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A Model Predictive Control Framework for Asymptotic Stabilization of
Discretized Hybrid Dynamical Systems

Pegah Ojaghi, Berk Altın, and Ricardo G. Sanfelice

Abstract— We present a model predictive control (MPC)
algorithm for the appropriate discretizations of (nondiscretized)
hybrid dynamical systems. The optimization problem associated
with the MPC algorithm is formulated with a set-based pre-
diction horizon and the discretized hybrid dynamics as part
of its constraints. Sufficient conditions guaranteeing structural
properties of the problem and asymptotic stability of a closed
set are revealed. These conditions include the existence of a
control Lyapunov function assuring an invariance property on
the terminal constraint set. In addition, we formulate a method
to obtain numerical solutions to the hybrid optimal control
problem, amenable to off-the-shelf optimization solvers, and
demonstrate this method on the discretization of a prototypical
hybrid system.

I. INTRODUCTION

Control of hybrid dynamical systems is challenging due
the fact that continuous and discrete dynamics are typically
intertwined. It is well known that stabilizing the continuous
dynamics and the discrete dynamics in such system sep-
arately to a point or to a set is not enough to stabilize
the entire system; see, e.g., [1]. The use of optimization-
based techniques for the control of such systems has promise.
Recently, a framework for model predictive control (MPC)
for hybrid dynamical systems was introduced in [2], [3]. In
these articles, hybrid dynamical systems are given as in [4],
specifically, in terms of differential equations and difference
equations with constraints. Such a framework captures a
wide variety of hybrid models, including switched systems
and hybrid automata. The work in [2] and [3] pertains to
what could be considered to be “pure” nondiscretized hybrid
dynamical systems, which is the cornerstone of a general
theory of computational MPC for hybrid systems.

In this paper, we make a first step towards that general
theory by formulating a framework for MPC for discretized
hybrid dynamical systems. For this purpose, given a hy-
brid dynamical system as in [4], [2], [3], we discretize it
following the ideas in [5]. For these discretized models,
we first formulate a set-based prediction horizon and a
corresponding optimal control problem. With those basic
definitions, we introduce an MPC algorithm suitable for
the class of discretized hybrid systems. The optimal control
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problem associated with the proposed algorithm minimizes
a cost functional weighting the state during both flows and
jumps, and imposes constraints on the terminal state and
time. It is summarized in Section III. In Section IV, the
assumptions on the optimal control problem (to guarantee
asymptotic stability of a closed set of interest), which are
similar to their counterparts in the continuous/discrete-time
MPC literature, are presented. These assumptions are used in
Section V to establish the relevant properties of the optimal
control problem and certify asymptotic stability of the given
closed set. Then, in Section VI, a method to obtain numerical
solutions to the hybrid optimal control problem is presented,
and demonstrated with an example. Due to space constraints,
certain details and proofs of the technical results are not
included and will be published elsewhere.

It should be pointed out that, as summarized in [6],
the term hybrid has been used in the MPC literature to
describe systems with both continuous-valued and discrete-
valued states and inputs [7], or to indicate the presence
of discontinuities in the control algorithm or the system
dynamics [7],[8]. On the other hand, many systems labeled as
“hybrid” in the broader control literature do not possess such
a partition, and have continuously evolving states that exhibit
jumps, due to events. Aside from the recent framework
introduced in [2], [3], MPC strategies for these systems are
not available in the literature, with the most relevant work
being the impulsive and measure-driven frameworks in [9]
and [10]; see [6] for a recent survey. Following the formula-
tion in [2], [3], the MPC framework introduced in this paper
makes no distinction between continous- and discrete-valued
states and/or inputs, and identifies the underlying dynamical
model by a combination of two constrained difference equa-
tions, one of which corresponds to the discretization of the
continuous-time dynamics.

