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Abstract

Purpose: To improve image quality and CT number accuracy of daily cone-beam computed
tomography (CBCT) through a deep-learning methodology with Generative Adversarial Network.

Methods: 150 paired pelvic CT and CBCT scans were used for model training and validation.
An unsupervised deep-learning method, 2.5D pixel-to-pixel generative adversarial network (GAN)
model with feature mapping was proposed. A total of 12000 slice pairs of CT and CBCT were
used for model training, while 10-cross validation was applied to verify model robustness. Paired
CT-CBCT scans from an additional 15 pelvic patients and 10 head-and-neck (HN) patients with
CBCT images collected at a different machine were used for independent testing purpose. Besides
the proposed method above, other network architectures were also tested as: 2D vs. 2.5D; GAN
model with vs. without feature mapping; GAN model with vs. without additional perceptual loss;
and previously reported models as U-net and cycleGAN with or without identity loss. Image
quality of deep-learning generated synthetic CT (sCT) images were quantitatively compared
against the reference CT (rCT) image using mean absolute error (MAE) of Hounsfield units (HU)
and peak signal-to-noise ratio (PSNR). The dosimetric calculation accuracy was further evaluated
with both photon and proton beams.

Results: The deep-learning generated synthetic CTs (sCT) showed improved image quality with
reduced artifact distortion and improved soft tissue contrast. The proposed algorithm of 2.5
Pix2pix GAN with feature matching (FM) was shown to be the best model among all tested

"Corresponding Author Address Correspondence to Dr. Ke Nie: 195 Little Albany St, New Brunswick, NJ 08901.
kn231@scinj.rutgers.edu.

Publisher's Disclaimer: This article has been accepted for publication and undergone full peer review but has not been through the
copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of
Record.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhang et al. Page 2

methods producing the highest PSNR and the lowest MAE to reference CT (rCT). The dose
distribution demonstrated a high accuracy in the scope of photon based planning, yet more work is
needed for proton based treatment. Once the model was trained, it took 11-12 ms to process one
slice, and could generate a 3D-volume of dCBCT (80 slices) in less than a second using a NVIDIA
GeForce GTX Titan X GPU (12GB, Maxwell architecture).

Conclusion: The proposed deep-learning algorithm is promising to improve CBCT image
quality in an efficient way, thus has a potential to support online CBCT-based adaptive
radiotherapy.

1 Introduction

Cone-beam CT (CBCT) is widely used in radiotherapy clinics for patient setup and
treatment monitoring, and is essential in the context of adaptive radiation therapy. Current
work flow with adaptive planning on CBCT includes two major streams, one is to employ
CBCT for direct dose calculation and the other is to perform dose evaluation on deformed
planning CT with CBCT. Yang et a/. is one of the first to evaluate the feasibility and
accuracy of both ways. They concluded it is more beneficial to improve CBCT image
quality to CT level for adaptive radiotherapy due to the inherent reduced image quality and
inaccurate Hounsfield units (HU) mapping?.

There have been numerous efforts in improving CBCT image quality using scatter
correction: such as hardware improvement by adding anti-scatter grid3, x-ray beam blocker
with a strip pattern?, or a lattice-shaped lead beam stopper?; or software improvement with
iterative filtering®, raytracing®, model-based approach’, or Monte Carlo (MC) modeling 8-°.
Especially, raytracing and MC methods have been shown to reproduce HUs to sufficient
accuracy for both photon and proton dose calculation. They are, however limited by the time
it takes to perform correction, about minutes or hours due to high computational complexity.
Alternatively, conventional analytic reconstruction algorithms, such as filtered back
projection, remain the mainstream due to fast computation.

Recently, machine-learning based algorithm has been applied to improve image quality and
image reconstruction. It has been even shown that synthetic CT could be generated from
MRI by using convolutional neural network (CNN) for radiotherapy planning without
acquiring the actual CT 1011, Similar strategy can also be applied to improve image quality
of low-dose CT to match high-resolution CT 12. The purpose of this study is to develop
unsupervised deep-learning model to improve CBCT image quality to CT level and to
further validate the model on different anatomical sites.

