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Abstract

Several similar maxims, known as “Golden Rules” are found in the writings
of moral philosophers and religious teachers. Though similar, these maxims
appeal to di↵erent principles; and do not always recommend the same ac-
tions nor lead to the same equilibrium outcome in interactive games. This
paper examines some of these rules and explores the way that they may
emerge as a result of biological or social evolution.



1 Ethics, Altruism, and Utility

Golden Rules

Several similar maxims, known as “Golden Rules” are found in the writings
of moral philosophers and religious teachers. Though similar, these max-
ims appeal to di↵erent principles; and do not always recommend the same
actions. There are at least four distinct variants of the golden rule.

The first version is the “Love-thy-neighbor” rule. This rule appears in
the Hebrew Old Testament as well as in the Taoist writings of Lao Tze:

• “Thou shalt love thy neighbor as thyself.” Leviticus 19:18

• “Regard your neighbor’s gain as your gain, and your neighbor’s loss
as your own loss.” Lao Tze [14]

A second version, is the “Do-unto-others” rule. This rule is found in
the Christian New Testament, in teachings of the Jainist religion of ancient
India, and in the writings of Aristotle:

• “Do unto others as you would have them do unto you.” Luke 6:31

• “We should behave toward friends as we would wish friends to behave
toward us.” Aristotle [9]

• “A man should wander about treating all creatures as he himself would
be treated. ”Jainist Sutrakritanga 1.11.33

A third version is the “Negative do-unto-others” rule found in the writ-
ings of Confucius, in the Hebrew Talmud and in ancient religious texts of
Hinduism, Buddhism, and Zoroastroism.

• “Never impose on others what you would not choose for yourself.”
Confucius Analects

• “That which thou likest not being done unto thyself do not unto thy
neighbor. That is the whole of Torah and the remainder is but com-
mentary.” Hillel the elder, Babylonian Talmud, Shabbat 31a

• “This is the sum of duty: do not do to others what would cause pain
if done to you.” Hindu Mahabharata 5:1517

• “Hurt not others in ways that you yourself would find hurtful.” Bud-
dhist Udana-Varga 5:18
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• “Whatever is disagreeable to yourself do not do unto others.” Zoroas-
trian Shayast-na-Shayast 13:29

The Love-thy-neighbor form of the golden rule calls for empathy with
one’s neighbor that would produce altruistic behavior. The Do-unto-others
and Negative do-unto-others also require individuals to account for the the
e↵ects of their own actions on the payo↵s of others when choosing how to
act.

The previous three rules do not explicitly recognize the equilibrium ef-
fects in game interactions where they are adopted by more than one player.
Immanuel Kant’s Categorical Imperative is a golden rule that accounts for
the reciprocal e↵ects that would arise if a maxim were universally adopted.
This principle can arguably be found as well in the oldest known instance of
a golden rule–a rule that appears in an Egyptian tale, The Eloquent Peasant
which was written between 2000 and 1750 BC.

• “Act only according to that maxim whereby you can at the same time
will that it should become a universal law.” Kant, Foundations of the
Metaphysics of Morals [8]

• “Do for one who may do for you, that you may cause him thus to
do.” The Eloquent Peasant, translated from the original papyri by
R.B. Parkinson [13]

Utility, Symmetric Games, and Golden Rules

To understand the di↵erences among these golden rules, it is useful to inter-
pret them as instructions for how individuals should form the utility func-
tions that guide their choices in simple games. We will assume that individ-
uals have well-defined private payo↵s that are determined independently of
ethical rules. Ethical rules recommend behavior that is guided not only by
one’s own private payo↵, but also by the private payo↵s of one’s neighbors.

