhood patch surrounding the coordinates where the candidate ray-distance is pro-

jected onto an image. The absolute difference (L1 Euclidean distance) between this descriptor

and the reference descriptor is computed, and the smallest average of differences across all im-

ages in the image window determines the final depth that is most optimal. For simplicity, the

optimization of each pixel-distance pair is assigned to one CUDA block. Each thread computes

multiple descriptors, one for each image in the image window, and saves the average difference

of the descriptors with respect to the reference descriptor. Next, finding the smallest average

difference across threads is simply a blockwise parallel reduction that is done in shared mem-

ory. This reduction is implemented using the NVIDIA CUB library [55]. Figure 5.2 illustrates

57

the work granularity of searching for the optimal depth of a single pixel.

Traversing the ray-distance for a pixel in the reference image corresponds to traversing an

epipolar line in another image. This approach of searching for the best depth leads directly to

descriptors being computed along diagonal epipolar lines in the images. Although image data is

stored linearly in memory, this cannot be exploited due to a lack of predictable regular memory

access patterns when reading along diagonal epipolar lines. In the work of Iandola et al., the

authors test the performance of image convolution kernels using different GPU memories [35].

For Kepler GPUs, the authors find that loading image values from texture memory to registers

and performing the convolutions in registers yield speedups of 1.9x to 8.8x when compared to a

naive approach that only uses global memory. They also test a shared memory implementaton,

which does not achieve good performance. Although our problem is not exactly the same, we

find their results meaningful because we also process regions of an image in parallel. With this

in mind, we choose to store our images in texture memory instead of global memory. A Kepler

GPU’s dedicated hardware for texture fetching and its texture cache are efficient for irregular

groups of memory reads, as long as the reads have spatial locality. Adjacent GPU threads in

our implementation compute descriptors along the same epipolar line, enabling the memory

accesses to have 2D spatial locality. Additionally, descriptors are computed with image data at

a subpixel level, and texture memory is optimized for fast subpixel interpolation.

5.3 Results
The proposed algorithm was analyzed for its general behavior and processing time on several

real datasets. The effect of window size in the optimization routine was tested on datasets with

ground truth information available. The algorithm was implemented in C++, parallelized with

CUDA, and all results were generated on an Ubuntu 12.04 Linux machine with an Intel Xeon

E5-2637 and four K40C NVIDIA GPUs.

5.3.1 Window Size Justification

In the optimization procedure, we perform a photo-consistency check across neighboring im-

ages in the sequence. Therefore, we find it necessary to experiment with the amount of neigh-

boring images (the window size). A window size of two refers to analyzing one image before

58

Figure 5.2: A pixel whose depth is to be optimized is highlighted on the left. A reference de-
scriptor is computed at this pixel. Candidate depths are projected to other images in the window
of images. As the depth is varied during the search, its projection to other images traverses
epipolar lines. Descriptors are computed on the projected points, and the L1 Euclidean dis-
tance between each descriptor and the reference descriptor is computed. The work to compute
descriptors and distances are assigned to threads within a block. A final block-wise reduction
determines the smallest average distance and the best depth.

and one after the current image, a window size of four corresponds to analyzing the two images

before and two after, and so on. First, we generate ray-distances using the ground truth 3D

information and camera data. Next, we compute the standard deviation, σ, of the ground truth

ray-distance values, si. To analyze the robustness of the optimize procedure, we introduce noise

into the ground truth distances at varying levels, ε = [0, 1, 2, 3], and then we execute the opti-

mize procedure using the noisy estimate, s′i and a specified window size. We compute the noisy

estimate by sampling a uniform distribution in the range of s′i ∈ [si − σ × ε, si + σ × ε]. Re-

ported error values correspond to average distance error between computed and ground truth 3D

points, for a full reconstruction. Table 5.1 shows the results of the test when run on the ground

truth Oxford Dinosaur dataset [64]. For all tested window sizes, and low noise levels ε = 0 and

ε = 1, we obtain similar error values overall. Therefore, using a window size of two is usually

justified since it is less expensive to compute and provides the same results. For larger window

sizes, there is a risk of running into occlusions and other wide baseline effects that might af-

59

fect scoring. For high noise levels, such as ε = 2 and ε = 3, errors were significantly higher,

and relatively constant across window sizes. For our results on sequential images, we choose a

window size of four to keep runtime small, while still obtaining a sufficient photo-consistency

check.

Table 5.1: Average 3D positional error at varying window sizes and noise levels.

Window size 2 4 6 8 34

Score ε = 0 0.0013 0.0014 0.0016 0.0018 0.0093
Score ε = 1 0.0014 0.0015 0.0017 0.0019 0.0086
Score ε = 2 0.0287 0.0236 0.0207 0.0191 0.0239
Score ε = 2 0.0815 0.0682 0.0612 0.0584 0.0758

5.3.2 Results on Real Datasets

To analyze the efficacy of the algorithm, the densification procedure was executed on the Mid-

dlebury Temple [77] dataset benchmark. Results, as displayed in Figure 5.3, show that the

densification procedure outperforms PMVS/CMVS in runtime (1.5 minutes vs. 4.5 hours). We

also found them to be similarly complete.

In addition, we tested our method on a dataset with aerial images, since aerial scenes can

often resemble turntable sequences. Figure 5.4 shows a reference image from the Brown Site

22 dataset [13], and a dense reconstruction of the scene produced by our method. As shown in

the figure, our result is noisy and unable to accurately capture many details in the scene. Like

many other algorithms, our method struggles with aerial scenes due to their inherent challenges,

including the difficulty of estimating accurate camera parameters and the low resolution of the

images with respect to the relatively large scale of the scene in real life. The latter prevents our

method from performing accurate region segmentation. However, considering the size of the

images in the dataset (1280x720), we achieve a reasonable runtime of 32 minutes. We believe

our method, with its use of GPUs, can enable the reconstruction of very large-scale aerial scenes.

In the future, we hope to explore ways to improve accuracy, particularly by incorporating other

sensor data, such as GPS, in the process to recover accurate camera parameters.

As discussed earlier, one limitation to the final correction stage of the algorithm is that it

can only be used for sequential image streams, unlike PMVS/CMVS which is more general.

60

(a) Reference Image (b) Our Result

Figure 5.3: (a) Reconstructions of the Template Dataset. Reference image of the Temple dataset.
(b) Complete dense reconstruction of the Temple dataset via the proposed method. For this
result, 39 images of size 640x480 were used. The result of the proposed method outperforms
PMVS/CMVS in runtime (1.5 minutes vs. 4.5 hours) and is similarly complete.

(a) Reference Image (b) Our Result

Figure 5.4: The result of our method on Brown22, an aerial dataset containing 243 images of
size 1280x720.

However, there are a great number of relevant problems in sequential reconstruction, spanning

many important applications, where an accurate and dense reconstruction is necessary, and

the proposed algorithm is capable at meeting these requirements. Finally, Figure 5.5 shows a

number of dense reconstructions obtained with the proposed method.

5.4 Conclusion and Future Work
This work presented an updated, efficient take on an old deceptively simple algorithm. It was

modernized in many ways, including region segmentation via the SEEDS SuperPixel algo-

rithm [84], the use of an effective and fast descriptor, CSIFT [1], and parallelization on the

GPU. Additionally, it proposes a two phase approach that allows for even denser reconstruc-

61

Figure 5.5: Results from the proposed method for the Dinosaur and Conch datasets. The first
column shows an example input image, the second shows the initial sparse reconstruction used
as input, the third shows results from the proposed method, and the last column shows the result
of CMVS/PMVS as implemented by VisualSfM. For the Conch shell dataset with 216 images
of size 640x480, our method takes 3 minutes. For the Dinosaur dataset with 36 images of size
720x576, our method takes 1.3 minutes.

tions when initial reconstructions are well distributed in 2D space.

Ideally, future improvements on this algorithm would lower runtime by exploring data struc-

tures to enable more efficient memory access patterns on the GPU. Reconstruction of aerial

scenes can be revisited by incorporating more sensor data. Accuracy improvements can also be

attempted by applying geometric constraints from known geometries (such as the rectangular

nature of buildings). In the next chapter, we present a divide-and-conquer method to parallelize

bundle adjustment, an expensive stage in reconstruction, on multiple GPUs.

62

Chapter 6

Parallel Bundle Adjustment

In this chapter, we study the implementation of bundle adjustment, the most expensive stage in

3D reconstruction in terms of performance, on multi-GPU systems. First, we give an overview

of the bundle adjustment problem, including approaches on the GPU, in Section 6.0. Next, we

discuss related work in Section 6.1 before giving details of our methodology in Section 6.2. We

present results in Section 6.3 and end with conclusions in Section 6.4.

6.0 Problem Definition
6.0.1 Bundle Adjustment

Bundle adjustment is a key step of most SfM systems. At minimum, the algorithm is usually

run as a final step in the SfM pipeline. Often, it may be done multiple times periodically in the

pipeline. A bundle adjustment problem is defined by a set of cameras, 3D points, and the track-

ing of these points across the cameras. These form a non-linear optimization problem, in which

the cameras and points are refined to minimize reprojection error. Due to the accumulation of

error throughout an SfM pipeline, bundle adjustment helps keep the reconstruction accurate and

consistent. The following is the mathematical formulation of the optimization problem:

min
cj ,pi

n∑
i=1

m∑
j=1

vijd(yij, f(cj, pi))
2 (6.1)

Here, f(cj, pi) is the predicted projection of point i on image j, and yij is the observed

projection of point i on image j. The term d(yij, f(cj, pi)) is the distance between the predicted

63

and observed projection, while vij denotes visibility and equals 1 if point i is visible in image

j and 0 otherwise. The equation can be further simplified by first combining the parameters

c and p into a single parameter vector β. Next, d(yij, β) is expanded as the distance formula,

and the squaring of each term cancels out the square root in the formula. In the new equation,

each term is the square of the difference in 2D image space between the predicted projection

and the observed projection in either the x or y direction. The visibility term vij is left out for

simplicity.

min
β

n∑
i=1

m∑
j=1

(yij1 − f(β)1)2 + (yij0 − f(β)0)2 (6.2)

With a sum of squared differences, Equation 6.2 formulates a non-linear least squares prob-

lem for model fitting. The general form of such problems can be written as:

min
β

m∑
i=1

(yi − f(β))2 (6.3)

Solving such problems requires the use of iterative approaches. For bundle adjustment,

the algorithm that typically obtains the best performance is Levenberg-Marquardt [47]. This

method is within the class of algorithms known as trust-region methods and is implemented in

the popular open-source software, Ceres Solver [3]. The method assumes that within a certain

region, a model (usually quadratic) of a function is a good approximation of the function. A

candidate step is evaluated with the goal of moving closer to the function’s minimum. If the

step is deemed poor (taking it actually increased the function value), the step is not taken, the

trust region is shrunk, and a new step is considered.

In each iteration, the parameter vector β is replaced by a new estimate β + δ. The function

f(β + δ) can be approximated by its linearization:

f(β + δ) ≈ f(β) + Jδ (6.4)

Here, J is the Jacobian of f . The approximation can be substituted into the objective func-

64

tion in the non-linear least squares problem:

S(β + δ) =
m∑
i=1

(yi − f(β)− Jiδ)2 (6.5)

The minimum of this function occurs where the first-order derivative equals zero. Taking

the derivative with respect to δ and setting the result equal to zero yields the equation:

(JTJ)δ = JT (y − f(β)) (6.6)

This new formulation gives the normal equations. During each iteration, the linear system

is solved to obtain δ. The size of the linear system depends on the Jacobian matrix, which in

turn depends on the number of cameras and points in the scene. Due to the nature of bundle

adjustment, which optimizes two distinct sets of parameters (those for the cameras and points),

the derived matrix of the linear system can be divided relatively easily into four sub-matrices.

This in turn allows the use of the Schur Complement trick to solve the linear system, which

produces a smaller system of equations. Once the reduced system is solved, the rest of the

system can be solved using a trivial back-substitution.

6.0.1.1 Schur Complement

Given a linear system, Mx = b, the system can be partitioned as shown below.

A B

C D

y
z

 =

c
d

 (6.7)

In Equation 6.7, A, B, C, and D are block matrices. If A is invertible, we can form a

reduced linear system with z as the unknown by arranging the equation.

(D − CA−1BT)z = d− CA−1c (6.8)

Here, (D − CA−1BT) is the Schur complement of A. To efficiently compute the Schur

complement, A should be easily invertible. The reduced linear system has a matrix with the

same dimensions as D, which can be significantly smaller than the original matrix M . Once z

has been solved, the solution for y can be obtained with a trivial back-substitution, thus solving

the entire original problem.

