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ARTICLE OPEN

Microbial predictors of healing and short-term effect
of debridement on the microbiome of chronic wounds
Samuel Verbanic 1, Yuning Shen 2, Juhee Lee3, John M. Deacon 4 and Irene A. Chen 1,2,5✉

Chronic wounds represent a large and growing disease burden. Infection and biofilm formation are two of the leading
impediments of wound healing, suggesting an important role for the microbiome of these wounds. Debridement is a common and
effective treatment for chronic wounds. We analyzed the bacterial content of the wound surface from 20 outpatients with chronic
wounds before and immediately after debridement, as well as healthy skin. Given the large variation observed among different
wounds, we introduce a Bayesian statistical method that models patient-to-patient variability and identify several genera that were
significantly enriched in wounds vs. healthy skin. We found no difference between the microbiome of the original wound surface
and that exposed by a single episode of sharp debridement, suggesting that this debridement did not directly alter the wound
microbiome. However, we found that aerobes and especially facultative anaerobes were significantly associated with wounds that
did not heal within 6 months. The facultative anaerobic genus Enterobacter was significantly associated with lack of healing. The
results suggest that an abundance of facultative anaerobes is a negative prognostic factor in the chronic wound microbiome,
possibly due to the increased robustness of such communities to different metabolic environments.

npj Biofilms and Microbiomes            (2020) 6:21 ; https://doi.org/10.1038/s41522-020-0130-5

INTRODUCTION
Chronic wounds are wounds that fail to exhibit reasonable healing
progress within an expected time frame (e.g., 3–6 weeks)1,2. It is
estimated that in the U.S. alone, over 6.5 million people are
affected, costing the healthcare system at least $25 billion
annually3. Although the burden of chronic wounds is often
overlooked or obscured by overall burden of the primary
disease1,2, these wounds have a notable impact on quality of life,
reducing mobility, and inducing chronic pain. Older patients with
established diseases, particularly diabetes, obesity, venous insuffi-
ciency, peripheral artery disease, and immobility, are at highest
risk of developing chronic wounds3. As these risk factors increase
in prevalence, the economic and human costs of chronic wounds
are expected to grow.
One of the leading impediments to healing of chronic wounds

is infection and associated pathological inflammation4. Although
chronic wounds are not always infected, they may be colonized by
a distinct microbiome that could lead to infection or impact
wound healing. While traditional, culture-dependent studies are
now acknowledged to be unable to provide an extended view of
diversity, more recent culture-independent studies over the past
decade have established that wounds harbour diverse microbiota,
with the primary constituents being Staphylococcus spp., Pseudo-
monas spp., Corynebacterium spp., Streptococcus spp., Anaerococ-
cus spp., and Enterococcus spp., along with numerous low-
abundance taxa5–7. While chronic wounds are polymicrobial, they
have lower diversity than healthy skin8. Substantial inter-patient
variability exists in the microbiome, which cannot be explained by
age, race, sex, or wound etiology5,9, and therefore statistical
models that can account for inter-patient variability are desirable
for modeling the chronic wound microbiome. Despite significant
past work5–27, additional studies on the wound microbiome are
needed to understand its contribution, if any, to the

pathophysiology of chronic wounds. Here, we investigate how a
single episode of sharp debridement affects the wound micro-
biome, as well as which constituents of the wound microbiome
might correlate with healing.
A second leading impediment to wound healing is biofilm

formation4,28. One of the most common and widely effective
chronic wound treatments is debridement, a standard-of-care
procedure whose goal is physical disruption and removal of
biofilms and necrotic or devitalized tissue29,30. Besides stimulating
reepithelialization and cell migration, debridement can reduce
microbial load29,30. However, relatively little is known about how
debridement influences the composition of the microbial com-
munity of the wound. Previous work has found that microbiota
isolated from debrided tissue and wound swabs are similar
though not an exact match8. A recent longitudinal diabetic foot
ulcer study found that, after 2 weeks, debridement had
significantly decreased the relative abundance of anaerobes, but
only in the wounds that healed within 12 weeks7. To determine
whether this response occurred immediately vs. developed over
the 2-week interval, we swabbed chronic wounds immediately
after sharp debridement in the same clinic visit and compared the
microbial communities before and after debridement, including a
comparison of the abundance of individual taxa.
An important focus of study for the chronic wound microbiome

is the identification of correlations of the microbiome to healing
outcomes. For example, Loesche et al.6 determined that temporal
instability of communities, particularly the transition between
several distinct community types, is associated with positive
healing outcomes. Understanding which organisms are beneficial
or detrimental could be important for evaluating prognosis or
probiotic interventions. However, no specific taxa or metabolic
types have yet been reported to be predictive of healing
outcomes. We studied whether the presence of taxa with different

1Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, USA. 2Department of Chemistry and Biochemistry, University of California, Santa
Barbara, CA, USA. 3Department of Statistics, University of California, Santa Cruz, CA, USA. 4Goleta Valley Cottage Hospital, Ridley-Tree Center for Wound Management, Santa
Barbara, CA, USA. 5Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA. ✉email: ireneachen@ucla.edu

www.nature.com/npjbiofilms

Published in partnership with Nanyang Technological University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-020-0130-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-020-0130-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-020-0130-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-020-0130-5&domain=pdf
http://orcid.org/0000-0002-6835-6690
http://orcid.org/0000-0002-6835-6690
http://orcid.org/0000-0002-6835-6690
http://orcid.org/0000-0002-6835-6690
http://orcid.org/0000-0002-6835-6690
http://orcid.org/0000-0001-7253-6531
http://orcid.org/0000-0001-7253-6531
http://orcid.org/0000-0001-7253-6531
http://orcid.org/0000-0001-7253-6531
http://orcid.org/0000-0001-7253-6531
http://orcid.org/0000-0002-9428-6745
http://orcid.org/0000-0002-9428-6745
http://orcid.org/0000-0002-9428-6745
http://orcid.org/0000-0002-9428-6745
http://orcid.org/0000-0002-9428-6745
http://orcid.org/0000-0001-6040-7927
http://orcid.org/0000-0001-6040-7927
http://orcid.org/0000-0001-6040-7927
http://orcid.org/0000-0001-6040-7927
http://orcid.org/0000-0001-6040-7927
https://doi.org/10.1038/s41522-020-0130-5
mailto:ireneachen@ucla.edu
www.nature.com/npjbiofilms