We begin with a class of games that seems particularly well-suited for
application of golden rules; the class of symmetric two-player games. Each
player chooses an action from a set S of possibilities. A player who takes
action x while his neighbor takes action y has private payo↵ that is deter-
mined by the function u(x, y). Since the game is assumed to be symmetric,
it must be that if when one takes action x and one’s neighbor takes action
y, the neighbor receives private payo↵ u(y, x).
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The rule “Love thy neighbor as thyself” commands each neighbor to
value the private payo↵ of his neighbor as highly as his own.1 If an individ-
ual chooses action x and his neighbor chooses y, then the sum of his own
private payo↵ and that of his neighbor is u(x, y) + u(y, x). Therefore this
rule requires that when one’s neighbor is playing y, one should choose x to
maximize

L(x, y) = u(x, y) + u(y, x). (1)

The Do-unto-others rule asks an individual to act toward his neighbor
in the way that he would if the payo↵s were reversed. When two neighbors
are playing a symmetric game, if a player takes action x and his neighbor
takes action y then the neighbor’s private payo↵ will be u(y, x). Therefore
the Do-unto-others rule requires that if one’s neighbor plays y, one should
choose x to maximize

D(x, y) = u(y, x). (2)

To characterize the Negative do-unto-others rule, we need to decide how
to distinguish an instruction not to harm others from an instruction to
help others. Of course it is logically possible to make this rule equivalent
to the Do-unto-others rule by supposing that failure to help a neighbor is
equivalent to harming the neighbor. Some followers of the negative golden
rule may interpret this rule in just this way. But here we take what seems
a natural interpretation of the language in which “not doing things to our
neighbors which we wouldn’t want being done to us” di↵ers from “doing
for our neighbor whatever we would wish him to do for us.” To make
this distinction, we define an action x0 such that one who takes this action
neither harms nor benefits his neighbor. The Negative do-unto-others rule
requires that if my neighbor is taking action y, my choice of actions should
be constrained to those actions such that my neighbor is no worse o↵ than he
would be if I took action x0. This constraint requires that u(y, x) � u(y, x0).
Thus the Don’t-do-unto-others rule requires that if one’s neighbor plays y,
one should choose x to maximize

N(x, y) = u(x, y) if u(y, x) � u(y, x0)
= �1 if u(y, x) < u(y, x0). (3)

For symmetric games, the Kantian rule asks that one take the action
that would maximize one’s own well being if this action were to be copied

1Following this rule implies that one impose a meaningful cardinality on utility up
to a�ne transformations. In evolutionary applications, the appropriate cardinal measure
would be one’s expected number of descendants in the long run. In many ethically-
motivated discussions, u(x, y) would be one’s von Neumann Morgenstern utility.
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by one’s neighbor. This requires that regardless of the other’s action y,
individuals should choose the action x that maximizes the utility function:

K(x, y) = u(x, x). (4)

Some Benchmark Games

The Christmas Gift Game

At Christmas time, people try to buy objects for their friends that the friends
have not purchased for themselves; typically because they did not think these
objects were worth their cost. Consider two friends, both of whom drink
cheap scotch. Each considers spending $80 to buy a bottle of expensive
scotch for the other. Neither buys this brand for himself, since they value
it only at $60. In this game, there are two possible strategies “Give the
scotch” G and “Don’t give the scotch” D. The private payo↵s in this game
are u(D,D) = 0, u(D,G) = 60, u(G, D) = �80 and u(G, G) = �20.

A follower of the Love-thy-neighbor rule will choose action x to maximize
the payo↵ function L(x, y) = u(x, y) + u(y, x). Since the sum of the payo↵s
to the two players is greater if one does not give the scotch, D is a dominant
strategy for both players. Likewise, followers of the Kantian rule would
choose D since u(D,D) > u(G, G). A follower of the Negative do-unto-
others rule would choose not to give, under the reasonable assumption that
the strategy D does not harm the other. Thus the outcome with players of
any of these three types would be that neither gives.

But, for followers of the Do-unto-others rule, G is a dominant strategy.
This is true since each person would rather receive a bottle of expensive
scotch than not. The only Nash equilibrium in the game played between
two Do-unto-others players is that both give the expensive scotch, although
this leaves both worse o↵ than they would have been if they had given
nothing.

The Redistribution Game

Two neighbors play the following game. A coin is tossed. If it comes up
heads, Neighbor A receives $100 and Neighbor B receives $20. If it comes up
tails, the prizes are reversed. When he sees the outcome, each neighbor can
choose to give as much of his prize as he wishes to the other. The private
payo↵s of the players are expected utilities with concave von Neumann Mor-
genstern utilities of one’s own post-transfer wealth. Each neighbor observes
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the result of the coin flip and is allowed to give any non-negative amount of
his prize to the other.

