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ABSTRACT 

Our limited knowledge of the relationship between changes in the state of an aquifer or 

reservoir and the corresponding changes in the elastic moduli, that is the rock physics model, 

hampers the effective use of time-lapse seismic observations for estimating flow properties within 

the Earth.  A central problem is the complicated dependence of the magnitude of time-lapse 

changes on the saturation, pressure, and temperature changes within an aquifer or reservoir.  We 

describe an inversion methodology for reservoir characterization that uses onset times, the calendar 

time of the change in seismic attributes, rather than the magnitude of the changes. We find that 

onset times are much less sensitive than magnitudes to the rock physics model used to relate time-

lapse observations to changes in saturation, temperature and fluid pressure.  We apply the inversion 

scheme to observations from daily monitoring of enhanced oil recovery at the Peace River field in 

Canada.  An array of 1492 buried hydrophones record seismic signals from 49 buried sources.  

Time shifts for elastic waves traversing the reservoir are extracted from the daily time-lapse cubes. 

In our analysis 175 images of time shifts are transformed into a single map of onset times, leading 

to a substantial reduction in the volume of data.  These observations are used in conjunction with 

bottom hole pressure data to infer the initial conditions prior to the injection, and to update the 

reservoir permeability model.  The combination of a global and local inversion scheme produces 

a collection of reservoir models that are best described by 3 clusters.  The updated model leads to 

a nearly 70% reduction in seismic data misfit.  The final set of solutions successfully predict the 

observed normalized pressure history during the soak and flow-back into the wells between 82 and 

175 days into the cyclic steaming operation. 
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INTRODUCTION 

Time-lapse geophysical data, observations gathered from repeated geophysical surveys, 

are well suited for the monitoring of fluid flow within the Earth (Calvert 2005).  As a result, time-

lapse seismic data have been used to monitor the injection of carbon dioxide for underground 

storage (Arts et al. 2000), geothermal energy production, as well as to image fluid saturation and 

pressure changes in due to oil and gas production (e.g. Eastwood et al. 1994, Johnson et al. 1998, 

Tura and Lumley 1999, Landro et al. 2001, Behrens et al. 2002).  The dynamic nature of time-

lapse data, the fact that they are often related to saturation and fluid pressure changes, suggests 

that they could be used for aquifer and reservoir characterization, as noted in Landa and Horne 

(1997) and Vasco et al. (2004).  The major impediment to successful characterization is the indirect 

relationship between the observations and the state of an aquifer or reservoir. To address this issue, 

a rock physics model is invoked to map the current state of the reservoir into seismic properties or 

attributes. This act introduces additional parameters that are necessary to characterize the 

poroelastic properties of the in-situ rock.  These parameters are usually not well constrained, 

determined from a few cores or laboratory measurements.  Furthermore, the properties almost 

always vary spatially, particularly between formations. Thus, the introduction of rock physics 

parameters presents yet another level of non-uniqueness (Chen and Dickens 2009). This is a barrier 

to aquifer and reservoir characterization that can be difficult to overcome.   
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As pointed out in Vasco et al. (2014, 2015) with sufficient temporal sampling it is possible 

to adopt an approach that mitigates some of the issues associated with the intervening rock physics 

model.  In particular, it is possible to define onset times, the calendar time at which a geophysical 

quantity changes from its background value.  Given a weak causality requirement, the onset time 

can often be related to the time at which saturation, fluid pressure, and temperature change within 

an aquifer or reservoir.  Thus, the onset time is typically related to the arrival time of a fluid 

pressure and/or saturation front, and hence the to the propagation time of the fluid front, rather 

than the magnitude of such changes.  As a result, onset times are sensitive to flow-related properties 

and relatively insensitive to the parameters of the rock physics model, as demonstrated in Vasco 

et al (2014, 2015).   

In this paper we illustrate the utility of onset times by examining their use at a cyclic steam 

stimulation operation at the Peace River field (Figure 1) in Alberta, Canada (Lopez et al. 2015, 

Przybysz-Jarnut et al. 2016). This is a very complicated setting, with heterogeneity, prior 

production, and documented changes in pressure, temperature, and saturation.  In fact, there were 

four periods of enhanced oil recovery at pad 31which covers the area that we will examine: a pad-

wide cyclic steam injection from 2001 to 2011, a horizontal stream drive from 2012 until 2013, a 

pad-wide top-down steam stimulation starting in 2014 and extending beyond 2016, and a localized 

cyclic steam injection at just one well pattern (31-08) from August 2015 until February 2016.   

Fortunately, to aid in our analysis at pad 31 in the Peace River field there is a rich set of seismic 

monitoring data from a dense surface array (Figure 1).  The array gathered daily seismic surveys 

to monitor the fluid-induced changes. The onset times allow for the compression of this multitude 

of seismic surveys into a single map of front propagation, which is used to image the heterogeneity 

within the reservoir.   
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METHODOLOGY 

In this section we describe our approach for using repeat time-lapse geophysical observations, 

recorded by a permanently buried seismic system, to monitor fluid flow and to characterize the 

reservoir.  The fact that the region has undergone previous production, necessitates a two-stage 

approach.  First, we estimate the values of a set of global parameters, primarily describing the 

initial state of the reservoir and its large-scale permeability structure. Second, the finer scale 

permeability variations are determined from both reservoir production data and time-lapse 

observations of the travel times of seismic waves that propagate through the reservoir.   

 

Governing Equations 

 

Here we outline the equations governing the conditions within the reservoir and the changes 

due to fluid injection and production. Such changes lead to temporal and spatial variations in the 

seismic properties and we briefly mention Gassmann’s (1951) approach for estimating elastic 

moduli in fluid saturated rock.  Difficulties associated with estimating the fluid moduli lead us to 

the concept of the onset time of a change in a geophysical observable.  We end this section with a 

brief description of the global and local updating schemes that will be used to estimate the reservoir 

properties. 
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Multiphase Flow and Thermal Stimulation 

 

The reservoir operations at the Peace River field, involving cyclic steam stimulation to extract 

very viscous bitumen, are described and modeled using the equations of non-isothermal multi-

component flow (Lopez et al. 2015, Przybysz-Jarnut et al. 2016). The multi-component mass and 

energy balance equations may be written succinctly using index notation (Pruess et al. 2011), 

where the index 𝜅 indicates one of the 𝑁# fluid components and the 𝑁# + 1 component signifies 

the heat that flows within the reservoir.  The mass and energy balances are given by 

𝜕𝑀(

𝜕𝑡 = −∇ ∙ 𝐅( + 𝑞( 
(1) 

where 𝑀( is a mass accumulation term for the chemical component 𝜅.  The mass accumulation 

term is written in the form of a sum, 

𝑀( = 𝜙1𝑆3𝜌3𝑋3(
3

 (2) 

given in terms of the porosity 𝜙, the saturation 𝑆3, the density 𝜌3 , and the mass fraction 𝑋3(  of the 

fluid phase 𝛽.  In the equation describing the energy balance the heat accumulation term for a 

multiphase system is given by 

𝑀789: = (1 − 𝜙)𝜌=𝐶=𝑇 + 𝜙1𝑆3𝜌3𝑢3
3

 (3) 

where 𝜌= is the grain density of the rock, 𝐶= is its specific heat, 𝑇 is the temperature, and 𝑢3 is the 

specific internal energy in phase 𝛽.  The advective flux vector for component 𝜅, 𝐅(,	 is a sum over 

all of the fluid phases, given by a multiphase form of Darcy’s law, 

𝐅( = 1𝑋3(𝐅3
3

= 1𝑋3(𝜌3𝐰3
3

= −𝑘1𝑋3(𝜌3
3

𝑘=3
𝜇3

G∇𝑃3 − 𝜌3𝐠J 
(4) 
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for a fluid phase traveling with the Darcy velocity 𝐰3 .  The absolute permeability 𝑘  is a 

particularly important quantity, one of the main factors controlling fluid flow within the reservoir.  

The relative permeability 𝑘=3 is usually determined from laboratory experiments on cores from 

the main formations of the reservoir.  The fluid pressure for phase 𝛽, 𝑃3, is one of the dependent 

variables along with the fluid saturation of the phase, 𝑆3,  and the temperature 𝑇 .  The fluid 

viscosity 𝜇3  is determined from laboratory experiments on a given fluid at the appropriate 

temperatures and pressures of interest.  Finally, 𝐠 = g𝐳 is the gravitational force vector that alters 

the flow in the presence of fluid density variations.  The vector for the heat flux is given by  

𝐹789: = −𝜆∇𝑇 +1ℎ3𝐅3
3

 (5) 

where 𝜆 is the thermal conductivity of the formation and ℎ3 is the specific enthalpy in phase 𝛽.  

The quantities 𝑞( in equation (1) represent source or sink terms, often associated with injection or 

production wells. 

     In the forward problem we are given values for the aquifer or reservoir properties described by 

the parameters noted above, a reservoir model, and we solve the governing equations and 

accompanying equations-of-state, initial, and boundary conditions.  The solution is usually 

constructed using a numerical fluid flow simulator (Peaceman 1977, Datta-Gupta and King 2007).  

For a realistic model solving the forward problem requires significant effort and is often 

computationally intensive because the governing equations are non-linear partial differential 

equations.  Here, we shall tackle the inverse problem, in which we are given observations, both 

flow-related measurements and geophysical data, and tasked with estimating the characteristics of 

the aquifer or reservoir.  This is typically a much greater challenge than the forward problem, 

requiring at least an order of magnitude more computation.  Next, we develop a relationship 
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between time-varying fluid saturations, pressures, and temperatures within the Earth, and changes 

in the seismic properties at dep. 