oxygen requirements (aerobes, anaerobes, and facultative anae-
robes) or specific taxa predicted healing outcomes 6 months after
wound sampling.
In the present study, wound swabs were obtained from 20

patients presenting at a wound clinic, with 5 patients from each of
four common chronic wound etiologies (diabetic, venous, arterial,
and pressure ulcers). Swab samples were collected from chronic
wounds before and after a single, sharp debridement event, along
with a skin swab sample from a control site (e.g., the contralateral
limb). Microbial communities were characterized by Illumina
sequencing of the V1–V3 loops of 16S rRNA genes. Data were
analyzed by ecological diversity metrics and differential abun-
dance analysis with DESeq231, a popular differential abundance
method, and a Bayesian generalized linear mixed regression
model (BGLMM) with patient-specific factors to account for inter-
patient variabilities32. Our analysis of debridement indicates that
the newly exposed wound surface has minimal microbial
difference from the old wound surface, and we identify bacterial
taxa associated with healing outcomes. The implications of these
findings on our understanding of the pathophysiology of chronic
wounds is discussed.

RESULTS
Bacterial composition of skin and chronic wound microbiomes
Patient and wound characteristics are summarized in Table 1. A
total of 18,128,419 paired-end sequencing reads were obtained
from Illumina sequencing, with 14,025,888 reads assigned in
demultiplexing. On average, there were 203,273 reads in each
sample (minimum= 15,476 reads, maximum= 729,495 reads,
median= 172,250 reads). Quality control analysis indicated
sufficient sampling of the microbiome in all but one sample,
which was excluded from analysis (Supplementary Fig. 1).
We first verified that our results on the skin and wound

microbiomes of the patients were consistent with previous
findings7,20. Sequenced 16S rRNA genes were clustered into
operational taxonomic units (OTUs) using the open OTU picking

method in QIIME33, with taxonomy assigned using the SILVA128
database34 (see Supplementary Fig. 1 for quality metrics). The
accuracy of microbial community recapitulation was confirmed by
analysis of a cell-based mock community. All expected members
of the mock community were detected, but some deviations from
the expected composition were observed (Supplementary Fig. 2).
In particular, a relative decrease of Gram-positive organisms
compared to Gram-negative organisms suggests that incomplete
lysis may cause relative under-representation of Gram-positive
organisms in the samples. Negative control samples were
analyzed to identify potential contaminants (Supplementary Table
1). Compositional data were obtained (i.e., relative abundance
within each sample) and absolute abundance was not measured
specifically. However, we noted that the absolute concentration of
DNA extracted from negative control samples was undetectable
by a Qubit assay but that nearly all skin and wound samples (59/
60) resulted in detectable DNA35, indicating that absolute
abundances are generally higher in skin and wound samples
compared to the negative controls. The four most abundant phyla
detected on average across both skin and wound samples were
Firmicutes, Proteobacteria, Actinobacteria, and Bacteroides (Supple-
mentary Fig. 2). On skin, the most abundant genera were, in
decreasing order, Staphylococcus, Corynebacteria, Propionibacteria,
Pseudomonas, Micrococcus, Enhydrobacter, and Kocuria (Fig. 1).
Although these data were not ideal for giving species-level
resolution, due to the important role of Staphylococcus species in
skin infections, Staphylococcus OTUs were further tentatively
assigned to species based on alignment of the V1–V3 loops. Skin
samples contained diverse communities of Staphylococcus species,
with S. hominis and S. capitis the most abundant members on
average. In wound samples (both pre- and post-debridement),
Staphylococcus was also the most abundant genus, and Coryne-
bacteria and Pseudomonas were also major constituents. Other
major constituents of the wound samples included Proteus,
Enterobacter, Campylobacter, Porphyromonas, Streptococcus, Bac-
teroides, and Anaerococcus (Fig. 1). Similar to skin samples, wound
samples contained diverse Staphylococcus species, including S.

Table 1. Patient and wound characteristics.

Patient # Wound type Healing
outcome

Wound size
(sq. cm)

Level of
debridement

Instrument # Previous
debridements

Days since last
debridement

1 Diabetic Healed 1 Dermis Curette 0 0

2 Diabetic Unhealed 0.5 Dermis Curette 12 14

3 Diabetic Healed 3.57 Dermis Curette 5 8

4 Diabetic Unhealed 68.7 Subcutaneous Curette 6 7

5 Diabetic Unhealed 3.6 Subcutaneous Curette 7 10

6 Venous Unhealed 2.07 Dermis Curette 33 7

7 Venous Unhealed 30 Dermis Curette 1 7

8 Venous Healed 11.6 Dermis Curette 4 9

9 Venous Healed 445 Dermis Curette 2 7

10 Venous Healed 10 Subcutaneous Curette 3 9

11 Arterial Healed 0.2 Dermis Curette 6 9

12 Arterial Unhealed 307.84 Dermis Curette 18 7

13 Arterial Unhealed 5.92 Dermis Curette 13 7

14 Arterial Healed 6.4 Subcutaneous Curette 13 7

15 Arterial Unhealed 10.85 Dermis Curette 2 7

16 Pressure Healed 0.2 Subcutaneous Tissue Nipper 3 12

17 Pressure Unhealed 8.88 Dermis Curette 20 7

18 Pressure Healed 0.9 Dermis Curette 19 6

19 Pressure Unhealed 4.62 Subcutaneous Scalpel 4 7

20 Pressure Unhealed 1.35 Dermis Curette 3 7
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capitis, though Staphylococcus aureus was the most abundant on
average.
These results confirm earlier findings5–7,36 and verify the

reliability of our samples. See Supplementary Figs. 3 and 4 and
Supplementary Note 1 for more details.

