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ABSTRACT OF THE THESIS

Exploiting Label Correlations for Multi-label Classification

by

Cheng-Xian Li

Master of Science in Computer Science

University of California, San Diego, 2011

Professor Charles Elkan, Chair

Multi-label classification is widely used for various applications such as au-

tomatic music tagging. Often, multi-label learning is done by transforming into

multiple independent binary classification problems. In order to produce better

classification result, label correlations should be taken into account. This thesis

first discusses how to model label correlations in a quantitative way and categorizes

the concept into unconditional and conditional correlations. After that, this thesis

shows how to exploit both kinds of label correlations for multi-label learning algo-

rithms. The main model this thesis addresses is conditional random fields (CRFs).

This thesis shows how to apply CRFs for multi-label classification. Because of the

intractable nature of CRF inference, several approximation algorithms to make it

applicable for larger label sets are described. Various other learning algorithms

viii



that exploit label correlations are also discussed in this thesis. In the end, all the

mentioned multi-label learning algorithms are evaluated with a music data set,

CAL500, composed of 502 songs categorized into 174 labels.
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Chapter 1

Introduction

Multi-label classification is an extension of the traditional single-label clas-

sification problem. Single-label classification is to learn from a set of examples

that are associated with a single label from a set of labels, while multi-label clas-

sification is instead to learn from examples that are associated with a subset of

labels.

Multi-label learning algorithms are widely used for various application in-

cluding text categorization, automatic music tagging, etc. Take music tagging for

example, given a set of tags such as music genre, the goal of multi-label learning

is to correctly predict which tags should be associated with a song.

There are several approaches for multi-label classification. The most com-

mon method is to regard the problem as a set of independent binary classifications

one for each label, that is, to individually predict if each label appears or not.

However, this method does not take label correlations into account, while it is of-

ten the case that certain labels are correlated. Using our music example, suppose

we have learned that the tag romantic is always negatively correlated with the tag

fast tempo, we would never predict something unreasonable such as having both

of the tags if this correlation is taken into account.

The main theme of this thesis is to discuss what label correlations are and

how to exploit them for multi-label classification. The thesis will break into the

following parts. To begin with, we will give a formal definition of multi-label

classification problem and briefly describe a commonly used method called binary

1
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relevance. Then we will discuss what label correlation is in a quantitative way. In

the discussion, we will categorize label correlation into two kinds: unconditional

label correlation and conditional label correlation. Unconditional label correlation

is measured only on the labels. Three unconditional label correlation measures are

described, which are Pearson’s correlation coefficient, mutual information, and χ2

score. On the other hand, in addition to utilizing information from labels, condi-

tional label correlation takes the associated features into account. Two conditional

label correlation measures are illustrated. The first one is to measure the similarity

of the relevance between labels and each feature. The second one is formulated by

partial correlation.

Once label correlations are formally defined, we will then introduce how

to perform multi-label classification by incorporating label correlations into learn-

ing algorithms. The first model we discuss is conditional random fields (CRFs)

[1]. We give a brief introduction to CRFs, and then show two CRF models that

exploit unconditional and conditional correlations respectively. Then we describe

several CRF approximation methods because the exact CRF training and inference

are intractable. The approximation methods include supported heuristic, Gibbs

sampling, and correlation-based CRF tree/chain approximations.

We follow up by describing other multi-label learning algorithms and explain

how they utilize label correlations: multi-class method, and multi-label k-nearest

neighbor. A different multi-label learning framework called label space reduction

will be then introduced, which aims at learning fewer base learners than the size

of label set. Two methods will be used: label PCA and feature/label CCA, which

utilize unconditional and conditional label correlation respectively.

Since several multi-label learning algorithms we describe are not able to

scale up for larger label set, a divide and conquer framework will be introduced

which we call label clustering. This breaks the entire label set into several smaller

correlated clusters so that those time-consuming learning algorithms are able to

handle.

We evaluate all the algorithms with CAL500 [2], a music data set composed

of 502 songs categorized into 174 labels. We briefly mention how CAL500 is created
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and what the features and labels are, together with some basic statistics. Then we

describe 6 metrics to evaluate multi-label classification. Procedures to pre-process

raw CAL500 features are introduced next, then our experimental setup.

Finally, we show the experimental results and discuss the performance of

each learning algorithm. The thesis ends with listing some potential future direc-

tions.



Chapter 2

Multi-label classification

2.1 Definition

The traditional binary classification problem is to learn the mapping from

a feature defined in space X to a binary label outcome in Y where |Y| = 2, that

is, to learn the function f : X → Y . Multi-label classification takes a step further

that generalize binary classification as follows. Given a set of labels Y which now

can be more than two, the goal of multi-label classification is to predict whether

each of them appears or not, that is, the outcome is a subset of Y . Therefore, the

mapping function to learn could be formulated as f : X → 2Y where 2Y denotes

the power set of Y . In practice, we usually consider the case that the feature could

be represented as a fixed length real vector, therefore multi-label mapping becomes

f : R
D → 2Y supposing the feature is D-dimensional.

It is a convention to represent any case in the label power set 2Y by a

binary vector. Suppose there are L labels (|Y| = L), then any multi-label outcome

could be represented by an L-dimensional binary vector y = [y(1), y(2), . . . , y(L)]T ∈

{0, 1}L where y(i) = 1 if i-th label occurs and y(i) = 0 otherwise.1

With the binary power set representation, multi-label mapping function

f : R
D → {0, 1}L is learned from multi-label training data D = {(xi,yi)}

N
i=1 com-

posed of N examples where xi ∈ R
D and yi ∈ {0, 1}L. The goal of multi-label

1We stay with the notation that i-th component of vector y is denoted as y(i); the parenthesis

around the index is used to prevent the confusion with exponent.

4
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classification is to learn such mapping that is able to make accurate prediction for

an unknown feature vector x ∈ R
D in terms of a specific loss function.

2.2 Binary relevance method

A commonly used approach toward multi-label classification is the binary

relevance method. It is based on the assumption that labels are controlled by the

feature independently. Therefore, we decompose the original multi-label classifica-

tion problem into multiple binary classification problems one for each label. Specif-

ically, instead of learning f : R
D → {0, 1}L with training data D = {(xi,yi)}

N
i=1,

binary relevance learns L independent binary classifiers fj : R
D → {0, 1} trained

by {(xi,y
(j)
i )}N

i=1 for j = 1, . . . , L.

Since binary classification is a well-studied problem, we can apply any bi-

nary classification algorithms as the base learner, for instance logistic regression or

SVM, to optimize on certain domain specific loss. Binary relevance method runs in

time linear to the number of labels. Besides, it is highly parallelizable because the

classification problem for each label could be done independently. Therefore, the

simplicity of binary relevance makes it one of the standard methods for multi-label

classification in practice. We use this method as our baseline to compare with

other multi-label learning algorithms we will describe later.



Chapter 3

Correlation analysis

In general, it is claimed that exploiting label correlation could improve

multi-label classification result over the commonly used binary relevance method.

Few papers give a precise definition of correlation such as [3]. [3] categorizes such

concept into conditional and unconditional label dependence, which we think is

an insightful direction. In the following section, we use this concept to formulate

label correlation in a quantitative manner to describe the degree of correlation.

3.1 Unconditional label correlation

For the multi-label learning problem X → 2Y , unconditional label correla-

tion describes the relationships among labels Y regardless of the associated feature

X . For example, consider the case of two labels Y = (Y1, Y2); if most of the train-

ing examples have either (Y1, Y2) = (0, 0) or (Y1, Y2) = (1, 1) we could claim that

Y1 and Y2 are positively correlated, and therefore any prediction violating such

relationship would be a poor prediction.

For simplicity, we first consider the unconditional correlation based only

on the pairwise label statistics of training data other than correlations involving

multiple labels at the same time. First of all, we start with the fact that correlation

is closely related to probabilistic dependence which has a formal mathematical

6
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definition. Two random variables Y1 and Y2 are independent if and only if

P (Y1, Y2) = P (Y1)P (Y2).

When two random variables are independent, they are uncorrelated. Unlike de-

pendence has a strict definition, there is no universal definition for correlation, so

we stay with this flexible term to describe the relationship among labels to address

properties we want to emphasize on. Moreover, when two random variables are

shown to be dependent it tells nothing about the degree of dependence so we are

not able to base on the degree to neglect certain obscure correlations for efficiency

issue.

The most widely used measure to describe the degree of correlation is Pear-

son’s correlation coefficient, which treats the prediction of multi-label as a re-

gression problem. Here we overload the term “correlation coefficient” to describe

certain degree. Unlike Pearson’s correlation coefficient that describes whether it is

positively correlated or negatively by its sign, we want an absolute measure that

shows the degree of correlation. One possible design of such correlation coefficient

is just taking the square of Pearson’s correlation coefficient as the degree:

ρ2(Y1, Y2) =

(

E[(Y1 − µ1)(Y2 − µ2)]

σ1σ2

)2

(3.1)

where µi and σi are the mean and standard deviation of Yi. This can be rewritten

into the form of sample correlation coefficient given the labels of training data

associated with Y1 and Y2 being {(pi, qi)}
N
i=1:

ρ2(Y1, Y2) =

(

N
∑N

i=1 piqi −
∑N

i=1 pi

∑N

i=1 qi

)2

(

N
∑N

i=1 p2
i −

(

∑N

i=1 pi

)2
)(

N
∑N

i=1 q2
i −

(

∑N

i=1 qi

)2
) . (3.2)

Since the random variable for each label is defined on discrete values Yi ∈

{0, 1}, there are some alternative that might be more sensible to describe the

correlation degree. One option is mutual information, which is an information

theoretic measure of the dependence of two random variables. For case of the

label pair (Y1, Y2) ∈ {0, 1}2, mutual information is defined as

I(Y1, Y2) =
∑

y1,y2∈{0,1}

P (y1, y2) log

(

P (y1, y2)

P (y1)P (y2)

)

.
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The maximum likelihood estimates of P (y1, y2), P (y1), P (y2) are usually

used to compute I(Y1, Y2), so it can also be represented equivalently:

I(Y1, Y2) =
∑

i,j∈{0,1}

Nij

N
log

(

NNij

(Ni0 + Ni1)(N0j + N1j)

)

(3.3)

where Nij denotes the count of training examples satisfying (Y1, Y2) = (i, j) and

N = N00 + N01 + N10 + N11.