It is straightforward to show that those who follow the Love-thy-neighbor
rule and those who follow the Kantian rule will choose to give $40 to the
other if their own prize is $100 and nothing to the other if their own prize
is $20. The equilibrium outcome after gifts is therefore an equalitarian
outcome, where each player receives $50 with certainty.

Since not giving does not harm the other player, a reasonable interpreta-
tion of the Negative do-unto-others rule is that neither player would choose
to give anything to the other. If both players play by the Do-unto-others
rule, each would chooses the action that is most privately beneficial to the
other. Therefore each player would give his entire prize to the other. Thus
both do-unto-others rules result in a final distribution in which one player
gets $100 and the other gets $20. With the negative do-unto-others rule,
there are not transfers and the winner of the initial lottery has the higher
income, while with the positive do-unto-others rule, the loser of the initial
lottery emerges with the higher income after transfers.

Love Can Be Better Than Reciprocity

Two neighbors play a game in which their private payo↵s constitute a
prisoners’ dilemma. Each player has access to two possible strategies, C

(cooperate) and D (defect). Private payo↵s are given by Table 1, where
T > R > P > S. If the neighbors act selfishly, each will choose the strategy
D, although both would be better o↵ if both chose C.

Let us assume that T + S > 2R, so that the sum of the neighbors’
payo↵s is maximized when one of them cooperates and the other defects. In
this case, the Love-thy-neighbor rule mandates di↵erent behavior from that
required by the Do-unto-others and Kantian rules.

Table 1: Prisoners’ Dilemma with Selfish Payo↵s

Neighbor 1

Neighbor 2
C D

C R,R S, T

D T, S P, P
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Suppose that the neighbors behave according to the Do-unto-others rule.
Followers of this rule will choose the action that they would wish the other
to take. Since R > S and T > P , each player would always prefer that
the other to play C. Therefore, for Do-unto-others players, C is a dominant
strategy. Individuals who follow the Kantian rule would also always choose
strategy C, since the payo↵ to each when both choose C exceeds the payo↵
when both choose D. It follows that the outcome where both choose C is
a dominant strategy equilibrium in any population abiding either by the
Kantian rule or the Do-unto-others rule.

Those who follow the Love-thy-neighbor rule act according to a utility
function L, where L(C, C) = R+R = 2R, L(D,C) = L(C, D) = T +S, and
L(D,D) = P+P = 2P . Since, by assumption, T+S > 2R, it follows that for
either player, the best response to the other’s action is to do the opposite.
Therefore there are two Nash equilibria. These are the two outcomes in
which the neighbors choose opposite strategies. For this game, we see that
the total payo↵ in equilibrium for two Love-thy-neighbor types exceeds that
for the two players who abide by Do-unto-others or Kantian rules.

Reciprocity Can Be Better Than Love

But it can also happen that the Love-thy-neighbor rule results in a lower
combined payo↵ for the two players. Suppose that T > R > P > S and
that T + S < 2P . As before, Do-unto-others players and Kantian players
will choose strategy C, and the only Nash equilibrium for two such players
is the outcome where both choose C and receive payo↵s R.

For Love-thy-neighbor players, there are two Nash equilibria, one of
which is Pareto inferior to the outcome where both cooperate. The out-
come in which both choose C will be a Nash equilibrium, since L(C, C) =
R + R > 2P > T + S = L(D,C) = L(C, D). But the outcome where both
players choose D is a Nash equilibrium, since L(D,D) = P + P > T + S =
L(D,C) = L(C, D).

