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1  |   INTRODUCTION

Over 62,000 photos are shared worldwide each day under 
the hashtag #foodporn (Mejova, Abbar, & Haddadi, 2016). 
These images glamorize the highly palatable, high‐calorie 
foods that are believed to promote the maladaptive eating 
patterns contributing to today’s obesity epidemic. A com-
mon assumption is that obese individuals have difficulty con-
trolling food intake partly because food‐related stimuli elicit 

irresistible cravings by abnormally activating their brain’s 
appetitive systems (Kenny, 2011b). Yet, studies comparing 
brain responses to food‐related cues in obese and lean indi-
viduals yielded inconsistent findings (Carbine et al., 2018; 
Field, Werthmann, & Franklin, 2016; Hendrikse et al., 2015; 
Versace & Schembre, 2015), suggesting that the neural un-
derpinnings of human cue‐induced eating remain unclear. 
Given the multifactorial nature of a complex disease like obe-
sity (Gortmaker et al., 2011), grouping study participants into 
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Abstract
While some individuals can defy the lure of temptation, many others find appetizing 
food irresistible. The goal of this study was to investigate the neuropsychological 
mechanisms that increase individuals’ vulnerability to cue‐induced eating. Using 
ERPs, a direct measure of brain activity, we showed that individuals with larger late 
positive potentials in response to food‐related cues than to erotic images are more 
susceptible to cue‐induced eating and, in the presence of a palatable food option, eat 
more than twice as much as individuals with the opposite brain reactivity profile. By 
highlighting the presence of individual brain reactivity profiles associated with sus-
ceptibility to cue‐induced eating, these findings contribute to the understanding of 
the neurobiological basis of vulnerability to obesity.
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categories based exclusively on body mass index (BMI) is 
likely to lump together individuals with substantially different 
characteristics, perhaps leading to the inconsistent findings 
reported in the literature. Endophenotypes (i.e., internal char-
acteristics that mediate the relationship between genes and 
a given behavioral phenotype; Gottesman & Gould, 2003) 
have been proposed as an alternative to classifications based 
on external characteristics. To the extent to which endophe-
notypes reliably capture core features underlying behaviors 
such as compulsive cue‐induced eating, researchers can use 
them to create more homogenous subgroups and improve 
specificity of predictive analyses (Everitt & Robbins, 2016).

Following this strategy, we successfully used brain imag-
ing techniques to identify candidate endophenotypes asso-
ciated with elevated risk of smoking relapse during a quit 
attempt. Our findings consistently showed that smokers can 
be classified according to two brain reactivity profiles: one 
characterized by larger brain responses to cigarette‐related 
cues than pleasant stimuli (C > P) and the other characterized 
by larger brain responses to pleasant stimuli than cigarette‐
related cues (P > C). Genetic analyses suggest that polymor-
phisms of genes influencing nAChR expression might be 
related to these neurophysiological profiles (Robinson et al., 
2013). Importantly, these brain reactivity profiles are asso-
ciated with differential risk of relapse: when smokers try to 
quit, individuals classified as C > P have significantly lower 
chances of achieving long‐term smoking abstinence than 
individuals classified as P > C (Versace et al., 2014, 2012; 
Versace, Claiborne, et al., 2017; Versace, Engelmann, et al., 
2017). We interpreted these results in the light of those that 
emerged from preclinical studies aimed at identifying the 
neuropsychological underpinnings of cue‐induced compul-
sive behaviors (Flagel & Robinson, 2017; Sarter & Phillips, 
2018). Specifically, measuring phasic dopamine responses 
during Pavlovian conditioning, Flagel et al. (2011) showed 
that animals that attribute incentive salience to cues pre-
dicting rewards are more vulnerable to compulsive cue‐in-
duced behaviors, such as cue‐induced food seeking (Yager & 
Robinson, 2010) and cue‐induced drug seeking (Saunders & 
Robinson, 2013), than animals that do not attribute incentive 
salience to cues. Given the common mechanisms underlying 
drug addiction and obesity (Dileone, Taylor, & Picciotto, 
2012; Kenny, 2011a; Volkow, Wang, Tomasi, & Baler, 2013), 
we hypothesized that, irrespective of BMI, individual differ-
ences in the tendency to attribute incentive salience to food‐
related cues would underlie susceptibility to cue‐induced 
eating.

The first requisite to test our hypothesis is to measure 
the extent to which individuals attribute incentive salience 
to cues predicting food rewards. Incentive salience refers 
to the motivational properties that make a stimulus wanted 
(Berridge & Robinson, 2016). Motivation can be defined as 
what makes an organism work to obtain rewards or to avoid 