Another widely used option is the χ2 test, which is used to test the depen-

dence of two random variables in statistics by the following quantity:

X2(Y1, Y2) =
∑

i,j∈{0,1}

(Nij − Eij)
2

Eij

where Nij follows the same definition used previously, and Eij is the expected

frequency under the assumption that Y1 and Y2 are independent, which can be

computed by

Eij = N · P (Y1 = i) · P (Y2 = j) = N ·
Ni0 + Ni1

N
·
N0j + N1j

N

so the χ2 score can be calculated by

X2(Y1, Y2) =
N(N11N00 − N10N01)

2

(N11 + N01)(N11 + N10)(N10 + N00)(N01 + N00)
. (3.4)

The above criteria provide quantitative measure of the degree of correlation

for any two labels. Applying to all pair of labels we could build a correlation matrix

C ∈ R
L×L where the entry Cij indicates the correlation between label i, j.

To incorporate unconditional correlation into the learning process, it is

usual to model the correlation in a more relaxed manner such as the frequency of

all four possible combinations (0, 0), (0, 1), (1, 0), (1, 1) for any pair of labels. This

statistic could be used for a smoothing post-processing of an initial prediction. One

example that exploits unconditional correlation is the classifier stacking method

or also known as 2BR [4]. It first makes prediction for each label independently

and then use that as an input to train a second-layer classifier to make the final

prediction more consistent with the correlation measure.
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3.2 Conditional label correlation

Similar to unconditional label correlation mentioned above, conditional cor-

relation is closely related to probabilistic conditional dependence which is defined

under a fixed feature x ∈ X . Specifically, when two labels Y1, Y2 are independent

conditioned on x by definition

P (Y1, Y2|x) = P (Y1|x)P (Y2|x)

and again, this implies Y1, Y2 are conditionally uncorrelated given x. Since the

classification problems are based on the correlation between feature X and the

corresponding label Y , the conditional correlation may be more useful than un-

conditional one for the purpose of prediction.

Notice that unconditional correlation does not imply conditional correlation

and vice versa. The case that two labels are unconditionally uncorrelated but

conditionally correlated can be illustrated from one of the examples borrowed from

[3]. Consider the following joint probability table where the feature is composed

of a single binary random variable X ∈ {0, 1}:

Table 3.1: Two random variables that are unconditionally uncorrelated but con-
ditionally correlated

Y1 Y2 P (X =0, Y1, Y2) P (X =1, Y1, Y2) P (Y1, Y2)
0 0 0.25 0 0.25
0 1 0 0.25 0.25
1 0 0 0.25 0.25
1 1 0.25 0 0.25

The unconditional probability P (Y1, Y2) = P (X =0, Y1, Y2)+P (X =1, Y1, Y2)

is a constant 0.25 for all four possible configurations of Y1 and Y2 which shows that

Y1 and Y2 are uncorrelated. However, it is obvious that Y1 and Y2 are actually

correlated if the feature X is taken into account, that is, when X = 0 we have

Y1 = Y2; when X = 1 we have Y1 = 1 − Y2. This is an example shown that it is

possible to be unconditionally uncorrelated while still conditionally correlated.

On the other hand, when two labels Y1, Y2 are purely a function of X, Y1

and Y2 are conditionally independent given X (in graphical model, Y1, Y2 are d-
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separated by X) but they are dependent if X is not observed. This shows that

even if two labels are conditionally uncorrelated it is still possible that they are

unconditionally correlated.

In practice, it is hard to define conditional correlation in the same manner

as unconditional correlation for each possible feature configuration, because the

feature space X is too large especially when it’s continuous. Moreover, the purpose

of correlation analysis is to perform structure learning or label clustering, which

we will describe later, so here we try to model the relatedness between two labels

by considering the influence of the associated feature.

3.2.1 Conditional correlation by feature analysis

The first method to model conditional correlation could be illustrated from

the viewpoint of feature selection. For example, say there are three labels Y =

{Y1, Y2, Y3} and each instance has two features X = {X1, X2}. If feature analysis

shows that both Y1 and Y2 are only related to X1 but have nothing to do with X2,

on the other hand Y3 only depends on X2 but unrelated to X1, that is, X1 controls

the outcomes of Y1 and Y2 while X2 controls Y3, then we could conclude that Y1

and Y2 are more correlated than Y3 and Y1. The general procedure to apply this

concept to measure conditional correlation is to evaluate by how similar a set of

features each pair of labels is controlled as shown in Algorithm 1.

There are two parts in Algorithm 1. The first part is to compute the

label-feature correlation. Again we could use the square of Pearson’s correlation

coefficient as in (3.1) to describe the degree of correlation. Another widely used

method is the Fisher criterion score [5] that aims at discriminating between two

classes. Using the same notation of Algorithm 1, consider f -th feature {x
(f)
k }N

k=1

and ℓ-th label {y
(ℓ)
k }N

k=1, the Fisher criterion score is given by

r
(ℓ)
f =

(µ+
f − µ−

f )2

(σ+
f )2 + (σ−

f )2

where µ+
f and σ+

f are the mean and standard deviation of those x
(f)
k for all k

satisfying y
(ℓ)
k = 1. Similarly, µ−

f and σ−
f are the mean and standard deviation

associated with y
(ℓ)
k = 0.
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Algorithm 1: Framework to measure conditional correlation coefficient

Input: training data {(xi,yi)}
N
i=1 where xi ∈ R

D and yi ∈ {0, 1}L

Output: conditional correlation matrix C ∈ R
L×L where Cij is the

conditional correlation coefficient of label i, j

foreach label ℓ do

foreach feature f do

r
(ℓ)
f = relevance between feature {x

(f)
k }N

k=1 and label {y
(ℓ)
k }N

k=1

end

end

foreach label pair i 6= j do

Cij = similarity between {r
(i)
k }D

k=1 and {r
(j)
k }D

k=1

end

The second part is to compute the correlation coefficient by measuring for

each label pair how similar the corresponding two sets of correlation coefficients

(the degree of relevance associated with each feature) are. This could be done

by several ways: One could use the number of common top-k features as the

similarity measure, that is, for each pair of labels Y1, Y2, if the corresponding top-k

(k is a configurable parameter) relevant features for Y1, Y2 are indexed by S1 and

S2 respectively where Si is a subset of {1, . . . , D} given the feature space X ∈ R
D,

then the correlation coefficient could be described as |S1 ∩ S2|. Another approach

to measure the similarity between two sequences is to compute their correlation

coefficient. Also we can just regard the two sequences as vectors and take the

Euclidean distance as their dissimilarity measure.

One drawback of this approach is that it assumes features are independent

to each other, that is, no features lie on the space spanned by a set of other features.

It is possible that the predictability comes from a subset of features, which does

not appear when observing individual features. If such phenomenon is indeed the

case, then per-feature relevance analysis would fail to provide useful information.
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3.2.2 Conditional correlation by partial correlation

Another approach to model conditional label correlation is partial corre-

lation [6], which measures the degree of correlation between two target random

variables with the effect of a set of controlling random variables removed. Tradi-

tionally, partial correlation is used under linear regression, computing the correla-

tion between the residuals of the two target random variables. For the classification

problem, we can adapt the same concept to evaluate the conditional label correla-

tion as follows.

Let two binary random variables P and Q represent the outcome of two

given labels, and the random variable X corresponds to the feature vector associ-

ated with labels P and Q. Also let the training data {(xi, pi, qi)}
N
i=1 where xi ∈ R

D,

pi, qi ∈ {0, 1} to be sampled from a joint distribution over X, P , and Q. Supposing

a linear model is used, we first train two linear classifiers fP , fQ to predict P from

X and Q from X parameterized by wP and wQ respectively:

p ≈ fP (x) =







1 if wT

Px ≥ 0

0 otherwise
q ≈ fQ(x) =







1 if wT

Qx ≥ 0

0 otherwise

where we can assume that a non-zero constant is attached to the original feature

vector so a bias term is implicitly integrated into the classifiers, so that the decision

threshold is zero.

Having the trained parameters wP and wQ, we can then compute the resid-

uals of each training example by taking the decision score if the example is mis-

predicted. The residuals of i-th example are

rP,i =







wT

Pxi if pi 6= fP (xi)

0 otherwise
rQ,i =







wT

Qxi if qi 6= fQ(xi)

0 otherwise

Since we use the decision score wTx as the residual, the parameters wP

and wQ should be normalized so that the scores for both labels P and Q are

in the same scale. Logistic regression comes with such convenience because it

is formulated with a probability measure. Instead of wTx in the residual formula

above, logistic regression uses the normalized score 1/(1+exp(−wTx))−0.5 which

is bounded in [−0.5, 0.5].
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With all the residuals of each training example for both labels, we can then

compute the square of the sample partial correlation similar to (3.2):

ρ2(P,Q) =

(

N
∑N

i=1 rP,irQ,i −
∑N

i=1 rP,i

∑N

i=1 rQ,i

)2

(

N
∑N

i=1 r2
P,i −

(

∑N

i=1 rP,i

)2
)(

N
∑N

i=1 r2
Q,i −

(

∑N

i=1 rQ,i

)2
)

When ρ2(P,Q) is undefined due to the fact that any of P and Q has zero

variance or two classifiers have no training error, we can just set ρ2(P,Q) to 0,

which regards P,Q as independent.

Applying this to each label pair, we can again build the whole correlation

matrix C ∈ R
L×L as in the case of unconditional label correlation.



Chapter 4

Multi-label learning with

conditional random fields

4.1 Conditional random fields

Conditional random field (CRF) [1] is a framework that could be used to

exploit either unconditional or conditional label correlation for multi-label classi-

fication. A CRF is an undirected graphical model in which each vertex represents

a random variable and each edge represents a dependency between two random

variables associated with the vertices it connects to. In general, CRF is in the

form of a probabilistic log-linear model as the following conditional probability

parameterized by w:

P (y|x;w) =
1

Z(x)
exp

(

∑

k

wkfk(x,y)

)

(4.1)

where fk(x,y) is called feature function which could be any real-valued function

used to encode any kind of relations between feature x and label y in a flexible

way. Also, in (4.1), Z(x) is the partition function as follows that normalizes the

whole quantity into a probabilistic distribution that satisfies:
∑

y
P (y|x;w) = 1

Z(x) =
∑

y′

exp

(

∑

k

wkfk(x,y′)

)

. (4.2)

14
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The CRF training step is to estimate parameters w by the maximum like-

lihood method on the given training data D = {(xi,yi)}
N
i=1. The log likelihood is

formulated as

ℓ(w|D) = log

(

N
∏

i=1

P (yi|xi;w)

)

−
∑

k

w2
k

2σ2
(4.3)

=
N

∑

i=1

(

∑

k

wkfk(xi,yi) − log Z(xi)

)

−
∑

k

w2
k

2σ2

where the last term, which is essentially the Gaussian prior, is for L2 regularization

controlled by a pre-defined parameter σ to reduce the risk of over-fitting especially

when the number of parameters, dim(w), is huge. The parameter σ is usually

chosen by cross validation.