 

Relating Velocities and Elastic Moduli to Saturation, Temperature, and Pressure Changes 

 

It is well known that fluid saturation, pressure, and temperature changes within and around an 

aquifer or reservoir will lead to changes in the elastic moduli of the fluid-filled porous medium 

and thus change its seismic characteristics.  For example, the speed of a compressional wave 

transiting a saturated porous material, 𝑉Q, depends upon the saturated bulk modulus, 𝐾STU, shear 

modulus, 𝐺W=, and the density 𝜌STU  of the fluid filled rock according to (Mavko et al. 2009)  

𝑉Q = X𝐾STU +
4
3𝐺W=

𝜌STU
 

(6) 

 

We adopt Gassmann’s equations (1951) to model the changes in elastic properties due to variations 

in fluid saturations, as they are generally accepted and widely used and found to agree with 

observations at seismic frequencies (Lumley 2001, Landro et al. 2001, Calvert 2005, Foster 2007).  

In Gassmann’s approach the shear modulus is not influenced by the presence or absence of the 

fluid.  Furthermore, the density of the fluid infiltrated rock is simply the weighted average of the 

component densities 

𝜌STU = (1 − 𝜙)𝜌S[\]^ + 𝜙𝜌W  (7) 

and for a multicomponent fluid the composite fluid density is given by the weighted sum 

𝜌W = 1𝑆3𝜌3
3

 (8) 
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The bulk modulus of the fluid saturated rock has a more complicated dependence on the 

component properties, given by the function 

𝐾STU = 𝐾W= +
G1 − 𝐾W= 𝐾_⁄ Ja

𝜙 𝐾W⁄ + (1 − 𝜙) 𝐾_⁄ − 𝐾W= 𝐾_a⁄  
(9) 

 

where 𝐾W=  is the bulk modulus of the porous rock frame,	𝜙 is the effective porosity of the medium 

and the bulk modulus of the mineral 𝐾_, which in the simplest case of a consolidated sandstone 

can be taken to be the bulk modulus of quartz.  The parameter 𝐾W is the bulk modulus of the pore-

filling fluids  

The original formulation of Gassmann only considered a single fluid saturating a porous rock.  In 

order to generalize the approach, the fluid modulus, 𝐾W, has been extended to cover the case in 

which the fluid is a mixture of several liquids and possibly gases.  This leads to additional 

complications, with the essential difficulty that the composite modulus can depend upon how the 

fluids are distributed within the porous medium at length scales that are less than a seismic 

wavelength.  By considering two extreme distributions one can derive upper and lower bounds on 

the effective fluid bulk modulus for a given fluid saturation, known as the Voigt and Reuss bounds, 

respectively (Mavko et al. 2009).  In Figure 2 we plot the velocity variation based upon the Voigt 

and Reuss composite fluid moduli as a function of the water saturation, 𝑆b.  In a complex geologic 

setting, including oriented fracture systems, it can be difficult to determine which modulus is most 

representative.  One compromise estimate involves taking the average of the two moduli, the so-

called Hill average (Figure 2).  Note that the differences in the calculated values of the three models 

shown in Figure 2 are almost as large as the entire variation due to the saturation change.  We will 
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use these limiting moduli to illustrate variations in rock physics models and how they can impact 

calculated changes in seismic properties associated with changes in fluid saturations. 

     In addition, the cyclic steam stimulation process used at the Peace River field also produces 

coupled changes in pressure and temperature within the reservoir, leading to complicated rock 

physics models (Das and Batzle 2010, Kato et al. 2010).  The model of Barker and Xue (2016) 

was used to map the saturation, temperature, and pressure changes into corresponding variations 

in elastic properties. The sensitivity of the seismic velocity variations as functions to gas and water 

saturations, pressure, and temperature are presented in Figure 3, showing the difficulty in 

interpreting velocity changes and hence seismic travel time and amplitude changes in terms of 

unique variations in saturation, pressure, and temperature within the reservoir.  This difficulty is 

compounded by the fact that this area of the Peace River field has undergone earlier production, 

including a previous pad-wide cyclic steam stimulation that started in 2001and lasted until the end 

of 2011.  The cyclic steam injection was followed by a brief implementation of a horizontal steam 

drive operation from 2012 to the end of 2013.  These earlier production efforts resulted in spatially-

varying temperatures, pressures, and saturations prior to the initiation of the top-down stream drive 

recovery process that ran from 2014 to the end of 2013, and the subsequent follow-up cyclic stream 

simulation on a single well pattern (31-08) that we shall analyze.  The extreme heterogeneity in 

the initial conditions of the reservoir is indicated by the seismic amplitude variations in a regional 

time-lapse survey (Figure 4) used to diagnose well problems during the cyclic stream stimulation, 

conducted in March 2009.  This legacy seismic reflection survey was conducted prior to the daily 

seismic monitoring that is the focus of our work.  In Figure 4 one can observed large amplitude 

anomalies, associated with the appearance of gas that was expelled from the volatized oil as the 

pressure was reduced around the production wells, denoted by the black lines in the figure.  Thus, 
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among other complexities, there are initial variations in gas saturation, temperature, and fluid 

pressures to contend with.  This fact necessitates making these initial conditions a part of the 

inverse problem.  That is, our inversion workflow will employ a global inversion approach as an 

initial step, in order to estimate the initial reservoir conditions and global properties. 

 

The Onset of a Time-Lapse Change and its Relationship to Reservoir Dynamics 

 

As noted above, the magnitudes of seismic velocity changes are influenced by the nature of the 

fluid distribution within the reservoir at length-scales that are less than the typical seismic 

wavelengths.  Therefore, it can be difficult to relate changes in the magnitude of seismic velocities 

to changes in fluid saturation, pressure, and temperature in a quantitative sense.  To overcome 

these problems, we use an onset time methodology to relate the time-lapse seismic data to the 

propagating fluid fronts.  We will describe this approach using the Peace River reservoir 

monitoring program as an illustration (Lopez et al. 2015, Przybysz-Jarnut et al. 2015, 2016).  A 

permanent seismic reservoir monitoring system was installed at the field consisting of 49 buried 

sources, in a rough grid with 200 to 220 m spacing, at a depth of 25 m (Figure 1).  The 1492 

receivers (hydrophones) are situated in a denser grid with 40 m spacing, in 20 m deep boreholes 

and packed in bentonite.  The sources consisted of a set of 37.6 s long single frequency sweeps 

from 0.4 to 216 Hz. The entire set of 540 sweeps took 6 hours to complete for a single survey. 

     A time-lapse monitoring program was applied to a top-down steam drive oil recovery process 

that began in 2014, in which six new horizontal steam injection wells were drilled and operated 

above existing production wells drilled for an earlier cyclic stream stimulation (Lopez et al. 2015, 

Przybysz-Jarnut et al. 2016).  The data are acquired in a continuous fashion and automatically 
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processed to generate four complete time-lapse data cubes every 24 hours (Lopez et al. 2015, 

Przybysz-Jarnut et al. 2016).  These four cubes are stacked to produce a single daily estimate.   A 

vertical time section through one such data cube is shown in Figure 5, along with a density log 

from a well that is intersected by the cross-section.  The pink curve is the top of the reservoir 

(Bluesky formation) while the blue line indicates the base (Debolt formation).  Small but visible 

travel time shifts, for reflections from layers at the bottom of the reservoir, are evident in the two 

snapshots plotted in Figure 6.  The reservoir appears to be thicker than the dominant wavelength 

of the seismic traces so tuning effects (Ghaderi and Landro 2009, Zhang and Castagna 2011), 

which occur when the top and bottom reflections from the reservoir interfere, are probably not an 

issue.   

 

The daily monitoring allowed for the systematic extraction of small travel time and amplitude 

changes for reservoir monitoring.  Travel time shifts were extracted from the migrated time-lapse 

cubes using a cross-correlation technique over a 120 ms window that extends beyond the bottom 

of the reservoir.  A triangular-weighting filter was applied to remove edge effects in the cross-

correlation estimates.  An example of the time shifts generated by the top-down stream drive, 

gathered between April 14, 2014 and March 30, 2015, are shown in Figure 7.  There are clear 

coherent anomalies within the area of interest, generally positive time shifts are co-located with 

the overlying steam injection wells, and a large negative time shift anomaly is associated with the 

production wells just south of the center of the well pad.  In addition to the time shifts, we also 

plot the time-lapse amplitude changes during this time interval.   Note the small amplitude 

decreases associated with the injection wells.  However, there are much larger amplitude increases 

that correlate with the large negative time shifts.  These amplitude increases, and the negative time 
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shifts, are thought to be due to water from the condensed steam replacing gas that had been 

generated during the earlier cyclic steam injection.  The areas containing this gas are indicated by 

amplitude anomalies in the legacy seismic survey from 2009 that is plotted in Figure 4.  The time 

shifts associated with water encroaching on this region of accumulated gas are plotted in Figure 8, 

where we note the major contributing factors to the travel time shifts: fluid substitution, 

temperature, and fluid pressure changes. 

