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Is there a Monadic as well as a Dyadic Bayesian Logic?  
Two Logics Explaining Conjunction ‘Fallacies’  

Momme von Sydow (momme.von-sydow@psychologie.uni-heidelberg.de 
University of Heidelberg, Department of Psychology, Hauptstr. 47-51, 

D-69117 Heidelberg, Germany 
 

Abstract 
Formal logic and probability theory are often considered the 
most fundamental norms of rational thought, but their 
application to psychological tasks has raised serious doubts 
about human rationality. A central finding is that people 
sometimes judge the probability of a conjunction to be higher 
than that of its conjuncts (conjunction fallacies, CFs). Bayes-
ian logic (BL, von Sydow, 2011) formalizes subjective proba-
bilities of noisy-logical explanatory patterns (pattern pro-
babilities) instead of extensional probabilities (relative fre-
quencies), and predicts a system of rational inclusion fal-
lacies. This paper distinguishes a monadic from a dyadic pat-
tern explanation of CFs; it tests two corresponding formaliza-
tions of BL (the former concerned with cells, the latter with 
marginals); and it models pattern probabilities in a novel way 
(based on acceptance thresholds). In an experiment we varied 
observed frequencies and formulations. The results deviate ra-
dically from narrow norms but they corroborate the idea of 
monadic and dyadic pattern probabilities. 

Keywords: Probability judgment; bias; conjunction fallacy; 
inclusion fallacy; inductive Bayesian logics; predication. 
 

Standard propositional logic and standard probability theory 
are often considered to be the most fundamental norms of 
rational thought. Formalizing what is rational has been the 
subject of study over many centuries. Over 2000 years ago, 
Aristotle founded formal logic (Analytica Priora and 
Posteriora) and basic ideas of probabilistic reasoning (To-
pica). Since logical positivism, the basic calculi of formal 
logics (Frege, Wittgenstein, Russell, Whitehead) and proba-
bility theory (Kolmogorov) have been rigidly formalized in 
their present form. Yet the standards of rational thought are 
still being elaborated. Formal epistemology, logics, and 
mathematics have continued to develop non-standard 
systems of logic and probability, as either alternatives or 
refinements to these calculi (e.g., many-valued logics, non-
monotonic logics, default logics, and belief functions). 

Psychology, however, has often been focused solely on 
these two basic calculi. This may have contributed to the 
view that human judgment is essentially biased. In the well 
known Linda task, people make probability judgments about 
a person X who is described to be a feminist, often P(X is 
bank teller & feminist) > P(X is feminist). This has been 
called a ‘conjunction fallacy,’ as the probability of a smaller 
set (the conjunction) cannot exceed that of the larger (one of 
the conjuncts, Kahneman & Tversky, 1982, cf. 1996). In my 
view, Gigerenzer (1996) correctly criticized Kahneman and 
Tversky’s bias-and-heuristic approach, not only because the 
suggested heuristics were underspecified but also because 
content-blind application of the “narrow norms” of logics 
and probability were misguided in the first place. However, 

Kahneman and Tversky’s (1996) warnings against norma-
tive agnosticism seem not without foundation as well. 

It is proposed here that in different situations either a 
monadic or a dyadic Bayesian inductive logic can explain a 
class of conjunction fallacies (CFs). It is generally 
suggested, independent of details of the proposed Bayesian 
models, that there may be monadic CFs based on a 
probabilistic ‘monadic’ interpretation of two conjuncts. That 
is, a statement like “X’s are young and Xs are female” is 
presumably judged as true if X’s are typically young and X’s 
are typically female, even if individual X’s are usually not 
both young and female (monadic interpretation involving a 
conjunction of two separate monadic propositions). In 
contrast, “Xs are young women”, or “Xs are people who are 
young and female” seems to refer to the traditional 
interpretation of a conjunction as intersection—that is, Xs 
are individually usually both young and female (dyadic 
interpretation). Although deterministically a dyadic 
interpretation concerned with two marginal probabilities, 
and a dyadic interpretation concerned with logical joint 
probability distribution (logical patterns) coincide, they can 
differ in a probabilistic context. Generally, we pursue a third 
way between a simple application of narrow norms and 
normative agnosticism by advocating a domain-specific 
rational approach linked to Anderson’s rational analysis and 
inspired by the Bayesian renaissance in higher cognition (M. 
Oaksford, N. Chater, J. Tenenbaum) (cf. von Sydow, 2011).  