In this example, when T + S > 2R, a society that adopts the Love-
thy-neighbor ethic will have greater total wealth than one that adopts Do-
unto-others or the Kantian ethic. On the other hand, if T + S < 2P , a
society with the Do-unto-others or the Kantian ethic is likely to outperform
one with a Love-thy-neighbor ethic, since the only equilibrium in the former
case yields payments of R to everyone, while in the latter case some pairs of
neighbors may reach the equilibrium in which they receive P < R.
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A partial resolution of the two Golden Rules

We have seen that the Love-thy-neighbor and Kantian golden rules do not
always recommend the same behavior. Since moralists rarely distinguish
between these rules, it is not surprising to find that, at least sometimes,
communities governed by the two di↵erent maxims arrive at the same social
outcome.

In particular, we will show that sometimes, but not always, the symmet-
ric Nash equilibria of the games played by Love-thy-neighbor types and of
the games played by Kantian types are the same. We will follow John May-
nard Smith [11] in calling a symmetric Nash equilibrium an evolutionarily
stable strategy (ESS) for a symmetric game.

Let us assume that the individual payo↵ function u(x, y) is twice contin-
uously di↵erentiable and defined on a closed, convex subset of the Euclidean
plane. Let ui(x, y) denote the partial derivative of u(x, y) with respect to
its ith argument and let uij(x1, x2) denote the ijth element of the Hessian
matrix of u(x, y).

For a player who follows the Love-thy-neighbor rule, if the other player
takes action y, the partial derivative of L(x, y) with respect to action x is

L1(x, y) = u1(x, y) + u2(y, x). (5)

For a player who follows the Kantian rule, if the other player takes action
y, the partial derivative of K(x, y) = u(x, x) with respect to x is

K1(x, y) = u1(x, x) + u2(x, x). (6)

At an ESS (interior symmetric Nash equilibrium) both players must choose
the same action x̄. Therefore an equilibrium (x̄, x̄) for Love-thy-neighbor
players must satisfy:

0 = L1(x̄, x̄) = u1(x̄, x̄) + u2(x̄, x̄), (7)

and an equilibrium (x̄, x̄) for Kantian players must satisfy:

0 = K1(x̄, x̄) = u1(x̄, x̄) + u2(x̄, x̄). (8)

Thus the first-order necessary conditions for an ESS are the same for a
society of Love-thy-neighbor players as for a society of Kantian players. But
this does not necessarily imply that the set of equilibria are the same. The
second derivatives L11(x, y) and K11(x, y) are not identical. An action that
is a local maximum for a player acting according to the payo↵ function L
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may be a local minimum for a player acting according to K, or vice versa.
The second-order condition for x̄ to be a best response to the action x̄ by
one’s neighbor is

0 � L11(x̄, x̄) = u11(x̄, x̄) + u22(x̄, x̄) (9)

for Love-thy-neighbor players and

0 � K11(x̄, x̄) = u11(x̄, x̄) + 2u12(x̄, x̄) + u22(x̄, x̄) (10)

for Do-unto-others players.
From equations 9 and 10, we see that

K11(x̄, x̄) = L11(x̄, x̄) + 2u12(x̄, x̄) (11)

From these facts, we can draw several implications that relate the set of
equilibria for Love-thy-neighbor players to those for Kantian players.

Proposition 1 The evolutionary stable states for games played by Love-thy-
neighbor players and those for games played by Kantian players are related
as follows:

1. If u12(x, x) < 0 for all x, then every ESS for a population of Love-thy-
neighbor players is an ESS for a population of Kantian players.

2. If u12(x, x) > 0 for all x, then every ESS for a population of Kantian
players is an ESS for a population of Love-thy-neighbor players.

3. If u12(x, x) = 0 for all x, then the set of ESS outcomes is the same for
Kantian players as for Love-thy-neighbor players.

4. If the function u(x1, x2) is a concave function, then the set of ESS
outcomes is the same for Kantian players as for Love-thy-neighbor
players.2

2 Natural Selection and Ethics

An interesting evolutionary argument can be made to explain the fact that
many successful religions pay at least lip service to the various golden rules.