II. PRELIMINARIES

The notation R is used to represent real numbers and R≥0
its nonnegative subset. The set of nonnegative integers is
denoted N. The notation |.| expresses the Euclidean norm (2-
norm). We denote by A + δB the set of all x ∈ Rn such
that |x− a| ≤ δ for some a ∈ A, where B is the closed
unit ball at the origin in Euclidean space of appropriate
dimension. The distance of a vector x ∈ Rn to a nonempty
set A ⊂ Rn is given by |x|A := infa∈A |x− a|. The func-
tion Π : Rn × Rp → Rn is introduced as the standard
projection onto Rn such that Π(x, y) = x. The closure of S
is denoted as clS. A function α : R≥0 → R≥0 is a class-K∞



function, if α is zero at zero, continuous, strictly increasing,
and unbounded.

A. Discretized Hybrid Control Systems

Given a hybrid control system as in [11], we represent its
discretization by the family of systems Hs, parameterized
by s ∈ (0, s∗] for some s∗ > 0, where s is the step size
of the discretization of the continuous-time dynamics [5]. In
this paper, for each s ∈ (0, s∗], the discretized system Hs is
given by

Hs

{
x+ = fs(x, u) (x, u) ∈ Cs,
x+ = gs(x, u) (x, u) ∈ Ds,

(1)

where x ∈ Rn and u ∈ Rp denote the state and input,
respectively. The state and the input can contain logic
components, timers, counters, and other continuous and
discrete components. The flow set Cs (respectively, the jump
set Ds) is a constraint set defining subsets of Rn × Rp
where flows (respectively, where jumps) are allowed. The
function fs : Cs → Rn is called the flow map. Similarly, the
function gs : Ds → Rn is called the jump map. Although
both the jump and flow maps define discrete dynamics, the
term “flow” is used to refer to the first difference equation
in (1) since it typically arises from the discretization of the
continuous-time dynamics of hybrid control system.

Solutions to a hybrid control system are defined on hybrid
time domains. The definition of hybrid time domains can
be found in [11]. Due to the fact that the dynamics of the
discretized hybrid control system Hs are purely discrete,
solutions to Hs are defined on discrete hybrid time domains
and parametrized by the pair (k, j) ∈ N×N. Discrete hybrid
time domains are similar to hybrid time domains but are
purely discrete sets. A discrete time variable k is used instead
of t to keep track of the steps of the integration scheme
during flows, and a jump index j is used to indicate the
number of jumps that have occurred.

Definition 2.1 (discrete hybrid time domain): A set E ⊂
N×N is a discrete hybrid time domain if for all (K,J) ∈ E,
there exists a unique finite nondecreasing sequence {Kj}J+1

j=0

such that K0 = 0, Kj+1 ∈ N for each j ∈ {0, 1, . . . , J},
and

E ∩ ({0, 1, . . . ,K} × {0, 1, . . . , J}) =

J⋃
j=0

Kj+1⋃
k=Kj

(k, j)

A solution pair (x, u) to Hs is given on a discrete hybrid
time domain, where x represents the state trajectory and u
represents the input.

Definition 2.2: Given s ∈ (0, s∗], and a pair of func-
tions x : domx→ Rn and u : domu→ Rp, (x, u) is said to
be a solution pair to Hs if dom(x, u) = domx = domu is
a discrete hybrid time domain, (x(0, 0), u(0, 0)) ∈ Cs ∪Ds,
and the following hold:

• For each (k, j) ∈ dom(x, u) such that (k + 1, j) ∈
dom(x, u),

(x(k, j), u(k, j)) ∈ Cs,
x(k + 1, j) = fs(x(k, j), u(k, j)).

(2)

• For each (k, j) ∈ dom(x, u) such that (k, j + 1) ∈
dom(x, u),

(x(k, j), u(k, j)) ∈ Ds,

x(k, j + 1) = gs(x(k, j), u(k, j)).
(3)

The solution pair (x, u) is said to be complete if dom(x, u)
is unbounded.