Truth Table Logics and Probability Theory  
– Two Narrow Norms for Predication? 

The Narrow Norm of Formal Logic If concerned with the 
truth of sentences involving logical connectives between 
predicates, such as AND, OR, EITHER OR or NEITHER 
NOR, standard logical truth-table definitions provide a truth 
criterion applicable even to contingent sentences: “people 
from the Linda school become bank tellers AND feminists” 
or “ravens are black AND they can fly.” Yet interpreting 
such sentences as ∀(x) B(x) ∧ F(x) presents two problems. 
First, the problem of exceptions – predication often involves 
exceptions (e.g., white albino ravens). Almost none of the 
assertive predications uttered would be justified, based on a 
‘deterministic’ logical truth criterion. A significant sugges-
tion to solve this is instead to use a high probability criterion 
(cf. Schurz, 2005), where the probability of an empirically 
justified proposition surpasses a given threshold ϕ. Second, 
the problem of interpretation is that normal language con-
nectives (e.g., ‘AND’) do not always correspond to analo-
gous ideal language connectives (e.g., the logical conjunc-
tion). Some conjunction fallacies may indeed be attributed 
to misinterpreted connectives (cf. Hilton, 1995, Hertwig, 
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Benz, & Kraus, 2008). Hertwig et al. (2008) have shown 
that a normal AND may refer to the logical OR (disjunction) 
or IF THEN (conditional). Beside distinguishing normal 
from ideal language, our distinction of monadic and dyadic 
logic suggests two kinds of logical representation. 
The Narrow Norm of Extensional Probability If the lo-
gical adequacy criterion for predication is replaced by a high 
probability criterion (using standard probabilities), other 
problems remain (von Sydow, 2011). The problem of sam-
ple size: One observation or one thousand observations of 
A(xi)∧B(xi) (without exceptions) lead to the same extensio-
nal probabilities (relative frequencies) of “X are A and B”. 
This seems inappropriate if our probability is to describe the 
belief in a hypothesis. (We use probabilities of probability 
patterns instead.) The problem of inclusion: The sentence 
“ravens are black or they can fly or both” describes a larger 
set than the conjunction. Thus its higher extensional pro-
bability taken as truth criterion implies that we should not 
prefer predicating the conjunction. The same holds for the 
tautology “Ravens are black or not, and they can fly or can-
not fly,” with PE(B(r) T F(r))) = 1. It would follow a priori 
that one could never prefer any logical hypothesis over the 
tautology, irrespective of its meaning. Extensional proba-
bility thus does not seem a reasonable adequacy criterion for 
data-based predication, as it is not sensitive to the data. 
Pattern Probabilities and Dyadic Bayesian Logic Von 
Sydow (2011) has argued that to keep a high probability cri-
terion of predication (Schurz, 2005; Foley, 2009) we have to 
supplement extensional probability (with its own fields of 
application) with a kind of subjective pattern probability. 
Von Sydow has presented a model called Bayesian pattern 
logic (BL). It is based on Kolmogrov’s axioms but allows 
for conjunction fallacies. It formalizes second-order proba-
bilities of alternative logical hypotheses taken as alternative 
explanations of a situation. The logical hypotheses l are 
ideal probabilistic truth tables (probability tables, PTs) with 
different degrees of noise r (the model can only be sketched 
here). The 2×2 PTs are possible logical explanations of the 
data D. One first calculates the likelihood P(D|PTl,r) and 
(based on a prior P(PTl,r)) the posterior probability, P(PTl,r | 
D) using Bayes’ theorem. To calculate the final pattern 
probability of a connective l one adds up (over all levels of 
r) the posteriors of all PTs corresponding to l. – The model 
predicts a system of frequency-based inclusion fallacies 
(e.g., conjunction fallacies). Several predictions concerning 
probability judgments about logical predications have been 
corroborated: pattern sensitivity; a system of inclusion 
fallacies; sample-size effects; and trial-by-trial applicability 
(von Sydow, 2011, von Sydow & Fiedler, 2012).  

In this paper we continue testing this model with several 
frequencies and several hypotheses, but also investigate the 
(supplementary) model of monadic BL.  