The parameters w are estimated by maximizing the regularized log likeli-

hood function ℓ(w|D). Notice that this maximization problem is concave so the

global optimum can be obtained by gradient ascent. The gradient of the log like-

lihood associated with wk is given by

∂

∂wk

ℓ(w|D) =
N

∑

i=1

(

fk(xi,yi) −

∑

y′ exp (
∑

k wkfk(xi,y
′)) fk(xi,y

′)
∑

y′ exp (
∑

k wkfk(xi,y′))

)

−
wk

σ2

=
N

∑

i=1

(

fk(xi,yi) −
∑

y′

P (y′|xi;w)fk(xi,y
′)

)

−
wk

σ2

As for the prediction step, or decoding step, we determine the most likely

label combination y given the feature x by

ŷ = argmax
y

P (y|x;w) = argmax
y

(

∑

k

wkfk(x,y)

)

(4.4)

The final part holds because the partition function Z(x) is a constant for a fixed

feature x.

The work of applying CRF to multi-label classification that takes label cor-

relation into account is described in detail in [7]. Two CRF models are proposed

in [7]: one is called collective multi-label classifier (CML) which utilizes uncondi-

tional label correlation; while the other is called collective multi-label with features
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classifier (CMLF) which utilizes conditional label correlation. We describe these

two models in detail in the following sections.

4.1.1 CML model

The CML model [7] exploits unconditional label correlation by introducing

two sets of feature functions. The first set of feature functions models how each

feature x(i) influences each single label y(j) and has the following form:

fk(x,y) = x(i)I(y(j) = 1)

The index k enumerates through all the following combinations of each feature and

label:

k ∈ {(i, j) : 1 ≤ i ≤ D, 1 ≤ j ≤ L}.

The second set of feature functions models the pairwise unconditional label corre-

lation (regardless of the features x) by

fk′(y) =



























I(y(i) = 0) I(y(j) = 0) if q = 1

I(y(i) = 1) I(y(j) = 0) if q = 2

I(y(i) = 0) I(y(j) = 1) if q = 3

I(y(i) = 1) I(y(j) = 1) if q = 4

where the index k′ enumerates through all label pairs with four possible configu-

rations as k′ ∈ {(i, j, q) : q ∈ {1, 2, 3, 4}; 1 ≤ i < j ≤ L}

Notice that we could drop one feature function out of four because any one

of them could be uniquely determined by the other three and the linearity between

feature functions makes one of them redundant.

Also we can simplify the model by considering only positive and negative

correlations on each label pairs that makes the following set of feature functions:

fk′(y) =

{

I(y(i) = y(j)) if q = 1

I(y(i) 6= y(j)) if q = 2

where k′ ∈ {(i, j, q) : q ∈ {1, 2}; 1 ≤ i < j ≤ L}, and again we are free to drop

one of them to make it as follows for k′ ∈ {(i, j) : 1 ≤ i < j ≤ L}

fk′(y) = I(y(i) = y(j)). (4.5)
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Figure 4.1 is an example of a CML model with 4 labels represented by a

factor graph. Nodes Y1, Y2, Y3, and Y4 are the 4 labels and the feature random

variables are represented as a single node X for clarity. All pairs of labels are

linked together, and the feature node X is connected to each label node. Each

square denotes a factor associated with a feature function when it connects to a

pair of labels, or a set of feature functions if it links to the feature node.

Figure 4.1: The factor graph of a CML model with 4 labels.

4.1.2 CMLF model

Similar to CML model, CMLF model [7] has the following set of feature

functions for independent binary classification for each label with the index k ∈

{(i, j) : 1 ≤ i ≤ D, 1 ≤ j ≤ L}:

fk(x,y) = x(i)I(y(j) = 1)

In order to model the conditional label correlation, CMLF introduces an-

other type of feature functions that aims to capture the relationship among all of

the combinations of a pair of labels and a feature indexed by

k′ ∈ {(i, j,m, q) : q ∈ {1, 2, 3, 4}; 1 ≤ m ≤ D; 1 ≤ i < j ≤ L}
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and the feature function is defined as

fk′(y) =



























x(m) I(y(i) = 0) I(y(j) = 0) if q = 1

x(m) I(y(i) = 1) I(y(j) = 0) if q = 2

x(m) I(y(i) = 0) I(y(j) = 1) if q = 3

x(m) I(y(i) = 1) I(y(j) = 1) if q = 4

Again, we are free to drop one redundant feature function here because of

the linearity. Also we could just model the positive and negative correlation by

using the following simpler feature function (already in the form of having the

redundant one dropped):

fk′(y) = x(m)I(y(i) = y(j)) (4.6)

where k′ ∈ {(i, j,m) : 1 ≤ i < j ≤ L; 1 ≤ m ≤ D}.

Figure 4.2 is an example of a CMLF model with 4 labels represented by a

factor graph. The feature node connects to all the labels, and each pair of labels

and the feature node are linked together.

Figure 4.2: The factor graph of a CMLF model with 4 labels.
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4.2 Supported heuristic for CRFs

Both training and prediction in CML and CMLF model involve enumerating

all possible label combinations for either computing the partition function Z(x)

or searching for the label configuration that maximizes P (y|x;w). In the case

of |Y| = L there are total 2L label combinations, which makes the training and

prediction only workable for small number of L such as L ≤ 10. Therefore, some

approximation methods are proposed in [7]. Here we describe one of the heuristic

that assumes all of the label combinations that do not occur in the training data

having zero probability, that is, we only consider those combinations (which are

called supported combinations) that appear in the training data.

Supposing the supported combination set is S with |S| ≪ 2L, the partition

function Z(x) as in (4.2) is approximated by

Z(x) ≈
∑

y∈S

exp

(

∑

k

wkfk(x,y)

)

.

Similarly, the prediction is done by

ŷ ≈ argmax
y∈S

P (y|x;w) = argmax
y∈S

(

∑

k

wkfk(x,y)

)

Assume that the number of supported label combinations is S which is

essentially O(N). Given the training data D = {(xi,yi)}
N
i=1 where xi ∈ R

D and

yi ∈ {0, 1}L, that is, the number of features is D, the number of labels is L, and the

number of training examples is N , the time complexity of training and prediction

with the two models CML and CMLF using supported heuristic is analyzed as

follows.

For the CML model, there are total O(DL+L2) feature functions (for both

variants described before) as well as the same number of parameters. Supposing a

general gradient based optimization is used for parameter estimation, each iteration

requires O(NS(DL + L2)) time to compute the gradient of a single parameter.

Therefore for all O(DL + L2) parameters, it takes O(NS(DL + L2)2) time for

one iteration. Let T denotes the total number of iterations needed to converge,

plugging in S = O(N), the overall time complexity for training a CML model is
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then O(N2L2(D+L)2T ). As for the prediction of CML, it only needs to go through

the feature functions without computing the partition function, so the overall time

complexity is O(S(DL + L2)) or the upper bound O(NL(D + L)).

On the other hand, for the CMLF model there are total O(DL + DL2) =

O(DL2) feature functions. Therefore the overall time complexity of training a

CMLF model using gradient-based methods that takes T iterations to converge

is O(NSD2L4T ) which is upper bounded by O(N2D2L4T ). As for the prediction

of CMLF, it takes O(SDL2) = O(NDL2) time to figure out which supported

combination is the most likely one.

Table 4.1 compares the time complexity applying supported method with

CML and CMLF mentioned above.

Table 4.1: Time complexity of CML and CMLF with supported heuristic

training prediction
CML O(N2L2(D + L)2T ) O(NL(D + L))
CMLF O(N2D2L4T ) O(NDL2)

4.3 Gibbs sampling

Besides supported approximation, another well-known approach to attack

the intractable nature of complex CRF models such as CML or CMLF is through

sampling. Usually the training step that uses sampling technique is done with

stochastic gradient descent. Unlike conventional gradient descent that updates

in the batch manner, in each iteration stochastic gradient descent updates only

according to a small portion of training examples (usually one example in practice).

In particular, considering the numerator of the CRF probability exp
∑

k wkfk(x,y)

(which is sometimes called product of potential functions), the parameter updating

rule using stochastic gradient descent performs the following according to one

training example, say (x,y), at a time:

wk ← wk + η

(

fk(xi,yi) −
∑

y′

P (y′|xi;w)fk(xi,y
′) −

wk

Nσ2

)



21

or written equivalently in the expectation form

wk ← wk + η
(

fk(x,y) − Ey′∼P (y|x;w) [fk(x,y′)] −
wk

Nσ2

)

where η is a tunable learning rate which is usually chosen empirically. An alterna-

tive approach similar to perceptron algorithm mentioned in [8] updates parameters

in the following way:

wk ← wk + η
(

fk(x,y) − fk(x, ŷ) −
wk

Nσ2

)

where ŷ = argmaxy P (y|x;w) takes the labeling that maximizes the conditional

probability, which is also the objective of the inference step.

The challenging part of this procedure is to compute either the expectation

Ey′∼P (y|x;w) [fk(x,y′)] or the most likely labeling ŷ, which is where Gibbs sampling

helps. The idea of Gibbs sampling is to efficiently generate a sequence of samples

to approximate the joint distribution. The general procedure to sample from the

conditional distribution P (y|x) is to first start from a random guess, say y, and

then iteratively sample one component say yi according to the marginal distri-

bution P (y(i)|y(1), y(2), . . . , y(i−1), y(i+1), . . . , y(N),x)) which will be shorthanded as

P (y(i)|y(−i),x) in the following discussion. Usually, a sufficient number of samples

at the beginning are ignored (the so-called burn-in period) for the Markov chain to

approach its stationary distribution. In the CRF case, we could choose the initial

value from the training example. The sampling procedure for a binary component

y(i) is to draw y(i) from the distribution:

P (y(i) =1|x,y(−i);w) =
exp

∑

k wkfk(x,y(−i), y(i) =1)
∑

j∈{0,1} exp
∑

k wkfk(x,y(−i), y(i) =j)

Notice that the sampling process requires no computation of the exact con-

ditional probability P (y|x;w) involving the partition function, which is compu-

tational intractable, because it is a constant when the parameter w is fixed. Re-

peating this procedure for all components over and over again, we will obtain a

sequence of labelings which could be used to approximate the Ey′∼P (y|x;w) [fk(x,y′)]

by taking the unweighted average of fk(x,y′) for all y′ being the elements in the

sequence. For the perceptron method or the inference step, we can approximate
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the most likely labeling by outputting the very ŷ from the sampled sequence that

maximizes the conditional probability P (y|x;w).