Differences in abundance of individual bacterial taxa in skin vs.
chronic wound microbiomes
The individual taxa overrepresented in skin or wounds are of
interest for identifying potential keystone species or biomarkers of
the healthy vs. diseased state. Several taxa appear to differ in
abundance between skin and wounds (Fig. 1, Supplementary Fig.
5). To determine the significance of such observations, we used
DESeq2 and BGLMM to identify statistically significant associations
of individual OTUs with wounds (pre-debridement) or skin.
DESeq2 estimates the confidence interval of the log fold-change
in abundance of each OTU between skin and wound samples,
assuming count data follow a negative binomial distribution with
dispersion estimated by combining data across OTUs31. Analyzing
a filtered OTU table (OTUs present in >5 samples with >10 counts;
Supplementary Fig. 1) using DESeq2, 97 out of 462 OTUs had
significant differential abundance between skin and wounds
(adjusted p value < 0.05). Of these, 25 OTUs were enriched in
wounds and 72 were enriched on skin. We focus on “abundant”
OTUs having average relative abundance >0.1% (11/25 of OTUs
enriched in wounds and 32/72 of OTUs enriched in skin) (Fig. 2).
To corroborate the DESeq2 analysis, we applied the Bayesian
model BGLMM and used posterior credible intervals to identify
significant associations. We validated BGLMM using simulations
(Supplementary Note 2). Applied to our data, BGLMM recapitu-
lated the observed OTU counts reasonably well (Spearman’s
correlation coefficient > 0.75; Supplementary Fig. 6). BGLMM
found 54 OTUs with significant associations (i.e., 95% credible
intervals not including zero), with 50 being enriched in pre-

debridement samples (22 being abundant) and only 4 being
enriched in skin samples (3 being abundant) (Fig. 2).
Despite some discrepancies between the two models, several

abundant OTUs were identified by both analyses. For example,
both models identified S. aureus, Proteus, Enterobacter, Helcococ-
cus, and Pseudomonas genera as strongly enriched in wound (pre-
debridement) samples, and Paracoccus, Micrococcus, and Kocuria
as significantly enriched in skin samples. Compared to the
qualitative description (Fig. 1), we validated that some OTUs from
highly abundant genera (>1% relative abundance) that appeared
to be exclusive to either wound or skin samples indeed were
statistically significantly associated with either wound or skin. In
particular, Proteus, Enterobacter, and Helcococcus were both
exclusive to and significantly enriched in wound samples, while
Kocuria and Micrococcus were both exclusive to and significantly
enriched in skin samples. These associations and the variability
among patients can be visually validated in the accompanying
heat map (Fig. 2). In both models, significant OTUs comprise
roughly half of the total abundance across the samples
(Supplementary Fig. 7).

Minimal changes to the chronic wound microbiome immediately
after debridement
The pre- and post-debridement wound microbiome samples were
found to have similar diversity (Supplementary Fig. 3), and visual
inspection of the community composition (Fig. 1b) suggests a
high degree of similarity before and after debridement. However,
the average unweighted UniFrac distance between pre- and post-
debridement samples was substantial (0.42 ± 0.09) (Supplemen-
tary Fig. 4), although the average weighted UniFrac distance
(0.086 ± 0.059) was much smaller (Supplementary Fig. 4). This
pattern indicates that the major taxa are largely unchanged by
debridement, but that there may be changes to the low-
abundance taxa. This feature can be observed in the ordination

Fig. 1 Taxonomic composition of skin and wound samples. a Average relative abundance of genera within each sample type (only genera
with average relative abundance >1% are shown). Staphylococcus taxa are labeled at the species level. Gradient color scale is for visualization
purposes only. b Relative abundance of genera in each sample (bar graph limited to the 20 most abundant taxa overall; “NA” indicates OTUs
without taxonomic classification; Staphylococcus taxa are labeled at the species level).
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analysis (Supplementary Fig. 4), in which the pre- and post-
debridement samples from each patient appear to cluster with
each other in the weighted UniFrac and Bray-Curtis ordinations
but not in the unweighted UniFrac ordination.
To better understand the difference between pre- and post-

debridement samples, we identified the OTUs in each patient that
were unique to either the pre- or post-debridement communities
vs. present in both. On average, a similar number of OTUs were
found to be unique to pre-debridement samples (13.8 ± 11.4) or
unique to post-debridement samples (12.0 ± 5.3), while 19.4 ± 9.3
OTUs were shared between the two (Fig. 3a). Consistent with the
UniFrac metrics, OTUs unique to either pre- or post-debridement

samples constituted a small proportion of overall composition
(2.04 ± 5.52% and 1.17 ± 3.66% on average, respectively) while
shared OTUs accounted for the vast majority (98.4 ± 4.64%) of the
sample composition on average (Fig. 3b).
To determine whether individual OTUs were affected by

debridement, regardless of uniqueness, we used DESeq2 and
BGLMM to identify which OTUs were significantly associated with
pre- or post-debridement samples (Fig. 3c). For OTUs with >0.1%
relative abundance, Kocuria (strict aerobes and facultative anae-
robes) and Sphingopyxis (strict aerobes) may be enriched in pre-
debridement samples while the Comamonadaceae family may be
enriched in post-debridement samples. However, each association

Fig. 2 Association of abundant OTUs with pre-debridement wound samples or skin samples, inferred by DESeq2 or BGLMM. OTUs (with
average relative abundance > 0.1%) found to be significant (criteria described in Methods) in at least one of the models with enrichment in
wound samples (red) or enrichment in skin samples (blue). OTUs found to be not significantly enriched in that model are shown as gray. For
DESeq2, the log2 fold-change in variance-stabilized abundance is shown with error bars indicating the estimated 95% confidence interval
(1.96× standard error, n= 19). For BGLMM, the median of estimated βj1 (pre-debridement effect for OTU j, see Methods for details) with 95%
credible interval error bars are reported (n= 19). The heatmap shows the log10 (relative abundance in wound minus relative abundance in
skin) of each OTU of each patient for a visual comparison. OTUs are labeled by their genus name or lowest available taxonomy assignment if
applicable; otherwise, the original OTU label from QIIME open OTU picking is used. Note that multiple OTUs may belong to the same genus.
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was detected by only one method, limiting overall confidence in
these inferences.
Since debridement was previously noted to affect anaerobes in

particular after 2 weeks7, we further characterized the oxygen
requirements of the OTUs unique to pre- or post-debridement

samples that also had an average relative abundance greater than
0.1%. Note that post-debridement samples in this study were
taken in the same clinic visit as pre-debridement samples, i.e.,
immediately after debridement. OTUs unique to pre-debridement
samples, included ten aerobes (0.99% average relative