The Idea of a Monadic Pattern Logic  
Idea of Basic Monadic Pattern Logic Also in propo-
sitional logic, monadic logical connectives relate not to two 
atomic propositions (as do standard dyadic connectives), but 

to one. Propositional logic contains four monadic connec-
tives: (monadic) affirmation ‘A’ (A: T, Non-A: F), (mon-
adic) negation (A: F, Non-A: T), tautology (A: T, Non-A: T) 
and contradiction (A: F, Non-A: F). Again a (monadic) 
affirmation (e.g., x are A) cannot have a higher (extensional) 
probability than the tautology (x are A or also non-A). Hence 
one may apply the same argument that led to dyadic BL to 
monadic connectives (particularly the problem of inclusion). 
Since the tautology always has the highest probability, ex-
tensional probabilities do not provide a suitable data-based 
criterion for adequate predication. A pattern probability 
seems to provide such a criterion. Imagine a pub where most 
visitors are men (very few women). Thus the sentence “This 
pub is (generally) visited by men” (affirmation A) may have 
a higher pattern probability than “This pub is visited by 
people of both genders” (tautology). The monadic model 
should again provide a (frequency-based) similarity-func-
tion between the data and the best explanation. In contrast to 
dyadic attributes, monadic predications are only based on 
marginals and ignore other attributes (with corresponding 
joint probability distribution).  
Applying Basic Monadic Logic to Dyadic Relations Basic 
monadic pattern probabilities may again be used in dyadic 
relations. In “The pub is visited by people (X) who are both 
male (M) AND young (Y),” AND seems to refer to the 
standard logical conjunction (the intersection). For such 
general (but potentially probabilistic) dyadic logical rela-
tions we use a standard notation: ‘(x)M(x) ∧Y(x)’, or briefly 
‘M ∧ Y’. Yet in the sentence “The pub is visited by people 
who are male and it is visited by people who are young,” the 
concern may not be the intersection of M and Y, but rather a 
combination of two monadic statements, each concerning 
marginal cases only (notation: ‘(x)M(x) ∧ (x)Y(x)’, or briefly 
‘(M) ∧ (Y)’). Extensionally, PE((M) ∨ (Y)) = PE((M) ∧ (Y)), 
but the pattern probability PP((M) ∧ (Y)) may differ from 
PP(M ∧ Y) as well as from PP((M ∨ Y). The experiment 
shows that a conjunction of monadic propositions may cor-
respond to different dyadic connectives. We call the pro-
bability of logically combined (basic) monadic pattern 
probabilities simply ‘monadic pattern probabilities’ as well. 
A New Kind of Model A third innovation concerns a new 
way to determine pattern probabilities, different from von 
Sydow, 2011. The new formalism is based on establishing 
subjective degrees of belief and then varying acceptance 
levels rather than noise levels. This may increase coherence 
with logical approaches based on acceptance intervals (cf. 
Schurz, 2005; Foley, 2009), while adding a subjective belief 
and providing a solution to the problem of inclusion. 

A New Model of Monadic Bayesian Logic 
This model concerns frequency-based monadic predications 
based on dichotomous data. Based on individual obser-
vations xi an entity or group of entities X (e.g., a group of 
people, such as “the guests at pub X”) can be said to be 
(generally) “A” (affirmation), “non-A” (negation) or “A or 
non-A” (tautology). A specific observation xi is either A or 
Non-A (e.g., a specific visitor of a pub is either male or fe-
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male). f(A(x)), f(non-A(x))) is the data input. The model cal-
culates a posterior probability that combinations of monadic 
hypotheses are valid given the data and priors.  
1. Posterior Distribution of Generative Probabilities We 
assume that xi being A or non-A is a Bernoulli trial, pro-
duced by an unchanging generative probability p. This gen-
erative probability can be differentiated from the observed 
extensional probability (relative frequency) (and also from 
the resulting pattern probability of a monadic connective, to 
be modeled by integrals over acceptance regions for p). 
Given an assumed value of p the Binomial distribution then 
provides the likelihood of the data P(D|p), the number of k 
successes (e.g., A(xi)) in n trials:  