65

(a) Jacobian J (b) JTJ

Figure 6.1: (a) The Jacobian matrix for a small bundle adjustment problem. On the horizontal
axis, 1–8 correspond to point parameters and A–F correspond to camera parameters. The verti-
cal axis refers to observations in the images. The derivatives of the point parameters (left) and
the camera parameters (right) are partitioned horizontally to form a bipartite matrix. The point
parameter blocks are sorted so that they align vertically. (b) The square matrix JTJ . The ma-
trix is composed of four block submatrices, which can be used to from the Schur complement.
In addition, the submatrices can be computed on-the-fly using the partitions of the bipartite
Jacobian matrix.

6.0.1.2 Implicit Schur Complement

To review, we need to solve JTJx = b, where J is the Jacobian matrix. Due to the structure

of J for bundle adjustment problems, we are able to avoid explicitly computing the Schur

Complement. The structure of J is shown in Figure 6.1(a). Notice that the blocks in the left

side of the matrix are arranged so that they stack vertically. The left and right partitions of J

combine to form a bipartite matrix.

J =
[
E F

]
(6.9)

It can be shown that given the structure of J as a bipartite matrix, JTJ (shown in Fig-

ure 6.1(b)) can be decomposed into four block matrices, which are themselves the result of

66

operations on E and F .

ETE ETF

F TE F TF

y
z

 =

c
d

 (6.10)

Due to the parameter blocks in E being aligned vertically, ETE is an easily invertible sub-

matrix. We can thus form a Schur Complement-based reduced linear system using the block

matrices.

(F TF − F TE(ETE)−1ETF)z = d− F TE(ETE)−1c (6.11)

Sz = r (6.12)

where S = (F TF − F TE(ETE)−1ETF) (6.13)

This formulation is called an implicit Schur complement because JTJ is never explicitly

computed with a sparse matrix-sparse matrix multiply (SpMSpM) and stored. Instead, it is

formed by operations on the E and F partitions of the original bipartite matrix. We can now

solve a reduced linear system and avoid computing and storing JTJ . From Figure 6.1(b), it is

apparent that the size of the reduced linear system (the bottom-right submatrix) is determined

by the number of cameras in bundle adjustment, which is usually significantly less than the

number of points. In a conjugate gradient solver, the main computational bottleneck is the

SpMV operations involving S. With the implicit Schur complement, each SpMV with S is

done using 5 successive SpMVs with F , ET , (ETE)−1, E, and F T .

Additional optimizations are possible when solving large linear systems found in iterative

non-linear least squares algorithms. In some implementations, Jacobian values can be computed

on-the-fly and never have to be stored. More detailed information on such optimizations and on

bundle adjustment in general can be found in the work of Wu et al. [91].

6.0.2 GPU Bundle Adjustment

Structure from motion (SfM) is the procedure of recovering the 3D structure of a scene from a

set of 2D images. Structure-from-Motion has increasingly grown in size over time, especially

67

with the availability of large-scale community photo collections. As the number of photos in

such collections continues to grow into the hundreds of thousands or even millions, the scala-

bility of bundle adjustment algorithms has become a critical issue. Fortunately, we have also

seen advancements in computer hardware used for massive data processing, including multi-

core processors, many-core processors, and compute clusters. A key to speeding up bundle

adjustment is to leverage these new processors.

There are different possible approaches for utilizing multiple GPUs in bundle adjustment.

One could parallelize individual stages in bundle adjustment (such as the linear solver and the

evaluation of Jacobian values). In a basic multi-GPU implementation of PCG (Preconditioned

Conjugate Gradient), the multiple GPUs would need to synchronize with each other 5 times per

iteration. For example, when we run traditional bundle adjustment on the Venice dataset, we

find that the first 10 Levenberg-Marquardt iterations require 879 iterations of conjugate gradi-

ent. This means a multi-GPU implementation of PCG would need to synchronize the GPUs

879 × 5 = 4395 times. Such frequent synchronization could lead to performance degradation.

Furthermore, as the problem size increases and the size of the linear system in the normal equa-

tions increases, the theoretical upper bound on the convergence of PCG (the dimension of the

matrix) also increases. In practice, however, convergence usually occurs faster than this.

Due to the nature of the bundle adjustment problem, which forms two distinct set of param-

eters, cameras and points, another approach to parallelization is interleaved bundle adjustment,

also known as Resection-Intersection. This scheme alternates between keeping the points fixed

and optimizing the cameras (resection) and keeping the cameras fixed and optimizing the points

(intersection). Either points or cameras can be easily optimized in parallel while the other re-

mains fixed. The drawback of this approach is a slow convergence rate and/or convergence to a

non-global optimum.

An alternative approach to parallelizing bundle adjustment is to partition the full problem

into subproblems. Such an approach exploits the fact that bundle adjustment problems involve

physical objects in the real world, which allow the problems to be partitioned in 3D space. This

approach has the following advantages and disadvantages.

68

Advantages:

1. There is no need to synchronize separate GPUs.

2. There is less data transfer between GPU memory and host memory and between the

memories of different GPUs.

3. It exploits the innate parallelism in the problem domain of 3D reconstruction. Many

reconstruction problems can be partitioned naturally due to the physical partitioning of

the components in the 3D scene.

4. When GPUs are used, a single machine with a shared-memory system can overcome a

limitation in memory bandwidth when processing multiple subproblems in parallel.

Disadvantages:

1. The final solution can be less accurate. The partitioned bundle adjustment might not

converge or converge to a non-global optimum.

2. There can be an issue of load balancing.

3. Partitioning and distributing work introduces overhead.

4. The choice and quality of partitioning can affect the outcome of optimization.

6.1 Related Work
There has been various works attempting to improve the performance of bundle adjustment. Ni

et al. were the first to use graph partitioning to subdivide the bundle adjustment problem into

subproblems [59]. They optimize independent partitions in parallel and then spatially re-align

the partitions and points. Agarwal et al. study bundle adjustment featuring tens of thousands of

images [4]. They explore different preconditioners when using conjugate gradient to solve the

normal equations. Wu et al. were the first to implement bundle adjustment on the GPU [91].

However, their work does not support multiple GPUs, does not support double-precision, and

has a fixed bundle adjustment cost function. Hänsch et al. use Resection-Intersection to perform

parallel bundle adjustment on a GPU, but with a noticeable loss in accuracy [28]. Lakemond et

69

al. use a similar method with an augmented triangulation step between resection and intersec-

tion [45]. For distributed bundle adjustment, Erikkson proposes using ADMM based on point

consensus [19]. Ramamurthy et al. also perform distributed bundle adjustment using ADMM

but do so based on the consensus of both points and cameras in different partitions [66]. Zhang

et al. use ADMM based on camera consensus to target multiple CPUs in a distributed clus-

ter [95]. Demmel et al. do distributed photometric bundle adjustment targeting multiple CPU

nodes [18].

6.2 Methodology
Our goal is to develop a method for doing parallel bundle adjustment that scales well with

multiple GPUs. We make the following contributions:

• We analyze the ground truth accuracy of different parallel bundle adjustment methods

including Resection-Intersection and ADMM with point consensus.

• We introduce a novel method that partitions the scenes and alternates optimizing the par-

titions and boundary points. Our method has better ground truth accuracy than Resection-

Intersection, while still obtaining large speedups.

• We run our implementation on multiple GPUs and obtain large speedups when compared

to a traditional, serial bundle adjustment.

6.2.1 Algorithm

In our method, which we call the Fixed-Boundaries method, we partition the scene using a graph

cut. A set of boundary points is formed that connect the partitions. To optimize the partitions in

parallel, we hold the boundary points fixed while optimizing each partition in parallel. Then, we

keep the rest of the scene fixed while optimizing the boundary points. We continuously alternate

in this manner until a stop criterion is reached. One such criteria is reaching a user-specified

number of iterations. Another possible criteria is when the change in the objective function from

the last iteration goes below a certain threshold, which can signal convergence. For this case,

we look at the value of the objective function for the full bundle adjustment problem. During

the optimization of both the partitions and the boundary points, we opt to only take a single step

70

Figure 6.2: Example of partitioning a visibility graph. Each camera in the graph is connected
to another camera via an edge if they view at least one common point. In this example, the
partitioning is based on a min-cut and creates 3 partitions. Lines and points colored in blue
indicate edges that have been cut. Points that are part of cut edges become boundary points.

of Levenberg-Marquardt. We do this to preserve stability, and we find that taking more than

one step does not benefit the solution much in terms of accuracy. The method is summarized in

Algorithm 4.

Algorithm 4 Partitioned Bundle Adjustment with Fixed Boundary Points
Use a minimum graph cut to divide the scene into N partitions and B boundary points
prev_f_value← 0
for num_iterations do

for all partitions do in parallel
Take one successful optimization step with boundary points fixed

for all boundary points do in parallel
Take one successful optimization step with parameters in partitions fixed

f_value← EVALUATEFUNCTION()
if |f_value− prev_f_value| < function_tolerance then break
prev_f_value← f_value

By holding the other parameters fixed while optimizing the boundary points, our method

uses a technique similar to the intersection step in Resection-Intersection. Resection-Intersection

is known to converge to a less optimal solution than that achieved by optimizing all parameters

simultaneously. One cause is that during optimization in Resection-Intersection, a large number

of parameters are fixed at any given time. Another cause is that Resection-Intersection fails to

model the interactions between the set of points and the set of cameras, since one is always

71

fixed while the other is being optimized. In our method, many points and cameras can be op-

timized simultaenously when the boundary points are fixed. These boundary points can make

up a relatively small fraction of the total points after using a partitioning based on a minimum

graph cut.

One drawback of our implementation is its lack of support for cameras having shared intrin-

sics, since it assumes that every camera in the scene is different. This allows camera parameters

in different partitions to be optimized separately. On the other hand, ADMM bundle adjust-

ment based on camera consensus, as done by Zhang et al. [95], can support intrinsics shared

among different cameras. However, the cameras would need to be duplicated in multiple par-

titions, which could introduce more overhead and nullify the performance benefits of parallel

computation. Another insight about intrinsics is that for the case of a single camera viewing

multiple parts of a scene, the intrinsics can be obtained from manufacturer specifications and

do not need to be part of the bundle adjustment problem. Furthermore, in the case of randomly

collected images, such as a collection of internet photos viewing a landmark scene, all cameras

are generally assumed to be different.

6.2.2 Partitioning the Scene Graph

We opt to use a divide-and-conquer approach on the whole bundle adjustment problem, where

each subproblem consists of a subset of the cameras and points in the original problem. To ac-

complish this, we partition the scene and bundle adjust each partition in parallel. This approach

to parallelization can reduce the necessary communication between processors. The bundle ad-

justment of independent partitions can be scheduled as separate jobs that can be solved using

multiple processors of potentially varying types, including GPUs.

First, we define the visibility graph for a scene. Each image forms a node in the graph and

two images have a weighted edge between one another if there is a feature match across both

images. Two images that have more feature matches between them will be connected by an edge

of greater weight. Therefore, a subset of images will form a subgraph with higher edge weights

if many features are tracked across this subset of images. As shown in Figure 6.2, a graph cut

can be applied on the visibility graph to partition the problem into subproblems. When bundle

adjusting subproblems separately, there is a potential problem of drift, where each partition

72

becomes locally optimized but is not optimized with respect to the entire problem. To deal with

this issue, 3D points that are shared across partition boundaries (seen by images in different

partitions) can be held constant during optimization. The boundary 3D points act as common

“anchors” for the different subproblems.

For graph partitioning, we use the METIS library [39], which can partition based on a

minimum cut of the graph. This leads to images that are the least connected to be placed in

separate partitions. The assumption is that refinements done on one partition are less likely to

depend on the refinements done on a less connected partition, which increases the independence

of the subproblems. One issue of doing a straightforward min-cut partitioning of the visibility

graph is the failure to take into account load balancing. Each image views a certain number of

points, and the more points an image can see, the more computation is needed for that image

when evaluating the cost function and the partial derivatives. Therefore, we opt to not only

perform a min-cut purely based on the number of images viewing each point. Instead, we pass

two lists to METIS PartGraphKway. The first list consists of the edge weights, which are the

weights of the edges in the visibility graph. The second list consists of vertex weights, which

are the number of points seen by each image (where each image is a vertex in the visibility

graph). By using both edge weights and vertex weights in the min-cut partitioning, we can

balance between minimizing the connectivity between different partitions and improving the

load balancing of future computation on the partitions. An example of partitioning a visibility

graph based on a min-cut is shown in Figure 6.2. In this example, two edges are cut, and the

number of cameras in each partition are 2, 3, and 2. The partitioning aims to cut as few edges as

possible (and cut edges with less weight) while keeping the number of nodes (cameras) in each

partition relatively even. As mentioned earlier in the discussion of vertex weights, the number

of observations seen in each camera can also be used as additional weights during partitioning,

though the number of observations in a partition often correlates with the number of cameras in

the partition.