An issue of the implementation of stochastic gradient descent is to choose

a good learning rate η during updating to obtain more stable convergence. A

common heuristic1 to adjust the learning rate is to decrease it smoothly as time

goes by:

η =
1

λ(t + t0)

where t is the number of epochs (updating all parameters once) so far, λ and t0

are two adjustable parameters which could be determined by cross validating on a

small portion of training data sampled uniformly at random.

Follow the same notation convention we used before, the number of features

is D, the number of labels is L, and the number of training examples is N . For the

CML model, each sampling step takes O(D+L) time because it involves computing

O(D + L) feature functions associated with a particular label y(i). Supposing K

samples are generated to make the prediction by outputting the label combination

from the sampled sequences that maximizes the probability P (y|x;w), the overall

time complexity is therefore O(K(D + L)) for prediction. As for training, the

stochastic updating with each example involves two steps: generating a sequence

of samples to compute Ey′∼P (y|x;w) [fk(x,y′)] or fk(x, ŷ) that takes O(K(D + L))

time as in prediction, and updating all O(DL+L2) parameters. Usually, K = O(L)

samples are used for a single update, which leads to O(DL + L2) update time for

one training example. A complete update on all N training examples is usually

called an epoch. Assuming the whole training process takes T epochs in total, the

overall time complexity for training the CML model is therefore O(NL(D + L)T ).

Similarly, for CMLF model, since there are O(DL2) feature functions and each

sampling involves computing O(D + DL) = O(DL) of them, the overall time

complexity is O(NDL2T ) for training and O(KDL) for prediction. Table 4.2

compares the time complexity of CML and CMLF using Gibbs sampling mentioned

above.

A simple implementation of stochastic gradient descent is to iterate a fixed

1http://leon.bottou.org/projects/sgd
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Table 4.2: Time complexity of CML and CMLF using Gibbs sampling

training prediction
CML O(NL(D + L)T ) O(K(D + L))
CMLF O(NDL2T ) O(KDL)

number of epochs and then output the last model as the result. It is possible to

use a particular stopping criterion to either save time or produce better trained

model. A straightforward stopping criterion is to directly check the log likelihood

ℓ(w|D); however, it involves computing the partition function which is intractable

and thus this method is not suitable for larger numbers of labels, or some approx-

imation approach such as supported method should be used. An alternative is to

evaluate on hold-out training data according to a metric such as F1 score and stop

when there is no obvious improvement with the metric, although it might not be

consistent with the maximum likelihood estimation.

4.4 Tree structured CRF approximation

In the above CRF models, we consider the entire pairwise label correlations

and learn a parameter associated with each of them. In reality, however, this might

not reflect the actual structure that represents the label correlation. Some of the

label pairs might be completely independent. In that case, the corresponding fea-

ture functions should be removed from the model to avoid the noise they introduce.

While learning the structure itself is a challenging task, even if the exact structure

is given the intractable inferencing issue might still exist.

Here we take a step further and trade structure consistency for efficiency.

When the label dependencies are tree-structured, there are algorithms such as

belief propagation [9] that utilize dynamic programming to perform exact CRF

inference in polynomial time. Therefore another heuristic is to learn the tree

structure that best approximates the originally fully correlated model, that is, we

aim at selecting only a subset of feature functions associated with pairwise label

correlations to form a tree structure (or simply a linear chain).



24

The ideal way to construct the tree is to find the specific tree structure

that maximizes the likelihood of training data, which we call maximum likelihood

spanning tree problem. However, the additional tree-structure constraint makes

the optimization problem far from convex (the objective being the negative log like-

lihood), so gradient based methods are no longer applicable. In fact, this structure

learning problem turns out to be a hard combinatorial optimization problem, so it

is necessary to resort to approximation algorithms.

It is sensible to assume that the desired tree structure might take advantage

of label correlations to produce a more likely generative model. Therefore we

could construct the tree based on the label correlation analysis mentioned earlier.

Suppose the correlation matrix C (that comes from any of the criteria such as χ2

score) is given, where each entry is regarded as the weight of the edge associated

with the pairwise label correlation. We can use maximum spanning tree algorithm

(it is equivalent to the well-known minimum spanning tree algorithm such as Prim

or Kruskal algorithm by negating all the weights of the edges) to build the optimal

tree by incrementally including the edge with the largest weight without causing

a loop.

One advantage of this graph representation is that we can derive any desired

structure according to the graph, such as building a linear chain which could be

trained/predicted much faster than a tree or smaller cliques that span the whole

graph just as what we will describe later in the clustering framework.

Constructing the optimal linear chain is equivalent to the travelling sales-

man problem which is known to be NP-hard. In practice, we can use the greedy

nearest neighbor heuristic (which should be called farthest neighbor when the edge

specifies correlation instead of distance) to approximate the optimal chain, which

always chooses the next node having the largest weight on the edge connected to

the current node without causing a loop.

When the number of labels is small, more aggressive approaches are possi-

ble. For example, we can greedily add edges that maximize the overall likelihood

for the partially built tree structure. However, that requires training O(N2) clas-

sifiers which might take too much time for larger number of labels.
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Or, we can use a randomized algorithm to sample random linear chain CRFs

and choose the one that maximizes the likelihood of training data. The reason for

staying with linear chained structure instead of a generalized tree structure is that

it is easier to uniformly sample a random chain and also it is faster to perform

inference in a linear chain CRF. Other than that, we can use ensemble learning that

first samples a bunch of random chains and uses all of them to make predictions

and take the majority voting result on each label individually to form the final

prediction. This is often considered a robust approach against over-fitting.



Chapter 5

More learning with label

correlations

5.1 Multi-class method

Another commonly used framework for multi-label learning is the multi-

class method, also known as label powerset method. The multi-class method treats

each possible combination (a subset of labels) as a single class and applies the tra-

ditional multi-class classification algorithm to predict the most likely label subset.

One issue of this method is that the number of classes is exponential in the num-

ber of labels. Specifically, if there are L labels, the multi-class method has to

deal with 2L classes. Therefore, such property makes this method intractable and

cannot scale-up for larger label set.

From the label correlation point of view, multi-class method utilizes con-

ditional label correlation. Each class that corresponds to a label combination

implicitly models label correlations in a more general manner (treating the entire

correlated label combination as a whole) than the pairwise way described previ-

ously. The multi-class classifier relates the feature to each correlated label set and

therefore is a framework that exploit conditional label correlation.

In practice, most discriminative multi-class classification algorithms such

as multi-class SVM only consider classes having non-zero number of training in-

26
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stances, that is, in the generative point of view it assumes that all of the label

combinations that do not appear in the training data have zero probability. In

this case, the number of classes involved is down to the total number of label sub-

sets that occur in the training data, which is no more than the size of the training

data itself. This is the same idea as the supported heuristic for CRF approxima-

tion. It is usually the case that multi-label training data is not very large, and the

size of the supported combinations is almost the size of the training data. Under

this situation, the degenerated multi-class method will become nearest neighbor

method. Also, one of the disadvantages of this method is that since each class

might contain only a few number of training instances (sometimes there is only

one) which makes the resulting classifier less generalizable. Therefore, multi-class

method usually works better when the size of label set is not too large.

5.2 Multi-label k-nearest neighbor

k-nearest neighbor (kNN) is an instance-based learning method that clas-

sifies objects based on k closest training examples in the feature space. When the

training data is not too large, kNN is a very efficient method because kNN does

nothing in the training stage (it is a lazy learning method) and runs in time linear

to the number of training data in the prediction stage.

One of the famous property of kNN is its strong theoretical consistency

guarantee. As the amount of data approaches infinity, nearest neighbor algorithm

(1NN) is guaranteed to yield an error rate no worse than twice the Bayes error

rate, the minimum achievable error rate given the distribution of the data [10].

The traditional single label kNN could be easily extended to the multi-label

scenario by performing individual voting on each label. Usually we use Euclidean

distance as the distance metric for simplicity; therefore feature normalization is

crucial to obtain good classification result. Our experiment shows that normalizing

the feature vector according to its L2 norm makes the best classification results.

In practice, we always choose k to be an odd number for the voting convenience

(to avoid a tie) which should be determined by cross validation.
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It is worth noting that this multi-label kNN algorithm could be seen as ex-

ploiting conditional label correlation because it directly use the labeling outcomes

of nearby training examples which already reflect label correlations on their own

as in the case of multi-class method. Besides, the distance is measured with the

feature vectors so we say kNN makes use of conditional label correlations.

A more sophisticated kNN-based multi-label learning algorithm was pro-

posed in [11] which performs a local probabilistic reasoning with nearby instances

to make multi-label prediction.

5.3 Label space reduction

When the number of labels is huge, even the binary relevance method is

not applicable due to the large amount of binary classifiers to train. Therefore we

have to seek for solutions with running time less than the number of labels.

A label space transformation framework [12] could be used to deal with

this situation. Given the training data {(xi,yi)}
N
i=1 where yi ∈ {0, 1}L with L

labels, first the labels are transformed from the original label space {0, 1}L into

another space R
L′

with L′ ≪ L with certain efficient mapping function p. That is,

the training data is converted into {(xi, ri)}
N
i=1 where ri = p(yi) ∈ R

L′

. Usually,

the coordinates of the transformed space are independent to one another. There-

fore L′ regression functions fj could then be trained with the transformed data

{(xi, r
(j)
i )}N

i=1 for j = 1, . . . , L′ independently. For simplicity, linear regression is

used here although other regression methods could also be considered. In the pre-

diction step, given a feature vector x, all L′ predicted values f1(x), . . . , fL′(x) are

computed and then use these L′ values to transformed back to the original binary

label space with another efficient mapping function q.

Two methods are described below, which both use linear transformation

functions as p to convert the original label space to the lower dimensional real

space and thresholding on the results of p−1 in the real space back to the label

space. The first method, label PCA, makes use of unconditional label correlation,

while the other method, feature/label CCA, exploits conditional label correlation
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that also takes features into account.

5.3.1 Label PCA

Principal component analysis (PCA) is a widely used dimensionality reduc-

tion technique that linearly transforms a number of possibly correlated variables

into a set of uncorrelated variables called principal components. Formally speak-

ing, PCA transforms the data to a new orthogonal coordinate system such that the

greatest variance by any projection of the data comes to lie on the first coordinate

(first principal component), the second greatest variance on the second coordinate,

and so on. Equivalently, given the input data {xi}
N
i=1 and L′ orthogonal principal

component basis vectors {pj}
L′

j=1, PCA minimizes the reconstruction error

E =
∑N

i=1

∥

∥

∥
xi −

∑L′

j=1(p
T

j xi)pj

∥

∥

∥

2

=
∑N

i=1

(

x2
i −

∑L′

j=1(p
T

j xi)
2
)

In the multi-label classification problem, we can regard the label vector

y ∈ {0, 1}L as the coordinates in the real space. Then PCA is applied on the label

vector so that principal components capture the unconditional label correlations

and project the original label vector into a lower dimensional real vector. The

training step of label PCA is described as Algorithm 2.