𝐵(𝑘|𝑝,𝑛) = �
𝑛
𝑘
� 𝑝𝑘(1 − 𝑝)𝑛−𝑘 

Applied to all p values, we obtain a likelihood density  
function (cf. middle Figure 1), which is the kernel of the 
Beta distribution where only a normalizing constant factor is 
added. Here the unknown generative probability p is the un-
known parameter with α-1 = f(x = A) and β-1 = f(x = ¬A): 
  

𝐵𝑒𝑡𝑎(α,β) = P(p|α,β)=const. ⋅ 𝑝𝛼−1(1 − 𝑝)𝛽−1 
 

Taking another Beta distribution as a prior for p (we 
assume flat priors, Beta(1,1)) easily allows to calculate a 
Beta posterior distribution for p (Figure 1).  
 

 
Figure 1: Example for the prior for p, the Binomial 

likelihood and the Beta posterior distribution over p. 
 
This provides a subjective posterior probability distribution 
for the generative probability p of the occurrence of an 
event that is sensitive to sample sizes. The mean of this dis-
tribution may be interpreted as a rational point estimate for 
the probability of the event A (or, analogously if sampling 
was conditional on another event B, as Psub(A|B)).  
2. Pattern Probabilities Based on Acceptance Intervals 
We build on the idea that predications apply as long as the 
probability of a sentence is above a threshold (Schurz, 2005; 

Foley, 2009), although this does not solve the problem of 
inclusion. We start with ideal generative probabilities (affir-
mation: p = 1; negation: p = 0; tautology: p = .5) (cf. von 
Sydow, 2011). We then vary for each monadic hypothesis, 
HM, the acceptance threshold r and its resulting acceptance 
interval over p. For r = .2 the closed interval for accepting 
affirmation A would be [.8, 1]; for the negation [0, .2]; and 
for the tautology [.4, .6]. We then calculate for all r and 
each HM the integral from the lower (r1) to the higher 
endpoint (r2) of these intervals:  

� 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑝,𝐻𝑀)
𝑟2

𝑟1
 

This provides the subjective probability that for a given r 
the probability p of HM is within an acceptance interval. We 
additionally relativized the result by the size of the interval 
(otherwise large r trivially would have a high value). Trea-
ting the hypotheses as alternatives, we normalize the out-
comes. The probability of each monadic hypothesis is fin-
ally determined by adding up the results over the different 
levels of r. Figure 2 shows an example where the preference 
depends on r (for r = .3 Pp(A) > Pp(A or Non-A)).  

 
 

 
 

Figure  2: Pattern prob. for diff. levels of r (upper) and after 
integrating over r (lower). (f(A) = 5, f(¬A) = 2, flat priors). 
 

3. Logical Combinations of Monadic Probabilities Based 
on these monadic pattern probabilities in the narrow sense, 
we now calculate the conjunctive combination of two mona-
dic connectives. Since monadic attributes by definition 
should be judged independently, we use the product rule: 
PP((A) ∧ (B)) = PPM(A) ⋅ PPM(B); PP((both A or Non-A) ∧ 
(Non-B)) = PPM(bothA) ⋅ PPM(Non-B), PP((bothA) ∧ (bothB)) 
= PPM(bothA) ⋅ PPM(bothB) etc. The dyadic combination of 
three monadic propositions leads to 9 possible combinations 
including a ‘tautology’ (e.g., visitors are male or female, and 
young or old; i.e., everything is possible).  
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Experiment 
To test dyadic BL as well as a monadic BL, we investigated 
which of several alternative sentences involving logical 
predictions people held to be most probable, given data in a 
summary format (excluding memory effects). The dyadic 
and monadic models imply partly different systems of 
inclusion fallacies. Our design involved 5 conditions 
involving different formulations (between-subject) and 30 
frequency patterns (within-subject scenarios).   