Fig. 3 Comparison of pre- and post-debridement samples. Pre- and post-debridement samples have similar numbers of exclusive OTUs (a);
lower and upper bounds of the boxes correspond to the first and third quartiles, center lines indicate the median, and whiskers extend up to
1.5× interquartile range; any points beyond the whiskers are outliers. Shared OTUs account for a large majority of microbiota (b). c Analysis of
statistically significant enrichment of individual taxa in pre- vs. post-debridement samples by DESeq2 and BGLMM; OTUs are sorted by
descending average relative abundance. Note that Sphingopyxis was only found to be abundant in patient 15. d Coarse-grained differential
abundance analysis of aerobes, anaerobes, and facultative anaerobes using DESeq2 shows no significant difference immediately after
debridement. “Mixed” indicates taxa that were not annotated due to: low relative abundance (<0.1% on average), no taxonomic annotation,
or ambiguous oxygen requirements. For all BGLMM and DESeq2 inferences, error bars indicate 95% confidence interval, or 1.96× standard
error, respectively, and n= 19.
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Fig. 4 Comparison of healed and nonhealing wounds. Average relative abundance of taxa classified by oxygen requirements (anaerobic (a),
aerobic (b), and facultative anaerobes (c)) suggests facultative anaerobes may be predictive of healing outcome. Plots were filtered to show
taxa with >0.5% average relative abundance within each sample type and outcome. Cumulative relative abundance of aerobes, anaerobes,
facultative anaerobes, and unassigned taxa in wound samples that did or did not heal (d). Healed wounds are ordered by estimated wound
age when known; unhealed wounds are ordered by treatment time up to the point of medical record data collection. Differential abundance
analysis of healing outcomes for taxa with different oxygen requirements using DESeq2 indicated substantial enrichment of facultative
anaerobes in nonhealing wounds (e). Error bars indicate estimated 95% confidence interval (1.96× standard error, n= 19). Taxonomic
associations (OTU with average relative abundance > 0.1%) identified by BGLMM or DESeq2 with healed or unhealed wounds, comparing pre-
debridement or post-debridement samples from each outcome, indicates significant enrichment of Enterobacter in nonhealing wounds (f).
Error bars indicate 95% confidence intervals for BGLMM inference (n= 19) and estimated 95% confidence interval (1.96× standard error, n=
19) for DESeq2.
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abundance), six anaerobes (0.44% average relative abundance),
and five facultative anaerobes (0.37% average relative abun-
dance). OTUs unique to post-debridement samples contained
seven aerobes (0.39% average relative abundance), two anaerobes
(0.28% average relative abundance), and two facultative anae-
robes (0.55% average relative abundance). Although the number
of taxa unique to pre- or post-debridement samples was small, the
findings suggested a slight decrease of anaerobes post-
debridement. To further probe whether anaerobes were immedi-
ately depleted by debridement, we grouped OTUs into the
following four categories according to oxygen requirements:
aerobes, anaerobes, facultative anaerobes, and taxa containing a
mixture of these. None of these types showed a statistically
significant difference between pre- and post-debridement sam-
ples using DESeq2 (Fig. 3d). Together these findings suggest that
debridement by itself does not lead to an immediate alteration in
the oxygen-requirement types comprising the wound micro-
biome, and changes, if any, to the taxonomic composition are
likely to be small.

Healing and nonhealing wounds exhibit similar immediate
response to debridement
Chronic wounds were categorized into two groups based on
whether the wounds had healed by 6 months after sampling
(when medical record abstraction occurred for consented
patients). Eight wounds fell in the “healed” category and 12 in
the “non-healing” category. The age of the unhealed wounds was
therefore known to be >6 months. Wound age was estimated
using the time of first presentation as a proxy for the start of the
wound. For healed wounds, wound age was known for 4 out of 8
patients; of those, 2 healed in <12 weeks of treatment and 2
healed after 6–9 months. A previous study found that chronic
wounds that healed within 12 weeks, but not wounds that did not
heal within 12 weeks, showed a significant drop in Shannon
diversity 2 weeks after debridement7. In our samples, no
significant change in bacterial diversity of the pre- and
immediately post-debridement wound swabs was observed for
either healing outcome (Supplementary Fig. 8), suggesting that
the previously observed drop in diversity reflects a gradual shift in
the microbiome of healing wounds. Similarly, the microbiomes of
healing and non-healing wounds did not differ in UniFrac
distances to skin, indicating that the microbiomes of healing
wounds did not exhibit a statistically significant overall similarity
to the skin microbiome at this time point, compared to non-
healing wounds (Supplementary Fig. 7).
The previous study7 also indicated that debridement appeared

to decrease the abundance of anaerobes, as assessed 2 weeks
post-debridement, in wounds that healed within 12 weeks, but
not in wounds that did not heal in that time frame. It was
therefore of interest to determine whether this differential
response in anaerobes could be seen immediately after debride-
ment. Following grouping into types of oxygen requirement
(aerobes, anaerobes, and facultative anaerobes), small but
qualitatively similar trends were observed here. In wounds that
healed, debridement caused a small decrease in the average
relative abundance of anaerobes, from 16.1 ± 24.1% pre-
debridement to 13.6 ± 18.8% immediately post-debridement
(Fig. 4a), and a small increase in the average relative abundance
of aerobes, from 61.5 ± 25.9% pre-debridement to 66.6 ± 21.4%
immediately post-debridement (Fig. 4b). Unhealed wounds
showed a slight increase in anaerobes and little change in
aerobes from debridement (Fig. 4a, b). Debridement also caused
little change in the relative abundance of facultative anaerobes
(Fig. 4c). The small differences in response to debridement for the
different oxygen-requirement types (anaerobes, aerobes, and
facultative anaerobes) were not statistically significant for both
healed and unhealed wounds (Supplementary Fig. 9), supporting

the idea that differences previously observed develop gradually
over the days after debridement.