Notice that this method is similar to [12] although that does not center the

label vectors and directly decomposes the stacked training label vectors by SVD to

construct projecting bases. Centering is necessary to find the principal components

that maximize the variance (or minimize the reconstruction error) in the shifted

coordinate system.

The prediction step is just applying the reverse procedure that projects

the regression results back to the original coordinate and rounds into binary label

values as Algorithm 3.

A related work introduced in [13] also exploits unconditional label correla-

tion except it performs random projection and applies compressed sensing tech-

nique to reconstruct the predicted labels from the regression results with k-sparse

constraint taken into account.
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Algorithm 2: Training of label PCA

Input: training data D = {(xj,yj)}
N
j=1 where xi ∈ R

D, yi ∈ {0, 1}L,

the reduced dimension L′

Output: label mean µ, a set of projecting bases {pj}
L′

j=1, a set of

regression functions {fj}
L′

j=1

compute sample mean of label vectors µ = 1
N

∑N

i=1 yi.

compute sample covariance matrix Σ = 1
N

∑N

i=1(yi − µ)(yi − µ)T.

compute L′ normalized right eigenvectors of Σ associated with L′

largest eigenvalues as the projecting bases p1, . . . ,pL′ where pj ∈ R
L.

for j = 1 to L′ do

train linear regression function fj : R
D → R with training data

{(xi,p
T

j (yi − µ))}N
i=1.

end

Algorithm 3: Prediction of label PCA

Input: label mean µ, a set of projecting bases {pj}
L′

j=1, a set of

regression functions {fj}
L′

j=1

Output: multi-label classification result ŷ ∈ {0, 1}L

r =
∑L′

j=1 fj(x)pj + µ, note that r ∈ R
L.

round r to binary vector ŷ by element-wisely assigning ŷ(j) = 1 if

r(j) ≥ 0.5, ŷ(j) = 0 otherwise for j = 1 to L.
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5.3.2 Feature/label CCA

Canonical correlation analysis (CCA) [14] is a common technique for mea-

suring the linear relationship between two multi-dimensional variables. Specifically,

consider two (centered) variables x and y, CCA gives two sets of basis vectors such

that the correlation between the projections x and y onto these bases are mutually

maximized. Supposing one set of basis is used, say wx and wy, the projection of

x,y are therefore x = wT

xx and y = wT

y y respectively. So CCA finds the optimal

basis wx,wy that maximizes the correlation coefficient of x, y:

ρ =
E[xy]

√

E[x2]E[y2]
=

E[wT

xxyTwy]
√

E[wT
xxxTwx]E[wT

y yyTwy]

Since CCA makes use of two views of the same set of objects and projects

them onto a lower dimensional space in which the projections are maximally cor-

relation, it can be used to perform supervised dimensionality reduction. In the

multi-label setup, each instance has two views: one is the feature vector, and the

other is the multi-label outcome represented as the binary label vector. Using

CCA, we can project the label vector onto a subspace that preserves most pre-

dictability from the (projected) feature. Different from label PCA, feature/label

CCA exploits conditional label correlation that takes feature vectors into account.

As a by-product, this method could also be used to achieve dimensionality reduc-

tion on the feature vector.

Algorithm 5 illustrates the detailed training step of feature/label CCA.

The normalized canonical correlation bases are computed through solving an eigen

problem that involves both within-sets covariance matrices ΣXX , ΣY Y , which are

assumed to be non-singular, and between-sets covariance matrices ΣXY , ΣY X .

Similar to label PCA, Algorithm 5 describes the prediction step of fea-

ture/label CCA.

5.4 Label clustering

We have described several multi-label learning algorithms that exploit label

correlations. Some of them are intractable such as CRFs and therefore they are
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Algorithm 4: Training of feature/label CCA

Input: training data D = {(xj,yj)}
N
j=1 where xi ∈ R

D, yi ∈ {0, 1}L,

the reduced dimension L′

Output: label mean µY , a set of projecting bases {pj}
L′

j=1, a set of

regression functions {fj}
L′

j=1

compute feature mean µX = 1
N

∑N

i=1 xi.

compute label mean µY = 1
N

∑N

i=1 yi.

compute covariance matrices:

ΣXX = 1
N

∑N

i=1(xi − µX)(xi − µX)T,

ΣY Y = 1
N

∑N

i=1(yi − µY )(yi − µY )T,

ΣXY = 1
N

∑N

i=1(xi − µX)(yi − µY )T,

ΣY X = 1
N

∑N

i=1(yi − µY )(xi − µX)T.

compute L′ normalized right eigenvectors of (Σ−1
Y Y ΣY XΣ−1

XXΣXY )

associated with L′ largest eigenvalues as the projecting bases

p1, . . . ,pL′ .

for j = 1 to L′ do

train linear regression function fj : R
D → R with training data

{(xi,p
T

j (yi − µY ))}N
i=1.

end

Algorithm 5: Prediction of feature/label CCA

Input: label mean µY , a set of projecting bases {pj}
L′

j=1, a set of

regression functions {fj}
L′

j=1

Output: multi-label classification result ŷ ∈ {0, 1}L

r =
∑L′

j=1 fj(x)pj + µY , note that r ∈ R
L.

round r to binary vector ŷ by element-wisely assigning ŷ(j) = 1 if

r(j) ≥ 0.5, ŷ(j) = 0 otherwise for j = 1 to L.
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not applicable when the number of labels is large. Meanwhile, when the number

of labels is large, some of them might not be correlated at all. Take CRFs for

example, modeling those independent label pairs would results in a poorer model

when strong regularization is applied to smooth the model. Therefore, properly

decomposing the original pairwise label relationship into several less correlated

label clusters and then applying multi-label learning algorithms such as CRFs

independently on each cluster might not only simplify the overall model complexity

so that the risk of over-fitting is reduced but also greatly speed up the whole

process.

As we mentioned earlier, label clustering is a heuristic to approximate the

much harder structure learning problem. We can also take the advantage of the

information from correlation matrix to achieve our goal. Basically speaking, we re-

gard the correlation matrix as a proximity measure and apply clustering algorithms

to decompose label set into clusters.

Agglomerative hierarchical clustering method is suitable to separate the

label set into disjoint clusters. For example, we can use single linkage clustering

algorithm with the following linkage function corr(P,Q) to define the correlation

between two clusters P,Q ⊆ Y given the correlation matrix C:

corr(P,Q) = max
p∈P,q∈Q

Cpq.

Notice that since correlation matrix describes the similarity between any

two labels, it is opposite to a distance measure that has smaller value when two

labels are similar to (or close to) each other. So the linkage function defined on

correlation is different from the function defined on distance that uses the min

operator instead.

Having this linkage definition, a greedy method similar to Kruskal’s mini-

mum spanning tree algorithm could be used to merge labels into groups incremen-

tally. The merging process continues until the merged cluster exceeds a size that

is computable for the multi-label learning algorithms.

One disadvantage of this method is that it might end up with several small

clusters (with only one label or two). A workaround is to continue the merging

process, leaving those clusters which are large enough untouched, until the cor-
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relation score is smaller than certain threshold. This is a reasonable adjustment

that takes more advantage of label correlations while still keeping the labels within

a manageable scale. Another workaround is to use a normalized graph cut algo-

rithm to iteratively separate labels into two balanced sets, until all clusters are

within a manageable size. However, although the decomposed clusters are more

balanced, the balancing constraint might result in correlated label pairs being cut

off or including some less correlated pairs.

Another approach is to generate overlapping clusters and take the voting

result for each label as the final prediction. We can also use the single linkage

rule while adapting Prim’s minimum spanning tree algorithm to grow a single

cluster starting from each label until the cluster reaches the desired size or the

correlation score is under certain threshold. If there are identical clusters, only

one copy is kept. This method might end up having exactly L clusters where L

is the number of labels because cluster growing procedure is performed on each

label. One advantage is that each label could take advantage of most of its highly

correlated other labels and the voting step could provide a more fair judge.

To clarify, although we use the term clustering and also algorithms for the

traditional unsupervised clustering problem, the goal of clustering here is actually

not quite the same. In our case, clustering is for decomposing the original large

scale problem into several subproblems. It is possible that two different clusters

might be strongly correlated and they are separated only because the union of

them is too large to compute. We do require the members within a cluster to be

highly correlated so that label correlations could be fully utilized.

The label clustering framework is similar to the idea of random k-labelset

(RAkEL) [15] which randomly samples a bunch of overlapping clusters with the

same size. Although our approach clusters labels in a more controlled way instead

of a randomized manner, it is based on pairwise correlation measures, which might

not reflect actual correlations that involve more than two labels, or are not lin-

ear. RAkEL might be a simpler (and more generalizable) alternative for label set

decomposition if that is the case.
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Experimental design

6.1 CAL500 data set

Computer Audition Lab 500 (CAL500) [2] is a multi-label data set created

by the UCSD Computer Audition Lab1. CAL500 is a corpus of a 502 tracks of

western popular songs, each of which is described in two kinds of representation:

semantic annotation and musical features.

The annotation part involves 135 semantic concepts including instruments,

vocal characteristics, genres, emotions, acoustic qualities, and usage terms. These

concepts are then expanded into 237 words by splitting all bipolar concepts into

two individual words (or labels in our naming convention). Each song is manually

annotated by at least three human labelers. Once a word has at least 80% agree-

ment among all labelers, it is assigned to that song. In the end, all concepts that

are associated with fewer than eight songs are pruned and therefore the total word

count is reduced from 237 to 174. In our naming conventions these 174 words are

the label set Y .

As for the music features, each song is made from a sequence of Mel-

frequency cepstral coefficient (MFCC) vectors of a sliding overlapping window

over the song. A delta cepstrum vector is computed by appending the first and

second derivatives of each MFCC to the original MFCCs. Since only the first 13

1Available at http://mkl.ucsd.edu/dataset/cal500
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MFCCs are used, and 10000 delta cepstrum vectors are randomly sampled from

each song, it ends up being 10000 39-dimensional feature vectors as the musical

representation.

As a summary, CAL500 is a set of 502 songs and each of which is represented

as a set of 10000 39-dimensional feature vectors together with 174-dimensional

binary label vector. Our goal is to use the musical feature of a given song to

predict the binary label vector, that is, to decide which conceptual words should

be associated with that song.