Remark 2.3: For discretized systems Hs with single-
valued maps, uniqueness of (state) trajectories is guaranteed,
even when the sets Cs and Ds overlap. This is due to the
fact that given any two solution pairs (x1, u) and (x2, u)
with initial conditions x1(0, 0) = x2(0, 0), the domain of
the hybrid input u determines when jumps occur (since
domx1 = domx2 = domu by definition).

Example 2.4: (Discretized Bouncing Ball) Consider the
discretization of the hybrid system model of an actuated ball
moving vertically and bouncing on a horizontal surface. Fol-
lowing [5, Example 4.5], the ball is modeled as a point-mass,
and its motion is represented by a discretized system Hs as
in (1) with state x = (x1, x2) ∈ R2, input u ∈ R,1 and the
following data:

Cs = {(x, u) ∈ R2 × R : x1 ≥ 0 , u = 0}, (4)

Ds = {(x, u) ∈ R2 × R : x1 = 0, x2 ≤ 0}∪
cl{(x, u) ∈ R2 × R :∃z ∈ Π(Cs), x = z + fs(z) /∈ Π(Cs)},

(5)
fs(x) = (x1 + sx2 − γs2/2, x2 − sγ) ∀(x, u) ∈ Cs,

and for every (x, u) ∈ Ds,

gs(x, u) = (0,−λ(x2 + (x1/s)(1− x2/(x2 + sγ))) + u).

In this model, x1 and x2 indicate the height and velocity of
the ball, respectively, γ > 0 is the gravitational acceleration,
and λ ∈ [0, 1] is the coefficient of restitution.

Remark 2.5: As illustrated in Example 2.4, the data of Hs
depends on the discretization parameter s. For simplicity of
notation, from hereinafter, we will omit the subscript s in Hs
and its data (Cs, fs, Ds, gs).

Throughout the paper, the set of solution pairs to Hs
in (1) (now denoted H) originating from a set S ⊂ Rn
is denoted ŜH(S);2 that is, ŜH(S) collects all solution
pairs (x, u) satisfying x(0, 0) ∈ S. The set of all solution
pairs to H, namely, ŜH(Rn), is simply denoted as ŜH. Given
a solution pair (x, u), (L, J) ∈ dom(x, u) is the terminal
time of (x, u) if k ≤ L and j ≤ J for all (k, j) ∈ dom(x, u).

1The input constraints on the flow set can be defined by any arbitrary
subset of R as fs does not depend on u.

2We use ŜH(S) to avoid confusion with the notation SH(S) in [4] for
sets of maximal solutions [4, Definition 2.7] to (nondiscretized) autonomous
hybrid systems.



B. Discretized Hybrid Control Systems under Static State-
Feedback

Given a feedback pair κ := (κC , κD), where κC : Rn →
Rp and κD : Rn → Rp, the closed-loop system resulting
from controlling H with κ is described by the autonomous
system

Hκ

{
x+ = fκ(x) := f(x, κC(x)) x ∈ Cκ
x+ = gκ(x) := g(x, κD(x)) x ∈ Dκ,

(6)

where
Cκ := {x ∈ Rn : (x, κC(x)) ∈ C},
Dκ := {x ∈ Rn : (x, κD(x)) ∈ D}.

and (C, f,D, g) is the data of (1) without the subscript s
(see Remark 2.5).

A function x is a (state) trajectory to (6) if there exists a
solution pair (x, u) satisfying the properties in Definition 2.2,
with u(k, j) = κC(x(k, j)) in (2) and u(k, j) = κD(x(k, j))
in (3). Such a solution pair (x, u) is said to be generated by κ.

III. HYBRID MODEL PREDICTIVE CONTROL

The proposed hybrid MPC algorithm relies on the so-
lution of a finite horizon hybrid optimal control problem
at specific (hybrid) time instants, similar to conventional
continuous/discrete-time MPC. In this section, details of the
algorithm and the underlying optimal control problem are
presented.