 

The travel time shifts are sensitive to velocity changes and possibly deformation within the 

reservoir itself.  In the manner of seismic tomography, the time shifts of waves propagating through 

the reservoir are a sum of the changes within each grid block of the reservoir model. Thus, if we 

consider a restricted segment of a seismic wave, propagating from a reference point just above the 

reservoir to the base of the reservoir, and then reflecting from the base of the reservoir and 

returning to the reference point, the total travel time shift is given by 

𝑇(𝑥, 𝑦, 𝜏) − 𝑇[(𝑥, 𝑦)

= 1
𝐿g

𝑉Q(𝑥, 𝑦, 𝜏, 𝑛)g∈j(k,l)

− 1
𝐿g

𝑉[(𝑥, 𝑦, 𝑛)g∈j(k,l)

 

(10) 

where 𝐵(𝑥, 𝑦) denotes the indices of the grid blocks that are traversed by the seismic wave that is 

observed at location 𝑥, 𝑦 of the seismic array, 𝐿gis the propagation length within the specified grid 

block, and 𝑉Q(𝑥, 𝑦, 𝜏, 𝑛) is the seismic velocity within the grid block, 𝑉[(𝑥, 𝑦, 𝑛) is the baseline 

velocity.  For two surveys that are closely spaced in time we are assuming that the ray paths do 

not change significantly in equation (10).  As noted above, the velocity is time-dependent due to 

the changes in fluid saturation, pressure, and temperature induced by the injection and production.   
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For our analysis of onset times we shall focus on an even later re-development on the southern-

most portion of the production pad, where a single well set (31-08) underwent an additional cyclic 

steam stimulation (CSS).  In this process steam was injected for 82 days, allowed to soak in and 

heat up the viscous oil, and then pumped out along with the mobilized oil.  The normalized pressure 

response in the well, associated with one complete cycle which lasted for 175 days, is shown in 

Figure 9.  The seismic data is translated into transit time shift maps, expressing the travel time 

changes for the seismic waves that propagate across the reservoir between a chosen baseline survey 

(e.g. the start of the cycle) and subsequent monitor surveys. Over the stimulation cycle shown in 

Figure 9, a total of 175 time lapse seismic surveys were available for integration (Figure 10).  Note 

the temporal and spatial complexity of the time shifts around the two wells, as shown in Figure 10.  

The interpretation of the time shifts is based upon a rock physics model, using expressions (6), (9), 

and (10) for 𝑇(𝑥, 𝑦, 𝜏) given above, coupled with the relationship between the seismic velocity 

𝑉Q(𝑥, 𝑦, 𝜏, 𝑛)  and the changes in fluid saturation, pressure, and temperature provided by 

Gassmann’s equation and the other rock physics expressions from Barker and Xue (2016) noted 

above.   

As an illustration of the complex nature of the time shifts, consider the temporal variations in 

the size of the travel time shift at a location near the injection well 31-08 (Figure 11).  Initially 

during the first 5 days the travel time shift increases slightly, possibly due to early fluid pressure 

increases, but after 15 days the travel time shift at this location has approached zero and turned 

negative after 15 days decreasing further over time.  Such variations in sign are be expected, 

because saturation and pressure fronts propagate away from the injection well at substantially 

different velocities (Vasco 2011).  Thus, pressure induced velocity changes can arrive at a location 

much faster than saturation changes.  Similar considerations apply to thermal fronts which can 
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take even longer to move through a porous medium (Vasco 2010).  Such transient fluid fronts are 

usually aliased by conventional time-lapse surveys, that are most often taken years apart, but they 

can be reliably imaged by a daily monitoring program. The fact that the magnitudes of the recorded 

time shift data combine processes involving pressure change, thermal effects, and saturation 

variations, makes it extremely challenging to incorporate them directly into a history matching 

procedure.   For this reason, we utilize the onset time idea to integrate the seismic time shifts into 

a reservoir characterization scheme. 

 

The onset time is defined as the calendar time at which the travel time shift exceeds a chosen 

threshold value.  The first step is to define a threshold value that results in a meaningful definition 

of an onset time, as illustrated in Figure 11. This pre-defined threshold has two main roles: (1) to 

ensure that the magnitude of the seismic observation is above the background noise level (2) to 

define the physical process that is being tracked, which often decides the sign of the threshold 

value. Time-lapse seismic data are typically noisy due to non-repeatable environmental noise, 

source and sensor issues, and changes in near surface propagation due to variations in the water 

table or in the overlying water column. These variations lead to changes in the seismic 

characteristics even when there are no dynamic changes within the reservoir, thus we need a 

threshold value that distinguishes between the noise and a meaningful signal. Based upon the 

calculated signal-to-noise ratio for data from the array at Peace River, the threshold was defined 

as a time-shift decrease of 0.1 milli-seconds (Figure 11). To cross-validate the threshold value, we 

compared the signal with those from locations that are far from the well and where no changes are 

expected within the reservoir, as shown in Figure 12.  
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The use of onset times not only leads to a significant data reduction, collapsing the 175 daily 

time shift maps into a single spatial distribution of onset times, but has also been found to be less 

sensitive to the rock physics model used to interpret the seismic data (Vasco et al. 2014, 2015).  

As a demonstration of this, four different rock physics models were generated by linearly 

averaging the Reuss and Voigt estimates of the fluid modulus (Figures 2 and 3) to calculate the P-

wave velocity. The variations of four such models with water saturation (Sw) are shown in Figure 

3c, where we observe that the P-wave velocity is very sensitive to the method used to average the 

fluid moduli. In Figure 13, we plot the size of the time shift changes over the injection period (e.g. 

the first 82 surveys), calculated using the four models. In Figure 14 we generate the corresponding 

onset time maps for the four rock physics models.  There are no noticeable differences between 

the calculated onset times (Figure 14) for the different models and all models display areal 

propagation of changes, related in this particular case to steam/fluid propagation. The similarity of 

the onset times stands in sharp contrast to the patterns of the magnitude of the travel time shifts 

which are strongly influenced by the particular rock physics model used for the calculations 

(Figure 13). 

 

Inversion Strategy  

Due to the coupled nature of our inverse problem, involving both fluid flow and seismic wave 

propagation, and the complicated processes and initial conditions, we adopt a two-stage inversion 

procedure that is outlined by the flow chart in Figure 15.  Each step is illustrated by a panel in the 

figure.  In the first step we conduct a sensitivity analysis in order to find the most important factor 

influencing our observations.  A tornado diagram, such as the one in Figure 15, indicates those 

parameters that are the most influential by the length of each rectangle in the diagram.  Second, 
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we implement an efficient parameterization for both the initial conditions and properties that is 

based upon an eigenvalue decomposition of the grid Laplacian matrix.  Third, we determine both 

large-scale properties and initial conditions that are necessary for the fluid flow simulation and the 

calculation of the seismic time shifts using an evolution algorithm followed by a cluster analysis 

of the final population.  In the last step we adjust the individual grid-block permeabilities in the 

reservoir model using an efficient tomographic-like approach to match the onset times.  Because 

the focus of this paper is on matching the onset times, we discuss this step in some detail.  Our 

description of the first steps of the inversion procedure is rather brief, with more details provided 

in Appendix A and Appendix B.  Furthermore, an in-depth discussion of the inversion approach is 

also given in Hetz (2017) and in Hetz et al. (2017b). 

 

Initial Determination of the Global Parameters 

 

The coupled flow model contains a large number of parameters that need to be specified in order 

to conduct a numerical simulation.  Some properties will be more important than others in 

controlling the simulation results.  In order to discern those parameters that are to be included in 

the initial global inversion we conducted a sensitivity analysis as described in Hetz (2017).  For 

the sensitivity study, the objective function was defined as the summation of misfits in the onset 

time seismic response, ∆OT], and the BHP 

 
(11) 

By perturbing each parameter and examining the changes in the misfit we constructed a tornado 

diagram that indicates the relative importance of each major class of parameters in the misfit 

( ) ln OT ln BHP
Timestep

i i
i

f é ù= D + Dë ûåm
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functional.  Based on the sensitivity analysis we found that all of parameters have some influence 

on the objective function, but the completion interval is the most important parameter indicating 

the need to adjust the size of stimulated zone.   Other important parameters include the permeability 

and the initial gas saturation. 