6.1.1 Label cardinality

CAL500 has strong consistency in terms of label cardinality [16], the average

number of labels associated with a training example. Given the training data

D = {(xi,yi)}
N
i=1 where yi ∈ {0, 1}L, label cardinality is defined as

label cardinality =
1

N

N
∑

i=1

L
∑

j=1

y
(j)
i

Table 6.1 shows that the label cardinality of CAL500 is roughly a constant

because of the small standard deviation. It also shows the label vector is sparse:

only 15% of the labels are presented on average.

Table 6.1: Label cardinality statistics of CAL500

max min mean standard deviation total # labels
48 13 26.0438 5.7484 174

This property is closely related to the concept of k-sparse (for CAL500

it is 48-sparse) in the coding theory, which is a constraint for signal recovery in

compressive sensing, the technique that [13] used for multi-label classification. This

property could also be addressed in another ways in multi-label learning such as

serving as a constraint so that the number of positive labels is close to the average

training label cardinality on the argmax operation for inference as in (4.4) to filter

out certain unreasonable label combinations.
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6.2 Evaluation of multi-label classification

Most evaluation metrics for multi-label classification are extended from tra-

ditional single label ones. Here we describe three widely used metrics that are

derived from contingency tables, one for each label, and three other metrics that

are not so popular.

Given the training data {xi,yi}
N
i=1 and the corresponding predictions {ŷi}

N
i=1

where yi, ŷi ∈ {0, 1}L meaning that there are total L labels, six measures are used

to evaluate the performance of multi-label classification in our experiment: ac-

curacy, micro-averaged F1 score, macro-averaged F1 score with respect to labels,

macro-averaged F1 score with respect to instances, micro-averaged Matthews cor-

relation coefficient, and macro-averaged Matthews correlation coefficient.

Subset accuracy is the exact match ratio which is a direct extension of the

accuracy measure of standard classification evaluation:

subset accuracy =
1

N

N
∑

i=1

I(yi = ŷi)

where I(·) is the indicator function having the value 1 if the argument is true and

the value 0 otherwise.

A disadvantage of subset accuracy measure is that it does not take partial

matches into account, so it might be possible that predictions are only wrong on

a single component but ends up with poor subset accuracy. Therefore, a relaxed

version called average accuracy (or accuracy) is used which is closely related to

Hamming loss:

average accuracy =
1

NL

N
∑

i=1

L
∑

j=1

I(y
(j)
i = ŷ

(j)
i )

where we use the notation y(j) to denote the j-th component of vector y. We will

keep using this indexing convention in the following text.

Another commonly used performance measure is F1 score, which is the har-

monic mean of precision and recall. Mathematically, harmonic mean is always

smaller than geometric mean or arithmetic mean, which could be regarded as a

smoothed minimum function. Therefore, optimizing on the F1 score to some extent
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implies maximizing the worse of precision and recall. The F -score can be general-

ized into a weighted averaged version between precision and recall parameterized

by non-negative β to emphasize one over another:

Fβ = (1 + β2)
precision · recall

β2 · precision + recall

but in the experiments, we stay with the balanced F1 score with β = 1.

For a single label indexed by j, the precision and recall are defined as:

precision =

∑N

i=1 ŷ
(j)
i y

(j)
i

∑N

i=1 ŷ
(j)
i

recall =

∑N

i=1 ŷ
(j)
i y

(j)
i

∑N

i=1 y
(j)
i

(6.1)

From the definition, we can derive the formula of F1 score for the single label j:

2 precision · recall

precision + recall
=

2
∑N

i=1 ŷ
(j)
i y

(j)
i

∑N

i=1 ŷ
(j)
i +

∑N

i=1 y
(j)
i

To extend the single label F1 score to multi-label classification, one measure is to

treat every entry of the label vector as an individual instance regardless of label

distinction, which is called micro-averaged F1 score:

micro F1 score =
2
∑L

j=1

∑N

i=1 ŷ
(j)
i y

(j)
i

∑L

j=1

∑N

i=1 ŷ
(j)
i +

∑L

j=1

∑N

i=1 y
(j)
i

(6.2)

The other way to apply F1 score for multi-label case is to compute the

average of F1 scores of each label, which is usually called macro-averaged F1 score

in the literature:

macro F1 score =
1

L

L
∑

j=1

2
∑N

i=1 ŷ
(j)
i y

(j)
i

∑N

i=1 ŷ
(j)
i +

∑N

i=1 y
(j)
i

(6.3)

It is possible that for certain labels, none of the instances have a positive

label value or positive label prediction, especially when we do cross validation

in a less controlled way splitting test data. That is, we might have
∑N

i=1 ŷ
(j)
i +

∑N

i=1 y
(j)
i = 0 for some label index j. In this case, we just ignore those labels when

computing macro-averaged F1 score

macro F1 score =
1

|S|

∑

j∈S

2
∑N

i=1 ŷ
(j)
i y

(j)
i

∑N

i=1 ŷ
(j)
i +

∑N

i=1 y
(j)
i
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where S is the set of label indices such that
∑N

i=1 ŷ
(j)
i +

∑N

i=1 y
(j)
i 6= 0 for all j ∈ S.

Notice that since micro-averaged F1 score averages over all predictions

regardless label distinction, from the definition in (6.2) we can see that micro-

averaged F1 score tends to over-emphasize performance on the labels that are

mostly positive, because they dominate the summed denominator and numerator

in (6.2). On the other hand, macro-averaged F1 score tends to over-emphasize

performance on the labels that have the fewest positive outcomes. Table 6.2 illus-

trates the statistics of {
∑N

i=1 y
(j)
i }L

j=1 in the same notation used before and shows

that this unbalanced label occurrence rate is indeed the case of CAL500. Therefore

we should examine both metrics when evaluating the performance of multi-label

classification.

Table 6.2: Label statistics of CAL500

max min mean standard deviation total # instances
444 5 75.1379 81.1606 502

As mentioned earlier, CAL500 has strong constant label cardinality prop-

erty, so instead of calculating the macro-averaged F score with respect to each

label, we could compute the macro-average with respect to each example to get a

more stable measurement:

macro F1 wrt instance =
1

N

N
∑

i=1

2
∑L

j=1 ŷ
(j)
i y

(j)
i

∑L

j=1 ŷ
(j)
i +

∑L

j=1 y
(j)
i

(6.4)

So far, all the metrics described are formulated with part of the informa-

tion from the confusion matrix which summarizes the relationship between actual

value and the corresponding prediction with four numbers: true positive (TP ),

false positive (FP ), false negative (FN), and true negative (TN). From (6.1) we

can see that precision is actually TP/(TP + FP ) and recall is TP/(TP + FN).

Both precision and recall do not take all four statistics into account which might

not be the most fair way to evaluate the classification performance. Correlation is

also a standard way to measure the classification performance [17]. Instead of the

most commonly used Pearson correlation coefficient, we choose to use Matthews

correlation coefficient (MCC) [18] which is generally regarded as one of the best
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summarizations of a confusion matrix that utilizes all four statistics in the confu-

sion matrix:

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

If any of the four sums in the denominator is zero, Matthews correlation coefficient

is set to zero to be consistent with the limiting value.

Similar to F score, Matthews correlation coefficient could be extended to the

multi-label case by taking the micro average and macro average. Micro-averaged

MCC calculates the confusion matrix over all the components of the label vector

regardless of label distinction. On the other hand, macro-averaged MCC computes

the MCC one for each instance (we only consider macro-averaged MCC with re-

spect to instance which takes the label cardinality property into account) and then

averages them.

6.3 Feature preprocessing

Since the original musical feature of CAL500 is represented as a set of

10000 39-dimensional real vectors that is too large to compute with efficiently, we

first reduce the dimensionality by running k-means algorithm to find 100 cluster

centroids from all 39-dimensional feature vectors in the entire corpus. Then for each

song we quantize all 10000 feature vectors into these 100 centroids and generate

corresponding bag-of-words representation. Having this 100-dimensional bag-of-

words vector, we need to further normalize it to achieve the best performance for

each learning algorithm.

Given the bag-of-words feature vector x, four normalization methods are

considered:

L2 normalization Scale the feature vector x to unit length by dividing x by its

L2 norm to get x′ = x/‖x‖2.

L1 normalization Scale the feature vector x so that the absolute value of all

components are summed to one (in the bag-of-words case, the feature vector
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is non-negative). This can be done by dividing x by its L1 norm to get

x′ = x/‖x‖1.

Rescaling Given the training data, we linearly rescale the components to [−1, +1].

Specifically, given the feature data {xi}
N
i=1

x(j)′ =
2
(

x(j) − mini x
(j)
i

)

maxi x
(j)
i − mini x

(j)
i

− 1, for all j = 1, . . . , 100

Z-score Normalize the feature vector into zero mean and unit variance. Specifi-

cally, given the feature data {xi}
N
i=1 where the j-th entry {x

(j)
i }N

i=1 has mean

µ(j) and standard deviation σ(j)

x(j)′ =
x(j) − µ(j)

σ(j)
, for all j = 1, . . . , 100

The normalization method is chosen by 5-fold cross validation on micro-

averaged F1 score. Notice that micro-averaged F1 score is also the metric for

choosing parameters in some algorithms such as selecting k for kNN.

6.4 Experimental setup

The CAL500 corpus is divided into a training set of 452 instances and a

test set of 50 instances. The training set is manually sampled so that there are

at least one positive and one negative example for each label. All the multi-label

algorithms are trained on the training set and evaluated on the test set.

Six metrics we mentioned earlier are used to evaluate multi-label classifi-

cation performance: average (abbreviated “Acc”), micro-averaged F1 score (ab-

breviated “µF1”), macro-averaged F1 score with respect to label (abbreviated

“MℓF1”), macro-averaged F1 score with respect to instance (abbreviated “MiF1”),

micro-averaged Matthews correlation coefficient (abbreviated “µMC”), and macro-

averaged MCC with respect to instance (abbreviated “MiMC”).

Our experiment breaks into two parts. The first part aims at demonstrat-

ing all the multi-label classification methods we mentioned earlier including those

intractable ones on a small subset of CAL500 labels. The second part works on the
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entire 174 labels, so instead of running the exact CRF method we only evaluate

approximation methods. Also the clustering framework is examined.

Both of these two parts are compared with the following baseline meth-

ods: binary relevance, k-nearest neighbors method (abbreviated “kNN”), and

multi-class method. We use logistic regression (abbreviated “logisReg”) and SVM

with linear kernel (abbreviated “linear SVM”) and RBF kernel (abbreviated “RBF

SVM”) as our base binary classifiers for binary relevance framework.