The 30 partly critical frequency patterns (scenarios) per-
mit detailed testing of several aspects of the models. This 
also constitutes a first test of similarities and differences in 
the predictions. The patterns were however originally 
designed to test dyadic BL against simpler strategies. The 
five conditions examine (1) whether one obtains similar 
results with different formulations, involving different 
usages of AND (a conjunctive vs. a sum meaning), even if 
the same model applies; and (2) whether one can use 
formulations that elicit either a monadic or a dyadic 
interpretation of the hypotheses used. Two conditions 

served to elicit answers coherent with dyadic BL (von 
Sydow, 2011) (dyadic conditions) and three conditions were 
to elicit answers in line with monadic BL (monadic 
conditions). Here we aimed to elicit either a purely dyadic 
or a purely monadic understanding. We used 15 hypotheses 
in the dyadic condition (perhaps a dyadic cue), and 9 in the 
monadic condition (Monadic BL can only model these 
hypotheses). We used formulations in line with either a mo-
nadic or a dyadic interpretation. Future work may help to 
demarcate the role of different cues promoting either 
monadic or a dyadic understanding of connectives. 
Participants One hundred and eight students of the 
University of Heidelberg participated, in return for course-
credit or a recompense of 3 € for 20 minutes. 
Method Each scenario concerned the probability of dif-
ferent sentences about a pub X. The pubnames were ran-
domly permutated. People always saw a 2×2 contingency 
matrix with frequency information about visitors being male 
or female, young or old. In all conditions the task was: 
“Which sentence would you regard to be most probably 
valid? Please answer intuitively.”  

 
Figure 3: Examples for observed contingencies, predictions of dyadic BL, monadic BL and extensional probabilities;  

and the main results in all 5 conditions (cf. main text for details and Figure 4 for some more results). 

0%25%50%75%100%
1 4 7 10 13

Dyadic Monadic Extensional
Pa

ne
l B

Data Predictions Results
Observed

contingencies
Logical hypotheses H that are most or second most

frequently selected to be most probable given the data
and their relative frequency of (C1 to C5)

Probabilities of the diff. Hyp. 1 to 15 
(cf. Table on the right: dyadic, monadic BL)

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 101112131415

Dyad. Mona. C1 C2 C3 C4 C5
First H 5 5 (2) 5 5 5 5 2

choise P(H) 78% 41% 68% 73% 82% 50% 77%

Second H 2 2 2 2 2 2 5

choice P(H) 21% 36% 18% 14% 9% 41% 23%

Dyad. Mona. C1 C2 C3 C4 C5
First H 1 1 1 1 1 1 1

choise P(H) 99% 71% 77% 73% 41% 68% 91%

Second H 7 7 7 7 7 7 7

choice P(H) 1% 12% 18% 18% 36% 27% 9 %0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 101112131415

Pa
ne

l A
Pa

ne
l C

Dyad. Mona. C1 C2 C3 C4 C5
First H 9 15 9 9 15 15 15

choise P(H) 99% 38% 95% 95% 27% 64% 95%
Second H 12- 5 12 12 2 2 5
choice P(H) 1%- 14% 5% 5% 18% 14% 5%0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 101112131415

Pa
ne

l D

Dyad. Mona. C1 C2 C3 C4 C5
First H 9 1,15* 9 9 1 1 1

choise P(H) 96% 18% 59 % 50 % 45% 50% 77%

Second H 1 1,15* 1 1 15 15 15

choice P(H) 4% 18% 41% 32% 30% 36% 23%0%
25%
50%
75%

100%
125%

1 2 3 4 5 6 7 8 9 101112131415

B ¬B
A 16 1 27
¬A 2 0 2

16 1

B ¬B
A 6 12 18
¬A 0 1 1

6 13

B ¬B
A 13 1 14
¬A 0 12 12

13 13

B ¬B
A 12 0 12
¬A 0 5 5

12 5

*1, 15, 5, 7 Cf. main text
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The tested hypotheses corresponded to all 16 possible 
logical connectives (apart from the contradiction): H1 A ∧ 
B; H2 A ∧ ¬B; H3 ¬A ∧ B; H4 ¬A ∧ ¬B; H5 A; 6. ¬A; H7 
B; H8 ¬B; H9 A⇔B; H10 A><B (either or); H11 A∨B; H12 
A∨¬B; H13 ¬A∨B; H14 ¬ A∨¬B; H15 A T B (tautology). 

 

Formulation of the hypotheses in the five conditions (The 
hypotheses not mentioned were constructed analogously.) 
Dyadic Condition 2 (C2), with conjunctive use of “AND”. 
All sentences read:  “Pub X is visited by guests who are…” 
(“In die Kneipe X gehen…”) and then continued 
variously—H1: young and female; H2: young and male; H4: 
old and male; H5: young; H9: either female and young or 
male and old; H11: young and female, young and male, or 
old and female; H15: young and female, young and male, 
old and female, or old and male (all combinations).  