Differential abundance of facultative anaerobes in healed vs.
unhealed wounds
Although debridement did not appear to differentially affect the
composition of oxygen-requirement types in healed vs. unhealed
wounds among our samples, a large contrast was seen when
comparing the relative abundance of facultative anaerobes in
healed vs. unhealed wound samples (pre- or post-debridement). In
unhealed wounds, the average relative abundance of facultative
anaerobes was 20.8 ± 29.7%, compared to 5.32 ± 7.21% in healed
wounds (Fig. 4c). This difference was not statistically significant
using a two-sided Wilcoxon rank-sum test, indicating that there
was no significant qualitative bias of facultative anaerobes in
healed vs. unhealed samples. However, this nonparametric test is
insensitive to the magnitude of the differences, i.e., heavy
enrichment for facultative anaerobes may be associated with
poor healing while mild enrichment has little effect. Examination
of the data suggested a high variation in the abundance of
facultative anaerobes among patients, especially those with
unhealed wounds (Fig. 4d). Indeed, the frequency distribution of
facultative anaerobes was found to differ significantly between
healed and unhealed wounds (Kolmogorov–Smirnov test: p=
1.5 × 10−4), and the variance in these distributions significantly
differed from each other (Bartlett’s test: p= 1.0 × 10−6;
Fligner–Killeen test: p= 0.01). We therefore analyzed the differ-
ential abundance of taxa having different oxygen requirements
using DESeq2’s variance-stabilizing transformation, which can
better account for heteroscedasticity of abundance across
samples. Using DESeq2, we found that aerobes and especially
facultative anaerobes are significantly more abundant in wounds
that did not heal, while anaerobes are more abundant in wounds
that did heal (Fig. 4e).
To identify which specific OTUs were associated with healing

outcomes, we applied DESeq2 and BGLMM method to compare
the wound (pre- and post-debridement) samples of healed vs.
unhealed wounds. Overall, most associations of individual OTUs
with healing status were not consistently identified by both
methods, likely due to the small sample size and diversity of
wound colonization among patients. One result found by both
methods is that Enterobacter, a facultative anaerobe, is associated
with nonhealing (Fig. 4f). We also applied DESeq2 to identify skin
OTUs associated with healing outcomes. Only one OTU, Coryne-
bacterium, was significantly associated with healed wounds; none
were associated with unhealed wounds (Supplementary Fig. 10).

DISCUSSION
We enrolled 20 patients with chronic wounds to characterize the
microbial composition of the wound surface exposed by a single,
sharp debridement event and assess whether microbial taxa could
be predictive of clinical outcomes. While outcomes are certainly
influenced by multiple host factors and other clinical factors, we
focused on whether microbial taxa were associated with out-
comes. Taxonomy summaries and diversity metrics of skin and
wound microbiomes were consistent with previous reports5–7,36.
We applied a novel Bayesian generalized linear mixed model, in
addition to DESeq2, to statistically assess associations of individual
OTUs with specific sample types (Supplementary Note 3).
BGLMM and DESeq2 agreed on the identification of several taxa

that were strongly enriched in wound samples compared to skin.
In line with prior assessments of skin and chronic wounds5–7,36,
the common skin commensals Micrococcus, Paracoccus, and
Kocuria were significantly associated with skin using both
methods, and DESeq2 further identified a number of Corynebac-
terium and Staphylococcus OTUs (S. hominis, S. haemolyticus, and S.
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cohnii) associated with skin. The known pathogens and wound
colonizers S. aureus, S. capitis, Proteus, Enterobacter, Helcococcus,
and Pseudomonas were significantly associated with wounds by
both methods. Notably, Staphylococcus OTUs were associated with
both skin and wounds, and species-level associations were only
resolved after reannotation of those OTUs using tools outside of
the standard QIIME pipeline and SILVA128 database. This draw-
back highlights the utility of higher resolution 16S analysis
methods and annotation, such as “amplicon sequence variant”
approaches37, or shotgun metagenomics. This has been demon-
strated in a recent study showing strain- and species-specific
effects in the wound microbiome7. Nonetheless, the agreement
between DESeq2 and BGLMM on these results increases
confidence in the associations identified here, and may prompt
further testing of associations found by only one method.
The practice of wound debridement is based on expected

impacts on both host physiology and wound microbiota. We
swabbed wound surfaces before and then immediately after a
single, sharp debridement event in an outpatient clinic. No
significant difference in the microbiome composition was
detected, either in abundance of OTUs or in abundance of taxa
grouped by oxygen requirement (aerobe, anaerobe, facultative
anaerobe, and mixed/other/NA). Therefore, we infer that the prior
finding of anaerobe depletion at 2 weeks post-debridement
results from a gradual shift over days. It should be noted that the
small size of this study limits its power to detect small community
changes. In addition, Levine’s technique can sample exudate from
deep tissue38, so swabbing itself may disguise small differences in
the wound before and after debridement. Nevertheless, the
finding that the composition of the wound surface microbiome
immediately exposed by sharp debridement is not significantly
different from the pre-debridement wound suggests that the roles
of host-associated factors, such as moderation of inflammation, as
well as total microbial bioburden, warrant further study. Further-
more, these findings support the principle that debridement
should be utilized frequently and aggressively to be most
effective39.
Wounds were followed up to ~6 months after sampling,

enabling patients to be grouped by healing vs. nonhealing
outcome after 6 months. In this study, the outcome reflects time
since sampling rather than true wound age. The “healed” outcome
therefore includes both wounds with age <6 months as well as
those with age >6 months that originated before the time of
sample collection and healed before patient data were collected.
“Unhealed” wounds all had age >6 months. While 12 weeks after
initial presentation has been used in other microbiome studies6,7

as the assessment time point to distinguish healed from unhealed
wounds, 12 weeks was not a practical distinction in our study, in
which few wounds healed within that time frame.
When comparing the microbiomes (pre-debridement) of healed

