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Abstract 

The debate about how attention is allocated during reading 
has been framed in as: Either attention is allocated in a strictly 
serial manner, to support the identification of one word at a 
time, or it is allocated as a gradient, to support the concurrent 
processing of multiple words. The first part of this article re-
views reading models to examine the feasibility of both posi-
tions. Although word-identification and sentence-processing 
models assume that words are identified serially to incremen-
tally build larger units of representation, discourse-processing 
model allow several propositions to be co-active in working 
memory. The remainder of this article then describes an in-
stance-based model of word identification, Über-Reader, and 
simulations comparing the identification of single words and 
word pairs. These simulations indicate that, although word 
pairs can be identified, accurate identification is restricted to 
short high-frequency words due to the computational de-
mands of both memory retrieval and limited visual acuity.  

Keywords: attention; computational modeling; reading; sen-
tence processing; Über-Reader; word identification 

Introduction 
The role of attention during reading has been debated be-

cause models of eye-movement control in reading (see Ta-
ble 1) alternatively posit that the attention required to sup-
port lexical processing is either limited to one word at a time 
(e.g., ASM: Reilly, 1993; E-Z Reader: Reichle, Pollatsek, 
Fisher, & Rayner, 1998; EMMA: Salvucci, 2001), or alterna-
tively, that it can be allocated to support the concurrent 
processing of several words (e.g., Glenmore: Reilly & Rad-
ach, 2003; OB1-Reader; Snell, van Leipsig, Grainger, & 
Meeter, 2018; SWIFT; Engbert, Nuthmann, Richter, & 
Kliegl, 2005). Although this debate has motivated many 
experiments to adjudicate between the two positions, the 
question has not been resolved because the empirical find-
ings are subject to alternative interpretations, and because 
the models instantiating the two positions provide equally 
good accounts of eye-movement control during reading. 

As we will argue here, however, this debate has been al-
most exclusively framed around models of eye-movement 
control and the eye-movement experiments that they have 
motivated, with little consideration of what is known about 
other components of reading. In the remainder of this arti-
cle, we will redress this limitation by considering the serial-
vs.-parallel debate within the larger context of what is 
known about word identification, sentence processing, and 
the representation of discourse. More specifically, we con-
sider the role of attention from the perspective of what mod-
els of each of the aforementioned processes suggest about 

the constraints that skilled reading imposes on how words 
are identified and then used to construct larger units of 
meaning (e.g., the phrases, sentences, and propositions of a 
text). In doing this, we remove the debate about attention 
from its current “either-or” framing by showing what the 
parallel lexical processing of words might actually entail. 

Table 1 lists some of the most influential models of read-
ing. Although this list is not exhaustive, the models are rep-
resentative of the alternative approaches to understanding 
how readers (1) use the visual features of words to access 
their spellings, pronunciations, and meanings from memory; 
(2) use the meanings of words to construct larger representa-
tions of sentences and discourse; and (3) coordinate the 
movement of their eyes and attention to do the aforemen-
tioned processing with some degree of speed and accuracy.  

 
Table 1: Models of reading. 

 
 
Word-identification models. Although these models in-

stantiate “word identification” in a variety of ways, it is im-
portant to note that “…one of the most important aims of 
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the lexical access process is to make the meaning of the 
word available to the sentence comprehension system” 
(Taft, 1991, p. 2).  Although the mental processes needed to 
do this might appear straightforward, the computations re-
quired to rapidly and reliably convert the visual features of a 
word into its spelling, pronunciation, and meaning are com-
plex and prone to error. As demonstrated below, the compu-
tational demands of lexical access are severe enough that the 
models listed in Table 1 adopt specific assumptions to help 
guarantee its accuracy, with one of the chief assumptions 
being that individual words and/or their subcomponents are 
processed serially, one at a time. 

For example, the highly influential interactive-activation 
model (IA) of McClelland and Rumelhart (1981) assumes 
that words are identified via a process whereby visual fea-
tures of letters activate a layer of nodes representing indi-
vidual letters, which then activate nodes representing words. 
This activation propagates between these layers of represen-
tation across processing cycles, until the word node that best 
matches the visual input comes to dominate the others 
through a set of mutually inhibitory connections. This latter 
assumption is critically important for the present discussion 
because it is specifically intended to ensure that only one 
word is identified at any given point in time. This point is 
illustrated in Figure 1, which shows how input from the 
word “cat” drives activity in the model in two time steps. 
First, input from the letter nodes “c,” “a,” and “t” partially 
activate the word nodes for “cat,” “catch,” and “sat.” Then, 
because the letters match “cat,” its node comes to dominate 
the others via an inhibitory ‘winner-take-all’ competition. 
This example shows precisely why the inhibitory connec-
tions are necessary; without them and the assumption that 
only one word is identified at a time, words would often be 
misidentified as their similarly spelled ‘neighbors.’ 