A. The Prediction Horizon

In conventional continuous/discrete-time MPC, optimal
controls are updated periodically, and each computed control
input has the same terminal time. Due to the nature of
(discrete) hybrid time domains, a periodic sampling strategy
is restrictive for (discretized) hybrid dynamical systems.
Moreover, the terminal time used in each recomputation has
to accommodate for solutions that may only flow or only
jump, suggesting that the terminal time could be reached due
to k or j getting large. To address these issues, similar to free
end-time optimal control [12, Chapter 8], a hybrid prediction
horizon set T will be employed. In contrast to finite-horizon
optimal control problems arising in continuous/discrete-time
MPC, we take the prediction horizon T ⊂ N×N to be a set
instead of a point to accommodate solutions having different
discrete hybrid time domains. In this paper, for simplicity,
given an integer τp > 0, we define T as

T := {(k, j) ∈ N× N : max{k, j} = τp}. (7)
For a visual demonstration of prediction scenarios associ-

ated with (7), we refer the readers to Figure 1 of [2], which
illustrates the same idea in the case of nondiscretized hybrid
systems.

B. The Cost Functional

As mentioned before, the proposed hybrid MPC strategy
updates the optimal controls at specific time instants on
the discrete hybrid time domain of the generated solution
pair. At each such time instant, the optimal control is
found by minimizing a finite horizon cost functional J over

solution pairs with compact domains. The cost functional
J is given in terms of the flow cost LC , which is defined
on C, the jump cost LD, which is defined on D, and the
terminal cost V , which is defined on the terminal constraint
set X ⊂ Π(C ∪D).

J (x, u) :=

 J∑
j=0

Kj+1−1∑
k=Kj

LC(x(k, j), u(k, j))


+

J−1∑
j=0

LD(x(Kj+1, j), u(Kj+1, j))

+ V (x(L, J)),

(8)

where (x, u) is a solution pair (not necessary maximal) to
H with compact domain and terminal time (L, J), with
the property that, following Definition 2.1, {Kj}J+1

j=0 satis-
fies dom(x, u) =

⋃J
j=0

⋃Kj+1

k=Kj
(k, j) and KJ+1 = L.3

C. The Hybrid Optimal Control Problem

The minimization of the cost functional J in (8) is
subject to the explicit constraints described by T and X ,
which dictate that solutions pairs have terminal times in T
and terminal conditions in X , and the implicit state-input
constraints defined by the data of H (since solution pairs
are allowed to flow only on C and jump only on D). Note
also that any additional explicit state-input constraints can
be embedded in C and D. For example, for the case of
the bouncing ball model in Example 2.4, the explicit state
constraint {x ∈ R2 : x1 ∈ [0, hmax]} can be embedded
in the flow set by letting C = {(x, u) ∈ R2 × R : x1 ∈
[0, hmax], u = 0}.

The hybrid optimal control problem is as follows:
Problem (?). Given x0 ∈ Rn,

minimize J (x, u)

subject to (x, u) ∈ ŜH(x0)

(L, J) ∈ T
x(L, J) ∈ X,

(9)

where (L, J) is the terminal time of (x, u).
A solution pair (x, u) is said to be feasible if it satisfies

the constraints of (9). The set X ⊂ Π(C ∪D) is the set of
all feasible initial conditions. The value function J ∗ : X →
R≥0 is defined as

J ∗(x0) := inf
(x,u)∈ŜH(x0)

(L,J)∈T
x(L,J)∈X

J (x, u) ∀x0 ∈ X .

If the infimum in J ∗ is attained by a feasible (x, u) ∈
ŜH(x0), then the pair (x, u) is said to be optimal.

A convenient way of solving Problem (?) is to convert
it into a mixed integer nonlinear program. This approach is
introduced in Section VI.