vs. unhealed wounds, a notable finding was the over-
representation of facultative anaerobes as a group in the
microbiome of nonhealing wounds. In contrast, healed wounds
appeared to be enriched for anaerobes. It is tempting to speculate
that infections in which strict anaerobes play a key role are more
easily cleared as the wound heals and the oxygen level increases
in the tissue40, disfavoring anaerobic organisms. On the other
hand, infections in which facultative anaerobes play a key role,
however, would be more tolerant to the changing conditions of a
healing wound and may thus persist. This interpretation has
implications for our understanding of treatments based on
increasing the oxygen tension in the wound (e.g., hyperbaric
oxygen41), for which conflicting literature exists with regard to
efficacy30. In particular, the presence of pathogenic facultative
anaerobes may render the wound refractory to oxygen therapies,
suggesting that oxygen therapies should be targeted against
wounds with low levels of facultative anaerobes. Another
intriguing possiility is that facultative anaerobes may better

tolerate the substantial oxygen gradients within the biofilm itself,
causing persistence of the biofilm, as recent studies indicate that
variable oxygen tension is a dominant stress in the high-density
environment of the biofilm42,43. In that case, the association of
facultative anaerobes with nonhealing would be a consequence of
the selective environment within the biofilm. Alternatively, the
association of facultative anaerobes with nonhealing may reflect a
correlation to a different feature that causes poor healing. For
example, the facultative anaerobe metabolism may be an
incidental trait in organisms that are particularly problematic in
chronic wounds for other reasons. Aside from the mechanism,
higher levels of facultative anaerobes may still be useful as
prognostic markers of more resilient communities that inhibit
healing. Further experimental studies would be needed to probe
the influence of facultative anaerobes suggested here.
Taxonomic associations with wound healing are of special

interest, as they may point toward species that, in combination
with other host-related and clinical factors, promote or delay
healing or which may act as biomarkers of healing status. The
analyses of individual taxa by both DESeq2 and BGLMM revealed
that the genus Enterobacter, a facultative anaerobe, was asso-
ciated with non-healing status. In addition, we did not observe
Enterobacter in normal skin from the patients in this study, i.e.,
Enterobacter was exclusive to wounds. While Enterobacter has
been reported in chronic wounds9,12, its potential role has been
understudied relative to the more abundant Staphylococcus and
Pseudomonas taxa. Interestingly, Enterobacter species are a
common causative organism of acute infections; in one study,
Enterobacter was found to be a negative prognostic indicator for
surgical site infections developed after neurosurgery44. We
suggest that further attention to the possible role of Enterobacter
in chronic wounds is warranted.
Other taxonomic associations with healing outcomes were

detected by only one method, likely due to the small sample size
and natural heterogeneity of wounds among patients. BGLMM
analysis indicated that healed wounds were positively associated
with Brevundimonas. DESeq2 appeared to be more sensitive to
associations in general, with healed wounds positively associated
with Anaerococcus, Peptoniphilus, Corynebacterium, and Serratia.
DESeq2 also identified healing to be negatively associated with
Enterococcus, Staphylococcus, Pseudomonas, and Proteus. The
facultative anaerobe Proteus is an intriguing candidate, because,
like Enterobacter, its overall abundance in nonhealing wounds is
relatively high (e.g., Supplementary Fig. 8). In addition, a single
Corynebacterium OTU from skin samples was positively associated
with healing. The less robust findings represent hypotheses that
may be further tested in larger studies. The results also validate
BGLMM as a novel statistical model complementary to DESeq2 for
future association studies.
This work is constrained by several limitations. The power of this

study to identify correlations (or associations) was limited by its
small cohort size (20 patients), such that only associations of
relatively large effect would be detected. Larger cohorts will be
important to test the findings, particularly correlations discovered
by the only one statistical method. Within patients, sampling was
limited to one swab pre- and one swab post-debridement per
wound, both due to the possibility of small wound sizes and
concerns raised in discussion with the Institutional Review Board
regarding repeated sampling. While limited sampling is a potential
concern, the concordance between pre- and post-debridement
samples found here suggests that swabbing itself is not a major
source of variation. On the other hand, while all wounds
underwent sharp debridement, the instrument used for debride-
ment and degree of debridement were not controlled and may
contribute to patient-to-patient variability in the results.
For the majority of OTUs, while we sequenced the V1–V3 loops

of the 16S rRNA gene, taxonomic resolution was limited to the
genus level. This is likely due to the OTU clustering threshold (97%
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identity) and reference database (SILVA128). Additional analysis of
OTUs of interest (Staphylococcus) allowed tentative species-level
annotation, although metagenomic sequencing would enable
more confident assignments.
Finally, the microbiome data collected here are compositional,

i.e., absolute amounts of bacteria are unknown. While we know
that negative control samples yielded undetectable amounts of
DNA and nearly all skin and wound samples (59/60) yielded
detectable amounts35, quantitative information on bacterial loads
would be useful for interpreting the detection of species (e.g.,
contamination from reagents) in the negative controls. In addition,
bacterial load is likely to be affected by debridement, and
correlation analysis might yield more physiologically relevant
associations given absolute quantitative data. While swabbing
may not be appropriate for absolute quantitation, microbiome
sampling by other means (e.g., biopsy25) might be more
amenable. However, the relevance of quantitative microbiological
data for clinical outcomes, and the techniques for collecting these
data, are not yet clear23.
In summary, the results of this study show that sharp

debridement does not have a large immediate impact on the
composition of wound microbiota. In addition, the study identified
the abundance of facultative anaerobes in toto as a negative
prognostic factor for healing in chronic wounds, and the
facultative anaerobe Enterobacter was specifically associated with
nonhealing vs. healing wounds. Understanding the mechanism of
these associations will require causal inference (e.g., from time
series data) and/or experimental models. Further work in these
directions may be fruitful for understanding the contribution of
the microbiome to wound healing as well as personalizing
therapeutic recommendations based on wound-specific
microbiomes.

METHODS
Ethics statement
Clinical sample collection was performed at Ridley–Tree Center for Wound
Management at Goleta Valley Cottage Hospital in accordance with
protocols approved by the Cottage Health Institutional Review Board
(Study Protocol 17–48u). We recruited a cohort of 20 wound care patients
over the course of a week and a half, and collected samples after obtaining
informed, written consent from the patient.