The goal of a min-cut partitioning is to keep the number of boundary points low. This has

two advantages: (1) There are fewer boundary points to optimize after optimizing the partitions

in parallel, thus saving runtime. (2) Having fewer boundary points requires fewer points to be

73

Table 6.1: Number of boundary points after partitioning

Dataset # Cams # Pts # Obs
M-Cut

boundary
points

Rand.
boundary

points

M-Cut
% total
points

Rand.
% total
points

Venice 1778 993923 5001946 235036 936520 24% 94%
Ladybug 1723 156502 678718 27812 146026 18% 94%

Final 13682 4456117 28987644 1032552 4173407 23% 94%

(a) Venice (b) Ladybug

Figure 6.3: Error reduction over time using two different partitionings: min-cut and random.
Both partitionings are tested on two different datasets: (a) Venice and (b) Ladybug.

fixed while the partitions are being optimized in parallel. This allows more points to optimize

simultaneously with the cameras, thus leading to a larger reduction in error per iteration. In a

sense, a min-cut partitioning provides the benefits of interleaving without suffering from slow

convergence caused by fixing a large percentage of the parameters during optimization. We test

the effectiveness of a min-cut partitioning by comparing it against a random partitioning of the

images. We run these tests and all following tests on 4 NVIDIA V100 GPUs that are shared

among 8 partitions. For the CPUs, we use Intel Xeon E5-2698 v4 CPUs running at 2.20 GHz.

Table 6.1 shows the number of boundary points on three different datasets that result from

a min-cut partitioning and a random partitioning. The Ladybug dataset is derived from images

captured at a regular rate using a Ladybug camera mounted on a moving vehicle, which in-

creases the sparsity of the problem. As shown in the table, the number of boundary points that

result from a random partitioning makes up a large percentage of the total number of points. By

using a random partitioning, the implementation becomes close to Resection-Intersection bun-

dle adjustment. Figure 6.3 shows the performance of parallel bundle adjustment using the two

74

different partitionings on the datasets Venice and Ladybug. The random partitioning performs

worse in the same manner as Resection-Intersection bundle adjustment, where convergence is

less optimal due to a large number of parameters being fixed during optimization.

6.2.3 Framework

We create our implementation on top of the Ceres Solver library. Ceres [3] is an open-source

C++ library for modeling and solving large-scale optimization problems. Ceres can be used

to solve non-linear least squares problems with bounds constraints as well as general uncon-

strained optimization problems. This library is commonly used to solve bundle adjustment

problems for 3D reconstruction.

Ceres contains different algorithms for solving the large, sparse linear systems that occur in

bundle adjustment problems. These algorithms include Cholesky Factorization, a direct solver

for medium to small systems, and conjugate gradient, an iterative solver for large systems. Vari-

ations of the solvers can take advantage of the structure of the Jacobian matrix, including those

that leverage the Schur complement trick and use an implicit Schur complement representation

to create a reduced linear system. As mentioned previously, the size of the Schur complement

in a bundle adjustment problem is usually bounded by the number of cameras in the problem.

We use Ceres’ existing functionality to set parameters constant during optimization. To

improve the performance of our approach, we modify the solver to allow a Ceres problem

to pause optimization (after taking a successful step of optimizing each partition) and resume

(after taking a successful step of optimizing the boundary points) with updated parameters.

This removes the overhead of setting up a new problem and any necessary preprocessing that is

needed to begin minimization.

6.2.4 GPU Acceleration

Generally, the most time-intensive operation in solving bundle adjustment problems is solving

a linear system during the computation of each Levenberg-Marquardt step. When it comes to

large-scale bundle adjustment problems, the linear solver of choice is preconditioned conjugate

gradient. This method is feasible because the matrix in the linear system is quite sparse. Ceres

has support for different preconditioners. We opt to use the block Jacobi preconditioner, as it

75

is the default in Ceres and often yields the fastest solution. We parallelize the linear algebra

operations used in conjugate gradient (norms, dot products, etc) on a GPU using CUBLAS and

CUSPARSE. As discussed previously, performing a partitioned bundle adjustment allows us to

avoid GPU-to-GPU communication, as each GPU solves its own subproblem independently.

The second most time-intensive operation in bundle adjustment is the computation of partial

derivatives needed to form the Jacobian matrix. The number of residuals in our optimization

problem (the total number of tracked features) determines the number of partial derivatives that

need to be computed. For large-scale problems, especially those with high-resolution images

and an aggressive feature detector, the number of residuals can be quite high.

6.2.4.1 Automatic Differentiation on the GPU

Ceres uses automatic differentiation as a flexible approach for calculating the Jacobian values

of user-defined cost functions [3]. Auto-differentiation is performed through the use of dual

numbers. As explained in the documentation for Ceres, one way to understand dual numbers is

to use complex numbers as an analogy. Both can be considered extensions of real numbers. The

two differ in that complex numbers augment real numbers with an imaginary variable i where

i2 = −1, while dual numbers add an infinitesimal variable ε where ε2 = 0. As such, a dual

number has both a real component and an infinitesimal component. In the following example,

we can see how dual numbers can be used to compute derivatives of a function without having

to work with symbolic mathematical expressions:

f(x) = x2

Evaluate the function at x = 5:

f(5 + ε) = (5 + ε)2 = 25 + 10ε+ ε2 = 25 + 10ε

Observe that the value of the function at x = 5 is 25 and the coefficient of ε is 10. The latter

is the correct value of the first-order derivative of the function at x = 5. Since we often deal

with multivariate functions in optimization, we need to generalize dual numbers to Jets. A Jet

consists of a single real part and a N -dimensional infinitesimal part. The following defines the

datatypes within a Jet template.

76

template<int N> struct Jet {
double a;
Eigen::Matrix<double, 1, N> v;

};

Next, we look at the Ceres approach to defining custom cost functions. To implement the

function from the previous example, we would write:

struct Function {
template <typename T> bool operator()(const T* x,

T* residual) const {
residual[0] = x[0] * x[0];
return true;

}
}

The function’s operator() would be passed a Jet<1> at runtime, and after evaluation its

v data member would contain the coefficient of the infinitesimal, which is the value of a partial

derivative at x. For the previous example to compile, run, and produce the correct result, the

Jet data structure would need to have an overloaded operator:

template<int N> Jet<N> operator*(const Jet<N>& f,
const Jet<N>& g) {

return Jet<N>(f.a * g.a, f.a * g.v + f.v * g.a);
}

To support different cost functions, not only for bundle adjustment but also for a variety of non-

linear least squares problems, many operators for Jet need to be overloaded to support a range

of mathematical expressions. To make this implementation of auto-differentiation work on the

GPU, we need to append CUDA keywords to the relevant functions and overloaded operators:

77

struct Function {
template <typename T>
__HOST__ __DEVICE__
bool operator()(const T* x, T* residual) const
{...}

}

template<int N>
__HOST__ __DEVICE__
Jet<N> operator*(const Jet<N>& f, const Jet<N>& g)
{...}

CUDA currently supports nearly all the same mathematical operations as the C++ standard.

While this direct mapping from host to device code may not be the most efficient approach (for

example, it does not consider optimizing GPU memory access via coalescing), it keeps the code

readable. However, additional code is still needed to transfer the cost functions between the host

machine and the GPU. Regardless, with this approach, each cost function can compute its partial

derivative in a separate GPU thread, leading to a high amount of parallelism. Currently, we do

not support mixing different cost functions in a single problem when computing derivatives in

parallel on the GPU. Doing so would require multiple kernel launches, as each different type of

cost function would need its own templated kernel.

As far as we know, we are the first to implement bundle adjustment in C++/CUDA with

support for user-defined cost functions on the GPU. Supporting user-defined functions that can

be auto-differentiated on the GPU enables further research in accelerating optimization prob-

lems with GPUs. Unlike other GPU-based implementations such as that of Wu et al. [91], our

implementation is not limited to a set of fixed bundle adjustment cost functions. Instead, our

use of auto-differentiation allows users to leverage GPUs regardless of the camera model they

employ for their problems. More generally, auto-differentiation on the GPU enables accelerated

Jacobian computation for a variety of non-linear least squares problems.

6.2.4.2 GPU Data Layout

Algorithm 5 shows simplified pseudo-code for taking a single step of Levenberg-Marquardt.

The main routines that run on the GPU include solving the linear system using conjugate gra-

78

Algorithm 5 A Single Step of Levenberg-Marquardt on the GPU
Input: A vector function f ,

A measurement vector y,
A vector of fixed parameters c,
An initial parameters estimate β0

Output: A parameter vector β+ minimizing ||y− f(c,β)||2.
1: procedure LEVENBERGMARQUARDTGPU
2: β ← β0

3: µ← INITIALIZETRUSTREGIONSIZE()
4: step_taken← false
5: repeat
6: r← EVALUATEFUNCTIONGPU(f , y, c, β)
7: J← AUTODIFFERENTIATEGPU(f , y, β)
8: λ← COMPUTEDAMPINGPARAMETER(µ)
9: Solve with GPU Conjugate Gradient (JTJ + λI)δβ = JT r

10: βnew ← β + δβ
11: rnew ← EVALUATEFUNCTIONGPU(f , y, c, βnew)
12: ∆r ← ||r||2 − ||rnew||2
13: if ∆r > 0 then
14: β+ ← βnew
15: step_taken← true
16: else
17: µ← SHRINKTRUSTREGIONSIZE(µ)
18: until step_taken == true

dient (this involves multiple steps of SpMV and dot products), evaluating the cost function,

and using auto-differentiation on the cost function to compute the Jacobian values. Note that

the algorithm expects certain parameters, c, to be fixed during optimization. When optimizing

parameters in each partition, these fixed parameters are the boundary points. When optimizing

the boundary points, these fixed parameters are the cameras that view the boundary points.

For our GPU computations, our data layout is straightforward but not highly optimized.

For evaluating the cost functors to compute Jacobian values, the functors are stored simply as

an array-of-structures. Future work would explore the more optimal structure-of-arrays. To

store a computed Jacobian on the GPU, the Jacobian matrices are written to a format similar

to Block Compressed Sparse Row (BCSR). The format is modified to support different sized

rectangular blocks instead of equally sized square blocks. Storing in a block format can simplify

the computation of the Jacobian values, since these values follow a block pattern within the

79

(a) Optimizing a subproblem in a partition (b) Optimizing the boundary points

Figure 6.4: In our method, we alternate optimizing the partition parameters with the boundary
points fixed and the boundary points with the cameras fixed. In the first stage (a), the boundary
points on each GPU must be updated before they can be fixed during optimization. After taking
a single step of Levenberg-Marquardt, the optimized camera parameters are copied back to the
host. In the second stage (b), these camera parameters are sent to each GPU to update the
parameters that will be fixed during optimization of the boundary points.

80

matrix. For example if there are 9 parameters per camera and 3 parameters per point, then the

Jacobian will consist of multiple 2x9 and 2x3 blocks (with one partial derivative per parameter

for the x-coordinate in the image and one partial derivative per parameter for the y-coordinate).

For GPU-accelerated linear algebra operations, such as solving linear systems and performing

SpMV in conjugate gradient, the matrix must be converted to Compressed Sparse Row format

(CSR) before it can be passed to CUSPARSE or CUBLAS routines. In our method, the matrix

structure remains the same across multiple optimization iterations because the partitioning does

not change during optimization. Therefore, once the data structure for a matrix has been set

up on the GPU, we only need to periodically copy matrix values after each iteration of the

optimizer. We do not need to copy matrix structure data, such as the row indices for a CSR

matrix.

For multiple GPUs, the divide-and-conquer approach applies to two sets of partitions: (1)

the partitioning of the visibility graph that creates multiple bundle adjustment subproblems and

(2) the assignment of boundary points to different GPUs. In the latter case, each boundary point

can be optimized independently with all cameras fixed. In the first case, each partition has a

large set of point parameters and, to a lesser extent, camera parameters that can be optimized

independently without ever needing to communicate these values across partitions. Thus, for

many points and cameras in a subproblem, each partition can store its own copies of Jacobian

values and cost functors. After each partition has been optimized with a single step (Algo-

rithm 5), the boundary points are optimized. Before this can proceed, updated camera param-

eters that are connected to the boundary points must be copied back to host memory and then

sent to the memories of the GPUs. The number of these updated camera parameters depend on

the connectivity of the visibility graph, but are generally small compared to the total number of

point parameters. After the boundary points are optimized with the camera parameters fixed,

they must be copied back to host memory and then sent to the memories of different GPUs

based on the assignment of boundary points to GPUs. Doing so provides updated boundary

points that are fixed during the optimization of the independent subproblems. For this data

transfer, the number of boundary points determines the amount of data that needs to be copied.