2 Materials and Methods

2.1 Data Acquisition and Preprocessing

Data from 30 pelvic patients were included. Each patient had one planning CT and five
CBCT scans, a total of 150 pairs of CT-CBCT were used for model training and validation
purposes. The CBCTs were from the first week of treatment to ensure the closest anatomy to
planning CT. Paired CT-CBCT from an additional 15 pelvic patients and 10 head-and-neck
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(HN) patients were used for independent testing purpose. The CBCT scans of the validation
set were collected at the first day of treatment on a different Varian TrueBeam.

All treatment planning CT images were collected with a GE LightSpeed16 CT scanner (GE
Health Systems, Milwaukee, WI) and the CBCT images of the training set were acquired
with an on-board-imager (OBI) equipped Varian TrueBeam STx linear accelerator (Varian
Medical Systems, Palo Alto, CA). The original CTs had a resolution of 0.91 x 0.91 x 1.99
mm?3 and dimensions of 512 x 512 x 210. All CBCTs had a resolution of 1.27 x 1.27 x 1.25
mm?3 and dimensions of 512 x 512 x 80. For each patient, the CT images were mapped to
each set of CBCT images using Velocity (Varian Medical Systems, Palo Alto, CA) with
multi-pass B-spline based free form deformation to create a reference CT (rCT). All the
deep-learning generated synthetic CTs (sCT) were compared to this reference.

2.2 Pix2pix GAN Architecture with Feature Matching

A 2.5 dimensional (2.5D) Pix2pix GAN-based deep-learning model with Feature Matching
(FM) was proposed and the architecture is shown in Figure 113, The Generator was used to
generate synthetic CT (sCT) from the original CBCT, and the Discriminator was used to
distinguish the synthetic CT (sCT) from the reference CT (rCT). The Generators and
Discriminators competed against each other until they reached an optimum.

The Generator was implemented using U-net architecture, in which each Conv-ReLU-BN
block consists of either convolution or de-convolution layers with kernel size of 3x3, a batch
normalization layer (BN) and a leaky rectified linear unit (ReLU). Concatenate connections
were linked between the corresponding layers of the encoder and decoder. The activation
function after the last convolutional layer was Elu. Then the synthesize CT (sCT) slices were
used as the input of the Discriminator with the reference CT (rCT) slices as ground truth.
The discriminator was a classifier that consisted of 8 stages of Conv-ReLU-BN block same
as Generator.

The instability during the training of GAN is a critical issue which affects the output image
quality from the generator. To address this issue, we implemented feature matching by
changing the adversarial loss function!4. This strategy forced the generator to generate
images which could match the expected values of the features on the intermediate layers of
the discriminator, besides the output of the discriminator. The loss function for the
Discriminator was constructed as:

Lossp g = Z a %2 DT - foEeT)fa = 2,4,6,7) W
T "

where f! is the output feature map on layer I, and n! represents number of pixels. The sCT
and rCT slices were used as input. The corresponding feature maps from the 2nd, 4th, gth,
and 7t layers were obtained with mean absolute error summed together as loss function.
fl(D(rCT)) represents the output of the discriminator from the original CT slices. a;is the
adaptive weights for the features extracted from each layer. To further preserve the HU
values between rCT and sCT, the L1 norm distance was added to the loss function:
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1
LiLoss ==Y |sCT = CTI @

where n is the number of pixels on the images, with the final adversarial loss function as:

Lossggersarial = Lossp g + aLjLoss (3)

where a is the weight between two different loss functions.

The 2.5 D architecture used a volume set with adjacent three slices as input of the network.
This method stacked neighboring three slices together as different channels of the input to
provide the network with 2.5D information, providing more morphology information to
reconstruct the high-quality images.