punishments (Pessoa, 2009). By appropriately and efficiently 
attributing incentive salience to stimuli predicting rewards, 
organisms can prioritize, modify, and adapt their consumma-
tory behaviors to the ever‐changing environment (Di Chiara, 
2002). Stimuli with high incentive salience capture attention, 
activate affective states, and motivate behaviors (Berridge, 
2012). The incentive salience of biologically meaningful re-
wards (e.g., food, sex) and the stimuli that predict them is 
coded by dopamine signals in the mesocorticolimbic systems. 
Midbrain dopaminergic signals can enhance the representa-
tion of reward‐related stimuli in the cortical visual systems 
(Hickey & Peelen, 2015). Importantly, the cortical activity 
generated in the visual systems by affectively charged stimuli 
can be directly and noninvasively assessed with high tempo-
ral accuracy using ERPs, specifically by measuring the am-
plitude of the late positive potential (LPP; Cuthbert, Schupp, 
Bradley, Birbaumer, & Lang, 2000; Keil et al., 2002; Lang 
& Bradley, 2010; Liu, Huang, McGinnis‐Deweese, Keil, & 
Ding, 2012; Sabatinelli, Lang, Keil, & Bradley, 2007; Schupp 
et al., 2000; Versace et al., 2011). The LPP is considered 
the most reliable neurophysiological index of the extent to 
which visual stimuli engage the motivational brain circuits 
that guide adaptive perceptual and motor processes (Bradley, 
2009). Both pleasant and unpleasant contents increase the 
amplitude of the LPP over central and parietal sites as a func-
tion of their emotional arousal (e.g., LPP to erotica and muti-
lations > LPP to romantic and sad > LPP to neutral images; 
Minnix et al., 2013; Schupp et al., 2004; Weinberg & Hajcak, 
2010). The affective modulation of the LPP is present for 
both unconditioned and conditioned stimuli (Bacigalupo 
& Luck, 2018), it has high temporal stability (Codispoti, 
Ferrari, & Bradley, 2007), and it is resistant to manipulations 
affecting stimuli’s perceptual composition (Bradley, Hamby, 
Löw, & Lang, 2007; De Cesarei & Codispoti, 2006), expo-
sure time (Codispoti, Mazzetti, & Bradley, 2009), and repeti-
tion (Deweese, Codispoti, Robinson, Cinciripini, & Versace, 
2018; Ferrari, Codispoti, & Bradley, 2017). These character-
istics make the LPP a good measure to estimate the level of 
incentive salience that individuals attribute to cues predicting 
food rewards.

The second requisite to test our hypothesis is to classify 
individuals based on their tendency to attribute incentive 
salience to cues predicting food rewards. A classifica-
tion based only on the differences between LPPs evoked 
by food‐related cues and neutral stimuli would not be 
appropriate because the responses evoked by nonfood‐
related emotional stimuli must be taken into account to 
appropriately scale and interpret the cue‐minus‐neutral 
LPP difference (Oliver, Jentink, Drobes, & Evans, 2016; 
Versace, Engelmann, et al., 2017; Versace & Schembre, 
2015). To avoid this pitfall, we proposed cluster analysis 
as a data‐driven classification approach capable of taking 
into account the LPP responses evoked by more than two 
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contents. Cluster analysis is a multivariate technique that 
classifies objects (i.e., participants) based on their charac-
teristics (Hair & Black, 2000). In previous studies, when 
we applied k‐means cluster analysis to the LPP responses 
evoked by emotional images and cues predicting rewards 
(such as food or nicotine), the algorithm reliably identi-
fied two groups of individuals: one characterized by larger 
LPPs to the cues than to pleasant stimuli, the other by larger 
LPPs to the pleasant stimuli than to the cues (Engelmann, 
Versace, Gewirtz, & Cinciripini, 2016; Versace et al., 2014, 
2012; Versace, Kypriotakis, Basen‐Engquist, & Schembre, 
2016). These findings show that by applying k‐means clus-
ter analysis to the LPP responses evoked by a wide array of 
images it is possible to identify endophenotypes associated 
with individual differences in the tendency to attribute in-
centive salience to cues predicting rewards. However, our 
previous studies were limited in that we did not directly 
measure the extent to which these brain reactivity profiles 
underlie susceptibility to cue‐induced behaviors such as 
cue‐induced eating.

In the current study, we aimed to address this limitation by 
measuring brain responses as well as eating behavior during 
a cued food delivery task (Deweese et al., 2015). We hypoth-
esized that individuals attributing higher levels of incentive 
salience to cues predicting food rewards would be more suscep-
tible to cue‐induced eating than individuals attributing lower 
levels of incentive salience to cues predicting food rewards.

2  |   METHOD

2.1  |  Participants
We recruited 60 individuals from the Houston metropolitan 
area using flyers and magazine and newspaper advertise-
ments. Participants were eligible for the study if they were 
between 18 and 65 years of age, were neither pregnant nor 
breastfeeding, and did not report any history of psychiatric 
disorders, seizures, head injuries with loss of consciousness, 
uncorrected visual impairments, eating disorders, allergies, 
or diet‐related chronic diseases that might have prevented 
consumption of M&M’s chocolate candies. All participants 
received monetary compensation for their time and for park-
ing/travel, totaling $60. Due to poor recording quality, largely 
attributed to excessive movement during the task, 11 partici-
pants were excluded at various stages of the data reduction 
process (see below), leaving 49 participants in the final sam-
ple (aged 24–65 years, 45% female; 41% overweight, 37% 
obese). Table 1 shows the sample characteristics. A pre-
liminary power analysis indicated that a sample size of 20 
individuals per group would ensure at least 80% power to 
detect a moderate effect size (Cohen’s d) of 0.46 or higher 
in a two‐tailed t test, corresponding to a mean difference of 
4.6 chocolate candies between the two groups (assuming a 

conservative estimate of standard deviation = 10, alpha = 
0.05). To take data losses into account, we planned to enroll 
a total of 60 participants and stopped recruitment once we 
reached this goal. All data analyses were performed once re-
cruitment ended.