In our experiments, all the parameters involved such as the regularization

weight are selected by grid search according to the cross validation result on micro-

averaged F1 score. Also notice that multi-class method uses one-versus-one linear

SVMs.

As for the CRF related methods including CML and CMLF, instead of

modeling all four possible combinations of a label pair, we only use the feature

functions that capture positive and negative correlations as in (4.5) and (4.6) for

simplicity.

All the learning algorithms we use are implemented in MATLAB. We use

LIBSVM [19] as the SVM library. All the optimizations are done by minFunc2

which is an unconstrained optimization solver in MATLAB implemented by Mark

Schmidt. We use L-BFGS as the optimization option to perform gradient descent.

Tractable exact inference in CRF tree/chain is done by UGM3 which is a MATLAB

toolbox for probabilistic undirected graphical models implemented also by Mark

Schmidt.

2minFunc is available at http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
3UGM is available at http://people.cs.ubc.ca/~schmidtm/Software/UGM.html
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Experimental results

7.1 Small label set experiment

Since some of the models described earlier such as CRFs are intractable and

not suitable for large label set learning, in order to examine how these methods

perform, we manually select 8 labels within the emotion category from the total

174 labels of CAL500 to test on. These labels are the 2nd, 6th, 12th, 22nd, 24th,

32nd, 34th, 36th label of CAL500, that are chosen to make the resulting label data

not too sparse as a multi-class data set. The label cardinality for this setup is

3.7012 ± 1.6091.

Other than the baseline methods mentioned earlier, including binary rele-

vance, kNN, and multi-class method, we examine the multi-class method and two

CRF models, CML and CMLF, with exact training and inference. The feature

normalization result shows that multi-class and kNN are best to have the feature

vector normalized with the L2 normalization method, while all the others are best

normalizing the feature with rescaling method.

From Table 7.1 we can see that CML outperforms all the other methods

and the more complicated CMLF also does a good job. However, both kNN

and multi-class perform poorly comparing to all the binary relevance methods on

every metric we use. Although kNN and multi-class method do not perform as

good result as CRF models, both of them are much faster for both training and

prediction. In our experiment involving 8 labels, it takes more than an hour to train

43
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and predict with CML model, and CMLF doubles the time, while kNN takes couple

of seconds and multi-class takes less than a second (because multi-class solver is

implemented efficiently in compiled executable instead of MATLAB). Moreover,

the non-linear RBF kernel does not improve performance, probably because the

feature dimensionality is high enough for linear classifiers to perform well.

Table 7.1: Performance evaluation on a 8-label subset of CAL500

Acc µF1 MℓF1 MiF1 µMC MiMC
linear SVM 0.6925 0.6516 0.6227 0.6351 0.3764 0.3658
RBF SVM 0.6875 0.6439 0.5948 0.6464 0.3655 0.3576
logisReg 0.6925 0.6535 0.6120 0.6422 0.3772 0.3631
kNN 0.6500 0.6000 0.5534 0.5969 0.2889 0.3141
multi-class 0.6700 0.6229 0.5977 0.5910 0.3296 0.3352
CML 0.7200 0.6744 0.6597 0.6578 0.4294 0.4228
CMLF 0.7000 0.6648 0.6526 0.6332 0.3936 0.3751

7.2 Entire CAL500 experiment

In this section, we examine the performance of multi-label learning algo-

rithms on entire 174 labels of CAL500 data set. To begin with, we first show how

the metrics we use for evaluation behave with some trivial predictions on the entire

data as another baseline. Table 7.2 shows the result of random predictions that

all components of the label vector are sampled with certain label occurrence rate,

P (y(j) = 1) for all j = 1, . . . , L, identically applying to all the labels. The result

shows that it is not proper to evaluate only on certain metric. Since positive labels

are sparse in general, the higher the label occurrence rate, the lower the accuracy

it ends up with. On the other hand, all the F1 scores shows the opposite: the

scores are higher as the occurrence rate increases. As for Matthews correlation, all

of them are close to zero which reflects the fact that the predictions are completely

random.

Another trivial baseline we consider is a modified version of the random

predictor we just mentioned except that each label is randomly predicted with the

occurrence rate consistent with the training data, that is, to follow the distribution
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Table 7.2: Performance of random prediction with specified label occurrence rate

P (y=1) Acc µF1 MℓF1 MiF1 µMC MiMC
0 0.8511 0.0000 0.0000 0.0000 0.0000 0.0000
0.25 0.6768 0.1873 0.1438 0.1865 0.0013 0.0042
0.5 0.5037 0.2347 0.1964 0.2325 0.0097 0.0102
0.75 0.3308 0.2522 0.2176 0.2507 0.0117 0.0117
1 0.1489 0.2591 0.2300 0.2576 0.0000 0.0000

P (y(j) =1) =
∑N

i=1 y
(j)
i /N . The result is shown in Table 7.3. As we can see, this

controlled random prediction significantly improves the performance comparing

to the previous random version. In fact, this naive method employs the same

concept as other more complicated generative models except our random prediction

takes only individual label frequency into account without making use of feature

information or even label correlations.

Table 7.3: Performance of random prediction with label occurrence rate consistent
with training data

Acc µF1 MℓF1 MiF1 µMC MiMC
0.7907 0.3115 0.0742 0.3103 0.1882 0.1905

7.3 Results of multi-label learning methods

In the experiment that involves the entire label set of CAL500, we evaluate

two kinds of CRF approximation algorithms: supported heuristic, and several

CRF tree/chain approximations. Moreover, two label space reduction methods,

label PCA and feature/label CCA, are evaluated. In the end, we examine the

clustering framework that decomposes the entire CAL500 label set into several

subsets with nearly equal size.

Before showing the result, we want to first point out that the number of

supported label combinations of the entire CAL500 data set is exactly 502, the

same size as that of the data. That is to say, there is no redundancy at all to
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provide statistically enough of evidence to distinguish the difference among label

combinations. As a result, the behavior of multi-class method will be identical to

nearest neighbor algorithm (1NN).

Because of the intractable nature of CRF, we only run the CML model with

the supported heuristic on the entire CAL500 label set (abbreviated “supported

CML”).

Table 7.4: Performance comparison of multi-label learning algorithms on entire
CAL500 labels

Acc µF1 MℓF1 MiF1 µMC MiMC
linear SVMs 0.8652 0.4417 0.1793 0.4342 0.3832 0.3962
RBF SVM 0.8702 0.4289 0.1516 0.4272 0.3874 0.3913
logisReg 0.8703 0.4508 0.1667 0.4447 0.4006 0.4082
kNN 0.8620 0.4284 0.1701 0.4255 0.3676 0.3714
multi-class 0.8229 0.4084 0.2288 0.4013 0.3043 0.3062
supported CML 0.8245 0.4678 0.2684 0.4611 0.3663 0.3664
χ2 chain 0.8228 0.4078 0.2230 0.4042 0.3036 0.3160
χ2 tree 0.8286 0.4104 0.2146 0.4062 0.3104 0.3227
sampled χ2 chain 0.8226 0.3994 0.2139 0.3954 0.2954 0.3062
random chain 0.8222 0.4425 0.2239 0.4412 0.3384 0.3492
sampled ML chain 0.8252 0.4427 0.2217 0.4418 0.3399 0.3506
chain ensembles 0.8243 0.4490 0.2300 0.4462 0.3461 0.3551
χ2 clustering 0.8567 0.4438 0.2276 0.4310 0.3687 0.3630
random clustering 0.8541 0.4442 0.2192 0.4374 0.3663 0.3669
label PCA 0.8615 0.4388 0.1866 0.4345 0.3739 0.3874
feature/label CCA 0.8636 0.3103 0.0481 0.3173 0.3047 0.3116

7.3.1 CRF tree/chain approximations

Several CRF tree approximation methods are used in the experiments.

First, we construct both tree and linear chain CRFs based on χ2 score as in (3.4).

In Table 7.4, the optimal tree is denoted as “χ2 tree”, and the greedily constructed

linear chain CRF is referred to as “χ2 chain”.

We compare the approximated optimal chain with the chain that maximize

the total edge weights (according to χ2 score) out of 1001 randomly sampled chains,

which is referred to as “sampled χ2 chain”.
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Since the correlation based heuristic aims to approximate the maximum

likelihood structure, we also compare previous methods with the chain that max-

imize the likelihood out of 1001 randomly sampled chains, which is referred to as

“sampled ML chain”.

Finally, we also compare with the ensemble method that learns 1001 ran-

domly sampled chains and use the individual voting result for each label as the

final prediction, which is referred to as “chain ensembles”.

From Table 7.4, we can see that χ2 tree performs slightly better than χ2

chain, probably because a tree is a more general structure than a chain and is

able to model label correlations more correctly. The performance of sampled χ2

chain is not as good as χ2 chain constructed by greedy algorithm. As we actually

check on the resulting total weights of both chains, we found that χ2 chain leads

to larger value which implies that greedy heuristic does produce a good chain. As

for sampled ML chain, it has the best result over all the correlation-based methods

including χ2 chain, χ2 tree, and sampled χ2 chain. Surprisingly, the random chains

produce almost as good results as sampled ML chains. We discuss this in the next

section. Finally, chain ensembles perform the best on most of the metrics.

7.3.2 Is correlation-based structure approximation a good

idea?

As we mentioned earlier, the goal of correlation-based structure approxima-

tion is to obtain desired structure that yields maximum likelihood. However, Table

7.4 shows that a random chain outperforms any correlation-based chains. In order

to examine whether a chain with larger total weights implies larger likelihood, we

measure the sortedness of the total weights of a set of randomly sampled chains ac-

cording to the order of their corresponding likelihoods. A common way to examine

sortedness is to calculate the number of inversions, the number of pairs that are

out of order. Specifically, given a bunch of chains, assume their likelihoods specify

the correct ordering, we first sort these chains by their likelihoods in descending

order and then count how many pairs of chains do not follow the same order (that

is, the one in the front has smaller total weights than the other). There should
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be zero inversions for a perfectly sorted list, and the better the correlation-based

heuristic is the lower inversion count is.

Here we consider all 5 correlation measures: square of Pearson’s correlation

as in (3.2), mutual information as in (3.3), χ2 score as in (3.4), correlation based

on feature analysis (referred to as feature correlation), and partial correlation.