In order to successfully simulate fluid flow and seismic wave propagation in the reservoir, we 

need to specify the initial state of the reservoir, including the pressure, temperature, and saturation 

fields, and the large-scale properties of the model.  A key element of this first step is a judicious 

representation of the fields in the initial model in order to maintain flexibility and prevent a 

proliferation of model parameters.  In Appendix A we discuss a representation in terms of the 

eigenvectors of the Laplacian of the simulation grid (Bhark et al. 2011).  That is, we represent the 

model 𝐱 as a linear combination of M Laplacian eigenvectors 𝐯𝒊 

𝐱 =1ϕ𝒊𝐯𝒊

𝑴

𝒊v𝟏

 
(12) 

 

where ϕ𝒊  are the weighting factors that are to be found in the inverse problem.  This 

parameterization has the advantage that it is tied to the fluid flow simulation grid, which may be 

quite irregular in order to represent a complicated geological model.  Furthermore, the 

representation provides a flexible parameterization that can describe a uniform model, a layered 

model, and a fully three-dimensional model, and all models in between these end-members.  The 

lowest order basis functions are constants for each layer, while the second set of functions are 

composed of linear variations within the given layer.  The higher order basis functions contain 

increasingly rapid spatial variations in properties.  The weighted summation of the first ten basis 

functions gives the fields of initial properties. 
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The updating scheme for the global parameters is described in Appendix B.  It is based upon 

the general notion of a set of Pareto optimal solutions (Lobato and Steffen 2017).  We adopt this 

approach in order to treat the inverse problem as a multi-objective optimization task.  That is, we 

are given two primary classes of observations, namely time-lapse seismic data and bottom hole 

pressure measurements, leading to two distinct misfit functions, given by (B1) and (B2) in 

Appendix B.  We wish to determine models that minimize the misfit to the 𝑁S observed onset times 

and 𝑁x bottom hole pressures given by 

𝑀𝑠
	 (𝐱) = z

1

𝑁𝑠
1(𝑂𝑇𝑖𝑜 − 𝑂𝑇𝑖𝑐)2
𝑁𝑠

𝑖=1

	 

(12a) 

and 

𝑀𝑏
	 (𝐱) = z

1

𝑁𝑏
1(𝐵𝑃𝑖𝑜 − 𝐵𝑃𝑖𝑐)2
𝑁𝑏

𝑖=1

	 

(12b) 

 

respectively.  To some degree the set of Pareto optimal solutions generalizes the notion of a trade-

off curve in geophysical linear inverse theory (Menke 2018).   In particular, Pareto optimal 

solutions cannot be improved with respect to a given objective function, such as the fit to the 

seismic onset times, without increasing the value of at least one of the other objective functions.  

As noted in Appendix B Pareto optimal solutions lie on the boundary of the set of feasible 

solutions, the Pareto front.    We generate the set of feasible solutions using a stochastic 

evolutionary technique, the genetic algorithm (Park et al. 2015).  In this approach we represent a 

model in terms of binary strings.  A randomly generated collection of models progressively evolves 

from one generation to another by mutation (random changes) and recombination (joining of 
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portions of the models).  The misfit functions 𝑀S
	 (𝐱) and 𝑀x

	 (𝐱) contribute to the definition of a 

fitness function that is used to select the models that are retained in the succeeding generation.  

The Pareto optimal solutions are defined with respect to the population of models in a generation.  

This set of solutions is further sub-divided into groups of solutions using a clustering algorithm 

[see Appendix B]. 

 

Local Updates of the Solution Clusters 

 

The second major step in the inversion algorithm involves adjusting the clusters of solutions 

through an iterative updating scheme.  The entire process takes place on a fine-scale reservoir 

model that may consist of tens of thousands to millions of grid blocks.  Therefore, efficiency is a 

paramount consideration.  To this end we adopt a semi-analytic, streamline-based technique for 

calculating model parameter sensitivities, first presented in Vasco et al. (2004).  The general idea, 

as it relates to the onset of changes in the time shifts, is that the injected fluids or transient pressure 

fronts propagate outward from the source well to various points within the reservoir.  For the cyclic 

steam stimulation associated with the wells in the pattern 31-08 in the Peace River field we will 

be concerned with injected steam, that may quickly condense into water, and associated pressure  

and temperature changes. 

     The changes in the elastic moduli resulting from the arriving fluid fronts lead to changes in the 

seismic waves propagating through the reservoir and alter the travel times of these waves.  In the 

absence of significant deformation, the onset of a change in the seismic travel time is directly 

related to the arrival time of the fluid front.  For a three-dimensional model we can compute 

trajectories from each grid block where the saturation has changed to a point on the injection well 
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by streamline simulation (Datta-Gupta and King 2007).  We can use time-of-flight methods to 

relate the arrival or onset time to reservoir properties along the flow paths or streamlines (Vasco 

et al. 1999, Vasco et al. 2005, Rey et al. 2012, Vasco and Datta-Gupta 2016, Watanabe et al. 2017).  

As an illustration, consider the movement of a thermal front due to the injection of steam or hot 

water along the streamline trajectories shown in Figure 16.  The travel time for the injected steam, 

after condensing to hot water, 𝜏(𝐫[, 𝑡),	from a point on the injector, 𝐫] to a location in the reservoir 

where we observe a change in a geophysical observation, 𝐫[ , is given by an integral along the flow 

path 

𝜏(𝐫[, 𝑡) = ∫ :
|𝐪�|

𝑑𝐫𝐫�
𝐫�

  (13) 

where 𝐪b(𝐫, 𝑡) is the velocity vector of the hot water at the leading edge of the coupled fluid front. 

This vector follows from the form of the flux vector in equation (4) and is given by 

𝐪b(𝐫, 𝑡) =
#
�
(𝜅𝐹b� ∇𝑃 − 𝐺b𝐳), (14) 

(Vasco and Datta-Gupta 2016) where  

𝐺b =
8��
��

8��
��

8��
��

9
8��
��

98����
 G𝜌b − 𝜌_J𝑔 

and z is a unit vector pointing in the downward direction.  The quantity 𝜅G𝑆b, 𝑆_, 𝑆[, 𝑃, 𝑇J is the 

total fluid mobility given by 

𝜅G𝑆b, 𝑆_, 𝑆[, 𝑃, 𝑇J =
#��
��

+ #��
��
+ #��

��
 ,  (15) 

that is usually considered to vary by formation but is most often taken as constant in a given 

formation.  Note that the total fluid mobility will depend upon the reservoir conditions, through its 
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dependence on the formation relative permeability curves and the fluid viscosities.  The function 

𝐹b� G𝑆b, 𝑆_, 𝑆[, 𝑃, 𝑇J is the derivative of the fraction flow curve for water 

𝐹bG𝑆b, 𝑆_, 𝑆[, 𝑃, 𝑇J =
8��
��

8��
��

9
8��
��

98����
    

(16) 

	(Peaceman 1977, Vasco and Datta-Gupta 2016) with respect to the water saturation 𝑆b, which is 

also a function of the reservoir conditions and usually specified for each formation or lithology.  

The velocity of the thermal front is also a function of the porosity 𝜙(𝐫)  and the absolute 

permeability 𝑘(𝐫).   Finally, the front propagation is controlled by the pressure field that is 

established during the injection.  As mentioned above, the transient behavior of the pressure field 

can be rapid in comparison to the propagation time of the saturation or thermal front.  Therefore, 

we shall assume that, after the pressure transients have decayed, the average fluid pressure is 

primarily a function of spatial position 𝐫 and will calculate it using a numerical reservoir simulator 

for a given initial or background reservoir model.   

       In each iterative step we seek local, or grid-block, updates to the permeability model that 

further refine the fits to the seismic onset times and the bottom hole pressure data.  In computing 

model parameter sensitivities, we fix the relative permeability functions and the capillary pressure 

curves for the formation, using values obtained from the initial geological data and the global 

update, as well as the initial saturation, pressure, and temperature conditions of the reservoir and 

the large-scale porosity and permeability variations.  The sensitivities, relating a perturbation in 

the permeability at a location in the reservoir to a deviation in the onset time are obtained from the 

path integral for saturation front travel time, 𝜏(𝐫[, 𝑡).  That is, substituting the perturbed absolute 

permeability 𝑘 = 𝑘[ + 𝛿𝑘 into the expression for 𝐪b(𝐫, 𝑡) and then into the integral gives 
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𝛿𝜏(𝒓[, 𝑡) = ∫ :
#�|𝒒�|

𝛿𝑘𝑑𝒓𝒓�
𝒓�

  (17) 

where 𝐪[signifies the fluid velocity in the background or current reservoir model.  The semi-

analytic expression for the sensitivity of the onset time is given by 

��
�#
= :

#�|𝐪�|
	   (18) 

 

and provides the basis for an efficient, tomographic approach to refining the local permeability 

model using onset times (Vasco et al. 2014, 2015).   

 

For each column of cells, the trajectory that represents the first arrival of the injected steam to a 

grid block in the column, is the path that determines the onset time for that location.  Figure 16 

shows the correlation between the time shift onset time and the saturation and the time-of-flight in 

days for a neutral tracer injected with the water.  This travel time is proportional to the propagation 

time of the injected water.  In order to map the time-of-flight of a neutral tracer to the travel time 

of the injected water we must multiply by the derivative of the fractional flow curve and the total 

mobility, as indicate above. The main purpose of Figure 16 is to illustrate the trajectories that are 

the basis for the semi-analytic sensitivities, given by equations (17) and (18), that for the basis for 

an efficient local inversion algorithm.  Using a reservoir model, we may discretize the integral for 

the perturbed onset time associated with trajectory of the l-th streamline, 𝜏\		,	into a sum over the 

segment in each grid block of the reservoir model traversed by the path: 

𝛿𝜏\ = ∑ :
#�|𝐪�|

𝛿𝑘]𝒊∈𝝉𝒍      (19) 
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The set of paths to each point in the model where we have estimated an onset time leads to a system 

of equations, 𝛿𝛕 = 𝐌𝛿𝐤,	that may be solved in a least squares sense.  That is, we minimize the 

sum of the squares of the residuals 

𝑅a = (𝛿𝛕 −𝐌𝛿𝐤)U ∙ (𝛿𝛕 −𝐌𝛿𝐤)  .  (20) 

The conditions for an extremum of 𝑅a, the vanishing of the gradient with respect to the model 

parameters leads to the system of equations       

𝑴U𝛿𝛕 = 𝑴𝑴U𝛿𝒌	  (21) 

that may be solved for 𝛿𝐤.  The system of equations could be ill-posed if there are effectively 

fewer equations than unknowns.  The usual remedy is to introduce additional regularization 

requirements, such as specifying that the magnitude of the model updates remains small if it is not 

constrained by the data, and, because the data cannot resolve small features, the spatial variations 

of the updates are often assumed to be smooth (Menke 2018).  Such considerations, encapsulated 

in quadratic penalty terms lead to an augmented system of equations, as discussed in Vasco and 