During the optimization of either the subproblems or the boundary points, no GPU-to-GPU

81

communication is necessary. The flow of data between the GPUs and the host during the alter-

nated optimization steps are shown in Figure 6.4. Note that the assignment of boundary points

to each GPU in the second stage is not the same as that used in the first stage. Since each

boundary point can be optimized independently, they can be equally divided among the GPUs

in the second stage for perfect load balancing. In contrast, during the first stage, each GPU

needs boundary points that are visible in its partition. For the assignment of camera parameters

in the second stage, each GPU only needs parameters for cameras viewing its boundary points.

6.3 Results
6.3.1 Accuracy Results

To measure accuracy after bundle adjustment, ground truth can be used if available. In this case,

ground truth would provide the correct positions of the cameras and points and an operation

such as Iterative Closest Point (ICP) [8] can be used to align the correct point cloud with the

bundle adjusted result to measure a distance between the two. However, in many cases, there

is a lack of ground truth information, especially for new reconstructions done from random

collections of images. After all, if ground truth is available, there would be no need to do the

reconstruction in the first place. As a result, reprojection error is typically used in the absence

of ground truth. The issue is that reprojection error can theoretically be low even if the result

is of poor quality. Whether or not the final result matches the true answer, reprojection error

will be low simply if the cameras, points, and feature tracks all agree with each other. This can

happen, for example, if the input data is degenerate and converges to an “optimal” but incorrect

solution. Local minima can also be problematic, as optimization can reach a low but not the

lowest error. It would be fruitful to see if this actually occurs in practice, or if reprojection error

does indeed have a strong correlation with ground truth.

Multiple works have explored different approaches for parallel bundle adjustment, though

few of them verify the methods with ground truth data, opting instead to only use reprojection

error. In the following sections, we discuss some known methods for parallel bundle adjustment,

along with their advantages and disadvantages. Next, we test these methods, as well as our own

novel method, on two synthetically generated datasets with artificial noise added to them. We

82

observe the accuracy of different methods when compared to ground truth solutions.

6.3.1.1 Resection-Intersection

Resection-Intersection, also known as interleaving, performs bundle adjustment by alternating

fixing the points and optimizing the cameras (resection) and fixing the cameras and optimizing

the points (intersection). This method can treat each camera and point independently and there-

fore optimize them in parallel. In terms of accuracy, there are some notable disadvantages. As

noted by Hartley and Zisserman, the method can be competitive with a full bundle adjustment

when the scene is small and highly interconnected [30]. However, in less favorable conditions,

accuracy can suffer and performance gains from parallelization may be overshadowed by slow

convergence rates. Another potential downside of Resection-Intersection involves the commu-

nication costs in a distributed system. Depending on the connectivity of cameras and points in

the scene, each point may depend on a large percent of the cameras in the scene and vice versa.

Combined with the large number of iterations required for this method, significant amounts of

global communication may be needed to broadcast the cameras and points after each iteration

of optimization.

Hänsch et al. study the parallelization of Resection-Intersection on a GPU [28]. As ex-

pected, they find that the obtained reprojection-error is often not as low as that of a full bundle

adjustment. Though they do not compare their results with any ground truth data, they are able

to obtain superior error reduction per time spent during the early iterations. Lakemond et al.

augment their Resection-Intersection method with a triangulation step prior to the Intersection

stage [45]. To preserve stability, they also track the change in reprojection error involving each

point after the resection step and only optimize the points that exhibit a large enough change in

their contributed reprojection errors. On some datasets, they achieve a final reprojection error

that is comparable with that of a normal bundle adjustment. However, they do not test their

method on any ground truth data. The authors for both works acknowledge that Resection-

Intersection can lead to slower convergence and less accurate results due to many parameters

being fixed during each step of optimization. In contrast, we try to keep more parameters free

during optimization by only fixing the boundary points.

83

6.3.1.2 ADMM

An algorithm that has become popular in recent times for performing parallel partitioned bun-

dle adjustment is the Alternating Directions Method of Multipliers (ADMM). Since the bundle

adjustment problem is not a convex function, certain assumptions have to made to ensure con-

vergence in ADMM. As noted by Zhang et al. [95] and Mayer [52], a condition for convergence

requires that the points not be too close to the cameras, which is a reasonable assumption for

SfM problems.

One advantage of ADMM is that partitions of the scene can be optimized to near completion

in parallel during one ADMM iteration. During this parallel optimization, no partition needs

to communicate with any other partition. Only the gathering and scattering of the consensus

variables at the end of an ADMM iteration require global communication, which can make the

overall algorithm more efficient in distributed environments. ADMM has some disadvantages.

As stated by Boyd et al. [10], the algorithm is known to converge slowly to a highly accurate

solution when one is desired. Furthermore, the convergence behavior is highly sensitive to the

value of the penalty parameter ρ, including both its initial value and an increase/decrease factor

that can be applied during each ADMM iteration. There are also issues that can arise when

formulating the bundle adjustment problem as an ADMM problem. For example, if the new

primal function is not formulated as a least-squares problem, then one cannot use an existing

least-squares solver to minimize the function. Another possibility is that the new formulation

cannot be minimized as efficiently using the same least squares solver that is used for a full

bundle adjustment function. For example, Ramamurthy et al. [66] use a Gauss-Newton solver

instead of Levenberg-Marquardt to solve the new primal function in their ADMM formulation.

Issues can also arise relating to overhead and scalability during parallel computation. For exam-

ple, the added penalty terms in the new ADMM formulation can lead to an increase in necessary

computation. Other issues relating to overhead will be discussed shortly.

6.3.1.2.1 Point Consensus

When formulating bundle adjustment as an ADMM problem, one can opt to create a consensus

problem based on points or cameras. In the case of point consensus, the same point can appear

in multiple partitions, and a consensus value for the point is updated during each iteration.

84

For camera consensus, a similar formulation applies for cameras instead of points. Boyd et

al. provide a general overview for formulating ADMM problems [10]. Equations 6.14, 6.15,

and 6.16 formulate an ADMM bundle adjustment problem based on point consensus.

(C)t+1, (X l)t+1 = argmin
C,Xl

(
fl((C)

t, (X l)t) +
ρ

2
||(X l)t − (X)t + (X̃ l)t||22

)
(6.14)

(Xj)
t+1 =

1

L

L∑
l=1

(X l
j)
t+1 (6.15)

(X̃ l
j)
t+1 = (X̃ l

j)
t + (X l

j)
t+1 − (Xj)

t+1 (6.16)

In these equations, C represents a vector of cameras, Xj represents the jth point in a vector

of points, and l is used to enumerate a partition out of L total partitions. The ADMM itera-

tion number is specified with t. Equation 6.14 gives the function that needs to be optimized

for a single partition, which can be done independently from other partitions. The function

fl((C)
t, (X l)t) is the objective function of the bundle adjustment subproblem containing C, the

subset of cameras in partition l, and X l, the subset of points in partition l. X encapsulates the

consensus values of these points, and X̃ l are the dual variables for these points. These two

terms are updated using the following two equations. For points shared across different parti-

tions, Equation 6.15 globally averages each of these points to form a consensus. Equation 6.16

updates the dual variables in accordance with the theory of ADMM to drive the consensus points

towards convergence. The variable ρ is the penalty parameter, which can have a large impact

on the convergence behavior of the algorithm.

Eriksson et al. perform ADMM bundle adjustment using point consensus to target dis-

tributed systems [19]. However, they only test their distributed implementation on small datasets

and do not test on ground truth data. Mayer follows Eriksson et al. and performs point consen-

sus bundle adjustment on larger datasets but only on two of them [52]. To avoid the dilemma

of choosing the penalty parameter ρ and having to update ρ as the optimization progresses, the

author uses the covariance matrix of the boundary points as weights to the penalty term instead

85

of ρ. He achieves speedup on a multi-core CPU but, like Eriksson et al., he does not test his

implementation on ground truth data.

6.3.1.2.2 Camera Consensus

Zhang et al. are the first to test ADMM bundle adjustment on very-large scale scenes [95]. Un-

like previous methods, they formulate bundle adjustment as a camera consensus problem. The

motivation is that in most reconstructions, the points greatly outnumber the cameras. When

using point consensus, there is potentially a large number of boundary points that need to reach

consensus, which can lead to slower convergence, as the numerous points have to be aver-

aged. Furthermore, these consensus points would have to be globally communicated after each

ADMM iteration, which could lead to performance degradation, particularly in distributed en-

vironments where communication costs are high.

The motivation for camera consensus is sensible for some datasets but may have drawbacks

for others. Performing camera consensus requires the same cameras to appear in multiple parti-

tions. For highly disjoint scenes, there would be little overlap of cameras in different partitions.

However, for scenes where the visibility graph has high connectivity, there could potentially be

large overlap of cameras in different partitions. In the worst case, withN cameras andM points

in the scene and P partitions, each partition would have N cameras. Even if the partitioning is

able to achieve M/P points per partition, the large number of cameras per partition could limit

performance gains. The main runtime bottleneck for Levenberg-Marquardt is solving the linear

system formed by the normal equations. Solving this system, as described earlier, can be done

efficiently by first creating the reduced Schur-complement system, due to the Jacobian matrix

being formed by two distinct sets of parameters: points and cameras. The size of the reduced

Schur-complement system depends on the number of cameras, since the points typically out-

number the cameras. By having overlapping cameras in each partition, dividing the scene into

P partitions does not necessarily decrease the size of the reduced Schur-complement system in

each partition by a proportional factor. Therefore, camera consensus can have scalability issues

on certain types of scenes. Zhang et al. run their distributed bundle adjustment based on camera

consensus on multiple large scenes. However, they do not compare the scalability and runtime

performance of their implementation with that of a full, serial bundle adjustment. They also do

86

not verify the accuracy of their bundle adjustment on ground truth data.

ADMM bundle adjustment can also be formulated as a consensus problem of both cameras

and points, as done by Ramamurthy et al. [66]. They test their implementation on synthetic

ground truth data but only add noise to the points. Their real datasets have 30 or fewer cameras

and their largest synthetic dataset has 2000 cameras.

6.3.1.3 Fixed Boundary Points

Our method of parallelizing bundle adjustment by fixing boundary points has some advantages.

First, compared to Resection-Intersection, we converge to a better solution because within each

partition, the cameras and points are optimizing together. We also have less global communi-

cation than Resection-Intersection, because only the boundary points and the cameras viewing

them need to be globally communicated. Compared to ADMM, our method does not require

overlapping cameras or points in different partitions. Overlapping cameras, as in the case of

ADMM based on camera consensus, can be inefficient because even after partitioning, each

subproblem can still have a large number of cameras. Unlike ADMM, our method also does not

require setting and managing a penalty parameter ρ, which can lead to better convergence rates.

Our method also has some disadvantages. As we’ll see in some tests, the method is bet-

ter suited for certain types of scenes and may not converge to the optimal solution for other

scenes. Our method works best when the scene is highly connected, with numerous shared

points between different cameras and having varying viewpoints of each point. Compared with

ADMM, our implementation may require more global communication, as we take only one step

of optimization during each iteration.

6.3.1.4 Ground Truth Results

To test different parallel bundle adjustment methods, we generate synthetic data to use as ground

truth. We create two synthetic scenes, keeping them small, since we are interested in accuracy

and not performance for these tests. We add noise to the scenes, but we keep the amount of

noise low to ensure that bundle adjustment can converge to the correct, ground truth solution.

The first dataset sphere is a cube of points surrounded by cameras in all directions. The set of

camera positions roughly form a sphere with random perturbations. There are 500 cameras and

10000 points. Each point is visible in 10 randomly selected cameras, and each camera is made

87

to view at least roughly 300 points. With this configuration, the visibility graph of the scene has

high connectivity, and each point is viewed by multiple cameras from varying vantage points.

To add noise to this scene, we add a maximum rotation error of 0.1 to each of the three angle-

axis rotation parameters in the camera model. We also add maximum camera translation errors

of 5 and maximum point position errors of 5.

In our second synthetic scene, grid, we arrange 576 cameras in a 24x24 grid all looking

vertically downwards at a random set of points that roughly form a plane beneath the grid of

cameras. This dataset simulates a scene derived from aerial footage. In the camera grid, each

camera is spaced 8 units apart, and each camera is 125 units above the plane of points. The

criteria for a point being viewed by a camera is as follows: if the camera’s position is projected

onto the plane of points, the points within a radius of 20 from the projected position are visible in

the camera. As a result, a camera in the middle of the grid shares points with 47 other cameras,

and every point is visible in at least 12 cameras. Cameras in the visibility graph are connected

to other nearby cameras that view the same points. Cameras that are far apart are not directly

connected. Therefore, this synthetic scene is much less well-connected than the previous one.