 
 

Figure 1: Word identification in the IA model. 

As Table 1 shows, this example is important because 
variants of the IA model are the ‘cores’ of several more re-
cent word-identifications models. In these models, the nodes 
represented individual words are interconnected via mutu-
ally inhibitory connections for the sole purpose of ensuring 
that, during any given point in time, only one word can be 
identified. Thus, like the IA model, its many progeny are 
specifically designed to enforce the serial identification of 
words. 

Several of the other models also include mechanisms that 
enforce serial word identification or—in some instances—
the serial processing of sub-lexical constituents. For exam-
ple, the Activation-Verification model (Paap, Newsome, 
McDonald, & Schvaneveldt, 1982) identifies words in two 
stages: an initial stage in which a cohort of possible 
“matches” to a word are activated, followed by a stage in 
which the these candidates are verified one at a time in a 
frequency-ranked order. Similarly, the ACT-R LDT model 
(Van Rijn & Anderson, 2003) simulates lexical-decision 
(i.e., binary word vs. non-word decisions to letter strings) by 
adopting a core assumption of the cognitive architecture 
from which the model was developed—that only one 
“chunk” of declarative knowledge (corresponding to a 
word) can be active during any given 50-ms processing cy-
cle. Finally, four of the remaining models assume a sub-
lexical processing route in which letters (DRC, SCM, SE-
RIOL) and/or syllables (Multiple-Trace Memory model: 
Ans, Carbonnel, & Valdois, 1998) are processed serially. 

Of course, the assumption that words and/or their sub-
lexical constituents are processed serially does not necessar-
ily preclude additional assumptions that might afford the 
parallel identification of words. For example, the models 
that assume serial processing of letters might be augmented 
with the assumption that, at any given point in time, multi-
ple processing ‘streams’ allow serial letter processing within 
multiple words, with attention perhaps being instrumental in 
keeping track of which letters are being processing within 
each stream. Such possibilities have been suggested, for 
example, by two of the current models of eye-movement 
control in reading: Glenmore (Reilly & Radach, 2003) and 
OB1-Reader (Snell et al., 2018). Both models incorporate 
variants of the IA model as their word-identification cores, 
and both models assume that, with the limits of the percep-
tual span, the letters from spatially adjacent words can co-
activate letter nodes (in Glenmore) or bi-gram (i.e., letter 
pair) nodes (in OB1-Reader) to support the concurrent acti-
vation of multiple words. Both models are thus consistent 
with the hypothesis that lexical processing (defined here as 
the activation of letter/bigram and word nodes) encompasses 
multiple words. However, like the IA model, both models 
posit that mutually inhibitory connections among word 
nodes to ensure that, at any given point in time, one and 
only one word is identified. Thus, although both models 
allow concurrent lexical processing, these models—like the 
word-identification models listed in Table 1—are restricted 
to the serial identification of words. 
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One way to sidestep the serial-identification restriction is 
to assume that individual words are represented within mul-
tiple (redundant) lexicons, as in Figure 2. Here, the simulta-
neous processing of two words (e.g., “at” and “the”) might 
occur by mapping the visual forms of each word onto their 
respective word nodes within independent lexicons. How-
ever, although this solution affords the accurate identifica-
tion of word pairs, it raises more questions than it answers.  
For example, given that the eyes move along a line of text 
during reading, one question is: How are the individual 
words aligned to the different lexicons so that each word 
only activates nodes within one lexicon? Furthermore, what 
happens to a given lexicon when the readers’ eyes move to 
another position? And similarly, how is the structure of the 
lexicons learned? The finding that common words are iden-
tified more efficiently suggests that the quality of a word’s 
lexical representation reflects the frequency with which the 
word has been encounter in text. If this account of the word-
frequency effect is correct, then how (if one posits multiple 
lexicons) would the lexical representation(s) of a word be 
adjusted with each new encounter with that word? 

 

 
 

Figure 2: Parallel identification of words represented in 
multiple (redundant) lexicons. 