2.2  |  Procedures
The study included a telephone interview to verify study eli-
gibility, followed by one in‐person laboratory visit. At the 
in‐person visit, a research assistant reviewed the study with 
the participant and obtained written informed consent. Then, 
the research assistant measured the participant’s height and 
weight and, using a computer‐assisted procedure, collected 
answers to a series of questionnaires about impulsivity, 
mood, hedonic capacity, eating behaviors, and hunger. At the 
completion of the questionnaire assessment, the research as-
sistant placed the sensors for the EEG recording and provided 
the participant with detailed task instructions. The research 
assistant then left the room and started the EEG recording. At 
the end of the session, the research assistant removed the sen-
sors, debriefed, and compensated the participant. All study 
procedures were approved by the University of Texas MD 
Anderson Cancer Center Institutional Review Board.

2.3  |  Materials

2.3.1  |  Questionnaires
The computerized battery included the following 
questionnaires:

Barratt Impulsiveness Scale (BIS). The BIS (Patton, 
Stanford, & Barratt, 1995) includes 30 items describing com-
mon impulsive or nonimpulsive behaviors and preferences 
designed to assess the personality/behavioral construct of 
impulsiveness.

Center for Epidemiological Studies Depression Scale 
(CES‐D) (brief). The brief version of the CES‐D (Andresen, 
Malmgren, Carter, & Patrick, 1993) is a 10‐item self‐report 
instrument assessing the frequency of several depressive 
symptoms and originally developed for studying depressive 
symptomatology in the general population.

Snaith‐Hamilton Pleasure Scale (SHAPS). The SHAPS 
(Snaith et al., 1995) is a self‐report measure of anhedonia 
that, unlike other instruments, was specifically developed to 
be unaffected by social class, gender, age, dietary habits, or 
nationality. The SHAPS is a reliable and valid questionnaire 
designed to assess hedonic tone in patient and nonpatient 
populations (Franken, Rassin, & Muris, 2007).

Positive and Negative Affect Schedule (PANAS). The 
PANAS (Watson, Clark, & Tellegen, 1988) is a 20‐item self‐
report instrument designed to measure the two primary mea-
sures of mood: positive and negative affect. This instrument 
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is a reliable and valid measure of the two mood constructs 
(Crawford & Henry, 2004).

Weight‐Related Eating Questionnaire (WREQ). The 16‐
item WREQ (Schembre, Greene, & Melanson, 2009) as-
sesses four theory‐based aspects of eating behavior labeled 
compensatory restraint, routine restraint, susceptibility to ex-
ternal cues, and emotional eating.

Satiety Labeled Intensity Magnitude (SLIM). The SLIM 
(Cardello, Schutz, Lesher, & Merrill, 2005) is a sensitive, re-
liable, and easy to‐use scale for measuring perceived satiety. 
Participants completed the SLIM before and after the cued 
food delivery task using a paper and pencil version of the 
questionnaire.

2.3.2  |  Cued food delivery task
During the cued food delivery task, participants viewed a 
series of images presented with a computer using E‐Prime 
software (version 2.0.8.74; PST Inc., Pittsburgh, PA) on a 
17‐inch LCD monitor. The chocolate candies were delivered 

in a receptacle within arm’s reach from the participant, 
situated to the right of the computer monitor (Deweese 
et al., 2015). The images belonged to eight categories cover-
ing a variety of content: neutral (people involved in mun-
dane activities, household objects), highly arousing pleasant 
(erotica) and unpleasant (mutilations), low arousing pleas-
ant (romantic) and unpleasant (violence), unpleasant objects 
(pollution), and palatable food (sweet, savory). The im-
ages were selected from the International Affective Picture 
System (Lang, Bradley, & Cuthbert, 2008) and from a da-
tabase of images that we used in previous studies (Versace 
et al., 2016).

The task was divided into six equivalent blocks lasting 
approximately 5 min each. Every block consisted of a pseu-
dorandom (i.e., no more than two consecutive images of the 
same category) presentation of 55 images: 10 neutral, 10 
pleasant (5 erotica, 5 romantic), 15 unpleasant (5 mutilations, 
5 violence, 5 pollution), and 20 food‐related (10 sweet, 10 
savory). Images were not repeated during the task. One cate-
gory of food images (either sweet or savory, counterbalanced 

T A B L E  1   Participant demographic information and questionnaire scores by cluster membership