2.3 Other network architectures

Besides feature mapping as mentioned in 2.2, another way to improve the synthesized image
quality is to add perceptual loss 15. The architectures as pix2pix GAN model with vs.
without additional perceptual loss were tested. VGG16 on ImageNet!® was used to extract
the image features for two types of losses: content loss and style loss. The content loss was
defined as the Euclidian distance between the feature maps from original and synthesized
images of each layer:

lfieeT) - fsem; @

LosScontent = §
J

where fi(CT) and fi(sCT) stand for the feature maps from the ji, layer in the network for the
ground-truth image and the synthesized image, respectively, and hj, wj, and cj stands for the
size.

1
hjwijc;

The style loss was used to control the similarity of image styles and was defined as the
Euclidian distance between the stylistic feature maps from original and synthesized images
of each layer:

Lossgtyie = z |Gram(rCT) - Gramj(sCT)”% ®)
J

where Gram matrix was defined as:

hj w;j
1 . .
Gramj(y)m,n = Z Z fJ(Y)h, w,m * fj(Y)h, w, n (6)
h=1lw=1

hjwic;

where m and n represent different output channels from the same layer. So the loss function
becomes

Losspercepertual = Lossaqversarial + PLLOSScontent + ﬂ2Lossstyle (7)

B1 and B, are the weights.
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In addition, we also compared our methods with previously published models as U-net 17:18
and cycleGAN 19, U-net is a popular algorithm in image processing field and some
investigators have explored its use in this context 17:18:20_|n brief, the basic structure
consists of convolution and max-pooling layers at the descending part (the left component of
U), and convolution and up-sampling layers at ascending part (the right component of U) 20,
In the down-sampling stage, the input image size is divided by the size of the max-pooling
kernel size at each max-pooling layer. In the up-sampling stage, the input image size is
increased by the operations, which are performed and implemented by convolutions, where
kernel weights are learned during training. The arrows between the two components of the U
show the incorporation of the information available at the down-sampling stage into the up-
sampling stage, by copying the outputs of convolution layers from descending components
to the corresponding ascending components. In this way, fine-detailed information captured
in descending part of the network is used at the ascending part. The output images share the
same size of the input images.

A few works have been done using CycleGAN to obtain synthetic CT from CBCT 1921, |n
brief, it consisted of two generators as G (mapping from CBCT to sCT) and Gg (mapping
from CT to sCT). It also had two discriminators as Da to distinguish rCT from fake CT, and
Dg to distinguish real CBCT from fake CBCT. With this bidirectional configurations, cycled
CBCT images (cycleCBCT) from sCT and cycled CT images (cycleCT) from sCBCT could
be obtained.

Besides adversarial loss from discriminators, cycle loss was added to the final function:

LosscycleGAN = LosSadversarial — CT + L0SSqqpersarial — CBCT + Y

3
(Losscycle —-crt Losscycle — CBCT) ®
where
1
Losscyele — cT = ;z |CT — cycleCT! @)
n
Losscyele — cBcT = %Z |CBCT — cycleCBCT) @)
n

and n is the number of pixels on the image and vy is the weight of the cycle loss.

2.4 Model Configuration and Statistical Analysis

Normalized images were used as input, with rescaling HU numbers to the mean values of 0
and the standard deviation to 1. All models were trained with Adam optimization with a
mini-batch size of 2 and epoch number of 100. All weights were initialized from He normal
initializer. Batch normalization was used after each convolutional layer. The learning rate
was set to 0.0001 with momentum term 0.5 to stabilize training. The generator was trained
twice while the discriminator was trained once to keep the balance between the two
components. To control the overfitting, three methods were utilized. First, before training, all
images were augmented by horizontally flipping, a small angle rotation, as well as adding
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some background noise. Then L2 regularization term was added to the final loss function.
Lastly, during the training process, early stop was applied based on the lowest validation loss
to obtain the optimized model.