Dyadic Condition C1, with noun-adjective combinations 
and a sum use of “AND”: H1: young women, etc.; H5: 
young people (men and women); H9: young women and old 
men, etc.; H11: young women, young men, and old men; 
H15: young women, young men, old men and old women.  

Monadic Condition C3 (in other respects resembling C1): 
“The guests of this pub are…” H1: teenagers and women; 
H3: adults and men; H5: teenagers (woman or also men); 
H9: (later coded as H15) teenagers or also adults, women or 
also men; and H16: undecided.  

Monadic conditions C4/C5 (with sentences starting like 
C2): “X is visited by guests who are, but then used a second 
“who”— H1: guests who are young and who are old; H5: 
young; H9 (coded H15): are young or old and who are 
female or male.  

 

   Whereas the contingency table in C1 to C3 gave explicit 
information about joint frequencies alone, in C4 marginal 
frequencies were added and in C5 the contingency matrix 
did not provide the joint frequency distribution, but instead 
marginals only. Since the marginals are implied by cell 
information, and the cell information is not implied by the 
marginals, here the use of dyadic BL makes less sense. The 
frequency information in the tables had labelled cells and 
marginals. For each of the 30 frequency patterns we used 
random rotations as a counterbalancing factor.  
Results Space limits us here to presenting a selection of the 
30 scenarios, to illustrate the strengths and weaknesses of 
the models. To the left of each panel of Figure 4 is the con-
tingency information provided. Column 2 presents (unfitted) 
model predictions for monadic BL, dyadic BL and 
normalized extensional probability (the latter often implies 
H15 answers). The tables in Column 3 first reiterate which 
are the most and second most predicted hypotheses and re-
port the corresponding pattern probabilities. Then they show 
the results, the most and second most frequently selected 
hypotheses and their relative frequencies. 

Panel A of Figure 3 show frequencies which are – from 
the perspective of dyadic as well as monadic BL – AND 
patterns with exceptions. As predicted, participants in all 
conditions often selected the conjunction (H1) (or a 
corresponding rotation; answers are always re-coded). H11 

or H15 (predicted by extensional probability) was rarely 
chosen, resulting in many double conjunction ‘fallacies’.  

Panel B shows the same phenomenon for the affirmation 
(H5). Although monadic and dyadic BL mainly predict H5, 
monadic BL favors H2 almost equally. In correspondence, 
the results show at least in C4 and C5 increased H2 choices.  

Panel C shows a predicted shift from a (probabilistic) 
dyadic EITHER-OR (H9) to the monadic tautology (H15).  

Panel D shows a different predicted shift form a dyadic 
either-or (H9) (selected despite great difference in the 
relative frequencies of the non-empty cells) to an increasing 
proportion of H1 selections in the monadic conditions. The 
preference for H1 (over other hypotheses with equally 
predicted subjective probability) suggests that participants 
admitted more exceptions than is modelled by our flat prior 
for r (cf. upper part of Figure 3). We have not modelled this 
yet, but other patterns appear to support this idea. 

In Panel E (Figure 4) participants as predicted shifted 
from a dyadic or-hypothesis (H11) to the monadic tautology 
(H15). Interestingly, Panel F shows that people (as 
predicted) can also shift from H11 to H1.  

In Panels G and H, the contingencies refer to the same 
relative frequencies with differing sample sizes. In Panel G 
the results for monadic and dyadic conditions, mostly as 
predicted, tended to be undecided between H15 and H5. 
Although Panel H then shows too high a number of 
selections of the narrower hypothesis in the clearest 
monadic condition C5 (H1 cf. Panel D) it corroborates that 
H15 in all conditions disappears as the dominant  hypothesis 
(sample size sensitivity, cf. von Sydow, 2011). 

General Discussion 
The experiment provides some first evidence for generally 
advocating two kinds of pattern probabilities involving two 
systems of logical inclusion ‘fallacies’ and specifically 
dyadic and monadic BL. Overall the results showed a very 
good fit for dyadic BL, ruling out many possible simpler 
heuristics which may plausibly mimic pattern probabilities 
(e.g., Panel B and D exclude the dyadic strategy of finding 
the largest difference between four cells—applicable in 
Panel C). Likewise, sample-size effects (Panels G and H) 
appear to exclude strategies using probabilities as input.  