2To prove this result, note that if u is a concave function, its Hessian evaluated at (x̄, x̄)
must be negative semi-definite. From this it follows that the second-order conditions, 9
and 10 are both satisfied.
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Typically these maxims are directed toward one’s dealings with “neighbors
or friends,” people with whom one maintains a continuing relationship. As
the Folk Theorem of game theory reminds us, in repeated games between
players who are able to observe each others’ actions and reward or punish
accordingly, almost any feasible outcome can be a Nash equilibrium. The
commandments issued by religious leaders, particularly when augmented by
threats of divine retaliation,3 may sometimes serve to coordinate players
on equilibrium strategies that lead to group prosperity. Prosperous groups
are more likely to spread their influence than those who coordinate on less
e�cient equilibria. Therefore the doctrines that sustain group prosperity
are likely to spread more widely.

In the world that we observe, the unselfishness demanded by the Love-
thy-neighbor rule, the Do-unto-others rule, or the Kantian rule seems to be
rarely achieved, even by those who profess to believe in them. Our profes-
sion’s friendless old workhorse, homo economicus may exceed real humans in
his complete disregard for the well-being of others. But anyone who drives
on the freeway or reads the newspaper is likely to concede that much of
what we observe is better predicted by the behavior of selfish agents than
by that of adherents to Golden Rules.

It is interesting to seek intermediate models that predict behavior that
is neither completely selfish nor entirely unselfish. The Negative do-unto-
others rule is one such less demanding middle ground. This rule, for example,
does not insist that the wealthy share their wealth equally with the poor,
but it does demand that they not abuse and further impoverish them.

Evolutionary biology provides a rich source of models of human behavior
that lie between the extreme egoism of homo economicus and the unselfish-
ness of the golden rules.

Hamilton’s rule

The great evolutionary biologist, William Hamilton [6], proposed a rule of
altruism for living organisms that is not an entreaty to behave as Hamilton
or the Deity would like them to. “Hamilton’s rule” is a prediction of the
degree of altruism to be found in a population that has been shaped by
natural selection. Hamilton’s rule generalizes the Love-thy-neighbor rule to
allow for individuals who care about others, but less intensely as they care
about themselves. Traditional statements of the Golden Rule are not clear
on who is to be regarded as a neighbor and hence deserving of symmetric

3The full text of Leviticus 19:18 is “Thou shalt not avenge, nor bear any grudge against
the children of thy people, but thou shalt love thy neighbour as thyself: I am the LORD.”
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treatment. Hamilton quite explicitly defines a degree-of-relationship that
determines the extent of altruism towards another.

Hamilton stated this rule as follows”

“The social behavior of a species evolves in such a way that in
each distinct behavior-evoking situation the individual will seem
to value his neighbors’ fitness against his own according to the
coe�cients of relationship appropriate to that situation.” [6], p
19.

Hamilton’s rule has a straightforward interpretation in a model where
behavior is genetically inherited. In this interpretation, one’s “fitness” is
defined as the expected number of one’s long run biological descendants.
The coe�cient of relationship between two individuals is determined by
their genetic relatedness. Specifically, it is the probability that if one of these
individuals has a rare mutant allele, then he shares this allele, by inheritance,
with the other. In sexual diploid organisms, with no inbreeding of close
relatives, the coe�cient of relationship between two full siblings is 1/2, that
between half siblings it is 1/4, between (full) cousins it is 1/8, between
parent and o↵spring it is 1/2 and between grandparent and grandchild it is
1/4.

Hamilton stated his rule as a prediction that individuals will act so as to
maximize their “inclusive fitness” where inclusive fitness is a weighted sum of
one’s own fitness and that of one’s relatives, with weights being proportional
to their degree of relatedness. For a symmetric two-player game, suppose
that the fitness of an individual who takes action x when his relative takes
action y is F (x, y). Then Hamilton’s measure of inclusive fitness for players
1 and 2 is

H(x, y) = F (x, y) + rF (y, x) (12)

Hamilton’s discussion focusses on a special class of games in which he
implicitly assumed an additive structure. For a symmetric two-person in-
teraction, this structure implies that the fitness of an organism that takes
action x when its relative takes action y is

F (x, y) = b(y)� c(x). (13)

In this case, the inclusive fitness takes the special form

H(x, y) = rb(x)� c(x) + b(y)� rc(y). (14)

In a symmetric Nash equilibrium, each player chooses x̄ to maximize rb(x)�
c(x). The first-order condition for this maximization is rb

0(x) = c
0(x) which
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is to say that a player would help his neighbor so long as the marginal cost
of assisting is no greater than the fraction r of the marginal gain to the
neighbor from this assistance.