3The second summation term is to be interpreted as an empty sum if
J = 0.



D. Hybrid MPC Algorithm

The proposed hybrid MPC scheme is summarized in
Algorithm 1 below. The optimization times in the algorithm
are regulated by a control horizon (not defined explicitly
here), which has the same structure as the prediction horizon
T in (7), and is defined by a positive integer τc ≤ τp.

Algorithm 1: Hybrid MPC Implementation

1 Set i = 0, (L0, J0) = (0, 0), x0 = x(0, 0).
2 while true do
3 Solve Problem (?) to obtain an optimal solution

pair (x∗i , u
∗
i ).

4 while max{k − Li, j − Ji} ≤ τc do
5 Apply u∗i to H to generate the trajectory x.
6 end
7 Set i = i+ 1, (Li, Ji) = (k, j), x0 = x(Li, Ji).
8 end

In Algorithm 1, the trajectory x is obtained by applying
a sequence of optimal control inputs {u∗i }∞i=0 to H. The
sequence {(Li, Ji)}∞i=0 ∈ dom(x, u) is the sequence of
hybrid times of the resulting solution pair (x, u), at which
the optimal controls are updated. The optimal state trajectory
x∗i associated with u∗i corresponds to the portion of the
state trajectory x from time (Li, Ji) to (Li+1, Ji+1). The
initial optimization occurs at time (0, 0), and the initial
optimal control u∗0 is applied until a hybrid time (k, j) of
the generated trajectory satisfies max{k, j} = τc. That is, u∗0
is applied until either τc steps of flow elapse, or τc jumps
occur, whichever occurs first. At this point, we obtain the
second optimization time (L1, J1) = (k, j), respectively, and
Problem (?) is re-solved to find the new optimal control u∗1,
which is again applied to H for either τc steps of flow or τc
jumps. Note that the inter-event times (Li+1−Li, Ji+1−Ji)
are not necessarily constant. However, if either the flow set
C or the jump set D is empty, and τc = 1, the algorithm
simplifies to standard discrete-time MPC with unitary control
horizon.

For a visual demonstration of the algorithm, we refer
the readers to Figures 2 and 3 of [2], which illustrate the
nondiscretized version of Algorithm 1.

IV. BASIC MPC ASSUMPTIONS FOR
DISCRETIZED HYBRID SYSTEMS

Similar to conventional continuous/discrete-time MPC, the
proposed MPC scheme for discretized hybrid systems guar-
antees an asymptotic stability property of a closed setA ⊂ X
under specific conditions on the flow cost LC , jump cost LD,
terminal cost V , the terminal constraint X , and the set A
itself. Next, the basic assumptions needed for such a property
to hold are presented.

As opposed to purely continuous-time or discrete-time
MPC, requiring A to be contained in the interior of X is
restrictive for hybrid systems when Π(C ∪ D) 6= Rn. To
address this issue, the next assumption requires that A is
contained in the relative interior of X .

Assumption 4.1: There exists a scalar δ > 0 such that

(A+ δB) ∩Π(C ∪D) ⊂ X.
The next assumptions impose basic positive definiteness

properties for the functions involved in the definition of the
functional J in (8).

Assumption 4.2: There exist class-K∞ functions αC and
αD such that

LC(x, u) ≥ αC(|x|A) ∀(x, u) ∈ C,
LD(x, u) ≥ αD(|x|A) ∀(x, u) ∈ D.

Assumption 4.3: There exist class-K∞ functions α1

and α2 such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ X.

Definition 4.4: The terminal constraint set X is said to be
forward invariant for Hκ in (6) if X ⊂ Cκ∪Dκ, x ∈ X∩Cκ
implies fκ(x) ∈ X , and x ∈ X ∩Dκ implies gκ(x) ∈ X .
The following assumption, which resembles the familiar con-
trol Lyapunov function-like assumption in the MPC literature
([7], Section 2.2.1), is also imposed on the cost functions and
the terminal constraint. It is the main stabilizing ingredient
of the proposed hybrid MPC algorithm.