Datta-Gupta (2016, p. 212).  This matrix 𝑴 is sparse because each trajectory only intersect a small 

percentage of the grid blocks in the model.  Therefore, the system of equations (21) is solved using 

a least squares QR algorithm (LSQR) designed for large, sparse linear systems (Paige and Saunders 

1982).  In order to solve the nonlinear inverse problem, we iteratively update the model, adding 

perturbations and then recompute the residuals and quantities used in the linearized inversion, such 

as the saturation, pressure, and temperature fields.  After a sufficient number of iterative updates, 

the misfit tends to level off, and the algorithm is terminated.  In the section below, we illustrate 

the application of this approach to the data from the Peace River field. 
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APPLICATION TO TIME-LAPSE MONITORING AT PEACE RIVER 

 

The methodology was applied to the southernmost region of pad-31 in the Peace River field, 

focusing on well set 31-08, three wells (31-8E1, 31-8E2, and 31-8W1) forming a ‘tuning fork 

pattern’ shown at the bottom of Figure 4.  One positive feature of the area around pad-31 was that 

it lacked some of the vertical heterogeneity seen in other parts of the field.  In particular, it did not 

contain shale baffles that had complicated the vertical flow in many other areas of the Peace River 

field.   

Our analysis of the monitoring data from the Peace River field begins with the initial global history 

match in which we determine the initial, temperatures, pressures, and saturations as well as the 

large-scale variations in permeability and porosity.  The inversion is based upon the initial portion 

of the cyclic steam stimulation involving the injection of hot steam, the first 82 days of the cycle.  

We use observations from the final soak and flow back to the well for validation purposes, 

attempting to predict the bottom hole pressure during this process using the history matched 

models. The initial water and gas saturations, porosity and permeability were taken from a geologic 

model provided by the operator, and the initial temperatures were obtained by interpolating the 

observed tubing head temperatures at the beginning of the cycle.  The reservoir simulation model 

consisted of an irregular grid with 21 layers with variable boundaries.   

The model representation of the global properties is in terms of the eigenvectors of the grid 

Laplacian matrix, the adjacency-based parameterization described above.  A total of ten basis 

functions, eigenvectors of the Laplacian, were used in the representation of the porosity, 

permeability, initial water and gas saturations, and the initial temperature. The genetic algorithm 



Geophysical	Journal	International	 	 	 26	

used to approximate the Pareto front and to determine the initial set of global parameters for the 

first step of our inversion scheme ran over 30 generations with population of 150 members per 

generation.  The initial 150 models were generated stochastically by uniformly sampling from 

expected intervals of parameter values.  The values of the model misfit functions associated with 

the seismic onset times, 𝑀S(𝐱) , and the reservoir bottom hole pressure data, 𝑀x(𝐱) , are plotted 

in Figure 17a.  The initial scatter in the models, due to sampling randomly from the expected 

ranges of the parameters provides an indication of the variation in the two misfits expected in the 

model space for the range of all possible models.   After 30 generations the genetic algorithm has 

reduced the misfit to both the seismic onset time observations and the bottom hole pressure data 

significantly in comparison to the prior cloud of solutions.   The resulting suite of 150 models 

appear to define a tradeoff curve between the two misfit functions, the Pareto front.  An application 

of the K-means cluster analysis algorithm generates three clusters that are color-coded in Figure 

17b. 

	
 By applying a cluster analysis we further investigate the objective space.  In particular, Figure 

18 shows the updated onset time maps of selected models in cluster 1, cluster 2, and cluster 3, 

respectively. For all clusters, we observed some improvement from the initial onset time map 

calculated using the prior model.  The improvements in the match to the bottom hole pressure data 

are shown in Figure 19, where we plot the calculated values for 40 models.  One notable feature 

is the consistent pressure match during the soak validation interval, where we used the history 

matched models to predict the pressure behavior indicating that the models are able to adequately 

represent the saturation changes within the reservoir.  

By looking at the parameter changes after the global update, as shown in Figure 20, we can gain 

some insight on the different physical mechanisms that are associated with the clusters. For 
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example, we observe that cluster 1 contains the greatest permeability decrease around the well. 

Also, the water saturation at the base of the reservoir increase more in cluster 1 as compared to 

clusters 2 and 3. This can explain the over-estimation of the well pressure associated with cluster 

1 (Figure 19). Furthermore, the change in the temperature and gas saturation around the well in 

clusters 2 and 3 indicates different spatial flow patterns for these two models.  These differences 

are reflected in the onset time maps as an underestimation of the propagation time. 

       The next stage of the inversion workflow involves adjustments to the reservoir permeabilities 

on the fine-scale grid in order to match the onset time observations for the first 82 days of steam 

injection and the bottom hole pressure. We apply the iterative linearized inversion algorithm to 

three candidate models which were selected based upon the cluster analysis. In Figure 21 we plot 

the normalized misfit as a function of the number of iterations of the algorithm. The misfit is 

reduced to almost 30% of its original value.  Our iterative linearized algorithm is rather simple and 

uses a fixed step length for each iteration. The convergence is influenced by the weighting of the 

regularization and the characteristics of the linear solver that is applied at each step of the iteration.  

The updated onset time responses from the local step significantly improves the results due to the 

individual grid-block adjustments of reservoir flow properties. The changes made to permeability 

field, shown in Figure 22, reveal that models from both clusters share common characteristics with 

similar large-scale increases and decreases. These updates imply that the stimulated zones are 

located mostly around the vertical part of the well. Figure 23 displays the improvement in the 

pressure match and prediction as a result of the local updates for both clusters.  Most notably, after 

the local update the excess pressures associated with first cluster from the global update are 

reduced to values much closer to the observed pressures (Figure 23a). 
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  The final reservoir model produced by the inversion methodology is not only a useful tool for 

better matching the observations, but also gives additional insight into the state of the reservoir 

during the cyclic steaming operation. Figure 24, a plot the water saturation changes over the 

injection period, shows that the distribution of water is much less dispersed in the final clusters 

than it is in the initial model. The final models also help us to identify steam override during 

production, a common phenomenon in steam injection processes. The reason for this phenomenon 

is that mobility of displaced fluid is much lower than that of the displacing fluid (steam). Due to 

the differences in density between steam and the oil and water, steam override occurs. Figure 25 

shows the water saturation along the streamlines over the injection period.  At the beginning of the 

cycle (Figure25a) the steam starts moving upward as soon as it is injected inside the model. This 

movement is captured by the onset time map. The gravity override phenomenon becomes less 

severe over time, as the fluid starts to move downward at later times (Figure 25b). Overall our 

hierarchical history matching approach significantly reduces the misfit associated with the time-

varying seismic and pressure data, and provides an improved representation of reservoir sweep 

through the identification of limits on the distribution of water and the detection of steam override. 

 

DISCUSSION 

The use of onset times should be viewed as the first step in the construction of a detailed 

reservoir model, whereby flow properties are obtained from geophysical time-lapse data.  Because 

onset times are chiefly sensitive to the flow properties of a reservoir or aquifer, and much less 

sensitivity to the parameters of the rock physics model, they are well suited for estimating 

hydraulic conductivity or permeability.  Furthermore, the onset times are related to the travel times 
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of fluid fronts, which have a quasi-linear relationship to properties such as hydraulic conductivity 

(He et al. 2006).  As a result, inversions of onset times for properties such as permeability are much 

less sensitive to the initial or starting model, and less prone to become trapped in a local minimum, 

similar to seismic travel time tomographic imaging.  The next step would be to use the magnitudes 

of the time shifts and reflection amplitudes to further refine the model and to estimate the 

poroelastic properties of the rock physics model.  The final step would be to combine all of the 

data to construct the final reservoir model. 

Like most surface seismic monitoring efforts our study was hampered by issues related to 

vertical resolution, due to the averaging of seismic waves and their dominantly vertical 

propagation.  It may be possible to improve the resolution by including broadband data, larger 

offsets, and utilizing the full seismic waveform.  Another option would be to use the pre-stack data 

directly for a tomographic estimation of the time shifts or the velocity changes.  These 

enhancements should be topics for future research, as should be development of automated 

systems for seismic monitoring such as the continuous active seismic source monitoring system 

(Ajo-Franklin et al. 2011, Vasco et al. 2014). Such systems augment existing permanent arrays for 

monitoring reservoirs that exist in various fields around the world.  While daily monitoring was 

possible at the Peace River field, the onset time approach is applicable to surveys that are separated 

by much longer intervals, such as yearly repeats (Vasco et al. 2015).  
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CONCLUSION 

This study demonstrates the advantages of onset times, the recorded times at which a set 

of time-lapse geophysical data begin to deviate from their initial or background values, for high 

resolution reservoir characterization.  A synthetic test shows that, in comparison to seismic time 

shift magnitudes, the onset times are insensitive to the details of the rock physics model used to 

relate the state of the reservoir to the seismic moduli.  The methodology allows for the compression 

of multiple seismic surveys into a single map of onset times, that are directly related to fluid front 

propagation times. The compression of the frequent seismic surveys into a single set of onsets 

assists in the development of an efficient globally-convergent stochastic inversion technique, in 

this case the genetic algorithm.   