Characteristic All (N = 49) C > P (N = 20) P > C (N = 29) p value

Age (years) 47 46 48 0.46

Women 45% 35% 51% 0.25

Race

African American 67% 75% 62%

Caucasian 26% 20% 31%

Other 7% 5% 7%

BMI 31 31 31

BIS

Attentional 14.16 15.75 13.07 0.01

Motor 21.49 22.00 21.14 0.49

Nonplanning 23.06 25.15 21.62 0.04

CESD 7.20 8.25 6.48 0.24

SHAPS 47.55 48.15 47.14 0.53

PANAS+ 34.63 35.35 34.14 0.65

PANAS− 17.39 19.10 16.21 0.18

WREQ

Routine restraint 1.76 1.58 1.88 0.27

Compensatory restraint 2.09 1.98 2.16 0.33

Susceptibility to external cues 1.94 2.09 1.83 0.55

Emotional eating 1.60 1.64 1.57 0.72

SLIM (pre‐) −4.43 −8.97 −1.29 0.45

SLIM (post‐) −10.15 −14.88 −6.89 0.50

Note. p values estimated by independent t tests or chi‐square analyses. The SLIM was used to assess appetite before the beginning (pre‐) and after the end of the experi-
ment (post‐). C > P = individuals with larger LPPs to cues predicting food than to erotic stimuli; P > C = individuals with larger LPPs to erotic stimuli than to cues 
predicting food; BMI = body mass index; BIS = Barratt Impulsiveness Scale; CESD = The Center for Epidemiological Studies Depression Scale; SHAPS = Snaith‐
Hamilton Pleasure Scale; PANAS = Positive and Negative Affect Schedule; WREQ = Weight‐Related Eating Questionnaire; SLIM = Satiety Labeled Intensity 
Magnitude.
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across subjects) was designated as the “food‐paired” cate-
gory: 1,000 ms after image onset, a chocolate candy was re-
leased from a dispenser and, through a tube, was delivered in 
a receptacle where the participant could pick it up and either 
eat it or deposit it in a box. The food‐paired image remained 
visible on the screen until the participant either pushed a 
button to indicate having consumed the candy or until the 
candy was dropped in the deposit box. All other images, in-
cluding the “food‐unpaired” images (i.e., images of food not 
followed by candy delivery), were presented for 2,200 ms. 
A random intertrial interval of 500–2,000 ms separated each 
trial. Instructions at the beginning of the task indicated to the 
participant which food category was designated as the food 
predictive category. In this way, the participant did not have 
to learn the contingency, and all trials could be used in the 
analyses. To ensure that the participant fully understood the 
instructions, we ran 11 test trials, two of which were followed 
by the delivery of a candy.

2.4  |  EEG acquisition
During the task, we continuously recorded the EEG using a 
129‐channel Geodesic Sensor Net, amplified with an AC‐
coupled high input impedance (200 MΩ) amplifier (Geodesic 
EEG System 200, Electrical Geodesics Inc., Eugene, OR) and 
referenced to Cz. The sampling rate was 250 Hz, and data 
were filtered online by using 0.1 Hz high‐pass and 100 Hz 
low‐pass filters. Scalp impedance of each sensor was kept 
below 50 KΩ, as suggested by the manufacturer.

2.5  |  Data reduction
After EEG collection, we filtered the data with a 30‐Hz low‐
pass filter, inspected the EEG traces to evaluate the quality of 
the recording, and identified and interpolated (using spheri-
cal splines) channels contaminated by artifacts for more than 
50% of the recording time. At this stage, we discarded three 
participants due to poor quality of the EEG recording. For 
the remaining 57 participants, we corrected eyeblinks using 
a spatial filtering method as implemented in BESA version 
5.1.8.10 (MEGIS Software GmbH, Gräfelfing, Germany). 
We transformed the EEG data to the average reference and 
segmented the data using the picture onset to time‐lock the 
ERPs. The segments started 100 ms before picture onset and 
ended 1,100 ms later. Baseline was defined as the 100‐ms 
interval preceding picture onset. Artifacts affecting sensors 
within each trial were identified using the following crite-
ria: EEG amplitude above 100 or below –100 μV, absolute 
voltage difference between any two data points within the 
segment larger than 100 μV, voltage difference between two 
contiguous data points above 25 μV, and less than 0.5 μV 
variation for more than 100 ms. A segment was excluded 

from the subsequent averages if more than 10% of the sen-
sors within the segment were contaminated by artifacts. At 
the end of this process, the average ERPs were calculated at 
each scalp site for each picture category. Participants were 
excluded from the analyses if they had fewer than 20% of 
the possible trials included in any category average (eight 
participants were excluded at this stage). The final sample 
included 49 participants.

2.6  |  LPP
The amplitude of the LPP evoked by each picture category 
was our measure of incentive salience. We calculated the LPP 
for each picture category for each participant by averaging 
the voltage recorded between 400 and 800 ms after picture 
onset from 10 central and parietal sensors (EGI HydroCel 
Geodesic Sensor Net sensors: 7, 31, 37, 54, 55, 79, 80, 87, 
106, 129; see Figure 1 inset). This group of sensors, also used 
in our previous studies (Minnix et al., 2013; Versace et al., 
2016, 2012), covers the area where the LPP amplitude differ-
ences between neutral and emotional pictures is maximal. A 
preliminary analysis aimed at confirming that the amplitude 
of the LPP increased as a function of the emotional arousal 
of the stimuli.