Assumption 4.5: The terminal constraint set X is forward
invariant for Hκ in (6). Moreover, the following hold:

V (fκ(x))− V (x) ≤ −LC(x, κC(x)) ∀x ∈ X ∩ Cκ,
V (gκ(x))− V (x) ≤ −LD(x, κD(x)) ∀x ∈ X ∩Dκ,

(10)

V. MAIN RESULTS

In this section, we address the relevant properties of
Problem (?), which are used to show asymptotic stability of
the closed set A under the proposed hybrid MPC algorithm.

A. Feasibility of the Optimization Problem

We first present a couple of feasibility properties. The
purpose of the first result is to show that feasible solutions
exist everywhere on the set X .

Proposition 5.1: Suppose that the terminal constraint
set X is forward invariant for Hκ in (6) and the prediction
horizon T is given as in (7) for some positive integer τp.
Then, X ⊂ X .

In the next result, we extend the typical forward/recursive
feasibility property (see [13]) in continuous/discrete-time
MPC to the case of discretized hybrid systems. According to
this result, as in conventional MPC, feasible solution pairs
can be extended by concatenation. This ensures that the
proposed MPC algorithm can be implemented by measuring
the state and solving Problem (?) recursively.

Lemma 5.2: Suppose that the terminal constraint set X is
forward invariant for Hκ in (6) and the prediction horizon T
is given as in (7) for some positive integer τp. Let (x, u) be
feasible. Then, for any (k, j) ∈ dom(x, u), there exists a
feasible pair (x′, u′) ∈ ŜH(x(k, j)); i.e., x(k, j) ∈ X .



B. Properties of the Value Function

Next, we present continuity and positive definiteness prop-
erties of the value function J ∗ to establish it as a candidate
Lyapunov function.

Lemma 5.3: Suppose Assumption 4.2 holds. Then, there
exists a class-K∞ function α such that the value function
satisfies J ∗(x0) ≥ α(|x0|A) for all x0 ∈ X .

Lemma 5.4: Suppose Assumptions 4.3 and 4.5 hold, and
the prediction horizon T is given as in (7) for some pos-
itive integer τp. Then, there exists a class-K∞ function α,
such that the value function satisfies J ∗(x0) ≤ V (x0) ≤
α(|x0|A) for all x0 ∈ X ⊂ X .

Using (10) and analyzing the feasible solution obtained by
concatenation in Lemma 5.2, the next lemma shows that the
value function is upper bounded by a decreasing function
along optimal solutions.

Lemma 5.5: Suppose Assumptions 4.2 and 4.5 hold, and
the prediction horizon T is given as in (7) for some positive
integer τp. Let (x, u) be an optimal solution pair. Then, for
any (k, j) ∈ dom(x, u),

J ∗(x(k, j)) ≤ J ∗(x(0, 0))

−

((
j∑
i=0

si+1−1∑
s=si

αC(|x(s, i)|A)

)
+

j−1∑
i=0

αD(|x(si+1, i)|A)

)
,

where {si}j+1
i=0 is the sequence satisfying

dom(x, u) ∩ ({0, 1, . . . , k} × {0, 1, . . . , j}) =

j⋃
i=0

si+1⋃
s=si

(s, i)

C. Asymptotic Stability

We now show that under the conditions we impose, the
proposed hybrid MPC algorithm asymptotically stabilizes
the closed set A. Asymptotic stability of A is certified by
the value function J ∗, which, by Lemmas 5.2-5.5, is a
Lyapunov function for the resulting closed-loop system. In
what follows, we call a solution pair (x, u) to be an MPC
solution pair if it is generated via Algorithm 1.