10-fold cross validation was used to evaluate the performance of the model. Each slice was
used as an independent case. The training and validation sets included 150 CBCT-CT pairs,
and 90% of cases were used for training while remaining 10% were used for validation
purpose. The results from the validation sets were calculated. A separate dataset with
additional 15 pelvic patients and 10 head-and-neck patients with paired CT and first-day
CBCT, with CBCTs collected at a different linac machine, was used as an independent
testing set to evaluate the robustness of proposed algorithm.

Synthetic CT slices (sCT) were firstly generated using the proposed model then rendered
into 3D volumes to compare to the reference CT (rCT) images. Two metrics as peak signal-
to-noise ratio (PSNR), and mean average error (MAE) were calculated by comparing
synthetic CT and reference CT. PSNR measured the maximum possible power of a signal,
with higher value indicating better image quality. MAE measured absolute HU differences
of every single pixel between target and reconstructed image, with lower value indicating
closer similarity to target. A total of 8 models were tested and compared: (1) 2.5D Pix2pix
GAN with feature matching (FM) — as proposed in this study; (2) 2D Pix2pix GAN without
feature matching, using single slice as network input; (3) 2D Pix2pix GAN with feature
matching; (4) 2.5D Pix2pix GAN without feature matching; (5) 2.5D Pix2pix GAN with
feature matching and perceptual loss; (6) U-net; and (7) cycleGAN and (8) cycleGAN with
identity loss?1:22, To further prove that the SCT can carry the dose calculation with
comparable accuracy as CT, both photon and proton treatment plans were transferred to the
corresponding sCT. The differences were also compared to that was directly generated from
the rCT.

3 Results

Figure 2 shows the intermediate results of training and testing curves when using different
network architectures. Due to the large number of training iteration, only the first 9000
training iterations were recorded for assessment. Figure 2(a) compares the pix2pix GAN
with or without feature matching (FM), and the one without FM showed obvious instability
during the training process. The performance of adding FM to various or different layers was
further evaluated. As shown in Figure 2(b), adding FM to all layers could lead to overfitting
as the testing MAE increased when training iterations increased. While if adding FM to
limited number of layers as layers of 6 and 7, the stability cannot be obtained as shown in
Figure 2(c). Experiments have been conducted by applying FM to various combination of
intermediated layers, the pix2pix GAN with feature matching added to layer 2,4,6,7 was
determined as the final architecture to obtain a balance between instability and overfitting.
For illustration purpose, Figure 2(d) shows the training and testing process comparing
pix2pix GAN and cycleGAN. The stability was not well maintained in training dataset and
the MAE increased with iterations for testing dataset indicating potential overfitting for
cycleGAN compared to proposed method on our dataset.
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Figure 3 shows two case examples with reference CT (rCT) images, raw CBCT images and
deep-learning generated synthetic CT (sCT). The intensity differences in Hounsfield Unit
(HU) are also displayed. It can be clearly seen that the synthetic CT had much closer HU
level to the reference CT compared to the raw CBCT.

The group result in the validation dataset is summarized in Table 1. All deep-learning
generated synthetic CTs showed improved image quality with less discrepancies (smaller
MAE) to reference CT. The proposed algorithm as 2.5 Pix2pix GAN with feature matching
was shown to be the best model among all tested methods with the highest PSNR and the
lowest MAE. The mean MAE improved from 26.1+9.9 HU (CBCT vs. rCT) to 8.0+1.3 HU
(sCT vs. rCT). The PSNR also increased significantly from 16.7+10.2 (CBCT vs. rCT) to
24.0£7.5 (SCT vs. rCT) in the validation set. The results showed that changing from 2D to
2.5D input had slight improvement for the PSNR and MAE but not statistically significant,
due to only 3 slices information added into the model.

U-net was under-performed than any of GAN networks. As shown in Figure 4, the U-net
generated blurred images and lost detailed information especially at the tissue boundaries.
Overall, the deep-learning based CBCT generated through the pix2pix GAN methods had
greatly reduced artifacts compared to the corresponding raw CBCT.