For artificial noise, since it’s easy to converge to a non-global mininmum in this scene, we add

a maximum rotation error of just 0.001, a maximum translation error of 0.1, and a maximum

point position error of 0.1.

To measure ground truth error after performing bundle adjustment, we must take into ac-

count the global translation, rotation, or scaling difference that can exist between the result

of bundle adjustment and ground truth. We use CloudCompare’s ICP algorithm (that also ac-

counts for scaling) to align the bundle-adjusted result and ground truth, before measuring the

average distance between the point clouds containing the camera and point positions. To test

the accuracy of different parallel bundle adjustment methods, we observe the ground truth error

as the mean squared reprojection error decreases. We sample the progress of each method at

four different intervals, which includes the initial cost prior to the start of optimization. In one

graph, we show the error reduction for only camera positions, and in the other, we show the

error reduction for both camera and point positions. Generally, in bundle adjustment problems,

the final accuracy of the cameras is more important than the accuracy of the points.

88

(a) sphere (b) grid

Figure 6.5: The ground truth cameras and points for synthetic datasets sphere and grid. Cam-
eras are in red and points are in black.

For the fixed boundaries method and ADMM, we first need to partition the problem. We use

METIS to divide the scene into four partitions using a minimum graph cut. Figure 6.6a shows

the results of a full bundle adjustment, Resection-Intersection, our fixed boundaries method,

and ADMM on the sphere dataset. Though we cannot always compare the results of the dif-

ferent methods directly, due to the reprojection errors at the sample intervals being different,

we note that an effective bundle adjustment method should lower ground truth error as it lowers

reprojection error. We see that the full non-parallel bundle adjustment successfully converges to

ground truth as the reprojection error decreases. The Resection-Intersection method converges

to a solution with a bit more error, ADMM converges to an even better ground truth-solution

than the full bundle adjustment (given similiar reprojection errors), and our method is some-

where in between. This confirms previous works showing less accurate results from Resection-

Intersection. In our implementation of Resection-Intersection, we only perform one iteration of

minimization for each of the alternated steps, as we find that additional iterations do not lead

to more accuracy. Our fixed boundaries method, while not the most accurate, is able to lower

ground truth error alongside reprojection error. This confirms that our method does progress

towards a lower ground truth error. Our method optimizes the problem in an alternating fashion

and gets a similar benefit of being parallelizable like Resection-Intersection but converges to a

89

(a) sphere (b) grid

Figure 6.6: A comparison of three parallel methods–fixed boundaries, Resection-Intersection,
and ADMM–and one serial method–a normal full bundle adjustment. The graph tracks the
decrease or increase of ground truth error (for cameras only and cameras/points) as reprojection
error decreases for (a) the sphere dataset and (b) the grid dataset.

solution with lower error.

The results for grid are shown in Figure 6.6b. For this scene, the full bundle adjustment,

Resection-Intersection, and ADMM all reduce the ground truth error along with the reprojection

error. For Resection-Intersection, we also experiment with taking more than one minimization

iteration during the resection stage (optimizing the cameras with the points fixed) to see the

effect on stability. As shown in Figure 6.7a, after just one resection step with multiple min-

imization iterations, the camera positions move vertically towards or away from the plane of

points. Because a camera’s movement in these directions hardly changes the reprojection error,

the optimization of this scene is ill-conditioned and can easily converge to a non-global mini-

90

(a) Incorrect solution for Resection-Intersection. (b) Incorrect solution for the fixed boundaries method.

Figure 6.7: In the grid dataset, the camera positions (shown in red) should correctly form a
rectangular plane. For this dataset, (a) shows convergence to an unoptimal solution when taking
too many resection steps in Resection-Intersection, and (b) shows our fixed boundaries method
converging to an unoptimal solution, which is largely caused by the divergent optimization of
cameras viewing the boundary points (shown in blue).

mum. Therefore, similar to the test on the previous scene, we use the result of taking only one

step during resection and one step during intersection.

Looking at the result of our fixed boundaries method, the optimization converges to a non-

global minimum. The reprojection error becomes stuck in a local minimum (which is the reason

its last sample is not shown in the graph), and this increases the ground truth error during op-

timization. In Figure 6.7b, we see certain cameras having incorrect vertical movement towards

or away from the plane of points. These cameras are viewing many boundary points (shown

in blue), which are fixed during the optimization of the cameras. Compared to the previous

scene, few other cameras view the same boundary points as the problematic cameras. For the

ones that do, there lacks a wide enough baseline between them to help constrain the problem

and prevent the problematic cameras from moving towards a non-optimal position. This sug-

gests that our method is best suited for scenes that are more highly connected and that have

varying viewpoints for each point. For more disjointed datasets such as grid, we would suggest

Resection-Intersection or ADMM as more applicable parallel bundle adjustment methods.

6.3.1.5 Discussion

We have tested different parallel bundle adjustment methods on ground truth data to measure

their effectiveness in reaching a low ground truth error. As expected, we find that Resection-

91

Intersection does not converge to as optimal a solution as other methods. We find that for

scenes with certain properties, our method can reach a low ground truth error that correlates

with low reprojection error similar to a full bundle adjustment. It has the same advantage

of being parallelizable like Resection-Intersection, but achieves lower error. The drawback

is that it fails for certain scene configurations, namely those that are ill-conditioned. Such

problems can easily optimize towards a non-global minimum. Most importantly, we verify

that achieving a low reprojection error with our method also achieves low ground truth error,

which is useful for gauging the method’s effectiveness for real datasets. The method works

better with highly connected scenes with a variety of viewpoints for each point. We believe

that dense photo-collections of an object, such as tourist photos of a popular landmark gathered

from the internet, would fit this criteria. In the future, improved processing power and storage

would enable the collection of more images, the collection of larger images, and the ability to

detect and match more features per image. This will lead to more dense and well-connected

reconstruction problems.

6.3.2 Performance Results

We test our implementation on a single-node machine with multiple GPUs and multiple CPU

cores. Multi-threading is implemented using POSIX threads. The CPU used for all serial and

parallel tests is the Intel Xeon E5-2630 v3 running at 2.40 GHz, and the GPUs are 4 NVIDIA

V100s. We obtain our real datasets from the Bundle Adjustment in the Large (BAL) project

managed by the University of Washington GRAIL Lab. This project explores reconstruction

from large-scale online image collections [4]. The provided bundle adjustment problems were

created by running photos through a reconstruction software and outputting intermediate, un-

optimized reconstructions to disk at certain time intervals. The Ladybug dataset comes from

images captured at a regular rate using a Ladybug camera mounted on a moving vehicle. Pho-

tographs that contributed to the Venice dataset were downloaded en masse from Flickr.com.

6.3.2.1 Scaling

First, we test the scalability of the partitioned bundle adjuster by tracking runtime while chang-

ing the number of partitions from 2 to 8. We run these tests using 4 GPUs on the Venice dataset

and the Ladybug dataset. Figure 6.8(a) and Figure 6.9(a) shows the runtime scaling on these

92

datasets running from 2 to 8 partitions/cores. Our goal is to measure the strong scaling of the

parallel implementation. However, it is difficult to ensure that each implementation with a dif-

ferent number of partitions is given the same amount of work to do, as changing the number

of partitions essentially changes the optimization problem. To approximate this, we simply

have all implementations run 30 alternated iterations. For the Venice dataset, the GPUs appear

to become saturated once each GPU is assigned at least one partition (when using 4 or more

partitions). Using 8 partitions improves performance marginally, and after 4 partitions, using

a number of partitions that is not a multiple of the number of GPUs decreases performance

slightly. For the Ladybug dataset, the runtime appears to stop improving significantly after 3

partitions. The Ladybug is a smaller dataset and converges rapidly to a good solution, which

causes the algorithm to run out of work quickly. For larger datasets, our implementation is able

to saturate the GPUs with useful work but appears to be sensitive to the load balancing on the

GPUs. Currently, once we assign a partition to a GPU, the assignment is fixed throughout the

optimization. Future work would look into a dynamic scheduling of partitions onto available

GPUs to improve multi-GPU load balancing.

Figure 6.8(b) and Figure 6.9(b) show the amounts of error achieved when using different

numbers of partitions. Because each optimization problem is different due to a different parti-

tioning, the error achieved after taking a set number of iterations are not the same. However,

the differences are much less than an order of magnitude.

6.3.2.2 Real Datasets Performance

Next, we run some full performance tests by comparing our parallel GPU-accelerated imple-

mentation using the modified Ceres Solver with the unmodified Ceres Solver running in serial.

We plot the total amount of reprojection error versus runtime. For all these tests, we use 8 par-

titions. The partitioned implementation is able to obtain good speedup on the different datasets.

The serial and parallel implementations are able to converge to similar amounts of overall error.

The synthetic dataset features 2304 cameras laid out in a regular 48x48 grid. The cameras

look downward at a plane containing randomly scattered points. Each camera views a minimum

of 400 points. Like the grid scene in the accuracy tests, neighboring cameras in the 48x48 grid

have a small amount of overlap in terms of point visibility. We add a large amount of artificial

93

(a) Time (b) Error

Figure 6.8: The (a) runtime and (b) obtained error for the Venice dataset as the number of
partitions increase.

(a) Time (b) Error

Figure 6.9: The (a) runtime and (b) obtained error for the Ladybug dataset as the number of
partitions increase.

noise to this synthetic dataset, which likely prevents the optimization from converging to a

good solution. However, the excessive noise is added to give bundle adjustment more work to

do, enabling its use as a runtime benchmark. The sizes of all datasets and the achieved speedups

are summarized in Table 6.2.

From the graphs, we can see that parallel bundle adjustment has competitive accuracy with

the full serial bundle adjustment, while obtaining large speedups. In the graphs, a speedup is

defined as the serial runtime divided by the parallel runtime when the optimization results for

94

Figure 6.10: Venice dataset: error reduction over time and max speedup.

Figure 6.11: Final dataset: error reduction over time and max speedup.

both implementations have reached a similar amount of error. The max speedup is then the

greatest among all the possible speedups that occur where both implementations have reached

95

Figure 6.12: Rome09 dataset: error reduction over time and max speedup.

Figure 6.13: Ladybug dataset: error reduction over time and max speedup.

a similar amount of error. In the graphs, this is the largest horizontal “gap” between the two

curves and is denoted by a dashed horizontal line.

In some cases, the parallel method does not reach the same accuracy as the serial method,

and in other cases, it reaches a lower error. For the Rome09 dataset, the parallel method’s worse

accuracy is likely explained by the inability to create good partitions. This dataset features

views of a single building and does not contain multiple disjoint components. After partition-

ing, a majority of points become boundary points, which means many points need to be held

constant during optimization. For this dataset, the parallel method becomes closer to Resection-

Intersection, which is known to optimize to a less accurate solution than a full bundle adjust-

96

Figure 6.14: Error reduction over time and max speedup of a synthetic dataset with 2304 cam-
eras, 921600 points, and 1783967 observations.

ment.

Table 6.2: Maximum Parallel Speedup

Dataset Cameras Points Observations Max Speedup

Venice 1778 993923 5001946 41X
Final 13682 4456117 28987644 15X

Rome09 6983 49983 3078434 4X
Ladybug 1723 156502 678718 4.8X

Synthetic-48x48 2304 921600 1783967 9X

The maximum parallel speedup obtained for different datasets.

6.4 Conclusion and Future Work
We learn some important lessons in our work on parallel bundle adjustment. First, a highly

disjoint partitioning (e.g. a min-cut based partitioning) can lead to large speedups and reduced

communication across processors, but such a partitioning can converge to a less accurate or even

unusable solution. Another determining factor is the structure of the scene, as demonstrated by

the sphere and grid datasets. In the case of grid, the scene is ill-conditioned and does not form a

well-constrained problem. When using a disjoint partitioning, the scene structure can cause op-

timization to fall easily into a local minimum. In cases where the problem has better constraints

97

(e.g. sphere), a good solution can be reached despite a disjoint partitioning. Using a less disjoint

partitioning can affect runtime performance due to the overhead of overlapping parameters but

is less likely to converge to a local minimum. For example, Resection-Intersection fixes many

parameters during each step of optimization, making convergence slow, but still ends up with a

feasible solution for the grid dataset. Similarly, the partitionings used in ADMM implementa-

tions typically have more overlap among the partitions. But even for scenes such as grid, such

implementations can converge to highly accurate solutions, though possibly at the cost of run-

time. These insights can be taken into consideration when choosing how to partition a bundle

adjustment problem, where there is a trade-off between more parallelism and the likelihood of

converging to a correct solution. Information about the scene should also be considered. In the

case where the input data is abundant and the camera coverage of the scene is thorough and

complete, a more disjoint partitioning can be used without the risk of converging to a poor solu-

tion. In the future, we expect that the amount of data collected for reconstruction will continue

to increase, leading to scenes that are more complete and with less uncertainty. In this scenario,

more disjoint partitions can be a good choice. For scene structures that are not well-conditioned,

future work can explore how to mitigate accuracy problems while still allowing for a disjoint,

highly parallel implementation. Some of these directions can build on top of existing work, such

as developing GPU implementations of ADMM based on point consensus or camera consensus.