Theorem 5.6: Suppose Assumptions 4.1, 4.2 and 4.5 hold,
and the prediction horizon T is given as in (7) for some
positive integer τp > 0. Then, the following hold:
• There exists µ > 0 such that for every x0 ∈ Π(C ∪
D) satisfying |x0|A ≤ µ, there exists an MPC solution
pair (x, u) with x(0, 0) = x0.

• For all ε > 0, there exists δ > 0 such that every
MPC solution pair (x, u) with |x(0, 0)|A ≤ δ satis-
fies |x(k, j)|A ≤ ε for all (k, j) ∈ domx.

• Every MPC solution pair (x, u) satisfies
limk+j→∞ |x(k, j)|A = 0.

VI. NUMERICAL SOLUTION TO
THE HYBRID OPTIMAL CONTROL PROBLEM

The aim of this section is to formulate a method to obtain
numerical solutions to the hybrid optimal control problem
in (9). One way of minimizing the cost functional J in (8)

is to convert the discretized hybrid control system H into a
nonlinear discrete-time system. We introduce a new input ũ,
which plays the role of u in H, and define the nonlinear
discrete-time system

x̃+ =uff(x̃, ũ) + (1− uf )g(x̃, ũ)

(x̃, v) = (x̃, ũ, uf ) ∈ C̃ ∪ D̃,
(11)

where x̃ plays the role of x in H, C̃ := C×{1}, D̃ := D×
{0} and v := (ũ, uf ) is the input. The input component uf ∈
{0, 1} determines whether the state x̃ flows or jumps. In fact,
the state x̃ of (11) is updated via f when uf = 1, (namely,
when x̃ flows), and is updated via g when uf = 0 (namely,
when x̃ jumps).

With the proposed system in (11), we add two auxiliary
variables, rc and rd, to keep track of flows and the number
of jumps elapsed, respectively. This results in the nonlinear
discrete-time system denoted D and given as follows:

D


z+ =

x̃+r+c
r+d

 =

uff(x̃, ũ) + (1− uf )g(x̃, ũ)
uf + rc

1− uf + rd


(z, v) = (x̃, rc, rd, ũ, uf ) ∈ Ĉ ∪ D̂

(12)

where z := (x̃, rc, rd) is the state, Ĉ := {z ∈ Rn ×N×N :
(x̃, ũ) ∈ C, uf = 1}, and D̂ := {z ∈ Rn × N× N : (x̃, ũ) ∈
D,uf = 0}. The auxiliary state variables rc and rd are
added to keep track of flows and jumps so as to enforce
the prediction horizon constraint. Since D is a discrete-
time system, we parametrize its solution pairs by a single
independent variable, denoted ` ∈ N. In other words, solution
pairs to D are defined on standard discrete time domains, as
opposed to discrete hybrid time domains.

Given a solution pair (z, v) to D with terminal time N ,
using the cost functions defining J in (8), we define the
following cost functional:

J̃ (z, v) :=

N−1∑
`=0

uf (`)LC(x̃(`), ũ(`))

+ (1− uf (`))LD(x̃(`), ũ(`)) + V (x̃(N)).

With the data of D already defined in (12), the optimal
control problem to be solved is as follows:
Problem (?)d. Given z0 = (x̃0, rc0, rd0) ∈ Rn × {0} × {0},

minimize J̃ (z, v)

subject to (z, v) ∈ ŜD(z0)

x̃(N) ∈ X
(rc(N), rd(N)) ∈ T

where N is the terminal time of (z, v), and ŜD(z0) is the
set of solution pairs of D from z0.

Note that when T is defined as in (7), the terminal time N
of any feasible pair (z, v) satisfies N ∈ [τp, 2τp].

A. Equivalent Implementation of the Hybrid MPC Algorithm

Using Problem (?)d, Algorithm 1 can be reformulated for
the nonlinear discrete-time system (12) as follows.