 
Turning now to the remaining word-identification models 

in Table 1, one might ask whether they might accommodate 
the parallel identification of words. The Triangle model 
(Seidenberg & McClelland, 1989) and its variants (e.g., 
Plaut, McClelland, Seidenberg, & Patterson, 1996) learn to 
map patterns of features representing a word’s spelling onto 
patterns of features representing a word’s pronunciation. 
The model learns these mapping across hundreds of learning 
trials in which the model is given both the correct input and 
output patterns so that the connection weights between the 
two can be gradually adjusted. Because connectionist mod-
els of this ilk are capable of learning such complex map-
pings, it is reasonable to predict that, with sufficient train-
ing, the models might learn the spelling-to-pronunciation 
mappings for pairs of words (or even word triples). How-
ever, because the models require extensive training to learn 
how to accurately identify single words, one might also pre-
dict that the task of simultaneously identifying two or three 

words would both dramatically increase the number of train-
ing trials and—perhaps more significantly—require one to 
assume that such training accurately reflects what children 
experience when they learn how to read. Because language 
is inherently productive in nature, the extensive training 
required to train a connectionist model to identify word 
pairs would seem unreasonable given that words most often 
appear in novel combinations. 

The remaining model, Bayesian Reader (Norris, 2006), is 
unique among the models listed in that it provides a task-
level description of word identification, rather than algo-
rithmic- or implementation-level descriptions. The model is 
thus agnostic about precisely how words are identified, and 
thus the question of how many words might be concurrently 
identified. However, the model is in many ways similar to 
the Multiple-Trace memory model (Ans et al., 1998) in that 
the task of identifying a word broadly entails the sampling 
of perceptual input generated by a word for the purpose of 
mapping that input onto a unique point in representational 
space. The latter model does this, however, by encoding 
individual word experiences as discrete memory traces that 
can then be used to generate a composite pattern represent-
ing the word. This approach is also similar to the Triangle 
model in that the model learns to generate phonological 
output from orthographic input, but can learn these map-
pings very rapidly, often with only a single encounter with a 
given word. The question, then, is whether or not the as-
sumptions of this instance-based model are sufficient to 
support the concurrent identification of two or more words. 
The next section of this article answers this question by us-
ing a simplified variant of the Multiple-Trace memory 
model (Reichle, 2020) to examine the conditions under 
which pairs of commonly co-occurring words (e.g., “… in 
the …”) might be accurately identified. 

Über-Reader 
The simulations reported below were completed using the 

word-identification core of the Über-Reader model of read-
ing (Reichle, 2020). This core is based on principles of the 
Multiple-Trace memory model of word-identification and 
its precursor, the MINERVA 2 model of episodic memory 
(Hintzman, 1984). In the model, experiences with words are 
encoded as discrete memory traces. In the formalism of the 
model, these memory traces are vectors of elements repre-
senting the presence (= 1) or absence (= 0) of specific or-
thographic (letter), phonological (phoneme), semantic, and 
syntactic features. For example, an encounter with the word 
“cat” would likely result in the encoding of a memory trace 
with the features corresponding to the letters “c,” “a,” and 
“t” in positions 1-3 being set equal to 1 and features corre-
sponding to other letters being set equal to 0. The informa-
tion in these traces can be accessed via a ‘resonance’ proc-
ess in which a probe (in working memory) is used to acti-
vate the individual traces to the degree that their contents 
resemble the contents of the probe. The sum of the activa-
tion that is generated by the memory traces in response to a 
probe is called the ‘echo intensity’ and reflects the familiar-
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ity of the probe and can thus be used to simulate recogni-
tion. The features of the activated trace can also be com-
bined to generate a composite pattern of features called the 
‘echo content,’ which can be used to simulate recall. Only 
those assumptions related to recall are provided below.  

In the context of identifying words, a word’s orthographic 
features are used as a probe to recall its other lexical fea-
tures. Memory traces containing those orthographic features 
become active to the degree that a trace is similar to the 
probe, as described by Equation 1, where i indexes the 
memory traces, j indexes the N features, and Nr is the num-
ber of non-zero features in either the probe or trace. Because 
features take on values of 1 or 0, the probe-trace similarity 
can range from 0 to 1, with the former indicating complete 
dissimilarity and the latter representing perfect similarity. 

 

 
 
Trace activation is then determined using Equation 2, 

where the parameter δ (=17) enhances the signal-to-noise 
ratio by allowing those traces that are highly similar to the 
probe to become disproportionately active. 

 

 
 
The signal-to-noise ratio can also be enhanced by delimit-

ing those traces that become active to those that exceed 
some threshold of similarity to the probe, θsimilarity (= 0.9; see 
Dougherty, Gettys, & Ogden, 1999).  