The proposed algorithm was further applied to the independent testing dataset. Due to
different linac machine setting, the image discrepancies from raw CBCT to CT was larger
compared to the training/validation set. The average MAE was 43.84+6.9 HU for pelvic cases
originally, but was improved to 23.6+4.5 with deep-learning. The pSNR was improved from
14.53+6.7 to 20.09+3.4. When extended to head-and-neck regions, the model still produced
less MAE discrepancies to 24.1+3.8 from original 32.3+£5.7 HU. The pSNR was improved
from 20.34+1.6 to 22.79+3.4. This indicated that the GAN model pre-trained with pelvic
region might be able transferred to other region. The testing performance showed
improvement, with yet less extent, also indicating task-specific performance may be needed
for further improvement. An example of the head-and-neck cases is shown in Figure 5. It
shows improved image quality with much closer HU to reference CT.

Figure 6 and 7 shows the dose difference map of a representative patient with both photon
and proton dose calculation, respectively. Photon plan was delivered with VMAT using 6X
beam, originally prescribed at 5760 cGy in 32 fractions. Proton plan was designed with
double scattering technique using two lateral beams under the same prescription. The plan
was designed on reference CT and recalculated on synthetic CT. For the VMAT plan, dose
differences were confined close to the patient surface and minimal differences (< 1%) inside
the patient, showing high accuracy for photon based dose calculation. Yet for proton plans,
which the dose distribution is more sensitive HU differences and water equivalent depth
(WED), an over/under-estimation of the proton range was observed. A median range
difference of 2 mm was observed for the representative case, in line with a MAE of a 9.8
HU.

The network code was written in Python 3.6 and TensorFlow 2.0 and experiments were
performed on a GPU-optimized workstation with a single NVIDIA GeForce GTX Titan X
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(12GB, Maxwell architecture). Once the model was trained, it took 11-12 ms to process one
slice and generate a 3D volume of synthetic CT in less than a second.

4 Discussions and Conclusions

We have developed a deep-learning based model to generate synthetic CT from routine
CBCT images based on pixel-to-pixel (Pix2pix) GAN. The model was built and validated on
30 pelvic patients with 150 paired CT-CBCT images, and further tested with an independent
cohort with 15 additional pelvic cases and 10 head-and-neck cases collected at another linac
machine. The image quality of the deep-learning based synthetic CT had been overall
improved with much less MAE discrepancies to reference CT in both validation and testing
datasets. The dose distribution also demonstrated a high accuracy for photon based
calculation. This proof-of-concept technique provides substantial improvement in terms of
speed, which can be directly generated within a second and thus be implemented real time.
More investigations are needed for direct clinical adaption as well as for proton related
applications.

The online CBCT has been widely used for daily positioning and target alignment. It may
also allow early assessment of treatment response and be a prognostic factor of treatment
outcomes. However, its use in adaptive radiotherapy is limited due to large scattering and
inaccurate mapping of HU. Numerous mathematical algorithms have been proposed for past
decades to improve CBCT image quality, including model-based approach’, Monte Carlo
(MC) modeling 89 and iterative reconstruction (IR) ° and raytracing® with literatures cited in
Table 2. The high demand on computational complexity was the major concern. Jia et al.
developed an advanced MC algorithm with ray-tracing ®. With GPU, the computational time
was greatly reduced from hours to minutes. Xu et al. extended the work using planning CT
as prior information and was able to further shorted the computational time in 30s°. Yet,
most of the work was tested on phantom or limited number of patient data and has not
commonly implemented for clinical use. Alternatively, conventional analytic reconstruction
algorithms, such as filtered back projection, remain the mainstream due to its fast
computation.