Algorithm 2: Implementation of Algorithm 1 via the
solution of Problem (?)d

1 Set i = 0, `0 = 0, z0 = (x̃(0), 0, 0).
2 while true do
3 Solve Problem (?)d to obtain an optimal solution

pair (z∗i , v
∗
i ).

4 while max{rc(`− `i), rd(`− `i)} ≤ τc do
5 Apply v∗i to D to generate the trajectory z.
6 end
7 Set i = i+ 1, `i = `, z0 = (x̃(`i), 0, 0).
8 end

B. Example: Predictive Control of the Bouncing Ball

Consider the data of the bouncing ball system with step
size s in Example 2.4, and total energy function W (x) :=
γx1+x22/2 for all x ∈ Π(C∪D). The control objective is to
stabilize the limit cycle of the system originating from (h, 0)
under the feedback κ, equivalently represented by the closed
set A = {x ∈ Π(C ∪ D) : W (x) = γh}, where h ≥ 0
is the desired height. To achieve this goal, we assume the
terminal constraint set X = Π(C ∪ D), and the following
cost functions:

LC(x, u) = sγ(W (x)− γh)2/(1 + 2W (x)) ∀(x, u) ∈ C,
LD(x, u) = γ(x2 −

√
2γh)2/2 ∀(x, u) ∈ D,

V (x) = (3 + arctanx2)(W (x)− γh)2 ∀x ∈ X.

It can be verified that the cost functions and the terminal
constraint set satisfy the stabilizing conditions in Assump-
tions 4.2, 4.3 and 4.5. Simulation results4 of the discrete-
time system D corresponding to the bouncing ball system
using Algorithm 2 with γ = 9.8 m/sec2, λ = 0.8, h = 2 m,
s = 0.02, prediction horizon parameter τp = 2 sec, and
control horizon parameter τc = 1 sec are shown in Figure
1. Figure 1 shows that state trajectories from different initial
conditions all converge to A after a few jumps. Note that
due to the definition of the flow set and jump set in (4) and
(5), the height of the ball can be negative at times. For this
simulation, Problem (?)d is solved using the MATLAB OPTI
Toolbox; see details in [14].

VII. CONCLUSION

In this paper, a new formulation of MPC for discretized
hybrid dynamical systems based on finite-horizon hybrid
optimal control is proposed. By designing the terminal cost
to be a control Lyapunov function on the terminal constraint
set, asymptotic stability of closed sets can be guaranteed. A
method to obtain numerical solutions to the hybrid optimal
control problem is formulated. Future work will focus on the
solution of tracking problems for hybrid dynamical systems
with similar MPC strategies.

4Files for this simulation can be found at the following address:
https://github.com/HybridSystemsLab/HybridMPCBBwConstraintsDT

Fig. 1: Position trajectories of the bouncing ball from dif-
ferent initial conditions using hybrid MPC, implemented via
Algorithm 2.
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[13] H. Chen and F. Allgöwer, “A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability,” Automatica,
vol. 34, no. 10, pp. 1205–1217, 1998.

[14] J. Currie, D. I. Wilson, N. Sahinidis, and J. Pinto, “OPTI: Lowering the
barrier between open source optimizers and the industrial MATLAB
user,” Foundations of computer-aided process operations, vol. 24,
p. 32, 2012.


	Introduction
	Preliminaries
	Discretized Hybrid Control Systems
	Discretized Hybrid Control Systems under Static State-Feedback

	Hybrid Model Predictive Control
	The Prediction Horizon
	The Cost Functional
	The Hybrid Optimal Control Problem
	Hybrid MPC Algorithm

	Basic MPC Assumptions for  Discretized Hybrid Systems
	Main Results
	Feasibility of the Optimization Problem
	Properties of the Value Function
	Asymptotic Stability

	Numerical Solution to  the Hybrid Optimal Control Problem
	Equivalent Implementation of the Hybrid MPC Algorithm
	Example: Predictive Control of the Bouncing Ball

	Conclusion
	References