 

The Peace River field case treated here displays all of the complexity that one encounters 

in enhanced oil recovery, including temperature and pressure variations, saturation changes, and 

complicated reservoir initial conditions.  Using a hierarchical workflow, we were able to construct 

a set of initial models satisfying both the onset times and the well pressure data.  The Pareto surface 

defines a set of feasible solutions, generalizing the concept of a trade-off curve used in linear 

inverse problems.  Using local model updates, where the flow properties were adjusted on a cell-

by-cell basis, the algorithm was able to improve upon the global stochastic solution.  The final set 

of reservoir models not only match the data used in the inversion, they also successfully predict 

well pressure data set aside for validation.   Finally, the reservoir models provide insight into the 

processes operating in the reservoir during the cyclic steaming operation.  In particular, the models 

predict a much sharper water/steam front and reveal steam override due to the influence of gravity. 
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Finally, the estimates of the initial conditions and local permeabilities, allowed us to construct an 

improved injectivity profile along the horizontal well, which is crucial for further development 

considerations.   
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Appendix A: Model Representation 

 

Because the inversion approach contains what we are calling global and local model updates, 

essentially large-scale and fine-scale spatial variations of in the properties of the model, we need 

a flexible model representation that allows for a seamless transition between spatial scales.  In this 

Appendix we briefly describe one such parameterization, as we will incorporate it into our two 

stage inversion scheme.  We shall define the grid by its set of vertices V and edges E, characterizing 

it by a graph G=(V,E).  The N vertices, V={1,2,…,N}, represent the center of the grid cells at which 

the reservoir properties are defined.  The edges E represent connections between vertices and one 

can specify the set of edges using an adjacency matrix 𝑎]�, where the non-zero entries denote a 

connection between vertices 𝑣]and 𝑣�.  Specifically, the entries of the 𝑁 ×𝑁	grid adjacency matrix 

A are given by 

𝑎],� = ¡1	(𝑖, 𝑗) ∈ 𝐸0	(𝑖, 𝑗) ∉ 𝐸 (A1) 

because we are only considering unweighted connections between vertices.  Jafarpour and 

McLaughlin (2009) showed that a low dimensional approximation may be given by the lowest 

frequency Fourier components.  In order to extend this approach to an irregular mesh we make use 

of the association, first noted by Taubin (1995), between the discrete Fourier transform of a 

function and the decomposition of the function into a linear combination of the eigenvectors of the 

Laplacian of the grid.  The grid Laplacian is a discrete second-order differencing operator given 

by 
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𝐋]� = §
𝑑]		𝑖 = 𝑗

−1		(𝑖, 𝑗) ∈ 𝐸
0		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(A2) 

where 𝑑]is the degree of the i-th vertex 

𝑑] =1𝑎]�

g

�v:

 
(A3) 

a measure of the number of edges connected to the vertex.  The Laplacian provides a measure of 

the connectivity of the grid and for many commonly encountered boundary conditions the discrete 

operator is a positive semi-definite, symmetric matrix (Bhark et al. 2011).  Given these properties 

we may use the spectral theorem to construct an eigen-decomposition of the Laplacian matrix 

𝐋 = 𝐕𝚲𝐕­ =1𝜆]𝐯]

7

]v:

𝐯]® 
(A4) 

where the vectors 𝐯] are pairwise orthogonal unit eigenvectors.  The eigenvalues 𝜆] are the modal 

frequencies associated with the Laplacian eigenvectors, a direct consequence of the equivalence 

between the Laplacian eigenvectors and the basis set of the discrete Fourier transform (Taubin 

1995).    Here, we will represent the model 𝐱 as a linear combination of basis vectors that consist 

of the Laplacian eigenvectors 

𝐱 =1ϕ¯𝐯𝒊

𝑴

𝒊v𝟏

 
(A5) 

where M is small for a large-scale global specification of properties and equal to N for a full-scale 

representation of the model. This representation is referred to as an adjacency-based 

transformation or parameterization.  The low frequencies, or small values of M, can be used to 

represent the global properties of the model, such as a uniform layer velocity, while the highest 

frequencies account for much more rapid local variations in properties.  By changing the value of 

M used in our representation we can switch between inversions for local and global properties. 
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Appendix B: Determination of the Global Parameters 

 

In this Appendix we describe our approach for determining the global properties of the model, 

including the initial saturations, pressure, and temperature of the reservoir, as well as the large-

scale porosity and permeability values at the beginning of the stimulation cycle.  As a first step, a 

sensitivity analysis is conducted in order to identify the parameters to be considered in the global 

updating scheme.  A description of that effort is presented in Hetz et al. (2017) and Hetz (2017) 

and will not be repeated here.  We consider the calibration or inversion procedure to be a multi-

objective optimization problem. There are two classes of observations, geophysical measurements 

and hydrological or reservoir engineering data, that need to be matched.  Each set may be used to 

generate a misfit functional by considering the sum of the square of the residuals.  That is, we 

consider the collection of onset times constructed from the seismic time lapse observations, giving 

the misfit functional associated with the reservoir model 𝐱 

𝑀S
	 (𝐱) = ° :

7±
∑ (𝑂𝑇][ − 𝑂𝑇]²)a
7±
]v:   (B1) 

measuring the difference between the observed onset time 𝑂𝑇][ and the calculated onset time 𝑂𝑇]², 

and the bottom hole pressure measurements 

𝑀x
	 (𝐱) = ° :

7³
∑ (𝐵𝑃][ − 𝐵𝑃]²)a
7³
]v:   (B2) 

where 𝐵𝑃][	 are the observed bottom hole pressure and 𝐵𝑃]²  are the calculated bottom hole 

pressures for the i-th observation point.  We can linearly combine the misfit functionals to produce 

a composite measure of sum of the squared residuals.  However, it can be a challenge to correctly 

weight the two classes of data in order to produce a meaningful model. The conventional approach 
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in geophysics is to construct a trade-off curve through a series of inversions, and to pick a point 

that balances the fits to each data class (Menke 2018).  While this technique is useful linear inverse 

problems, it can encounter difficulties for nonlinear inverse problems, such as our inversion for 

reservoir properties.   

One alternative to the minimization of a composite misfit is to consider multi-objective 

optimization techniques characterizing the trade-off between different objective functions.  A 

general approach is provided by the notion of Pareto optimal solutions (Lobato and Steffen 2017).  

These are solutions that cannot be improved with respect to any particular objective function 

without degrading at least one of the other objective functions.  To describe such solutions, 

consider a multi-objective optimization problem formulated as the minimization of a vector of m 

objective functions 

 

min
𝐱∈𝐗

	𝐌(𝐱) = [𝑀:(𝐱),𝑀a(𝐱),… ,𝑀º(𝐱)]       (B3) 

where 𝐗 is the set of feasible solutions.  One may also characterize Pareto optimal models using 

the notion of solution dominance.  A feasible solution 𝐱:  is said to Pareto dominate another 

feasible solution 𝐱a if 

𝑀](𝐱:) ≤ 𝑀](𝐱a)          (B4) 

for all indices 𝑖 ∈ {1,2,… ,𝑚} and 

𝑀�(𝐱:) < 𝑀�(𝐱a)          (B5) 

for at least one index	𝑗 ∈ {1,2, … ,𝑚}.  A solution is called Pareto optimal if there does not exist 

another solution that dominates it.  The set of optimal solutions constitutes the Pareto front or 

boundary and characterize the trade-off between the various objective functions.   
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A class of stochastically driven techniques, known as evolutionary algorithms, provide an a means 

of generating a Pareto front (Deb 2001).  The genetic algorithm, perhaps the most widely used of 

these techniques, was motivated by an analogy with biological evolution.  In particular, an initial 

set of models is constructed using a random number generator.  The parameters describing each 

model are converted to binary strings, the full description of each model is referred to as a genome 

or chromosome.  The family of models is successively updated by recombination and mutation.  

Recombination involves taking selected pairs of individuals and forming new members by 

randomly combining various segments from the two models.  The new model will thus be a hybrid 

model with characteristics of both parent models.  In addition, the process of mutation introduces 

random changes into the genomes of some subset of the new models.  The evolution of the 

population of models is governed by a fitness function of the form exp	[−𝑓(𝐱])] where 𝑓(𝐱]) is 

the objective function.  That is, the probability of selecting a particular model to take part in the 

construction of the next generation is given by a function of the general form 

𝑃(𝐱g) =
ÅÆÇ	[ÈW(𝐱É)]
∑ ÅÆÇ	[ÈW(𝐱�)]�

         (B6) 

once a new generation of models is produced it is used in the next iteration of the algorithm.  The 

process is repeated until the overall fitness of the population reaches a satisfactory level of some 

maximum number of generations has been produced.   

 

One issue associated with this approach is that it can fail to adequately define non-convex Pareto 

fronts such as those associated with non-linear inverse problems. We use a stochastically driven 

technique to address this problem by:  

i) Assigning fitness to population members based on non-dominated sorting and ranking.  
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ii)  Preserving diversity among solutions on the same front by examining the distance 

between solutions (Deb et al. 2002).  The models are first sorted according to their 

dominance rank (Figure 10).  