2.7  |  Classification of participants
To classify participants, we followed the same procedure 
that we used in our previous studies (Engelmann et al., 
2016; Versace et al., 2016, 2012). For each individual, we 

F I G U R E  1   ERPs from centroparietal sites (see inset for electrode 
location) show that, on average, both pleasant and unpleasant contents 
increase the amplitude of the late positive potential (LPP) as a function 
of their emotional arousal. The box highlights the time region of interest 
(ROI) used to compute the LPP amplitude for each stimulus category. 
Food+ = food images paired with food delivery; Food− = food images 
not paired with food delivery; ERO = erotica; ROM = romantic; NEU 
= neutral; POL = pollution; VIO = violence; MUT = mutilations 
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calculated the mean LPP evoked by each stimulus category 
(i.e., food paired, erotica, romantic, food unpaired, neutral, 
pollution, violence, mutilations) between 400 and 800 ms 
over 10 centroparietal sensors. The eight LPP values calcu-
lated for each individual were entered into the cluster analy-
sis. To account for individual variation in absolute voltage 
amplitude, we standardized the LPP values using ipsatization 
(Hicks, 1970). Then, we classified individuals based on their 
brain reactivity profiles using k‐means cluster analysis as im-
plemented in the R statistical package (R Core Team, 2014). 
Cluster analysis is a data‐driven multivariate technique that 
groups individuals by minimizing within‐group variability 
and maximizing between‐groups variability (Hair & Black, 
2000). The algorithm is unsupervised, using as constraints 
only the number of clusters and the variables used for deriv-
ing the solution. We assessed the optimal number of clus-
ters and the corresponding classification using the Silhouette 
coefficient method (Rousseeuw, 1987) and the gap statistics 
(Tibshirani, Walther, & Hastie, 2001). It is important to note 
that the groups extracted using cluster analysis can differ 
with respect to any brain reactivity pattern; hence, the first 
analytic steps consisted of a series of validation checks aimed 
at confirming (a) the reliability of using the amplitude of the 
LPP to measure the emotional arousal of the nonfood‐related 
visual stimuli used in the experiment, and (b) the replicability 
of the categorization based on the LPP responses.

2.8  |  Statistical analyses

2.8.1  |  ERPs
The first validation check tested whether both groups ex-
tracted using k‐means cluster analysis showed increasingly 
larger LPPs for images with increasing emotional arousal (i.e., 
erotica and mutilations > romantic and violence > neutral 
and pollution). Within each group, we tested the presence of 
a quadratic trend using polynomial contrasts. The second vali-
dation check tested whether the two brain reactivity profiles 
extracted using cluster analysis fit the hypothesized dichotomy 
(i.e., one group showing larger LPPs to food‐predictive images 
than to pleasant images, and the other group showing the op-
posite pattern) and whether the two groups differed in reactiv-
ity to any image category. To conduct these tests, we ran an 
analysis of variance (ANOVA) using the amplitude of the LPP 
as the dependent variable, the eight picture categories (food‐
predictive, erotica, romantic, food‐nonpredictive, neutral, pol-
lution, violence, mutilations) as a within‐subject factor, and 
the two groups as a between‐subjects factor. To account for 
violations of sphericity, we used multivariate ANOVA (Vasey 
& Thayer, 1987). To test for the presence of significant differ-
ences among categories within and between groups, we used 
pairwise comparisons with Bonferroni correction.

2.8.2  |  Cue‐induced eating
To test for the presence of statistically significant between‐
groups differences in the number of chocolate candies eaten 
by each participant during the experiment, we used the non-
parametric Mann–Whitney U test. Then, to take into account 
overdispersion in the data, we also assessed the statistical 
significance of the differences in eating behavior in the two 
groups using a quasi‐Poisson generalized linear regression 
model with a scale dispersion parameter. Finally, we adjusted 
the analysis for the influence of potential confounding vari-
ables on eating behavior, by considering age, gender, BMI, 
and (pre‐experiment) level of appetite as additional covari-
ates in the Poisson generalized linear regression model.

2.8.3  |  Self‐report questionnaires and 
demographics
To test whether the two groups identified by the cluster anal-
ysis differed in age, gender, BMI, impulsivity, and mood, we 
conducted ANOVAs on these variables. The self‐reported 
level of satiety before and after the session was compared 
between the two groups using ANOVA and, for each group, 
we tested whether there was a significant difference from 
the neither hungry nor full anchor point before and after the 
session.

3  |   RESULTS

3.1  |  LPP
Figure 1 shows the ERP waveforms for each image cat-
egory (i.e., food‐paired, erotica, romantic, food‐unpaired, 
neutral, pollution, violence, mutilations) averaged across 
the whole sample. As expected, the mean amplitude of the 
LPP increased as a function of the images’ emotional arousal 
(Bonferroni‐corrected pairwise comparisons on the LPP re-
sponses showed that erotica and mutilations > romantic and 
violence > neutral contents; all p < 0.0001). Furthermore, the 
LPP evoked by food‐paired images was significantly larger 
than the LPP evoked by food‐unpaired images (Bonferroni‐
corrected p < 0.0001). The LPP evoked by food‐unpaired 
images was not significantly different than the LPP evoked 
by neutral stimuli.