The echo content, of value of each recalled feature j, con-
tentj, is determined using Equation 3, where M is an index 
of the number of memory traces and ωi is a weight assigned 
to each trace as a function of its frequency of occurrence 
(Balota et al., 2007), as described by Equation 4. This 
weighting is used instead of encoding multiple traces per 
word for computational convenience (see Reichle, 2020).  

  

 
 
The echo content generated by Equations 3 and 4 is then 

normalized using Equation 5, so that the resulting values of 
the echo content span the range [0, 1]. 

 

 
 
The different lexical features of the echo content can then 

be scored for accuracy. For example, to score the accuracy 
of a generated spelling, the most active orthographic feature 
in each letter position must exceed some threshold, and be 
the most active feature in the correct letter position. The 

accuracy of a generated pronunciation is scored similarly, 
but using phonological features. The accuracy of a word’s 
meaning is calculated as the proportion of correctly recalled 
semantic features, and a word’s part of speech is scored by 
calculating the correlation, r, between the pattern of syntac-
tic features returned in the normalized echo content and the 
patterns representing each of the seven possible syntactic 
categories and then selecting the best match. 

Finally, eye-movement models explain visual-acuity con-
straints on reading (i.e., visual input is more precise in the 
center of vision and decreases with increasing eccentricity; 
Schotter, Angele, & Rayner, 2012). For example, serial 
models include parameters for eccentricity that affect the 
rate of lexical processing in addition to serial shifts in atten-
tion, and parallel models use eccentricity as a parameter that 
decreases processing efficiency of simultaneously processed 
words. The ‘front end’ of Über-Reader likewise provides 
visual input about letters and their positions using principles 
of the Overlap model (Gomez, Ratcliff, & Perea, 2008). By 
this account, evidence for a given letter in position x (i.e., 
the strengths of the features in an orthographic probe) is a 
function of the letter’s true position, µ, as given by: 

 

 
 
where the variability is determined by the value of σ, which 
itself is determined by the absolute difference (in character 
spaces) between the true position of a letter and the fixation 
location and two free parameters, β1 (=0.05) and β2 (= 0.05): 
 

 

Simulations 
The first set of simulations examined the model’s accu-

racy recalling four types of lexical information (ortho-
graphic, phonological, semantic, and syntax) from single 
words (Single) and pairs of words (Pair) that were presented 
at four different fixation locations: (i) the center of the stim-
uli (Center); (ii) the first letter of the stimuli (1); (iii) three 
character spaces left of the stimuli (-3); and (iv) seven char-
acter spaces left of the stimuli (-7). Figure4A shows the 
mean recall accuracy for 16 extremely high-frequency (M = 
6,598,697; SD = 5,956,309) 1-4 letter words (e.g., “a,” 
“the”, “that”) and 16 word pairs derived from these words 
(e.g., “it is,” “in the”). Figure4B shows the mean recall ac-
curacy for 20 low-frequency (M = 10,204; SD = 17,223) 4-
10 letter words (e.g., “ants,” “hurricane,” “parakeet,” etc.) 
and 10 word pairs derived from these words (e.g., “carpen-
ter ants,” “sick parakeet”). These words and word pairs were 
taken from sentences used by Schilling, Rayner, and Chum-
bley (1998) because future simulations using Über-Reader 
will examine how the identification of word pairs influences 
the patterns of eye movements that are generated by the 
model. The word pairs were represented in the model’s lexi-
con as discrete memory traces using the lowest possible 

167



frequency weighting (i.e., frequencyi = 1; see Equation 4) 
for the high-frequency word-pair traces, and using the joint 
probability to estimate the weightings for low-frequency 
word-pair traces (i.e., frequencyi = 1-5). The model’s per-
formance recalling the high-frequency word pairs is thus a 
conservative test because those pairs would be expected to 
be represented by more traces if one were to use the joint 
probability of the two words occurring in written text to 
estimate their frequencies of occurrence. Finally, all of the 
simulations were completed using 100 statistical subjects 
per condition. 
 

 
Figure 3: Mean recall accuracy of lexical information corre-
sponding to (A) high- and (B) low-frequency single words 
vs. word pairs from four fixation locations. 