 That is, solutions that are not dominated by any other models with respect to the given objective 

functions, those lying on or closest to the Pareto front are considered Rank 1 or belonging to Front 

1.  A model of Rank 2, or lying in Front 2, is only dominated by those of Rank 1 and no others.  

Generally, a model in Front k+1: (1) Should be dominated by at least one model in Front k; (2) 

May or may not dominate solutions in Front k+2 (Park et al. 2013).   

Rather than use the expression 𝑃(𝐱g) given above, the fitness is equal to the rank of the model.  If 

two models have equal rank than the model with the larger crowding distance [𝑐𝑑𝑖𝑠𝑡] in Figure 

B1] is selected to take part in the construction of the next generation through cross-over and 

mutation.   

Finally, the distance between solutions is used to define clusters of solutions that share similar 

characteristics.  This is accomplished using a standard approach, the K-means clustering algorithm 

(James et al. 2017, p. 386).  We start by assuming that the solutions may be grouped in some 

number, say K, of clusters.  This number may change as we try to find the optimal set of clusters.  

The main goal is to partition the dataset into internally homogeneous and externally distinct 

groups. The idea is to minimize the within-cluster different between solutions, 𝑊(𝐶#), usually 

defined by the sum of the square of the distance between each solution in cluster k.   

𝑊(𝐶#) =
:
|Ë8|

∑ |𝐱] − 𝐱#ÌÌÌ|a]∈Ë8    (B7) 

where 𝐱#ÌÌÌ is the cluster centroid and |𝐶#|  denotes the number of solutions in cluster k.  The 

approach is initialized by randomly assigning solutions to one of the clusters and computing the 

centroid of the K clusters.  Then the following steps are repeated until the within-cluster distances 
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and cluster assignments stop changing: (1) Reassign the observations to the centroid which lies 

closest to that solution (2) After the reassignment, recompute the cluster centroids.  This approach 

is guaranteed to decrease the measure of total within-cluster distances 

𝑊U[UT\ = ∑ 𝑊(𝐶#)#   (B8) 

as explained in James et al. (2017, p. 402).  The clusters provide an initial set of solutions which 

we can update in order to match the seismic onset times and bottom hole pressure observations, as 

described next. 
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Figures: 
 
 

 
 
 
 
Figure 1. (Top) Map showing the location of the Peace River field in Alberta Canada.  The location of Pad 
31 is indicated by the schematic diagram on the right, along with other well pads.  The area of the map on 
the right is 9500m by 8000m.   (Bottom) Pad	31	horizontal	production	wells	(red)	and	injection	wells	
(blue).			The	area	covered	by	the	production	wells	is	1.5	km	by	1.5	km	in	the	north-south	and	east-
west	directions,	respectively.			Also	shown	are	seismic	sources	(green	squares)	and	receivers	(blue	
dots).	Pad	31	first	underwent	cyclic	steam	stimulation	(CSS)	in	2001	and	then	top-down	steam	drive	
using	the	configuration	of	wells	shown	in	this	figure,	and	is	the	focus	of	this	study.		Map modified from 
Shell Canada (2016). 
.	
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3. GENERAL SETTING 

The workflow will be demonstrated using the “Pad F60” proxy model in the Carmon Creek 
(Peace River) area.  This chapter will present the background information for this area and the 
“Pad F60” proxy model. 

3.1. Location 

The Peace River oil deposits were discovered in 1951 in North-western Alberta.  Shell Canada 
has lease holdings of 142 square miles (100% Shell share) with an estimated 6-11 billion bbl of 
heavy oil of 9-10 API.  First production started in 1979, and a number of production methods 
employing steam injection have been tested to date in several pads.  The area of study in this 
report is the “Pad F60” location in the Carmon Creek area (Figure 3). 

 

Figure 3: Left: Location of Peace River oil sands in Alberta (Canada).  Right: Zoomed area 
(9500 m x 8000 m), in which well configurations of different pads are displayed. 
The location of “Pad F60” is displayed in purple (from [11]). 

3.2. Geology 

During the Lower Cretaceous, siliciclastic sediments were deposited in a foreland basin 
throughout most of Alberta.  Within the Peace River study area these deposits are known as the 
Bluesky formation.  These form the developed reservoir units in Carmon Creek.  On average, the 
Bluesky is 20 m thick.  The reservoir overlies an unconformity with Paleozoic carbonates and 
shales of the Rundle Group: the Debolt carbonates are part of this group.  The reservoir top seal 
is formed by the Wilrich Shale, which often contains thin coal seams of up to several meters in 

SR.16.12214 - 71 - Restricted 

 

 
Figure 4.1: Acquisition geometry. The N-S injectors are indicated with blue lines, the red E-W 

lines are the producers.   

 

4.2. Data Processing and Loading 
The Seismovie data were processed by CGG, using methods that evolved over almost a year into a rather simple but 
effective workflow, described in their report contained in Appendix 8. The raw data were constant frequency sweeps 
that were correlated to produce conventional seismic data. The daily migrated stacks were transmitted to Shell and 
loaded into an nDi project. Included in the project were seismic data (RFC) and calculated timeshift and amplitude 
attributes, available as volumes and maps. Some processing tests, including surface consistent filtering, were applied by 
Shell due to software availability. This workflow was similar in design to that used in conventional marine projects 
although here the project contained many more vintages, requiring the use of a 4D project in nDI. 
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Figure	2.		Compressional	wave	velocity	as	a	function	of	water	saturation,	based	upon	the	Reuss,	Hill,	
and	Voigt	composite	moduli.	
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Figure	3.			Sensitivity	of	the	rock	physics	model.	(a)	Velocity	of	a	compressional	wave	as	a	function	of	
pressure	for	different	gas	saturation	where	temperature	and	water	saturation	are	fixed.	(b)	Velocity	of	
a	compressional	wave	as	a	 function	of	 temperature	for	different	gas	saturation	where	pressure	and	
water	saturation	are	fixed.		The	vertical	black	line	denotes	a	transition	temperature	from	one	equation-
of-state	to	another.	 	At	temperatures	less	than	48	degrees	the	model	depends	upon	a	correlation,	as	
discussed	 in	 Barker	 and	 Xue	 (2016).	 	 (c)	 Velocity	 of	 a	 compressional	 wave	 as	 a	 function	 of	 the	
saturations.	 All	 velocity	 estimates	 are	 computed	 by	 Gassmann’s	 approach	 but	 using	 four	 different	
methods	for	calculating	the	composite	fluid	bulk	modulus 
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Figure	4.		Seismic	root-mean-squared	(RMS)	amplitudes	gathered	in	March	2009	after	earlier	cyclic	
steam	operation	at	Peace	River.		Warm	colors	(red/yellow/green)	represent	high	RMS	amplitudes	due	
to	thermal	stimulation,	likely	due	to	the	appearance	of	gas	after	pressure	was	reduced	due	to	
production.		The	producing	wells	associated	with	the	current	top-down	steam	drive	are	indicated	by	
black	lines	and	covers	a	1.5	by	1.5	km	area.		The	thickened	portions	of	the	black	lines	indicate	where	
the	well	is	thought	to	be	open.		Cyclic	steam	stimulation	at	this	pad	began	in	2001	and	was	followed	by	
top-down	steam	drive	in	2014.		Figure	modified	from	Lopez	et	al.	(2015).	
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Figure 2.8: 2009 seismic reservoir amplitude map where warm colors indicate large amplitudes 

generated by production operations, specifically gas out of solution during the 
production cycle. CSS wells are shown as thin black lines. Thick black outlines mark 
sections of wellbores that are believed to be intact and functional.  

 

2.2.3.2. CSS Cycle History 
The first CSS cycle commence in October 2001 [9]. Since then the pad has undergone six full CSS 
cycles over the 12-year period. The complete injection and production history of the pad during CSS 
is shown in Figure 2.9. 
 

 
Figure 2.9: Injection/production history during CSS cycles. 
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Figure	5.	East-west	time	section	through	the	three-dimensional	seismic	cube.		The	vertical	scale	show	
the	two-way	travel	time	in	milli-seconds.		The	horizontal	scale	indicates	the	track	number.		The	
spacing	between	tracks	is	10	meters.		The	yellow	line	denotes	the	top	of	the	Wilrich	formation.		The	
pink	curve	denotes	the	top	of	the	reservoir	(top	of	the	Bluesky	formation).		The	blue	curve	is	the	base	of	
the	reservoir	(top	of	the	Debolt	formation).		The	vertical	black	curve	indicates	the	density	variation	as	
measured	by	a	log	from	a	well	that	intersects	the	time	section.		The	top	and	base	of	the	reservoir	are	
clearly	delineated	by	abrupt	changes	in	density.		The	total	length	of	this	line	is	1.57	km.		Reprinted	with	
permission	from	Shell	Canada	(2016).	
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Figure 4.15: SeisMovie contains significant and self-consistent 4D information (traverse is shown 

in Figure 4.14 in Yellow). Top reservoir is picked on a soft event and base on a hard, 
representing transition of porous sand to harder rocks. In both images, baseline 
event picks are plotted. Top reservoir timeshifts are small or not present while base 
reservoir shows timeshifts of 1-2 ms. Amplitude changes appear to be roughly 
consistent with timeshifts (low velocity in reservoir corresponds to larger amplitude). 