3.2  |  Classification of participants
To classify participants, we applied k‐means cluster analy-
sis to their LPP responses. The results of the gap statistic 
method and the silhouette method (online supporting infor-
mation Figure S1 and S2), as implemented in the R module 
factoextra (Kassambara & Mundt, 2017) confirmed that a 
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two‐cluster solution was the most appropriate to describe the 
underlying structure of the data. Figure 2 (left panel) shows 
that, in line with our hypotheses, one group (N = 20, 41% 
of the sample) had larger LPPs to food‐paired cues than 
to erotic images (p < 0.0001), whereas the other group 
(N = 29, 59% of the sample) had larger LPPs to erotic im-
ages than to food‐paired cues (p < 0.0001). To highlight 
the continuity between the results observed here and those 
from our previous studies, where we found that differences 
in brain reactivity to pleasant stimuli (P) and reward‐ 
related cues (C) predicted compulsive nicotine use, we de-
cided to label the two groups identified here as C > P and 
P > C. Both groups showed the typical reactivity pattern 
such that, irrespective of hedonic content, the amplitude 
of the LPP increased as a function of the images’ emo-
tional arousal. Excluding food images, the quadratic trend 
was significant for both groups (p < 0.0001). The two 
groups had comparable LPP responses to all categories of 
stimuli except to food‐paired images (p < 0.0001). Also, 
the between‐groups difference observed for erotic stimuli 
was not significant after applying Bonferroni correction 
(p = 0.15). The two groups also had similar demographic 
characteristics and level of hunger at the beginning of the 
experiment (Table 1). The pattern of results and the pro-
portion of individuals assigned to the two clusters were 
similar regardless of whether sweet or savory contents 
predicted food delivery. In summary, these results indicate 
that, although every participant was aware that food‐paired 

stimuli predicted food delivery, some individuals (C > P) 
attributed more incentive salience to food‐paired images 
than to erotic images, while others (P > C) processed food‐
paired stimuli as though they had low incentive salience.

3.3  |  Cue‐induced eating
Figure 2 (right panel) shows that individuals classified as 
C > P ate more than twice as many chocolate candies as indi-
viduals classified as P > C (20 vs. 8; U = 188.5, p = 0.036). 
In the quasi‐Poisson, individuals classified as C > P ate 
chocolate candies at a rate that was 2.2 times greater (95% 
CI: 1.14, 4.37; p = 0.024) than that of individuals classi-
fied as P > C, after adjusting for potential confounders (age, 
BMI, gender, and pre‐experiment hunger level; see support-
ing information Appendix S1 Results and Tables S2 and S3). 
The number of candies eaten by individuals classified as 
P > C or C > P was similar regardless of whether sweet or 
savory content preceded food delivery (8 vs. 21 and 8 vs. 18, 
respectively).

4  |   DISCUSSION

This experiment aimed at testing the hypothesis that indi-
vidual differences in the tendency to attribute incentive sa-
lience to cues predicting rewards underlie vulnerability to 

F I G U R E  2   Left: The k‐means cluster analysis performed on the LPP responses yielded two clusters fitting with the hypothesized dichotomy. 
Some individuals (C > P, N = 20) reacted more to Food+ images than to erotic images (p < 0.0001), while others (P > C, N = 29) had the opposite 
brain reactivity pattern (p < 0.0001). The two groups had comparable LPP responses to all categories of stimuli except to food‐paired images 
(p < 0.0001). The between‐groups difference observed for erotic stimuli was not significant after applying Bonferroni correction (p = 0.15). Right: 
Individuals classified as C > P ate more than twice as many chocolate candies as individuals classified as P > C (20 vs. 8; U = 188.5, p = 0.036). 
Food+ = food images paired with food delivery; Food− = food images not paired with food delivery; ERO = erotica; ROM = romantic; NEU 
= neutral; POL = pollution; VIO = violence; MUT = mutilations; LPP = late positive potential. Error bars represent 0.95 confidence intervals 
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cue‐induced behaviors. To test this hypothesis, we measured 
ERPs to a wide array of affectively charged visual stimuli 
and the number of chocolate candies eaten during a cued food 
delivery task. Applying a multivariate data‐driven classifi-
cation approach to the brain responses evoked by the visual 
stimuli presented during the task, we identified two brain re-
activity profiles that predicted cue‐induced eating: individu-
als with larger LPPs to cues predicting food delivery than to 
erotic images ate more than twice as many chocolate candies 
than individuals with larger LPPs to erotic images than cues 
predicting food delivery.