Another approach could use multiple partitionings and alternate the boundary variables that are

selected to be fixed in each iteration. Such an approach can prevent optimization from taking

steps that lead to instability. When it comes to evaluating approaches and measuring accuracy,

we would also like to create and test new bundle adjustment problems using the benchmarks of

Knapitsch et al. [40], as these are large-scale and include ground truth.

Even with the trade-offs in mind, our parallel bundle adjustment does appear to perform

well in terms of speed and accuracy on real datasets. We verify this by first testing the accuracy

of different parallel bundle adjustment methods on ground truth data. We confirm that for our

method, a lower reprojection error correlates with a lower ground truth error. In our performance

results on large-scale real datasets, we are able to obtain reprojection errors that are competitive

with or even better than those of a full serial bundle adjustment. Our two-level parallelization of

98

(1) dividing the scene into partitions and (2) using GPUs to accelerate the optimization of each

partition, enables us to obtain large speedups. We believe that we have developed an efficient

method to leverage multiple GPUs for large-scale bundle adjustment.

99

Chapter 7

Conclusion

This chapter concludes this dissertation and provides some insights on future work involving 3D

reconstruction on GPUs. Reconstruction uses a large amount of data which is ever-increasing,

so naturally, many stages of the reconstruction pipeline are memory bound problems. In terms

of GPU hardware, reconstruction can clearly benefit from improved memory bandwidth on

GPUs. This includes the bandwidth of accessing DRAM as well as the bandwidth between host

and device memory. A unified memory between host and device memory is a powerful tool as

long as the synchronization between the two is automatic and high-performing. Faster GPU-to-

GPU communication will be another useful tool in not only shared memory systems but also

distributed memory systems. Distributed clusters are a key platform to handle the growing scale

of reconstruction problems. Such systems will also allow for reconstruction to happen offline

as a cloud service.

Though hardware will continue to try to keep pace with the growing demands of reconstruc-

tion problems, software poses an even greater challenge. While images are useful and common,

they often have ambiguities that lead to accuracy problems. As shown in previous chapters,

uncertainty and ambuigity in a dataset can have a large impact on the quality of the final result.

Other sensors have a key role to play in the future of reconstruction. Different types of sensors

working together is important for removing the ambiguities of purely image-based reconstruc-

tion. The use of multiple sensors is especially prevalent in growing fields such as self-driving

cars. Flexible programming frameworks are key to integrating the data from these sensors in

a meaningful way. The challenge is even greater when the goal is to leverage devices such as

100

GPUs to keep runtime tractable.

In the previous chapter, we discussed auto-differentiation as a tool for enabling customiz-

ability in a reconstruction pipeline. A user is able to define custom cost functions for optimiza-

tion, which can then be auto-differentiated. Such tools are valuable because reconstruction,

along with many other computer vision problems, typically involve some type of global opti-

mization. A user should be able to integrate data from a variety of sensors without the burden

of having to modify an existing programming framework. Such flexibility will make collecting

and leveraging more data an attractive option. A next step is to support auto-differentiation on

one or more GPUs seamlessly. In our work, we support only a single type of cost function run-

ning on the GPU at a time. An important goal is to support multiple types of cost functions and

to use CUDA programming constructs such as streams to enable them to be assigned efficiently

to GPUs. Doing so enables the ability to feed many sources of data into a GPU-accelerated

reconstruction application. Work scheduling should be automatic without sacrificing too much

performance. Data movement between host and device or among multiple GPUs should be hid-

den from the user but run fast, and on distributed systems, communication should be minimized.

With accelerated auto-differentiation, research and development for sensor fusion becomes

easier. New algorithms and problem formulations can be quickly prototyped and tested at a

large scale. For example, in our bundle adjustment implementation, we could test new formula-

tions where we assign different weights to the boundary points, and run these implementations

directly on multiple GPUs. Likewise, one could choose to increase the weights of sensor data

deemed more reliable for bundle adjustment or similar optimization problems. Custom cost

functions also enable different formulations of ADMM with different partitioning schemes to

be implemented and tested more quickly. Programming frameworks for sensor fusion will be

key to supporting the variety of reconstruction problems that will inevitably crop up. But with

such software and massively parallel GPUs, reconstruction will become much more accesible

and open up new applications.

101

REFERENCES

[1] A.E. Abdel-Hakim and A.A. Farag. CSIFT: A SIFT Descriptor with Color Invariant Char-

acteristics. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’06), volume 2, pages 1978–1983, 2006. https://dx.doi.org/

10.1109/CVPR.2006.95

[2] Sameer Agarwal, Manmohan Krishna Chandraker, Fredrik Kahl, David Kriegman, and

Serge Belongie. Practical Global Optimization for Multiview Geometry. In Proceed-

ings of the 9th European Conference on Computer Vision - Volume Part I, ECCV’06,

page 592605. Springer-Verlag, Berlin, Heidelberg, 2006. https://dx.doi.org/

10.1007/11744023_46

[3] Sameer Agarwal, Keir Mierle, et al. Ceres Solver. http://ceres-solver.org,

2020.

[4] Sameer Agarwal, Noah Snavely, Steven M. Seitz, and Richard Szeliski. Bundle Adjust-

ment in the Large. In Proceedings of the 11th European Conference on Computer Vision:

Part II, ECCV’10, page 2942. Springer-Verlag, Berlin, Heidelberg, 2010.

[5] Hernn Badino, Daniel F. Huber, and Takeo Kanade. Integrating LIDAR into Stereo for Fast

and Improved Disparity Computation. In International Conference on 3D Imaging, Mod-

eling, Processing, Visualization and Transmission (edited by Michael Goesele, Yasuyuki

Matsushita, Ryusuke Sagawa, and Ruigang Yang), pages 405–412. IEEE Computer Soci-

ety, 2011.

[6] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded Up Robust Fea-

tures. In Proceedings of the 9th European Conference on Computer Vision - Volume

Part I, ECCV’06, pages 404–417. Springer-Verlag, Berlin, Heidelberg, 2006. https:

//dx.doi.org/10.1007/11744023_32

[7] Nathan Bell and Jared Hoberock. Thrust: A Productivity-Oriented Library for CUDA.

102

https://dx.doi.org/10.1109/CVPR.2006.95
https://dx.doi.org/10.1109/CVPR.2006.95
https://dx.doi.org/10.1007/11744023_46
https://dx.doi.org/10.1007/11744023_46
http://ceres-solver.org
https://dx.doi.org/10.1007/11744023_32
https://dx.doi.org/10.1007/11744023_32

In GPU Computing Gems, volume 2 (edited by Wen-mei W. Hwu), chapter 26, pages

359–371. Morgan Kaufmann, October 2012.

[8] P.J. Besl and Neil D. McKay. A Method for Registration of 3-D Shapes. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992. https:

//dx.doi.org/10.1109/34.121791

[9] Mårten Björkman, Niklas Bergström, and Danica Kragic. Detecting, Segmenting and

Tracking Unknown Objects Using Multi-label MRF Inference. Computer Vision and Im-

age Understanding, 118:111–127, January 2014. https://dx.doi.org/10.1016/

j.cviu.2013.10.007

[10] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed

Optimization and Statistical Learning via the Alternating Direction Method of Multipliers.

Foundations and Trends in Machine Learning, 3:1–122, 01 2011. https://dx.doi.

org/10.1561/2200000016

[11] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[12] Martin Byröd, Klas Josephson, and Kalle Åström. Fast Optimal Three View Triangulation.

In Proceedings of the 8th Asian Conference on Computer Vision, ACCV’07, pages 549–

559. Springer-Verlag, Berlin, Heidelberg, 2007.

[13] F. Calakli, A. O. Ulusoy, M. I. Restrepo, G. Taubin, and J. L. Mundy. High Resolution Sur-

face Reconstruction from Multi-view Aerial Imagery. In Proceedings of the 2012 Second

International Conference on 3D Imaging, Modeling, Processing, Visualization & Trans-

mission, 3DIMPVT ’12, pages 25–32. IEEE Computer Society, Washington, DC, USA,

2012. https://dx.doi.org/10.1109/3DIMPVT.2012.54

[14] J. Y. Chang, H. Park, I. K. Park, K. M. Lee, and S. U. Lee. GPU-friendly Multi-view Stereo

Reconstruction Using Surfel Representation and Graph Cuts. Computer Vision and Image

Understanding, 115(5):620–634, May 2011. https://dx.doi.org/10.1016/j.

cviu.2010.11.017

103

https://dx.doi.org/10.1109/34.121791
https://dx.doi.org/10.1109/34.121791
https://dx.doi.org/10.1016/j.cviu.2013.10.007
https://dx.doi.org/10.1016/j.cviu.2013.10.007
https://dx.doi.org/10.1561/2200000016
https://dx.doi.org/10.1561/2200000016
https://dx.doi.org/10.1109/3DIMPVT.2012.54
https://dx.doi.org/10.1016/j.cviu.2010.11.017
https://dx.doi.org/10.1016/j.cviu.2010.11.017

[15] Changchang Wu. VisualSFM: A Visual Structure from Motion System. http://

homes.cs.washington.edu/˜ccwu/vsfm/, 2011.

[16] William G. Cochran. Sampling Techniques, 3rd Edition. John Wiley, 1977.

[17] Zhijun Dai, Yihong Wu, Fengjun Zhang, and Hongan Wang. A Novel Fast Method for

L∞ Problems in Multiview Geometry. In Proceedings of the 12th European conference

on Computer Vision – Volume Part V, ECCV’12, pages 116–129. Springer-Verlag, Berlin,

Heidelberg, 2012. https://dx.doi.org/10.1007/978-3-642-33715-4_9

[18] Nikolaus Demmel, Maolin Gao, Emanuel Laude, Tao Wu, and Daniel Cremers. Dis-

tributed Photometric Bundle Adjustment. In 2020 International Conference on 3D Vi-

sion (3DV), pages 140–149, 2020. https://dx.doi.org/10.1109/3DV50981.

2020.00024

[19] Anders Eriksson, John Bastian, Tat-Jun Chin, and Mats Isaksson. A Consensus-Based

Framework for Distributed Bundle Adjustment. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1754–1762, 2016. https://dx.doi.

org/10.1109/CVPR.2016.194

[20] C.H. Esteban and F. Schmitt. Silhouette and stereo fusion for 3D object modeling. In

Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM

2003. Proceedings., pages 46–53, 2003. https://dx.doi.org/10.1109/IM.

2003.1240231

[21] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography. Com-

mun. ACM, 24(6):381395, jun 1981. https://dx.doi.org/10.1145/358669.

358692

[22] Andrew W. Fitzgibbon, Geoff Cross, and Andrew Zisserman. Automatic 3D Model Con-

struction for Turn-Table Sequences. In Proc. of the European Workshop on 3D Struc-

ture from Multiple Images of Large-Scale Environments, pages 155–170. Springer-Verlag,

London, UK, 1998.

104

http://homes.cs.washington.edu/~ccwu/vsfm/
http://homes.cs.washington.edu/~ccwu/vsfm/
https://dx.doi.org/10.1007/978-3-642-33715-4_9
https://dx.doi.org/10.1109/3DV50981.2020.00024
https://dx.doi.org/10.1109/3DV50981.2020.00024
https://dx.doi.org/10.1109/CVPR.2016.194
https://dx.doi.org/10.1109/CVPR.2016.194
https://dx.doi.org/10.1109/IM.2003.1240231
https://dx.doi.org/10.1109/IM.2003.1240231
https://dx.doi.org/10.1145/358669.358692
https://dx.doi.org/10.1145/358669.358692

[23] Yasutaka Furukawa, Brian Curless, Steven M. Seitz, and Richard Szeliski. Towards

Internet-Scale Multi-View Stereo. In 2010 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, pages 1434–1441, 2010. https://dx.doi.

org/10.1109/CVPR.2010.5539802

[24] Yasutaka Furukawa and Jean Ponce. Accurate, Dense, and Robust Multiview Stereop-

sis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1362–1376,

August 2010. https://dx.doi.org/10.1109/TPAMI.2009.161

[25] David Gallup, Jan-Michael Frahm, Philippos Mordohai, Qingxiong Yang, and Marc

Pollefeys. Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions. In

2007 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2007.

https://dx.doi.org/10.1109/CVPR.2007.383245

[26] Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and Steven M. Seitz.