Collection of clinical samples
Four clinically classified chronic wound types were sampled (diabetic
ulcers, venous wounds, arterial wounds, and pressure ulcers), with five
patients per wound type. Exclusion criteria were as follows: patients under
the age of 18, in the intensive care unit, or presenting with an unrelated
non-wound infection. All patients underwent sharp debridement, but the
extent and depth of debridement, as well as the type of instrument
(curette, scalpel, scissors, or tissue nipper), was not standardized and was
determined by the treating physician (Table 1). Debridement was not
conservative and was undertaken until bleeding was observed. Sterile
Copan FLOQSwabs 520C were pre-wetted with sterile PBS prior to all
sample collections. During a single patient visit, wound swabs were
collected pre-debridement and 1–2min post-debridement, and a healthy
skin swab was collected from the contralateral limb. Wound samples were
collected from the area of debridement. All skin and wound samples were
collected by employing Levine’s technique; gentle pressure was applied as
the swab was wiped and rolled across a ~1 cm2 area of healthy granulation
tissue for approximately 30 s. Clinical swabs were placed back into the dry,
sterile collection tube and stored at 4 °C for no more than 4 h before being
processed. Negative control samples from the wound center were
collected by exposing swabs to air in the collection room for the same
duration as wound and skin swab collection. Processing control samples
were obtained by exposing swabs to air and reagents in the processing lab
analogously to clinical samples. A cell-based microbial mock community
(Zymo) was included as a positive control.

Sample processing and DNA extraction
Samples were transported to UCSB for processing. Swabs tips were broken
off into sterile 1.5 mL microcentrifuge tubes, and samples were resus-
pended in 500 µL sterile 1× TE by vortexing for 2 min at high speed on a
multitube vortex adapter. Cells and cell debris were pelleted by
centrifugation at 16,000×g for 2 min. Totally, 250 µL of supernatant was
transferred to a sterile microcentrifuge tube for virus-like particle
enrichment and DNA extraction, while the remaining solution and swab
tip were retained for whole-microbiome DNA extraction. All subsequent
purification and extraction steps were performed as described in35. Briefly,
bacterial DNA was extracted by high activity lysozyme treatment,
proteinase K digestion, chemical lysis, bead beating, and final DNA
purification with a PureLink Genomic Mini Kit, with all samples eluted into
25 µL of 1× TE. Extracted DNA was quantified using a Qubit 3.0 instrument,
dsDNA HS kit, and 5 µL of sample. Of the 20 skin samples, only one sample
was below the limit of detection (40 pg); the minimum total DNA detected
was 1 ng, maximum was 17.3 ng, and average was 3.0 ng. All wound
samples produced sufficient DNA for Qubit quantification; the minimum
total DNA detected was 48.3 ng, maximum was 11.5 µg, and average was
2.92 µg. All negative controls were below the limit of detection, and
positive controls yielded sufficient DNA for sequencing.

Library preparation and sequencing
16S rRNA sequencing libraries were generated by two-step polymerase
chain reaction (PCR) for each sample. In the first step, V1–V3 loops were
amplified using custom adapter primers composed of universal 16S
primers “27F” and “534R” and Illumina Nextera indexing adapter
sequences. Adapter PCR was done in 25 µL reactions containing 11.5 µL
of template, 0.5 µL of each primer at 10 µM, and 12.5 µL of KAPA HiFi
HotStart ReadyMix. Adapter PCR was performed under the following
conditions: denaturation/activation at 95 °C for 3 min, followed by 25
cycles of denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, and
extension at 72 °C for 30 s. PCR products were purified with 20 µL
AMPureXP beads and eluted into 50 µL of 10mM Tris pH 8.5. In the second
step, Illumina Nextera XT indices were added by PCR in 50 µL reactions
containing 5 µL of product from adapter PCR, 5 µL of Index 1, 5 µL of Index
2, 25 µL of KAPA HiFi HotStart ReadyMix, and 10 µL of water. Eight cycles of
PCR were conducted under the same conditions as adapter PCR. Indexed
samples were purified with 56 µL of AMPureXP beads, eluted into 25 µL of
10mM Tris pH 8.5, quantified with a Qubit dsDNA HS kit, normalized and
pooled for multiplexing. All samples, including controls, were sufficiently
amplified for sequencing. Final library QC was done using an Agilent
TapeStation dsDNA 1000 bp kit. The final libraries were sequenced in a
single run on an Illumina MiSeq with PE300 V3 chemistry at UCSB’s
Biological Nanostructures Laboratory (BNL) sequencing core.

16S rRNA bioinformatic analyses
Paired-end reads were uploaded to the QIIME AWS AMI (AMI ID: ami-
1918ff72, “qiime-191”)33. Initial quality analysis was performed with FastQC.
Reads were quality controlled by trimming and quality filtering with
trimmomatic using default settings45. Read joining was performed with
QIIME’s joining script (join_paired_ends.py), using the fastq-join algorithm
with default settings. Joined reads were fed into the open OTU picking
pipeline (pick_open_reference_otus.py) using default settings. Taxonomy
was assigned using the SILVA128 16S reference database clustered at the
97% identity threshold34. Representative sequences that could not be
aligned using pyNAST were putative human contamination46 and excluded
from the final BIOM table47. The final BIOM table (without PyNAST
alignment failures) contained 69 samples (60 experimental+ 9 controls),
with 22,753 OTUs representing 5,931,472 total counts (median= 65,588).
For 608 OTUs annotated as Staphylococcus at the genus level, species level
annotations were generated using blastn48. Representative sequences of
each OTU were queried against the NCBI nr/nt nucleotide collection,
subset to the Bacillus/Staphylococcus group (taxid: 1385). For each OTU,
blast results were parsed by sorting the hit table, in descending order, by
bit-score, then e-value, and the highest hit for each OTU was retained. The
Entrez Direct command line tool was used to obtain the taxonomy lineage
corresponding to each accession number from the parsed hit table, and
the species name was appended to the OTU table in R.
For differential abundance analyses, the OTU table was filtered to keep

only OTUs with least 10 reads in at least 5 samples (filtered table contained
462 OTUs). Three experimental samples contained less than 1000 counts;
analyses with the samples excluded yielded similar results to analysis of
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the full data set, so they are included in the analyses described here. The
skin sample from patient 16 contained an abnormally high number of
OTUs, and its rarefaction curve did not saturate; this sample, and its
associated wound samples, were removed from analysis (Supplementary
Fig. 1). Results from DESeq2 and BGLMM were compared with and without
patient 16 (Supplementary Fig. 11) to confirm the robustness of taxonomic
association analysis to the removal of patient 16 data.