In addition, we also examine an extra correlation measure that calculates the

amount of log-likelihood gain of a label pair trained with CRF (CML model) to

two independently trained logistic regression. Specifically, for any label pair yi, yj

log-likelihood gain = ℓCRF(yi, yj) − (ℓlogisReg(yi) + ℓlogisReg(yj))

where ℓ denotes the log-likelihood. The reason to consider this measure is that

both CRF and logistic regression are log-linear models while CRF takes label corre-

lations into account but independent logistic regression on each label ignores them

completely. Therefore this measure shows how much gain could be obtained by ex-

ploiting label correlations, and we assume that the maximum likelihood structure

would be the one achieving the largest total gain.

As a matter of representation, for a list of n elements, the maximum number

of inversions is n(n − 1)/2 (i.e., total number of pairs) which could be used to

normalize the inversion count. Table 7.5 shows the normalized inversion count of

1001 random sampled CRF chains with all 6 criteria mentioned above.

Table 7.5: Normalized inversion count that reflects how correlation-based approx-
imation is related to maximum likelihood

correlation measure normalized # inversions
Pearson’s correlation 0.4873
mutual information 0.4775
χ2 score 0.4873
feature correlation 0.4912
partial correlation 0.4839
log-likelihood gain 0.4792

All these criteria are no better than random samples with expected normal-

ized inversion count of 0.5, which shows the correlation-based approximation is not
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necessarily related to the optimal parameters learned from the model. Therefore,

a randomly sampled structure could simply be used to approximate the maximum

likelihood structure. This explains why random chain performs no worse than any

of the correlation-based methods in Table 7.4.

7.3.3 Label space reduction

In this part, we evaluate the performance of two label space reduction meth-

ods: label PCA and feature/label CCA. We use linear regression with an extra bias

term as our regression model on the transformed labels. Preliminary experiments

show that label PCA is best to normalize the feature vector with rescaling method;

while feature/label CCA is best with L2 normalization on the feature vector.

The last part of Table 7.4 are the results of these two methods that reduce

the original 174-dimensional label space into a 50-dimensional space. Table 7.4

shows that label PCA performs quite well in all the metrics we use. On the other

hand, feature/label CCA performs poorly. Although feature/label CCA makes

use of conditional label correlation, its main objective is to project into a space

that maximizes the correlation between feature and label but has nothing to do

with the recovery quality. On the other hand, label PCA aims at minimizing the

reconstruction error on the label space, therefore it produces such accurate result

which is comparable to that of other methods.

Since label PCA works quite well, we also examine how different reduced

dimensionalities influence the performance of multi-label learning. It is quite sur-

prising that even if we use only the first principal component, it produces accept-

able results on most metrics. Except that MℓF1 increases as the dimensionality

increases, label PCA gets even better result on most of other metrics when in a low

dimensional label space. We can think of this as label PCA providing a smoothing

observation that effectively reduces the noise of data as well as the potential of

over-fitting.
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Table 7.6: Performance of label PCA with different reduced dimensionalities

dim Acc µF1 MℓF1 MiF1 µMC MiMC
1 0.8716 0.4143 0.1167 0.4102 0.3838 0.3850
5 0.8693 0.4440 0.1590 0.4369 0.3939 0.4033

10 0.8689 0.4377 0.1619 0.4298 0.3889 0.3980
20 0.8684 0.4444 0.1800 0.4386 0.3920 0.4021
50 0.8615 0.4388 0.1866 0.4345 0.3739 0.3874

100 0.8599 0.4395 0.1947 0.4340 0.3716 0.3843
150 0.8591 0.4381 0.1910 0.4329 0.3692 0.3835

7.3.4 Label clustering

For the label clustering method, we use the modified single linkage clustering

algorithm that keeps merging when the resulting cluster does not exceed a certain

size (10 in our experiment) to split the original label set into disjoint groups of

nearly the same size based on the correlation matrix.

We use multi-class method as the base multi-label classifier for each cluster.

All 5 correlation measures we described in correlation analysis are used to evaluate

the performance of label clustering framework. Table 7.7 shows that among the 5

correlation-based clustering methods, both Pearson’s correlation and χ2 score pro-

duce better multi-label classification results. However, random clustering achieve

comparable result and in some metrics it even performs the best. This reflects the

fact we discussed earlier that correlation-based approximations might not be the

optimal configuration in terms of maximum likelihood.

Table 7.7: Clustering performance with different correlation measures

Acc µF1 MℓF1 MiF1 µMC MiMC
Pearson’s correlation 0.8563 0.4430 0.2283 0.4306 0.3685 0.3630
mutual information 0.8501 0.4225 0.2041 0.4128 0.3434 0.3398
χ2 score 0.8567 0.4438 0.2276 0.4310 0.3687 0.3630
feature correlation 0.8544 0.4316 0.2044 0.4202 0.3567 0.3559
partial correlation 0.8548 0.4123 0.1812 0.4038 0.3428 0.3465
random clustering 0.8541 0.4442 0.2192 0.4374 0.3663 0.3669
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7.4 Discussion

In the small label set experiment, binary relevance with logistic regression

gives the best result over all binary relevance methods with other base classifiers.

As a generalized logistic regression (log-linear model), CRF exploits label correla-

tions and is shown to outperform all the other methods. This confirms that label

correlations provides useful information to improve multi-label learning.

However the exact CRF training and inference are not able to scale up for

the entire label set because of its intractable nature. Only CRF approximation

methods are applicable for large label set learning. Among all the multi-label

learning algorithms we examined, supported CRF performs well especially in terms

of F1 scores.

Comparing binary relevance methods to multi-label algorithms that exploit

label correlations, binary relevance methods in general do better on most of the

metrics especially on the accuracy. It is reasonable to see that binary relevance

is good at accuracy because accuracy is usually directly related to the base bi-

nary classifiers. Besides, making use of label correlations means to impose more

constraints on the original binary relevance framework which might drive the op-

timization goal to predict something reasonable (without unlikely label combina-

tions) instead of making it as accurate as possible on each label individually.

The other reason why multi-label algorithms that take label correlation into

account do not perform as well as binary relevance methods is that the number

of labeled songs in CAL500 is too small to be statistically representative for the

problem space. When the training data is not large enough, strong regularization

might be required to avoid over-fitting. This essentially takes less correlation

information into account and falls back to a prior according to how we regularize the

objective function (in our case, Gaussian prior for L2 regularization). Moreover,

from the result we can see that conditional label correlation is not as useful as

unconditional label correlation for CAL500. This is again because there are even

more parameters to learn, which increases the potential to over-fit such small

training data. In particular, considering the entire CAL500 label set, there are

32,452 parameters (including one for regularization) for CML model, and 1,522,501
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parameters for CMLF model, which is far more than 502, the total number of

examples in CAL500. This explains why CAL500 favors simple models.

As for the clustering method, we always use multi-class algorithm as the

base learners on each cluster for efficiency. Given that CML performs quite well on

8-label setup, we expect switching the base classifiers to CML might lead to better

results. Nevertheless, comparing to multi-class method, clustering methods with

multi-class base learners improves the classification result. The clustering frame-

work can effectively reduce the total number of parameters, making parameter

estimation more robust.

As for label space reduction, label PCA works surprising well even when

only a couple of base learners are used. This suggests that it might be a useful

framework to handle even larger label size.

Another lesson learned from our experiments is that feature engineering

plays an important role in multi-label classification. Although we only consider

four feature normalization methods, choosing the right one makes a significant

difference. The results suggest that only L2 normalization and rescaling should be

considered, and rescaling usually produces acceptable results in general.

It is worth noting that randomized algorithms work well in our experiment.

A randomly generated structure can perform better than the one based on cor-

relation analysis. Also, chain ensembles outperform any of the single tractable

structure methods that make CRFs applicable for larger label set. Together with

the fact that random clustering with multi-class base learners produces much bet-

ter result than multi-class methods on entire label set, it is not surprising that

RAkEL [15] is considered one of the best multi-label framework in practice, which

is essentially a more general form of our clustering method.



Chapter 8

Conclusion and future work

In this thesis, we have discussed how to model label correlations of a multi-

label data set. We categorized label correlation into unconditional correlation and

conditional correlation and described how to measure correlation in a quantitative

manner. Unconditional correlation is calculated from the label combinations of

the training data, while conditional correlation considers how labels are correlated

with the associated features taken into account.

Various multi-label learning algorithms were then discussed. We have shown

how to exploit both kinds of label correlations using conditional random fields

(CRFs) for multi-label classification, and the results show that CRFs indeed work

successfully. Because of the intractable nature of CRFs, we described several ap-

proximation heuristics to make them applicable for larger label sets, including the

supported method, Gibbs sampling, and approximating with tractable structures

such as tree or linear chain. Besides CRFs, we also showed several other multi-

label learning algorithms including kNN, multi-class method, and clustering based

on correlation analysis. To further reduce the computational complexity, we de-

scribed two label space reduction methods: label PCA and feature/label CCA. The

relationship between these multi-label learning algorithms and label correlations

was also illustrated. In the end, all the learning algorithms were evaluated on the

CAL500 music data set.

There are several directions to extend our work. First, we should evaluate

the described learning algorithms on more multi-label data sets to see how they

53
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work in general. We expect learning with label correlations would give better result

if the number of training examples are large enough and statistically representative.

If labeling a multi-label instance is expensive, manually created high-quality multi-

label data sets inevitably have a relatively small number of instances, as in the case

of CAL500. Developing learning algorithms to handle this specific situation would

be useful in practice.

As for the general multi-label classification problem, there is still space for

further study. First of all, we only model label correlations in a linear way, while

in fact there are cases where labels are correlated non-linearly. Therefore being

able to model non-linear correlation might be a useful extension. Besides, we only

consider pairwise label correlations in the multi-label CRF models.

Second, we could also try to use models with latent variables, for example,

a model similar to a two-layer neural network that introduces latent variables to

model the actual related factors that generate the labels we want. Some generative

models such as [20] employ this concept, which would be interesting to compare

with algorithms we use.

Third, in our experiment, we only use a few metrics for evaluation while

there are other widely used metrics such as the area under the ROC curve (AUC),

mean average precision, etc. It would be better to compare with these alternative

metrics. Moreover, since most of the evaluation metrics are calculated with the

entries from confusion matrix, there are algorithms to directly optimize on a specific

metric in this type, such as [21] which is based on the optimization technique in

structured SVM [22].

Finally, an alternative to CRFs that also has the similar concept of incorpo-

rating various feature functions is structured SVMs [22], which extend traditional

SVMs for structured output. It is possible to rewrite the feature functions we use

in CRF to be loss functions that capture the distance between any two label com-

binations as the margin. Since CRF performs pretty well for multi-label learning

except it is not able to scale up for larger label set, it would be interesting to see

how structured SVM scales with the size of the label set using the cutting plane

optimization [22], and also compare the results using structured SVM with that of
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CRF on multi-label classification.
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