Multi-View Stereo for Community Photo Collections. In 2007 IEEE 11th International

Conference on Computer Vision, pages 1–8, 2007. https://dx.doi.org/10.

1109/ICCV.2007.4408933

[27] J-Y Guillemaut and A. Hilton. Joint Multi-Layer Segmentation and Reconstruction for

Free-Viewpoint Video Applications. International Journal of Computer Vision, 93(1):73–

100, May 2011. https://dx.doi.org/10.1007/s11263-010-0413-z

[28] Ronny Hänsch, Igor Drude, and Olaf Hellwich. Modern Methods of Bundle Ad-

justment on the GPU. ISPRS Annals of Photogrammetry, Remote Sensing and Spa-

tial Information Sciences, III-3:43–50, 2016. https://dx.doi.org/10.5194/

isprs-annals-III-3-43-2016

[29] R. I. Hartley and P. Sturm. Triangulation. pages 146–157. Elsevier Science Inc., New

York, NY, USA, 1997.

[30] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. 2nd edition.

Cambridge University Press, 2004.

105

https://dx.doi.org/10.1109/CVPR.2010.5539802
https://dx.doi.org/10.1109/CVPR.2010.5539802
https://dx.doi.org/10.1109/TPAMI.2009.161
https://dx.doi.org/10.1109/CVPR.2007.383245
https://dx.doi.org/10.1109/ICCV.2007.4408933
https://dx.doi.org/10.1109/ICCV.2007.4408933
https://dx.doi.org/10.1007/s11263-010-0413-z
https://dx.doi.org/10.5194/isprs-annals-III-3-43-2016
https://dx.doi.org/10.5194/isprs-annals-III-3-43-2016

[31] Richard Hartley and Fredrik Kahl. Optimal Algorithms in Multiview Geometry. In Pro-

ceedings of the 8th Asian conference on Computer vision – Volume Part I, ACCV’07,

pages 13–34. Springer-Verlag, Berlin, Heidelberg, 2007.

[32] Carlos Hernandez, George Vogiatzis, and Roberto Cipolla. Probabilistic Visibility for

Multi-View Stereo. In 2007 IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1–8, 2007. https://dx.doi.org/10.1109/CVPR.2007.383193

[33] Mauricio Hess-Flores, Mark A. Duchaineau, and Kenneth I. Joy. Sequential Reconstruc-

tion Segment-wise Feature Track and Structure Updating Based on Parallax Paths. In

Proc. of the 11th Asian Conference on Computer Vision - Volume Part III, ACCV’12,

pages 636–649. Springer-Verlag, Berlin, Heidelberg, 2013. https://dx.doi.org/

10.1007/978-3-642-37431-9_49

[34] Christian Hne, Lionel Heng, Gim Hee Lee, Alexey Sizov, and Marc Pollefeys. Real-

Time Direct Dense Matching on Fisheye Images Using Plane-Sweeping Stereo. In 2014

2nd International Conference on 3D Vision, volume 1, pages 57–64, 2014. https:

//dx.doi.org/10.1109/3DV.2014.77

[35] Forrest N. Iandola, David Sheffield, Michael J. Anderson, Phitchaya Mangpo

Phothilimthana, and Kurt Keutzer. Communication-minimizing 2D convolution in GPU

registers. In 2013 IEEE International Conference on Image Processing, pages 2116–2120,

2013. https://dx.doi.org/10.1109/ICIP.2013.6738436

[36] Google Inc. Google Earth. https://www.google.com/earth/.

[37] John Isidoro and Stan Sclaroff. Stochastic Refinement of the Visual Hull to Satisfy Photo-

metric and Silhouette Consistency Constraints. In Proceedings of the Ninth IEEE Interna-

tional Conference on Computer Vision - Volume 2, ICCV ’03, page 1335. IEEE Computer

Society, USA, 2003.

[38] K. Kanatani, Y. Sugaya, and H. Niitsuma. Triangulation from Two Views Revisited:

Hartley-Sturm vs. Optimal Correction. In Proceedings of the British Machine Vision Con-

ference, pages 18.1–18.10. BMVA Press, 2008.

106

https://dx.doi.org/10.1109/CVPR.2007.383193
https://dx.doi.org/10.1007/978-3-642-37431-9_49
https://dx.doi.org/10.1007/978-3-642-37431-9_49
https://dx.doi.org/10.1109/3DV.2014.77
https://dx.doi.org/10.1109/3DV.2014.77
https://dx.doi.org/10.1109/ICIP.2013.6738436
https://www.google.com/earth/

[39] George Karypis and Vipin Kumar. Kumar, V.: A Fast and High Quality Multilevel Scheme

for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing 20(1), 359-392,

01 1999. https://dx.doi.org/10.1137/S1064827595287997

[40] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and Temples:

Benchmarking Large-Scale Scene Reconstruction. Association for Computing Machin-

ery, New York, NY, USA, Jul 2017. https://dx.doi.org/10.1145/3072959.

3073599

[41] K. Kolev, M. Klodt, T. Brox, and D. Cremers. Continuous Global Optimization in Mul-

tiview 3D Reconstruction. International Journal of Computer Vision, 84(1):80–96, 2009.

https://dx.doi.org/10.1007/s11263-009-0233-1

[42] K. Kolev, T. Pock, and D. Cremers. Anisotropic Minimal Surfaces Integrating Photocon-

sistency and Normal Information for Multiview Stereo. In Proceedings of the 11th Euro-

pean Conference on Computer Vision Conference on Computer Vision: Part III, ECCV’10,

pages 538–551. Springer-Verlag, Berlin, Heidelberg, 2010.

[43] Ilya Kostrikov, Esther Horbert, and Bastian Leibe. Probabilistic Labeling Cost for High-

Accuracy Multi-view Reconstruction. In 2014 IEEE Conference on Computer Vision and

Pattern Recognition, pages 1534–1541, 2014. https://dx.doi.org/10.1109/

CVPR.2014.199

[44] K. N. Kutulakos and S. M. Seitz. A Theory of Shape by Space Carving. International

Journal of Computer Vision, 38(3):199–218, July 2000. 10.1023/A:1008191222954.

[45] Ruan Lakemond, Clinton Fookes, and Sridha Sridharan. Resection-Intersection Bun-

dle Adjustment Revisited. International Scholarly Research Network Machine Vision,

2013:1–8, 01 2013. https://dx.doi.org/10.1155/2013/261956

[46] S. Lazebnik, Edmond Boyer, and J. Ponce. On Computing Exact Visual Hulls of Solids

Bounded by Smooth Surfaces. In Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, volume 1, pages I–156, 02 2001. https:

//dx.doi.org/10.1109/CVPR.2001.990469

107

https://dx.doi.org/10.1137/S1064827595287997
https://dx.doi.org/10.1145/3072959.3073599
https://dx.doi.org/10.1145/3072959.3073599
https://dx.doi.org/10.1007/s11263-009-0233-1
https://dx.doi.org/10.1109/CVPR.2014.199
https://dx.doi.org/10.1109/CVPR.2014.199
https://dx.doi.org/10.1155/2013/261956
https://dx.doi.org/10.1109/CVPR.2001.990469
https://dx.doi.org/10.1109/CVPR.2001.990469

[47] Kenneth Levenberg. A Method for the Solution of Certain Non-Linear Problems in Least

Squares. Quarterly of Applied Mathematics, 2(2):164–168, 1944.

[48] Eigen Library. http://eigen.tuxfamily.org, 2013.

[49] Peter Lindstrom. Triangulation Made Easy. In 2010 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pages 1554–1561, 2010. https://dx.

doi.org/10.1109/CVPR.2010.5539785

[50] Manolis I. A. Lourakis and Antonis A. Argyros. SBA: A Software Package for Generic

Sparse Bundle Adjustment. ACM Transactions on Mathematical Software, 36(1), mar

2009. https://dx.doi.org/10.1145/1486525.1486527

[51] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International

Journal of Compututer Vision, 60(2):91–110, November 2004. https://dx.doi.

org/10.1023/B:VISI.0000029664.99615.94

[52] Helmut Mayer. RPBA - Robust Parallel Bundle Adjustment Based on Covariance Infor-

mation. CoRR, 2019. http://arxiv.org/abs/1910.08138

[53] Paul Merrell, Amir Akbarzadeh, Liang Wang, Philippos Mordohai, Jan-Michael Frahm,

Ruigang Yang, David Nister, and Marc Pollefeys. Real-Time Visibility-Based Fusion of

Depth Maps. In 2007 IEEE 11th International Conference on Computer Vision, pages

1–8, 2007. https://dx.doi.org/10.1109/ICCV.2007.4408984

[54] Paul C. Merrell, Philippos Mordohai, Jan-Michael Frahm, and Marc Pollefeys. Evalua-

tion of Large Scale Scene Reconstruction. 2007 IEEE 11th International Conference on

Computer Vision, pages 1–8, 2007.

[55] Duane Merrill. CUDA UnBound (CUB) Library, 2015. https://nvlabs.github.

io/cub/.

[56] E.M. Mikhail, J.S. Bethel, and J.C. McGlone. Introduction to Modern Photogrammetry.

Wiley, 2001.

108

http://eigen.tuxfamily.org
https://dx.doi.org/10.1109/CVPR.2010.5539785
https://dx.doi.org/10.1109/CVPR.2010.5539785
https://dx.doi.org/10.1145/1486525.1486527
https://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
https://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://arxiv.org/abs/1910.08138
https://dx.doi.org/10.1109/ICCV.2007.4408984
https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/

[57] Yang Min. L-Infinity Norm Minimization in the Multiview Triangulation. In Proceed-

ings of the 2010 International Conference on Artificial Intelligence and Computational

Intelligence: Part I, AICI’10, page 488494. Springer-Verlag, Berlin, Heidelberg, 2010.

[58] P. Moreels and P. Perona. Evaluation of Features Detectors and Descriptors Based on 3D

objects. In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume

1, volume 1, pages 800–807 Vol. 1, 2005. https://dx.doi.org/10.1109/ICCV.

2005.89

[59] Kai Ni, Drew Steedly, and Frank Dellaert. Out-of-Core Bundle Adjustment for Large-

Scale 3D Reconstruction. In 2007 IEEE 11th International Conference on Computer Vi-

sion, pages 1–8, 2007. https://dx.doi.org/10.1109/ICCV.2007.4409085

[60] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel Pro-

gramming with CUDA. ACM Queue, 6(2):40–53, March/April 2008. https://dx.

doi.org/10.1145/1365490.1365500

[61] D. Nistér. Reconstruction from Uncalibrated Sequences with a Hierarchy of Trifocal Ten-

sors. In Proc. of the European Conference on Computer Vision, pages 649–663. Springer-

Verlag, London, UK, 2000.

[62] D. Nistér. Frame Decimation for Structure and Motion. In SMILE ’00: Revised Papers

from Second European Workshop on 3D Structure from Multiple Images of Large-Scale

Environments, pages 17–34. Springer-Verlag, London, UK, 2001.

[63] NVIDIA. CUDA C Programming Guide, version 11.7. http://docs.nvidia.com/

cuda/cuda-c-programming-guide/, 2022.

[64] Oxford Visual Geometry Group. Multi-View and Oxford Colleges Building Reconstruc-

tion. http://www.robots.ox.ac.uk/˜vgg/, August 2009.

[65] Marc Pollefeys, Luc Van Gool, Maarten Vergauwen, Frank Verbiest, Kurt Cornelis, Jan

Tops, and Reinhard Koch. Visual Modeling with a Hand-Held Camera. International

Journal of Computer Vision, 59:207–232, 2004.

109

https://dx.doi.org/10.1109/ICCV.2005.89
https://dx.doi.org/10.1109/ICCV.2005.89
https://dx.doi.org/10.1109/ICCV.2007.4409085
https://dx.doi.org/10.1145/1365490.1365500
https://dx.doi.org/10.1145/1365490.1365500
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.robots.ox.ac.uk/~vgg/

[66] Karthikeyan Natesan Ramamurthy, Chung-Ching Lin, Aleksandr Y. Aravkin, Sharath

Pankanti, and Raphael Viguier. Distributed Bundle Adjustment. In 2017 IEEE Inter-

national Conference on Computer Vision Workshops, ICCV Workshops 2017, Venice,

Italy, October 22-29, 2017, pages 2146–2154. IEEE Computer Society, 2017. https:

//dx.doi.org/10.1109/ICCVW.2017.251

[67] Shawn Recker, Mauricio Hess-Flores, and Kenneth I. Joy. Statistical Angular Error-Based

Triangulation for Efficient and Accurate Multi-View Scene Reconstruction. In Workshop

on the Applications of Computer Vision (WACV), 2013.