Diversity and differential abundance analyses
All diversity analyses were performed in RStudio. Briefly, the QIIME BIOM
table, tree file, and mapping file were imported and converted to a
Phyloseq object49. Data were preprocessed to root the tree, reformat the
taxonomy levels and strings, add species level annotations for Staphylo-
coccus OTUs, transform counts to relative abundance values, filter out
controls and insufficiently sequenced samples, and pregenerate genus-
agglomerated tables for downstream analyses. Taxonomic summaries
(dotplots, barcharts, and boxplots) were generated using the genus-
agglomerated tables, with filters indicated in the figure captions. Alpha
diversity plots were generated using raw, unfiltered, unrarefied tables. Beta
diversity distances were calculated using a genus-agglomerated table with
counts normalized by relative abundance, and filtered to retain OTUs with
average relative abundance greater than 0.01%. Differential abundance
analyses were conducted using the DESeq2 package with the Wald test
and parametric fitting31. Log2(fold-change)s and adjusted p values were
extracted for each comparison using the contrast function. OTUs with
adjusted p values less than 0.05 were considered as significantly different
in a differential comparison. 95% Confidence intervals (CI) were estimated
by 1.96× standard error (lfcSE) reported by DESeq2 package. Note that
OTUs whose 95% CI does not include zero might not be significant by the
standard of adjusted p value, as p values were further adjusted by the
Benjamini–Hochberg correction for false discovery rate using DESeq2.
Additional packages utilized for analysis and figure generation in

RStudio include: genefilter, ggplot250, ggpubr, reshape2, RColorBrewer,
viridis, wesanderson, grid, gridExtra, plotly, scales, dplyr, magrittr, data.
table, and ape. Additional packages in python include numpy, pandas,
scipy, matplotlib, and biom-python.

Bayesian generalized linear mixed model
To further assess the association of OTU abundances with different sample
types (pre-debridement, post-debridement, or skin) and outcomes (healed
or unhealed), we modified the model in ref. 32 to analyze our data. Let Yikj
denote the detected count of OTU j in sample k from patient i in the
sequencing, i ¼ 1; ¼ ; n, k ¼ 1; ¼ ; K and j ¼ 1; ¼ ; J. In our dataset, three
samples were taken from each of the patients. We have n= 19 or 20,
depending on inclusion or exclusion of patient 16, K ¼ 3, and J= 462 (OTU
table filtered for counts >10 in >5 samples). We assume a negative
binomial distribution for Yikj , Yikj � NBðμijk ; sjÞ, where μikj is the mean of Yikj
and sj is the overdispersion parameter. sj accounts for overdispersion of
counts Yikj and we have Var½Yikj � ¼ μikj þ sj ´ μ2ikj . We use the normal skin
sample as the reference group and consider a log linear model for μikj ,
logðμikjÞ ¼ rik þ αj þ uij þ βj1xik1 þ βj2xik2, where xik ¼ ðxik1; xik2Þ is a vector
of covariates. In our study, we use two binary indicators to represent
different sample types (i.e., xik ¼ ð0; 0Þ, ð1; 0Þ, and ð0; 1Þ) mean the skin,
pre-debridement, and post-debridement samples from patient i, respec-
tively). Regression coefficients βj1 and βj2 are parameters that infer the
effects of pre- and post-debridement states on the abundance of OTU j
relative to its abundance on normal skin, respectively. The difference in the
coefficients βj2 � βj1 can be used to infer the effect of debridement on
OTU j. Here, rik is the normalizing factor for sample k of patient i. It
accounts for different total counts in samples (e.g., sampling and
sequencing depths); αj is the baseline abundance of OTU j that explains
variability in the baseline OTU abundances; uij is a random effect of OTU j
in patient i that accommodates heterogeneity between patients. Since uij
is common for all samples taken from patient i, it also induces dependence
between abundances of OTU j in the samples of patient i. In Bayesian
models, unknown parameters are random and specification of a priori
distributions for the random parameters (called prior distributions) is
required. Bayesian models then update the distributions of the random
parameters using observed data and yield a posteriori distributions (called
posterior distributions). We assume prior distributions on our unknown
parameters such as rik , αj , and βjp , similar to those in Lee and Sison-
Mangus32. In particular, we assume independent Laplace distributions for
βjp (p= 1, 2), resulting in Bayesian lasso. The Laplace prior is a sparse

inducing prior that improves estimation of βjp and facilitates variable
selection. We used 95% posterior credible intervals of βjp , p ¼ 1; 2, and
βj2 � βj1 to identify significant associations for individual OTUs. We also
assume Laplace distributions for uij . For details of the prior specification,
see Lee and Sison-Mangus32. Since the posterior distribution is not in a
closed form, we used a Markov chain Monte Carlo method consisting of
Gibbs and Metropolis steps to evaluate the posterior distribution. Median
and 95% credible intervals for all βjp were reported.
We performed an additional analysis to assess the association of OTU

abundances with different samples types in healed and unhealed wounds.
We considered pre- and post-debridement samples only and used the
BGLMM with two covariates, pre- and post-debridement, and healed and
unhealed wounds. The covariates form four different groups: pre-
debridement/unhealed, post-debridement/unhealed, pre-debridement/
healed, and pre-debridement/unhealed groups. We used the pre-debride-
ment/unhealed group as the baseline and then let logðμikjÞ ¼ rik þ αj þ
uij þ βj1xik1 þ βj2xik2 þ βj3xik3 similar to the previous analysis. Here, βj1, βj2,
and βj3 represent the effects of the remaining three groups on the
abundance of OTU j relative to that of the baseline group. Difference
between a pair of βjp p ¼ 1; 2; 3ð Þ can be used to infer difference of OTU
abundances between groups.
For all inference using BGLMM, regression coefficient (βjp) whose 95%

credible interval does not include zero were considered to have a
statistically significant effect. We conducted inference on the filtered table
(462 OTUs) with or without patient 16 for DESeq2 and BGLMM.
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