 
While the 4D data on the east side of the pad are of excellent quality, the data on the west side are 
not. Figure 4.16 shows a measurement of overburden RRR, with acquisition dates differing by a 
selected fixed number of days, averaging over all combinations. RRR appears to grow strongly with 
the date difference between vintages (as seen in Subsection 4.2.1.3), and this growth might be caused 
by receiver coupling variations or near-surface changes that impact the repeatability of ghosts and 
multiples. There also source variations seen in the display, the largest indicated by the yellow arrow 
in Figure 4.16. At an 8 month time difference, the east side of the map appears to be better repeated 
(< 0.15) than the west side (> 0.3). 
 

November 18, 2014 August 25, 2014

top

base

Figure	6.		Two	east-west	cross-sections	through	the	time-lapse	seismic	monitoring	data.		As	in	Figure	5,	the	
numbers	at	the	top	of	the	plot	are	track	number,	spaced	10	meters	apart.		Coherent	time	shifts	and	
amplitude	changes	are	visible	for	reflections	at	and	below	the	base	of	the	reservoir.		The	top	and	base	of	the	
reservoir	correspond	to	the	pink	and	blue	lines	in	Figure	5.		The	red	values	and	purple	values	are	the	
minimum	and	maximum	values	that	lie	in	the	range	1-2	ms.			Reprinted	with	permission	from	Shell	Canada	
(2016).	
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Figure 4.2: Attribute maps to show the impact of additional tau-p filtering to remove multiples 

and converted waves. The base survey is April 14, 2014; the monitor survey is March 
30, 2015. The top row shows time shift and amplitude changes without elimination of 
low-velocity noise (such as multiples) and the bottom row shows these attributes 
including low-velocity noise elimination. The differences are minute, indicating that 
the low-velocity noise has in this case no impact on the attributes. 

 
CGG spent a large effort on deghosting as there is evidence of seasonal variations in the ghosts. For 
the source deghosting only five migrated source positions with two levels each can be used with all 
receiver stations as input to the migration; for the receiver deghosting 49 receiver locations can be 
used with four levels each, but the number of contributing sources to the migration is limited. It 
turned out that the number of source arrays was too small to get conclusive results for the receiver 
deghosting. The source deghosting looked more promising, but the results on time-lapse attributes 
time shift and amplitude change were ambiguous: in some areas an apparent improvement was 
observed, in other areas there was a suspect impact on the time lapse signal. The area most affected 
by varying ghosts is the SW part of the Pad, while the central area did not seem affected, shown in 
Figure 4.3.  

Figure	7.		(Left)	Time	shifts	for	a	base	survey	on	April	14,	2014	and	a	monitor	survey	on	March	30,	2015.		
The	time-shifts	are	extracted	using	a	cross-correlation	technique	over	a	120	ms	window.		The	pattern	of	
travel	time	shifts	are	associated	with	changes	due	to	the	top-down	stream	drive.		The	time	shift	scale	is	
in	milli-seconds.		(Right)	Amplitude	changes	for	the	same	baseline	and	monitor	surveys.			The	amplitude	
changes	are	in	percent.		The	vertical	and	horizontal	axes	are	to	the	same	scale.		Reprinted	with	
permission	from	Shell	International	(Shell	Canada	2016).	

	

	



Geophysical	Journal	International	 	 	 51	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

Increasing in the time shift generated 
by an increase in pressure, 
temperature or gas saturation.

Decreasing in the time shift 
can be related to the water 
breakthrough. 

Time Shift Map at 8/8/15

Speed up

Slow down

Figure	8.		Interpretation	of	time-shift	anomalies	due	to	enhanced	oil	production	at	the	Peace	River	field.		The	area	shown	
covers	the	same	region	as	that	of	Figure	7.		The	black	triangle	denotes	the	location	of	the	set	of	wells	(31-08)	analyzed	in	
this	study.		This	map	shows	the	cumulative	time	shifts	since	the	start	of	top-down	injection	until	August	2015.		The	north-
south	trends	of	positive	time	shifts,	indicating	slow	down,	are	due	to	the	increase	in	pressure	and	temperature	associated	
with	the	overlying	stream	injectors.		The	blue	anomaly	indicating	speed	up	is	thought	to	be	due	to	water	breakthrough	
and	filling	the	area	containing	gas,	seen	in	Figure	4.	
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Figure	9.		Normalized	bottom	hole	pressure	variation	during	a	steam	injection	and	production	cycle	
that	was	conduct	at	the	isolated	well	pattern	31-08	at	the	southern	edge	of	pad	31.		The	production	
in	this	figure	extends	from	August	2015	until	mid-January	2016.			The	peak	pressure	attained	in	the	
area	was	7.5	MPa	and	the	minimum	pressure	was	slightly	below	2.5	MPa.	
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Figure	10.		Seismic	observations	associated	with	the	isolated	cyclic	steam	stimulation	that	was	conducted	in	well	
pattern	31-08,	the	lowermost	‘tuning	fork’	pattern	in	each	panel.		A	total	of	18	time-shift	maps	are	shown,	out	of	
the	175	available	for	integration.		The	color	bar	indicates	the	time	shifts	(TS)	in	milli-seconds. 
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Figure	11.		Conversion	of	multiple	attribute	maps	(time	shifts)	to	onset	time	map.	(a)	A	sample	of	7	of	the	175	
attribute	maps	that	are	available	for	integration.	(b)	A	plot	of	the	seismic	response	of	a	specific	cell	(labeled	as	
black	dot)	to	indicate	the	onset	time.	(c)	Map	obtained	after	converting	from	observed		travel	time	shifts	to	
estimates	of	onset	time.	The	color	contours	display	the	front	progression	over	time. 
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Figure	12.		Validation	of	the	defined	threshold	value.	(a)	Top	view	of	the	cross-correlation	time	shift	
map	at	the	end	of	the	cycle.	The	black	squares	show	the	sampled	area.	(b)	Time	shift	plot	of	200	
samples	over	the	cycle	for	15	points	within	the	two	validation	rectangles.				
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Figure	13.		Time	shift	changes	after	82	days	of	steam	injection,	calculated	using	four	models	created	by	
a	linear	combination	of	Reuss	and	Voigt	averages.		The	specific	combinations	are	denoted	in	the	panel	
titles.	
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Figure	14.		Onset	time	maps,	calculated	using	the	four	models	constructed	by	linear	combinations	of	
Reuss	and	Voigt	averages. 
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Figure	15.		Flow	chart	of	the	entire	inversion	process. 
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Figure	16.		Streamline	trajectories	color	coded	by	the	time-of-flight	(TOF)	along	the	path.		The	time-of-
flight	is	the	travel	time	for	a	neutral	tracer	and	is	proportional	to	the	travel	time	of	the	injected	water.		In	
order	 to	 calculate	 the	 true	 travel	 time	 of	 the	water	 front	we	must	multiply	 by	 the	 derivative	 of	 the	
fractional	 flow	 curve	and	 the	 total	mobility.	 	 The	 onset	 times	 of	 changes	 in	 the	 time	 shifts	 for	waves	
propagating	through	the	reservoir,	in	days	since	the	start	of	injection,	are	plotted	in	the	plane	above	the	
streamlines.	
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Figure 17. (a)	The	seismic	and	bottom	hole	pressure	misfits	for	150	randomly	generated	initial	models.		(b)	
Models	resulting	from	an	application	of	the	genetic	algorithm	that	has	been	modified	to	define	the	Pareto	
front.		The	models	are	color	coded	to	indicate	clusters	sharing	similar	characteristics.	
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Cluster 1 Cluster 2 Cluster 3

a. b. c.

Figure	18.	 	Onset	time	maps	for	example	members	of	each	cluster.	(a)	Onset	time	map	from	a	member	of	
cluster	1,	(b)	Onset	time	map	from	an	element	of	cluster	2,	(c)	Onset	time	map	from	a	solution	in	cluster	3.		
The	color	scale	is	corresponds	to	the	color	bar	in	Figure	16.	
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Figure 19.  Pressure	response	for	40	models	from	the	final	generation	of	the	global	update	(colored	solid	
lines).		The	initial	model	is	indicated	by	the	dashed	pink	line	and	the	measured	pressures	by	the	black	
dots.	
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Figure	20.	 	The	change	 in	 the	updated	parameters	after	 the	global	 step	 for	a	 selected	model	 in	each	
cluster.	
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Figure	21.		Seismic	data	misfit	as	a	function	of	the	number	of	iterations	of	the	inversion	algorithm.	
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Figure	22.		Permeability	model	change	(final-prior)	for	a	selected	model.	(a)	model	from	cluster	1,	and	
(b)	model	from	cluster	2	
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Figure	23.		The	BHP	response	of	well	31-08	over	the	CSS	cycle	after	the	local	updates	for	a	selected	model.	(a)		
Cluster	1,	and	(b)	cluster	2	
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Figure	24.		Water	saturation	change	over	the	injection	cycle	for	the	initial	and	the	updated	models.	The	
transparent	cells	in	the	updated	models	represent	the	water	saturation	changes	observed	in	the	initial	
model.	(a)	Water	saturation	changes	after	45	days.	(b)	Water	saturation	changes	after	85	days.	
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Figure	25.		Cross-sectional	view	of	the	water	saturation	along	the	streamlines	over	the	injection	interval.	
(a)	Water	saturation	along	the	streamlines	after	5	days,	and	(b)	water	saturation	along	the	streamlines	
after	80	days. 
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Figure	B1.	 	 	 Illustration	of	 the	ranking	of	models	 (left	panel)	and	 the	crowding	distance	 for	 the	 i-th	
solution,	𝑐𝑑𝑖𝑠𝑡] 	(right	panel).	
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