Many interesting social and economic interactions (including the pris-
oners’ dilemma example that we presented above) are not of this additive
form. The costs of helping a neighbor may depend on the neighbor’s actions,
and the benefits from a partner’s cooperation may depend on one’s own ac-
tions.4 Maynard Smith [10] proposed that the concept of inclusive fitness
could be extended to games with general payo↵ functions. He conjectured
that in symmetric games, whether or not the game is additive, equilibrium
populations would consist of players who use “evolutionary stable strate-
gies” (ESS), which are symmetric Nash equilbria in a game where payo↵s
are given by players’ inclusive fitness functions.

Several authors, including Alan Grafen [5], Marcus Feldman and Luca
Cavalli-Sforza [3], [4], Scott Boorman and Paul Levitt [2], and Theodore
Bergstrom [1])have examined genetically based models in which there is
natural selection have argued that Maynard Smith’s conjecture was not cor-
rect. For games that lack Hamilton’s additive structure, the set of symmetric
Nash equilibria for players with inclusive fitness utility functions does not
coincide with the set of equilibria of the most natural evolutionary genetic
models of natural selection.

Maynard Smith was persuaded by the critiques of Grafen and others, and
agreed that for symmetric non-additive games between relatives, Hamilton’s
inclusive fitness should be replaced by the following function, which had been
introduced by Grafen, and which he and W. G. S. Hines [7] called “personal
fitness:”

V (x, y) = rF (x, x) + (1� r)F (x, y). (15)

In the Appendix of this paper, we sketch the argument for why the function
V (x, y) is appropriate. More detailed discussions can be found in Boorman
and Levitt [2] and in Bergstrom [1].

The inclusive fitness function H generalizes the Love-thy-neighbor func-
tion L to allow preferences that value a neighbor’s fitness as a fraction r < 1
of one’s own fitness. The personal fitness function V generalizes the Kan-
tian function to allow preferences over actions based in which the probability
that one’s own act will be mimicked by the neighbor is r < 1.

If the e↵ect of actions on fitness has the additive structure implicitly
4Hamilton defined inclusive fitness almost 10 years before G. R. Price and John May-

nard Smith [12] introduced game theory to evolutionary biologists. It is therefore not
surprising that he did not model familial interactions as a game.
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assumed by Hamilton, there is no di↵erence between the behavior of an
inclusive fitness maximizer and that of a personal fitness maximizer. In this
case, Equation 13 personal fitness reduces to:

V (x, y) = rb(x)� c(x) + (1� r)b(y). (16)

Thus a personal fitness maximizer chooses x to maximize rb(x)�c(x), which
results in the same choice made by the inclusive fitness maximizer.

Proposition 2 The evolutionary stable states for games played by inclusive
fitness players and those for games played by personal fitness players are
related as follows:

1. If F12(x, x) < 0 for all x, then every ESS for inclusive fitness players
is an ESS for a population of personal fitness players.

2. If F12(x, x) > 0 for all x, then every ESS for a population of personal
fitness players is an ESS for a population of inclusive fitness players.

3. If F12(x, x) = 0 for all x, then the set of ESS outcomes is the same
for personal fitness players as for inclusive fitness players.

4. If the function F is a concave function, then the set of ESS outcomes
is the same for personal fitness players as for inclusive fitness players.

3 Asymmetric Games

Games between relatives of di↵erent ages or di↵erent sexes often have a
strongly asymmetric payo↵ function. For example, older siblings may be
able to bully their younger siblings and deprive them of resources, or they
may help their parents with the upbringing of their juniors. In species where
siblings are born in di↵erent years and never interact directly, the amount
of resources that an older child takes from its mother may a↵ect her health
and the survival probability of later-born children, while the actions taken
by later-born siblings have no e↵ects on their older siblings.