 
As Figure 3A shows, the model accurately recalled both 

single words and word pairs if those items were high fre-
quency. However, recall accuracy was slightly reduced for 
word pairs from fixations three spaces to the left of the first 
word, suggesting that visual-acuity limitations were slightly 
more disruptive to the identification of word pairs that sin-
gle words. Recall of both single words and word pairs was 
markedly reduced from the distant fixation location, consis-
tent with evidence that visual-acuity limitations delimit 
word-identification accuracy (Bouma, 1973). Finally, as 
Figure 3B shows, although recall of low-frequency single 
words was similar to recall of their high-frequency counter-
parts (Panel B), the recall of the low-frequency word pairs 
was significantly reduced at all viewing locations except 
fixations on the centers of the word pairs.  

The second set of simulations (Figure 4) were partial rep-
lications of those shown in Figure 3, but using only the low-

frequency words and word pairs (shown in Figure 3B) and 
introducing two manipulations to better understand why the 
recall of low-frequency word pairs was at a disadvantage in 
the first set of simulations. The first manipulation entailed 
reducing the distortion in letter position information by re-
ducing the values of β1 (= 0.01) and β2 (= 0.01). As Panel A 
shows, this markedly improved the recall of the word pairs, 
effectively allowing them to be recalled with the same level 
of accuracy as the same words displayed in isolation.  
 

 
Figure 4: Mean recall accuracy of lexical information of 
low-frequency single words vs. word pairs from four fixa-
tion locations. The two panels show recall: (A) without vis-
ual-acuity limits; and (B) using larger frequency values. 
 

The second manipulation increased the frequency weight-
ings of the word-pair traces by setting the value of frequen-
cyi for each equal to the larger frequency value of its two 
constituent words. (For example, frequencyi for “sick para-
keet” was set equal to 22,109 because the frequencies of 
“sick” and “parakeet” are respectively 22,109 and 178.) As 
Figure 4B shows, despite the dramatic nature of this second 
manipulation, word-pair recall accuracy did not improve. 

Discussion 
Our simulations suggest that the current framing of the se-

rial-vs.-parallel debate about attention allocation in reading 
is too simplistic. As shown above, an instance-based model 
of word identification can accurately identify pairs of words 
if those words are short and high frequency. The condition 
of being short in length reflects the constraints imposed by 
limited visual acuity, as suggested by the fact that low-
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frequency word pairs could be accurately identified if vis-
ual-acuity limitations were removed (Figure 4A). The con-
dition of occurring frequently reflects the necessity of hav-
ing robust, easily accessible word representations, as sug-
gested by the simulation results in Figure 4B. However, 
because most English words are longer than three or four 
letters and language is highly productive, it is unlikely that 
most word pairs are encountered often enough to be repre-
sented in memory. The parallel identification of two or more 
words would thus likely be limited to sequences like “in 
the,” as well as perhaps idioms or commonly used phrases.   

Although the review and simulations reported above have 
focused on word identification, the discussion can be ex-
tended to sentence processing and discourse representation 
because our understanding of these topics also inform the 
debate about attention allocation during reading. 

Sentence-processing models. Table 1 also lists several in-
fluential models of sentence processing—models that are 
specifically designed to explain how readers construct rep-
resentations of constituents, phrases, and sentences from 
individual words (see Reichle, 2020). These models share 
the assumption that larger representational units are con-
structed in a staged, incremental manner, using the syntactic 
category and meaning of each new word that is identified in 
conjunction with implicit or explicit ‘rules’ to generate the 
meaning of a given sentence. The critical part of this shared 
assumption for the present discussion is the fact that the 
lexical information is delivered in an incremental manner—
one that presupposes and depends upon the words being 
identified one at a time, in their correct order within the sen-
tence. The latter condition is necessary to construct an accu-
rate sentence representation because word order often con-
veys meaning (e.g., topic focus) even in languages that al-
low free word order (e.g., German). 

Discourse-representation models.  Table 1 lists several in-
fluential models of discourse representation (see Reichle, 
2020). These models are designed to explain how readers 
construct large units of meaning, deriving from individual 
sentences. These models share the assumption that the 
meanings of individual phrases and/or sentences are con-
verted into some type of high-level (e.g., propositional) rep-
resentation of the meaning of a text, devoid of specific sen-
tential details (e.g., word-order information), and that the 
meanings of several phrases and/or sentences are concur-
rently maintained in working memory, subject to its capac-
ity limitations. This latter assumption is critical to the pre-
sent discussion because it indicates that, at the level of dis-
course representation, there is significant parallelism, with 
the meanings of multiple phrases and/or sentences being 
maintained in working memory over intervals of time so 
that those meanings can be encoded into long-term memory.  
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