Recently, deep learning based approaches have emerged as a potential solution to overcome
computational complexity of prior mathematical algorithms in improving CBCT image
quality. Some efforts have been done at 2D projection level 26-28, Nomura et a/. used U-net
convolutional neural network (CNN) based algorithm to perform scatter correction with lung
phantom?’. Jiang et al. performed scatter correction of CBCT using a deep residual CNN
and also claimed computational efficient 28, Another route is directly applying deep-learning
technique on reconstructed 3D volume with recent publications summarized in Table 3. Kida
et al. used a U-net CNN for the pelvic CBCT-to-sCT generation, and reported improvement
of MAE from 92 to 31HU with 20 patient cases 2°. Similarly, Li er a/3% used an improved
U-net architecture with residual block and trained the architecture on 50 H&N patients.
Improved MAE was also reported. Yuan et a/. also applied similar technique for head-and-
neck patients, but with CBCT collected at fast-scan low-dose acquisition!8. Recently,
cycleGAN has been proposed to deal with the unpaired training data in multiple applications
in medical imaging such as MRI-based sCT generation 10, organ segmentation 31, and
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CBCT-based sCT generation 19:32:33_ CycleGAN incorporates an inverse transformation to
better constrain the training model toward one-to-one mapping. In the application of CBCT-
to-sCT generation, Liang et al. applied cycleGAN to train the CBCT-planning CT dataset
without performing deformable registration 1°. The cycleCBCT generated from CT was used
to restrain the network. The algorithm was tested on 4 H&N patients and the MAE was
improved from 70 to 30 HU. Kruz et a/. used a similar algorithm to process the pelvic
images34. The resulted MAE was improved to 87 HU, compared to the original 103 HU.
Harms et al. published a CBCT-to-sCT generation method using cycleGAN with the
incorporation of residual blocks and a novel compound loss in the cycle consistency loss
function with improved results 33, The authors mentioned that although cycleGAN was
initially designed for unpaired mapping, rigid registration should still be recommended to
preserve the qualitative values. Liu et al. were the first to extend the deep-learning algorithm
to abdomen regions with large motion artifacts32. Improved MAE was reported from 81HU
to 57HU. We have compared our proposed deep-learning model with some previous
reported methods. It was found the U-net CNN underperformed than any GAN based
methods on our datasets. This might be due to the fact that the algorithm started with multi-
layer image smoothing which would in-turn resulted in large signal discrepancies at
boundaries. Another tested algorithm as CycleGAN has been widely applied to match
unpaired images. Yet, with the co-registration done in the preprocessing step, the input
CBCT and the reference CT were matched with similar morphologies. Since the purpose of
this study is to generate synthetic CT from CBCT and further to match with reference CT,
with this to-match purpose, the cycle loss as used in CycleGAN was not deemed necessary.
In addition, we tried to add perceptual loss into the model. The initial weights merely
captured the features of natural images, and it actually disturbed the training process. By
comparing all deep-learning algorithms, 2.5D pix2pix GAN with feature matching was
identified as the best model. The model was built on a large pelvic datasets with 150 pairs of
CBCT-CT. The pelvic dataset contained enough variation of the anatomy structures, which
helped to improve the robustness of the GAN model. The co-registration results contributed
to the good correspondence between CT slices and CBCT slices, thus the conversion
difficulty was reduced. Notably, the current model not only showed improved results in the
validation set, it was further extended to an independent image set with two disease sets
collected on a different machine. The improvement was again confirmed by a significant
reduction of MAE discrepancies. All these demonstrated its robustness in clinical image sets
and potential clinical use.