An individual’s strategy in an asymmetric game will typically be a func-
tion that maps each possible familial role into the action that an individual
will take if cast in this role. For example, an individual may be genetically
instructed to take one action if finds itself to be the older sibling and a
di↵erent action if it finds itself to be the younger sibling. This leads to an
interesting choice about the appropriate way to model the genetic transmis-
sion of strategies.
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One possible model assumes that the function that determines ones ac-
tion, given one’s familial role, is controlled by the genes in a single genetic
locus. At the opposite extreme is a model in which it is assumed that the
action one takes if one is a younger sibling and the action one takes if one is
an older sibling are controlled by genes in two distinct genetic loci and that
these loci are “unlinked” in the sense that the assortment of genes at these
two loci are statistically independent. Intermediate between these two po-
lar models are genetic models of linkage disequilibrium, such that “behavior
if younger” and “behavior if older” are controlled by two distinct genetic
loci, but the contents of these loci are correlated, rather than statistically
independent.

Quite remarkably, we find that if behavior in di↵erent familial roles is
determined by separate, unlinked genetic loci, then the Nash equilibrium
for games with inclusive fitness payo↵s coincide with stable monomorphic
equilibria. However, if the function that maps familial roles into actions is
determined by a single genetic locus, then stable monomorphic equilibrium,
in general, coincides with Nash equilibrium for a generalization of personal
fitness payo↵s rather than inclusive fitness payo↵s.

Payo↵ functions and reciprocity

We will consider two-person games where each player is equally likely to be
cast in one of two roles. Let F

i(z1, z2) be the payo↵ to the player cast in
role i if the action of the role 1 player is z1 and that of the role 2 player is
z2. A strategy for either player is a vector, specifying an action to be taken
if assigned to each role. If player A chooses strategy x = (x1, x2) and B

chooses strategy y = (y1, y2), and if A is assigned role 1 and B role 2, A’s
fitness will be F

1(x1, y2) and B’s will beF 2(x1, y2). If the roles are reversed,
A’s fitness will be F

2(y1, x2) and B’s will be F
1(y1, x2). Since the roles are

equally likely to be cast in either way, if A’s strategy is x and B’s is strategy
y, then A’s expected fitness will be

F (x, y) =
1
2

⇣
F

1(x1, y2) + F
2(y1, x2)

⌘
(17)

and B’s will be F (y, x).
Thus we have constructed a symmetric game. For this game, we can

define the two symmetric Golden rules, as well as inclusive fitness and per-
sonal fitness just as we did for symmetric games. A person whose neighbor
pursues strategy y will choose x so as to maximize:

L(x, y) = F (x, y) + F (y, x) (18)
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if he follows the Love-thy-neighbor rule and will choose x to maximize

K(x, y) = F (x, x) (19)

if he follows the Kan tian rule.
Inclusive fitness is defined as:

H(x, y) = F (x, y) + rF (y, x) (20)

and personal fitness as:

V (x, y) = rF (x, x) + (1� r)F (x, y). (21)

It is useful to note that Equations 17 and 20 imply that H(x, y) can be
decomposed as follows:

H(x, y) =
1
2
H

1(x1, y2) +
1
2
H

2(y1, x2) (22)

where
H

1(x1, y2) = F
1(x1, y2) + rF

2(x1, y2) (23)

and
H

2(y1, x2) = F
2(y1, x2) + rF

1(y1, x2). (24)

Equilibrium and Linkage

In the case of symmetric games, we found that stable monomorphic equi-
libria must be symmetric Nash equilibrium of the game in players act as
if their payo↵s are given by the personal fitness function V . In the case
of asymmetric games, we get two di↵erent answers, depending on what we
assume about the genetics that determine strategies.

We claim the following result:

Proposition 3 If a single genetic locus controls one’s actions in both roles,
then the stable monomorphic equilibria must be symmetric Nash equilibria of
the game in which players payo↵s are given by the personal fitness function
V (x, y). If the genes that control one’s strategy when one is cast in di↵erent
roles are unlinked, so that mutations at one gene are uncorrelated with those
at the other, then the stable monomorphic equilibria must be symmetric Nash
equilibria of the game with inclusive fitness H(x, y).