[68] Maria I. Restrepo, Brandon A. Mayer, Ali O. Ulusoy, and Joseph L. Mundy. Character-

ization of 3-D Volumetric Probabilistic Scenes for Object Recognition. IEEE Journal of

Selected Topics in Signal Processing, 6(5):522–537, 2012. https://dx.doi.org/

10.1109/JSTSP.2012.2201693

[69] Susanna Ricco and Carlo Tomasi. Video Motion for Every Visible Point. In 2013 IEEE

International Conference on Computer Vision, pages 2464–2471, 2013. https://dx.

doi.org/10.1109/ICCV.2013.306

[70] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In IEEE International

Conference on Robotics and Automation (ICRA). Shanghai, China, May 9-13 2011.

[71] Jairo R. Sánchez, Hugo Álvarez, and Diego Borro. GFT: GPU fast triangulation of 3D

points. In Proceedings of the 2010 International Conference on Computer Vision and

Graphics: Part II, ICCVG’10, pages 235–242. Springer-Verlag, Berlin, Heidelberg, 2010.

[72] Jairo R. Sánchez, Hugo Álvarez, and Diego Borro. GPU Optimizer: A 3D Reconstruction

on the GPU using Monte Carlo Simulations – How to Get Real Time without Sacrificing

Precision. In VISAPP 2009 - Proceedings of the Fifth International Conference on Com-

puter Vision Theory and Applications, Angers, France, May 17-21, 2010 - Volume 1, pages

443–446. INSTICC Press, 2010.

[73] Nadathur Satish, Mark Harris, and Michael Garland. Designing Efficient Sorting Algo-

rithms for Manycore GPUs. In Proceedings of the 23rd IEEE International Parallel and

110

https://dx.doi.org/10.1109/ICCVW.2017.251
https://dx.doi.org/10.1109/ICCVW.2017.251
https://dx.doi.org/10.1109/JSTSP.2012.2201693
https://dx.doi.org/10.1109/JSTSP.2012.2201693
https://dx.doi.org/10.1109/ICCV.2013.306
https://dx.doi.org/10.1109/ICCV.2013.306

Distributed Processing Symposium, May 2009. https://dx.doi.org/10.1109/

IPDPS.2009.5161005

[74] D. Scharstein, R. Szeliski, and R. Zabih. A Taxonomy and Evaluation of Dense Two-

Frame Stereo Correspondence Algorithms. In Proceedings of the IEEE Workshop on

Stereo and Multi-Baseline Vision (SMBV’01), SMBV ’01, page 131. IEEE Computer So-

ciety, USA, 2001.

[75] Thomas Schps, Johannes L. Schnberger, Silvano Galliani, Torsten Sattler, Konrad

Schindler, Marc Pollefeys, and Andreas Geiger. A Multi-view Stereo Benchmark with

High-Resolution Images and Multi-camera Videos. In 2017 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 2538–2547, 2017. https://dx.

doi.org/10.1109/CVPR.2017.272

[76] S.M. Seitz and C.R. Dyer. Photorealistic Scene Reconstruction by Voxel Coloring. In Pro-

ceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition, pages 1067–1073, 1997. https://dx.doi.org/10.1109/CVPR.1997.

609462

[77] Steven M. Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard Szeliski. A

Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In Proc. of

the 2006 IEEE Conference on Computer Vision and Pattern Recognition, pages 519–528,

2006.

[78] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo Tourism: Exploring Photo

Collections in 3D. ACM Trans. Graph., 25(3):835846, jul 2006. https://dx.doi.

org/10.1145/1141911.1141964

[79] J. A. Snyman. Practical Mathematical Optimization: An Introduction to Basic Optimiza-

tion Theory and Classical and New Gradient-Based Algorithms. Applied Optimization,

Vol. 97, second edition. Springer-Verlag New York, Inc., 2005.

[80] Huaibo Song, Chenghai Yang, Jian Zhang, Clint Hoffmann, Dongjian He, and J. Thomas-

son. Comparison of Mosaicking Techniques for Airborne Images from Consumer-Grade

111

https://dx.doi.org/10.1109/IPDPS.2009.5161005
https://dx.doi.org/10.1109/IPDPS.2009.5161005
https://dx.doi.org/10.1109/CVPR.2017.272
https://dx.doi.org/10.1109/CVPR.2017.272
https://dx.doi.org/10.1109/CVPR.1997.609462
https://dx.doi.org/10.1109/CVPR.1997.609462
https://dx.doi.org/10.1145/1141911.1141964
https://dx.doi.org/10.1145/1141911.1141964

Cameras. Journal of Applied Remote Sensing, 10, 03 2016. https://dx.doi.org/

10.1117/1.JRS.10.016030

[81] H. Stewenius, F. Schaffalitzky, and D. Nister. How Hard is 3-View Triangulation Re-

ally? In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1,

volume 1, pages 686–693 Vol. 1, 2005. https://dx.doi.org/10.1109/ICCV.

2005.115

[82] C. Strecha, W. von Hansen, L. Van Gool, P. Fua, and U. Thoennessen. On Benchmarking

Camera Calibration and Multi-View Stereo for High Resolution Imagery. In 2008 IEEE

Conference on Computer Vision and Pattern Recognition, pages 1–8, 2008. https:

//dx.doi.org/10.1109/CVPR.2008.4587706

[83] R. Szeliski. Rapid Octree Construction from Image Sequences. Computer Vision Graphics

and Image Processing: Image Understanding, 58(1):23–32, July 1993. http://dx.

doi.org/10.1006/ciun.1993.1029

[84] Michael Van den Bergh, Xavier Boix, Gemma Roig, Benjamin Capitani, and Luc

Van Gool. SEEDS: Superpixels Extracted via Energy-Driven Sampling. International

Journal of Computer Vision, 111, 10 2012. https://dx.doi.org/10.1007/

978-3-642-33786-4_2

[85] G. Vogiatzis, P.H.S. Torr, and R. Cipolla. Multi-View Stereo via Volumetric Graph-Cuts.

In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion (CVPR’05), volume 2, pages 391–398 vol. 2, 2005. https://dx.doi.org/10.

1109/CVPR.2005.238

[86] Hoang-Hiep Vu, Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven. High Accu-

racy and Visibility-Consistent Dense Multiview Stereo. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 34(5):889–901, 2012. https://dx.doi.org/

10.1109/TPAMI.2011.172

[87] Yichen Wei and Long Quan. Region-Based Progressive Stereo Matching. In Proceedings

of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recog-

112

https://dx.doi.org/10.1117/1.JRS.10.016030
https://dx.doi.org/10.1117/1.JRS.10.016030
https://dx.doi.org/10.1109/ICCV.2005.115
https://dx.doi.org/10.1109/ICCV.2005.115
https://dx.doi.org/10.1109/CVPR.2008.4587706
https://dx.doi.org/10.1109/CVPR.2008.4587706
http://dx.doi.org/10.1006/ciun.1993.1029
http://dx.doi.org/10.1006/ciun.1993.1029
https://dx.doi.org/10.1007/978-3-642-33786-4_2
https://dx.doi.org/10.1007/978-3-642-33786-4_2
https://dx.doi.org/10.1109/CVPR.2005.238
https://dx.doi.org/10.1109/CVPR.2005.238
https://dx.doi.org/10.1109/TPAMI.2011.172
https://dx.doi.org/10.1109/TPAMI.2011.172

nition, 2004. CVPR 2004., volume 1, pages I–I, 2004. https://dx.doi.org/10.

1109/CVPR.2004.1315020

[88] Andreas Wendel, Michael Maurer, Gottfried Graber, Thomas Pock, and Horst Bischof.

Dense Reconstruction On-the-Fly. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 1450–1457, 2012. https://dx.doi.org/10.1109/

CVPR.2012.6247833

[89] Changchang Wu. SiftGPU: A GPU Implementation of David Lowe’s Scale Invariant Fea-

ture Transform (SIFT). https://github.com/pitzer/SiftGPU, 2007.

[90] Changchang Wu. Towards Linear-Time Incremental Structure from Motion. In Proceed-

ings of the 2013 International Conference on 3D Vision, 3DV ’13, pages 127–134. IEEE

Computer Society, Washington, DC, USA, 2013. https://dx.doi.org/10.1109/

3DV.2013.25

[91] Changchang Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore Bundle Adjustment.

In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR ’11, pages 3057–3064. IEEE Computer Society, USA, 2011. https://dx.

doi.org/10.1109/CVPR.2011.5995552

[92] Tai-Pang Wu, Sai-Kit Yeung, Jiaya Jia, and Chi-Keung Tang. Quasi-Dense 3D Re-

construction Using Tensor-Based Multiview Stereo. In 2010 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition, pages 1482–1489, 2010.

https://dx.doi.org/10.1109/CVPR.2010.5539796

[93] Ruigang Yang and Marc Pollefeys. Multi-Resolution Real-Time Stereo on Commodity

Graphics Hardware. In Proceedings of the 2003 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, CVPR’03, pages 211–217. IEEE Computer

Society, Washington, DC, USA, 2003.

[94] C. Zach. Fast and High Quality Fusion of Depth Maps. In International Symposium on

3D Data Processing, Visualization and Transmission (3DPVT), volume 1, 2008.

113

https://dx.doi.org/10.1109/CVPR.2004.1315020
https://dx.doi.org/10.1109/CVPR.2004.1315020
https://dx.doi.org/10.1109/CVPR.2012.6247833
https://dx.doi.org/10.1109/CVPR.2012.6247833
https://github.com/pitzer/SiftGPU
https://dx.doi.org/10.1109/3DV.2013.25
https://dx.doi.org/10.1109/3DV.2013.25
https://dx.doi.org/10.1109/CVPR.2011.5995552
https://dx.doi.org/10.1109/CVPR.2011.5995552
https://dx.doi.org/10.1109/CVPR.2010.5539796

[95] Runze Zhang, Siyu Zhu, Tian Fang, and Long Quan. Distributed Very Large Scale Bundle

Adjustment by Global Camera Consensus. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 29–38, 2017. https://dx.doi.org/10.1109/

ICCV.2017.13

[96] Z. Zhang and Y. Shan. A Progressive Scheme for Stereo Matching. In Revised Papers

from Second European Workshop on 3D Structure from Multiple Images of Large-Scale

Environments, SMILE ’00, pages 68–85. London, UK, 2001.

[97] Maoteng Zheng, Shunping Zhou, Xiaodong Xiong, and Junfeng Zhu. A New GPU Bun-

dle Adjustment Method for Large-Scale Data. Photogrammetric Engineering & Remote

Sensing, 83(9), 2017.

[98] K. Zhu, M. Butenuth, and P. d’Angelo. Computational Optimized 3D Reconstruction

System for Airborne Image Sequences. In International Archives of Photogrammetry,

Remote Sensing and Spatial Information Sciences, ISPRS Comm. III, volume XXXVIII,

2010.

114

https://dx.doi.org/10.1109/ICCV.2017.13
https://dx.doi.org/10.1109/ICCV.2017.13

	Title Page
	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Background
	Introduction
	Camera Calibration
	Feature Detection and Matching
	Pose Estimation
	Triangulation
	Bundle Adjustment
	Dense Stereo
	GPUs and Reconstruction

	Large-Scale Triangulation on the GPU
	Definition of Triangulation in the Context of Computer Vision
	Related work
	Methodology
	Triangulation cost function
	GPU implementation

	Results
	Synthetic tests
	Evaluation on real data

	Conclusion and Future Work

	Parallax Paths on the GPU
	Parallax Paths Definition
	Related Work
	Degeneracies in Angular Triangulation

	Methodology
	Parallax Paths—A Further Analysis
	Obtaining the Correct Scale
	Methods on the GPU

	Results
	Synthetic Tests
	Tests On Real Datasets

	Conclusion and Future Work

	Efficient Dense Reconstruction on the GPU via Progressive Image Consistency Constraints
	Dense Reconstruction Problem Definition
	Related Work
	Methodology
	Densification Algorithm
	GPU Implementation

	Results
	Window Size Justification
	Results on Real Datasets

	Conclusion and Future Work

	Parallel Bundle Adjustment
	Problem Definition
	Bundle Adjustment
	GPU Bundle Adjustment

	Related Work
	Methodology
	Algorithm
	Partitioning the Scene Graph
	Framework
	GPU Acceleration

	Results
	Accuracy Results
	Performance Results

	Conclusion and Future Work

	Conclusion