There were some substantial deviations from monadic 
BL. However, the less clear results in C3 than in C5 may be 
explicable by a lower number of additional monadic cues 
(e.g., no explicit marginal frequencies). Moreover, we sug-
gested resolving further apparent deviations by modelling a 
prior for r levels. Based on such considerations this first test 
generally appears to support monadic BL as well. 

Without modelling the many theories of the conjunction 
fallacy (CF) here, the results seem inexplicable by them. 
First, many are not formulated generally enough to account 
for all logical connectives. Second, the results rule out 
theories not concerned with patterns, and those not sensitive 
to sample size. Finally, I am unaware of any account distin-
guishing monadic and dyadic predictions. Although for 
instance the misinterpretation hypothesis (Hilton, 1995), the 
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unclear-set hypothesis (Sloman et al., 2003), or the confir-
mation hypothesis (Tentori et al., 2013) may have their 
domains of application (cf. von Sydow, 2011), it is im-
plausible that they can account for the present results.1  

This work sketches a novel approach deserving future ex-
amination by modelling other variants, parameter-settings 
and alternative approaches, and refined empirical tests. 
Using probability as a criterion for rational predication led 
to intensional (pattern) probabilities, and then to the mon-
adic-dyadic distinction of pattern probabilities. A more con-
tent-sensitive model of probability opens the ‘rational tool 
box’ of probability measures. Given the multifunctionality 
of language, we hope this is not a Pandora’s box. 
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References 
Foley, R. (2009). Beliefs, Degrees of Belief, and the Lockean Thesis. 

In: F. Huber, C. Schmidt-Petri (eds.), Degrees of Belief, Synthese 
Library 342, Heidelberg: Springer. 

Gigerenzer, G. (1996). On narrow norms and vague heuristics. 
Psychological Review, 103, 592-596. 

Hertwig, R., Benz, B., & Krauss, B. S. (2008). The conjunction fallacy 
and the many meanings of and. Cognition, 108, 740-753. 

Hilton, D. J. (1995). The social context of reasoning: Conversational 
inference and rational judgment, Psycho. Bulletin, 118, 248-271. 

Kahneman, & Tversky (1996). On the Reality of Cognitive Illusions. 
Psychological Review, 103, 582-591. 

Oaksford, M., & Chater, N. (2007). Bayesian rationality. The proba-
bilistic approach to human reasoning. Oxford University Press. 

Schurz, G. (2005). Non-monotonic reasoning from an evolutionary 
viewpoint. Synthese, 146, 37–51. 

Sloman, S. A., Over, D., Slovak, L., & Stibel, J. M. (2003). Frequency 
illusions. Organizational Behavior and Human Processes, 91, 296-
309. 

Tentori, K., Crupi, V., & Russo, S. (2013). Determinants of the 
conjunction fallacy: Confirmation versus probability. Journal of 
Experimental Psychology: General. 

Tenenbaum, J. & Griffith, T. (2001). Generalization, similarity, and 
Bayesian inference. Behavioral & Brain Sciences, 24 (4), 629-640. 

von Sydow, M. (2011). The Bayesian Logic of Frequency-Based 
Conjunction Fallacies. Journal of Mathematical Psychology, 55(2), 
119-139. 

von Sydow, M. & Fiedler, K. (2012). Bayesian Logic and Trial-by-trial 
Learning. Proceedings of the Thirty-Fourth Annual Conference of 
the Cognitive Science Society (pp. 1090 - 1095). Austin, TX: 
Cognitive Science Society.  

 
Figure 4: Continuation of Figure 3. 
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First H 5(15*) 15(5) 15 15 5 5 15

choise P(H) 14% 23% 64% 55% 50% 50% 50%
Second H 15 5(15) 5 5 15 15 5
choice P(H) 11% 22% 36% 32% 45% 45% 32%

*Cf. main text
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l F Dyad. Mona. C1 C2 C3 C4 C5
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Second H 1, 5, 7 5, 7 5 1, 5 5 7 15
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First H 11 15 11 11 15 15 15
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