14



The first assertion is very easily proved. If a single genetic locus controls
one’s actions in both roles, then the argument that was used to show that
stable monomorphic equilibria must be an ESS for personal fitness maxi-
mizers applies here as well.

Now suppose that the genes that control an individual’s behavior in the
two roles are not close together on the same chromosome, so that mutations
occurring at one locus are uncorrelated with those at the other. Consider a
monomorphic population in which everyone uses the strategy x̄ = (x̄1, x̄2).
Suppose that a mutation occurs in the gene that controls the strategy played
in role 1, such that individuals with the mutant gene use strategy x =
(x1, x̄2). We consider the average fitness of carriers of the mutant gene.
With probability 1/2, a carrier of the mutant gene will be called to play role
1 and will have fitness F (x1, x̄2). With probability 1/2, the carrier of the
mutant gene will play role 2. Given that a mutant individual is called to
play role 2, with probability r, the other player, who is called to play role 1
is also a mutant and plays x1 and a probability 1� r that the other player
is a normal and plays x̄1. It follows that the expected fitness of a mutant
that plays x1 is

1
2
F (x1, x̄2) +

1
2

(rF (x1, x̄2) + (1� r)F (x̄1, x̄2)) . (25)

This expression in turn is equal to
1
2

⇣
H

1(x1, x̄2) + (1� r)F (x̄1, x̄2)
⌘

(26)

From Equation 26 it follows that a population of x̄ strategists can be in-
vaded by a mutant gene for the strategy (x1, x̄2) if H

1(x1, x̄2) > H
1(x̄1, x̄2).

Therefore a necessary condition for a population of x̄-strategists to be a
monomorphic equilibrium is that x̄1 maximizes H

1(x1, x̄2) over all possible
values of x2.

Similar reasoning shows that a population of x̄ strategists can be invaded
by a mutant gene that changes the strategy that is used in role 2 from x̄2

to x2 if H
2(x̄1, x2) > H

2(x̄1, x̄2). Therefore for a population of x̄-strategists
to be a monomorphic equilibrium, it is also necessary that x̄2 maximizes
H

2(x̄1, x2) over all possible values of x2.
We note that

H(x, x̄) = H
1(x1, x̄2) + H

2(x̄1, x2) (27)

We have seen that x̄ is a monomorphic equilibrium only if x̄1 maximizes
H

1(x1, x̄2) and x̄2 maximizes H
2(x̄1, x2). But if these conditions are sat-

isfied, then x maximizes H(x, x̄). Therefore a monomorphic equilibrium

15



strategy x̄ must be a symmetric Nash equilibrium for the game with payo↵
function H(x, y).
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Appendix

In evolutionary models, a stable monomorphic equilibrium is a population
in which individuals are all of a single genotype and no mutant gene will
reproduce more rapidly than those of the equilibrium type. The special
feature of genes that regulate interaction with kin is that there is a signif-
icant chance that someone who inherits a rare mutant gene regulating this
behavior will have a relative who also has this gene. For sexual diploid sib-
lings, for example, if an individual has a rare dominant gene for treating his
sibling unusually well, or unusually badly, there is a probability of 1/2 that
one’s sibling will also share this gene. More generally, in symmetric games
between relatives, whose coe�cient of relationship is r, the probability that
someone with a gene for a mutant behavior towards this relative will find
this behavior reciprocated with probability r.

Consider a population in which individuals play a symmetric game with
a relative whose coe�cient of relatedness is r and where the fitness payo↵
to playing x when the relative plays y is F (x, y). Let us define

V (x, y) = rF (x, x) + (1� r)F (x, y) (28)

If the normal population plays strategy x̄ in this game, then a mutant who
plays x in a game with a relative of relatedness r will find this strategy
reciprocated with probability r from and will encounter the normal strategy
x̄ with probability 1 � r. Thus the expected payo↵ to the mutant will be
V (x, x̄). A population of individuals playing x̄ will be an equilibrium only
if no mutant types do better than the normal x̄ type. This will be the case
only if

V (x̄, x̄) � V (x, x̄) (29)

for all possible strategies x.
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