Despite the promising results, we acknowledge several limitations. Due to technical
limitation of the GPU capacity, only three adjacent slices as 2.5D information were used as
input. The performance did not show significant improvement compared to 2D single-slice
method. We also performed patch-based approach to incorporate more slices 32.
Experiments were done with 1/4 sized patches cropped from original images with 16 slices
(4x4), and 1/8 sized patches with 64 slices (8x8). However, the MAESs were not better than
the presented method. The 3D patch-based method involves more parameters to fit the loss
function33, which requires significant larger training samples to avoid overfitting before
comparing with current model. The future direction is to include a true 3D information with
larger dataset and computer power. The second limitation is that signals between tissue
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boundaries, as body-to-air or bone-to-soft tissue, were not preserved. This can be seen from
photon based planning as dose differences retain at the body contour. These differences may
not be clinically significant for photon based planning but can result range over/
underestimation for proton based planning. This may be due to the signal loss during pre-
processing as volumetric resizing and image interpolation. To overcome this issue, high-
resolution images with original details need to be retained during the pre-processing for
which again high computational power is needed. In addition, proton beam is sensitivity to
HU change, with a 5HU difference resulting ~1mm range shift. The adaption of current and
similar techniques to proton based planning warrants more investigation. Thirdly, lack of the
same day paired CT and CBCT at the same position prevented us to precisely evaluate the
exact HU mapping. ldentifying matched CT/CBCT pair taken at the same position is
extremely challenging in a retrospective setting. None of previous published literatures
except Yuan et al. used 10 paired same day CT/CBCT 18 and all in proof-of-concept stage.
To truly adapt the technique in clinic, rigorous verification with precise ground truth is
needed. The data collection of the same day paired CT/CBCTs and with various disease
types are undergoing and will be included in our future study.

Overall, CBCT plays a very important role in image-guided radiation therapy (IGRT).
Enhancement of its quality can contribute to daily patient setup and adaptive dose delivery,
thus enabling higher confidence in patient treatment accuracy. The results of this study
demonstrate that the artificial intelligence (Al) technique can improve CBCT image quality
without hardware improvement. Once the model is trained, it takes less than a second to
process a deep-learning based volumetric CBCT set. The results also show that the improved
CBCT can achieve high image quality to be close to the level of conventional CT, thus have
the potential to be used for adaptive planning. Overall, the method presented in this study
may provide a time-efficient and economic-efficient solution for machines that are coupled
with CBCT capability. The output may improve the soft-tissue definition that is necessary
for accurate visualization, contouring, deformable image registration, and may enable new
applications, such as CBCT-based online adaptive radiotherapy.
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Figure 1.
U-Net architecture is used for Generators in GAN. The input data size is 512 x 512 x 3 and

the output data size is 512 x 512 x 1; the first two numbers represent resolutions and the
third number represents channels.
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Figure 2.

The intermediate results of training and testing curves to compare (1) the pix2pix GAN with
or without FM, (2) the pix2pix GAN with FM at all layers vs. at layers of 2,4,6,7; (3) the
pix2pix GAN with FM at layers of 6,7 vs. at layers of 2,4,6,7; (4) the pix2pix GAN vs.
cycleGAN. Due to the different training and testing datasets, training and testing MAEs
were different.
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Figure 3.
Two case examples: (1) CT image, (2) CBCT image, (3) deep-learning based CBCT

(dCBCT) predicted using 2.5D GAN with feature matching, (4) line plot showing intensity
profile of CT (blue), CBCT (green) and dCBCT (red) in range of [-500, 1500] HU, (5) HU
differences between CBCT to CT in range of [-500, 500] HU, (6) HU differences between
dCBCT to CT in range of [-500, 500] HU.
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Comparison among the presented algorithm and other algorithms as prediction results using:
(1) U-net; (2) 2D GAN without feature matching (FM); (3) 2.5D GAN without FM; (4) 2D
GAN with FM; (5) 2.5D GAN with feature matching; (6) CycleGAN; (7) 2.5D GAN with

FM and perceptual loss; and (8) cycleGAN with identify loss.
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Figure 5.
One head-and-neck case example from an independent testing dataset. The deep-learning

based CBCT showed much closer HU to reference CT.
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Figure 6.
VMAT based photon plans showing dose differences calculated on (a) synthetic CT (sCT)

and (b) CBCT with relative to the reference CT (rCT), dose calculation accuracy can be
obtained with generated sCT. The planning target is shown in red.
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Figure 7.
Double scattering based proton plans showing dose differences calculated on (a) synthetic

CT (sCT), (b) CBCT with relative to the reference CT (rCT), with two lateral beams; and (c)
the field water equivalent depth (WED) of single beam was displayed for rCT, sCT and
CBCT. The sCT showed less proton range differences. The planning target is shown in red.
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Table 1:

The Mean Average Error (MAE) and Peak Signal-to-Noise Ratio (PSNR) of the original CBCT and the
synthetic CT generated by using 8 deep learning architectures compared to the referece CT: (1) 2.5D Pix2pix
GAN with feature matching — as proposed in this study; (2) 2D Pix2pix GAN without feature matching, using
single slice as network input; (3) 2D Pix2pix GAN with feature matching; (4) 2.5D Pix2pix GAN without
feature matching; (5) 2.5D Pix2pix GAN with feature matching and perceptual loss; (6) U-net; and (7)
cycleGAN and (8) cycleGAN with identity loss.

Network Mean Average Error (MAE)  Peak Signal-to-Noise Ratio (PSNR)

0 Original CBCT 26.149.9 16.7+10.2
1 2.5D GAN with FM 8.1+1.3 24+7.5
2 2D GAN without FM 9.4+1.2 22.4+3.8
3 2D GAN with FM 8.1+1.4 23.8+1.8
4 2.5D GAN without FM 9.3+2.1 22.7+2.9
5 25D GAN with FM and Perceptual Loss ~ 9.2+1.5 23.2+7.8
6 U-net 19.046.4™* 18.9+6.7

CycleGAN 9.2+1.5 232+7.8

CycleGAN with Identity Loss 8.9£3.1 22.1#55

*
MAE between the original CBCT and CT is significantly higher compared to other methods

*:

*
MAE between the U-net generated synthetic CT and original CT is significantly higher compared to other methods
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Summary of previous publications on conventional algorithms in improving CBCT image quality.

Paper Method Time Dataset
Zbijewski et al. 20068 Monte Carlo ~ hours a digital rat abdomen phantom
Wang et al. 20095 Interative reconstruction ~5 hours a CT quality assurance phantom and an

Sun et al. 20107
Tian et al. 201123

Jia etal. 2011 24
Jia et al. 2012°
Xu et al. 2015°

Park et al. 20152

Scatter Kernel

Iterative reconstruction

Iterative reconstruction
Ray-Tracing

Modified Monte Carlo with
planning CT as prior information

Modified Monte Carlo with
planning CT as prior information

~15 mins (8-core thread)

6s per slices (GPU)

5 mins (GPU)
~ mins (GPU)
30s (GPU)

6 mins(GPU)

anthropomorphic head phantom
Pelvis phantom

Thorax phantom, chest phantom and Catphan
phantom

thorax phantom and Catphan phantom
Catphan phantom and 1 H&N patient

Full-fan headneck case and the half-fan prostate
case

Anthropomorphic phantoms and a prostate patient
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Summary of recent publications on deep-learning based algorithms on reconstructed volume to further
improve CBCT image quality.

Paper Algorithm Original-> Result mean MAE Dataset Slice matching
Kida et al. 2018%° Unet 92%>16 Pelvis: 20 Yes
Li et al. 2019% Unet (60, 120) > (6,27) H&N: 50(training)+10(validation) Yes
' ' +10(testing)
Harms et al. 201933 cycleGAN Brain:24->13 Brain:24 Yes
Pelvic:53->16 Pelvic:20
Liang et al. 20191° cycleGAN 72->28 H&N: 13(training)+4(testing) No
Chen et al. 2020% Unet 44->19 H&N: 37(training)+7(testing) Yes ¥**
Kruz et al. 202034 cycleGAN 103->87 Pelvic: 25(training)+8(testing) No
Liu et al. 202032 Deep-Attention 81->57 Abdomen: 30 Yes
cycleGAN
Yuan et al. 202018 Unet 172-49 H&N: 37(training)+15(testing) Yes ¥**

*
the analysis is the was evaluated in ROIls on selected slices in terms of spatial nonuniformity

Hok

this paper only gave the range of MAE

HokA

CBCT and CT images were acquired on the same day.
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