We believe that the two brain reactivity profiles identi-
fied in this experiment represent candidate endophenotypes 
that might correspond to those observed in rodents, where 
larger phasic dopamine responses to stimuli predicting re-
wards than to actual rewards in the nucleus accumbens are 
associated with vulnerability to cue‐induced compulsive be-
haviors (Flagel et al., 2011). In animals, dopamine responses 
to cues predicting rewards encode the level of incentive sa-
lience that individuals attribute to these stimuli (Berridge, 
2007; Berridge & Robinson, 1998). fMRI studies in humans 
showed that midbrain dopaminergic activity mediates the 
visual representation of reward‐related stimuli in the visual 
cortex (Hickey & Peelen, 2015). Accordingly, the amplitude 
of the LPP, an ERP component generated in the occipital‐
parietal cortex (Keil et al., 2002; Sabatinelli et al., 2007), 
reliably indexes the extent to which visual stimuli engage 
the motivational brain circuits that guide adaptive percep-
tual and motor processes (Bradley, 2009; Lang & Bradley, 
2010; Lang, Bradley, & Cuthbert, 1997; Minnix et al., 2013; 
Olofsson, Nordin, Sequeira, & Polich, 2008; Schupp et al., 
2004; Weinberg & Hajcak, 2010). Therefore, in line with 
what animal models indicate, the findings from our study 
support the hypothesis that individuals with the tendency to 
attribute high levels of incentive salience to cues predicting 
food rewards are more prone to cue‐induced eating.

One potential interpretative ambiguity is the fact that both 
pleasant and unpleasant stimuli increase the amplitude of the 
LPP. However, we think that it is extremely unlikely that the 
results reported here are the consequence of individuals find-
ing erotic or food‐related stimuli unpleasant or threatening. 
Nevertheless, we are adapting the experimental paradigm 
used here to the fMRI environment to more precisely define 
the brain networks responsible for the differences observed 
here. Future studies should also determine the extent to which 
the brain reactivity profiles that we identified here meet all 
the criteria to be defined as an endophenotype (i.e., heritabil-
ity, state independency, presence in the unaffected relatives 
of cases; Gottesman & Gould, 2003). Until all the necessary 
evidence is collected, the brain reactivity profiles identified 
here should only be considered candidate endophenotypes.

To classify participants, we used k‐means cluster anal-
ysis. K‐means cluster analysis is a widely used data‐driven 

multivariate algorithm that classifies individuals into a spec-
ified number of clusters based on their characteristics (i.e., 
the individual LPP reactivity profiles). Importantly, the al-
gorithm is unsupervised, since it does not use any external 
information to guide how individuals should be grouped. The 
outcomes of our previous studies (Engelmann et al., 2016; 
Versace et al., 2014, 2016, 2012) led us to hypothesize a two‐
cluster solution as the most appropriate to describe the under-
lying structure of the data. Our hypothesis was confirmed by 
both the silhouette and the gap statistic methods. Importantly, 
the pattern of the Cluster × Picture Category interaction rep-
licates what we observed in our previous studies: the main 
feature extracted by the algorithm is related to individual 
differences in reactivity to cues predicting food rewards, 
relative to other nonfood‐related pleasant stimuli. In fact, 
while reactivity to unpleasant stimuli varied significantly 
both within and between groups, all individuals classified as 
P > C showed larger LPPs to erotic stimuli than to food‐re-
lated cues, and only one individual in the C > P group did not 
show larger responses to food‐related than to erotic stimuli. 
The k‐means algorithm, however, also has some limitations. 
One is that it can be used to classify individuals only after 
the complete sample has been collected. This feature limits 
the possibility to use it in clinical settings, where individu-
als should be classified on a subject‐by‐subject basis to ef-
fectively use the classification outcomes to tailor treatments 
(Cinciripini et al., 2017). To overcome this limitation, we are 
currently testing the extent to which discriminant functions 
(Duarte Silva & Stam, 1995) can be used to classify individ-
uals on a subject‐by‐subject basis to then tailor treatments to 
the specific characteristics of the patient (Versace, Claiborne, 
et al., 2017). Another limitation of the k‐means algorithm is 
that it does not provide information about the uncertainty of 
the classification outcomes. It is likely that the tendency to 
attribute incentive salience to cues predicting rewards varies 
along a continuum, rather than being an all‐or‐none dichot-
omous variable. Furthermore, in this experiment we did not 
test the stability of the classification outcome across multiple 
sessions. Results from preclinical studies have shown that 
some individuals might oscillate between different classifi-
cations (Meyer et al., 2012). In light of these findings, future 
studies should aim at developing a classification algorithm 
that will take into account both the stability of the classifi-
cation across multiple sessions and the level of uncertainty 
associated with the classification of each individual.

One advantage of our experimental paradigm is the pos-
sibility to let participants know at the beginning of the ex-
periment which stimulus category predicts food delivery. 
Previous studies already showed that emotionally arousing 
naturalistic images (including reward‐related cues) can be 
used as reinforcers in second‐order conditioning paradigms 
(Deweese, Robinson, Cinciripini, & Versace, 2016; Littel & 
Franken, 2012) and that task‐irrelevant Pavlovian cues can 
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influence human behavior (Garofalo & di Pellegrino, 2015). 
Therefore, by ensuring that all participants are aware of the 
cue‐food contingency, this paradigm eliminates the need for 
carrying out preliminary training sessions and allows for all 
artifact‐free trials to be included in the statistical analyses. 
Furthermore, by using naturalistic images rather than arbi-
trary visual patterns to signal impending food delivery, we 
preserved the face validity of the task. Additionally, by in-
cluding two categories of food images (i.e., sweet, savory) 
and counterbalancing across subjects the category that sig-
nals food delivery, we effectively tested the extent to which 
individuals attribute incentive salience to the same stimuli 
when they do or do not predict actual rewards. We can think 
about the two conditions that we created in our experiment 
as approximations of what usually happens in everyday life, 
where fast food logos reliably indicate that food is available 
inside the store displaying the logo. This is in opposition to 
what often occurs in human research laboratories, where the 
presentation of food images reliably indicates that food is not 
available until the end of the experiment. Unsurprisingly, our 
results show that, in general, individuals attribute more incen-
tive salience to food‐related cues when they signal impending 
food availability than when they do not. Another important 
feature of our experimental paradigm is the inclusion of a 
wide array of visual stimuli that differed in both valence and 
emotional arousal. Preclinical studies showed that the repre-
sentation of value in the brain’s valuation system adapts to the 
range of values available at any given time (Padoa‐Schioppa, 
2009). Hence, including a wide array of emotional catego-
ries is necessary to accurately assess the incentive salience 
attributed to cues predicting rewards (Oliver et al., 2016; 
Versace, Engelmann, et al., 2017; Versace & Schembre, 
2015). The large LPP difference that we observed between 
the predictive and the nonpredictive cues in this experiment 
suggests that researchers interested in understanding the role 
of cues as triggers of compulsive eating should consider how 
the availability of rewards during the experiment and the 
presence of other emotionally arousing stimuli might impact 
participants’ neurobehavioral responses to the cues.

This experimental paradigm might contribute to bet-
ter characterizing the neuropsychological underpinnings of 
other disorders where poor impulse control plays a signifi-
cant role. Preclinical studies showed that animals attributing 
incentive salience to cues predicting food rewards also have 
the tendency to attribute incentive salience to cues predicting 
drug delivery, a trait that makes these animals more vulnera-
ble to addictionlike behaviors (e.g., cue‐induced drug self‐ad-
ministration and drug self‐administration reinstatement after 
extinction; Saunders & Robinson, 2013; Tomie, Grimes, & 
Pohorecky, 2008; Tunstall & Kearns, 2015). Results obtained 
from smokers (Engelmann et al., 2016; Mahler & de Wit, 
2010; Versace et al., 2014, 2012) suggest that the tendency to 
attribute incentive salience to cues predicting rewards might 

also underlie multiple maladaptive behaviors in humans. 
We (Versace et al., 2014, 2012; Versace, Claiborne, et al., 
2017) have found that smokers with larger brain responses 
to cigarette‐related cues than non‐nicotine‐related pleasant 
stimuli are more prone to relapse than smokers with larger 
brain responses to pleasant stimuli than to cigarette‐related 
cues. Future studies should investigate the extent to which the 
neuropsychological profiles identified here map onto those 
hypothesized to underlie “sign‐tracking” and “goal‐track-
ing” behaviors in animals (Flagel & Robinson, 2017; Sarter 
& Phillips, 2018; Tomie et al., 2008). Sign‐ and goal‐track-
ing behaviors emerge during Pavlovian conditioning, when 
a discrete cue (the sign) predicts the delivery of a food re-
ward (the goal) at a different location. Under these circum-
stances, when the cue appears, some animals (referred to as 
sign trackers) tend to approach it, while others (referred to as 
goal trackers) tend to approach the location where the food 
will be delivered. Studies that investigated the neuropsycho-
logical underpinnings of these behaviors in animal models 
showed that sign tracking is the consequence of the animal’s 
tendency to attribute incentive salience to cues predicting re-
wards (Flagel et al., 2011).

Another aspect that should be investigated in more detail 
in future studies is the relationship between the endopheno-
types identified here and impulsivity. The results from the 
BIS (Patton et al., 1995) indicate that individuals classified as 
C > P report slightly higher scores on the attentional and non-
planning impulsivity subscales than individuals classified as 
P > C. Results from animal models showed that rats prone to 
attribute incentive salience to reward‐predictive cues are also 
more prone to impulsive actions (Lovic, Saunders, Yager, & 
Robinson, 2011). In line with these results, Garofalo and di 
Pellegrino (2015) showed that, in humans, individuals cat-
egorized as sign trackers report lower impulse control than 
goal trackers. Replicating our findings using an objective 
measure of impulsive action should contribute to determining 
the extent to which results from animal and human models 
converge regarding the role that impulsivity has in increasing 
vulnerability to cue‐induced behaviors.

One potential application of this paradigm might be to 
rapidly test the efficacy of treatments aimed at improving 
the ability to resist cue‐induced behaviors before starting 
large‐scale clinical trials. Another clinical application would 
be to use this paradigm to assess vulnerability to addictive 
behaviors in at‐risk individuals without exposing them to any 
substance of abuse (e.g., before opioids are prescribed for the 
first time or in drug‐naïve young individuals).

To conclude, while several factors motivate food con-
sumption, our findings show that the tendency to attribute 
more incentive salience to food‐related cues than to non-
food‐related rewards significantly increases the likelihood 
of an individual to engage in maladaptive eating behaviors. 
By contributing to the understanding of the biological basis 
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underlying individual differences in vulnerability to cue‐in-
duced eating, our findings represent a step toward identify-
ing new targets for personalized weight control interventions 
aimed at regulating the intense motivation to eat that many 
individuals experience in the presence of cues associated 
with highly palatable foods.
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