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ABSTRACT 

ON THE FEASIBILITY OF AB INITIO CALCULATIONS 
OF ORDERING ALLOY PHASE DIAGRAMS 

D. de Fontaine 

University of California 
Department of Materials Science and Mineral Engineering 

) Berkeley, CA 94120 

Many stable or metastable intermetallic phases useful to the alloy 
designer have crystal structures which are ordered superstructures of a 
parent disordered phase. A highly reliable statistical mechanical method 
(CVM) has now been developed for calculating such superstructure phase 
equili bria deri ved from say, the fcc parent lat ti ce. To obtain phase 
diagrams, one needs certain physical parameters, such as effecti ve pair 
interaction ratios. It is possible, in principle, to extract these 
parameters from band structure calculations in the coherent potential 
approximation (CPA), particularly from recently developed cluster-CPA 
techniques. If sufficient accuracy can be achieved 



2 
1. INTRODUCTION 

As explained elsewhere in these conference proceedings, particular 
ordered structures are found to produce excellent mechanical properties in 
certain classes of alloys. The alloy designer would of course like to 
predict what sorts of alloying elements and heat treatments will promote 
which structures. If we restrict attention to superstructures of a gi ven 
parent lattice, say the L12 structure in fcc,the problem appears to be 
amenable to theoretical solution. In other words, it may be possible, in 
favorable cases, to predict what ordered phases will be stable (or at least 
metastable) under what conditions, by performing purely first-princi ples 
calculatio'ns, i.e., ideally,from a knowledge of the atomic numbers of the 
elements considered, the temperature and the average composition. 

The purpose of this paper is to summarize recent results which presently 
lead one to believe that such first-principles calculations may soon become 
quite feasible. Both band structure and configurational entropy aspects 
will be briefly covered. Possible experimental techniques which are 
available for verification of the theoretical predictions will be 
mentioned. 

The present treatment will be essentially qualitative. For more 
detailed accounts, the reader is referred to the cited references. 
Background can be found, for example, in the author's early review paper 
[1] • 

2. STATE OF ORDER 

In general, crystalline alloy phases are disordered systems. If we 
disregard, for simplicity, small atomic displacements from lattice sites, 
the disorder is essentially compositional. Perfect stoichiometric 
compounds (complete order) and completely 'disordered solid solutions 
(complete disorder) are extreme special cases of the general one under 
consideration here: that of partial order. 

How does one describe such states?' Perfect order is completely 
described by specifying the crystallographic unit cell. Total disorder is 
completely described by the average concentration since, by definition, the 
occupation probability of each lattice point is the same, namely the average 
concentration c (iixB of B, say, in an A-B alloy), independently of the 
environment, since all correlations vanish. Hence, one may state that the 
unit cell is the appropriate descriptive unit for complete order, and the 
lattice point (occupied by an "average atom") is the appropriate one for 
complete disorder. 

For partial order (or disorder), the appropriate descriptive unit is the 
cluster of lattice pOints. If the cluster is the whole crystal, we obtain 
an exact but impractical 'description of the state of order. Hence, only 
small clusters are retained, the smallest one, beyond the paint, being the 
pair (1 st , 2nd , 3rd ••• neighbors). One can also envisage triplets of lattice 
point, quadruplets ·(tetrahedra,~ •• ), etc. States of order can then be 
described by a so-called "cluster' algebra'" [2] which makes use of multiplet 
correlation functions ~ defined as follows: 

(1) 

for a cluster of m lattice paints, the subscript denoting the site in the 
cluster. In Eq. (1 ), the 0 are occupation variables taking value +1 or -1 
depending on the occupation of the site, A or Br The brackets indicate an 

.. 
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average of the a product over the whole crystal, or better, over an ensemble 
of systems, and the index s labels the type of m-point cluster. 

A cluster (of n pOints, of type r, say) may be populated by A and S 
atoms in a certain way, i.e., it may have a certain configuration (J), with 
resulting frequency of occurrence, or probability, or cluster concentration 
x given by [2,3] 

1 
xn r(J) ~ ~ [1 + L vn rom s(J) ~m s] , 2n. m,s ,. , , (2) 

where the (rectangular) matrix v has elements given by sums of products of 
plus ones and minus ones. The nature of the v-matrix is entirely fixed by 
the nature of the crystal lattice and by the largest clusters (and their 

o sub-clusters) used. The multiplet correlations ~ form a set of linearly 
independent variables which completely describe the state of order at the 
level of approximation desired. These variables are thus the fundamental 
ones not only for the problem at hand, but also for calculating the internal 
energy, determining the ordered ground states and for calculating the 
configurational free energy of the system at arbitrary temperature, as will 
be seen in Sects. 3, 4 and 5. 

3. INTERNAL ENERGY 

It was stated above that a complete and exact description of the state 
of order could be given by specifying the statistical weights X(J) of all 
possible configurations J of the whole crystal, J denoting a given 
distribution of +1 and -lover the N-NA+NS pOints of the crystal, NA and NS 
being the fixed number of A and S atoms in the crystal. Let configuration J 
have energy E(J). For fixed concentration, the expectation value of the 
energy is then given by a canonical ensemble average over all 
M ~ N!/(NA!NS!) configurations J o having concentration C=NS/N : 

<E) a I X(Jo ) E(Jo ), 
J o 

This expression is exact; it can be written in terms of independent 
variables ~ by means of Eq. (2) applied to X, the "cluster concentration" of 
the whole crystal [3,4]. Upon substitution of Eq. (2), written for the 
whole crystal, into (3) ~ one finds, after subtracting the energy of the 
completely disordered state: 

<E) • Eo + L Em s o~m,s m,s ,. 
(4) 

in which 

is the energy of the 
o~m,s - ~m,s - ~om,s is 
actual (~) and disordered 
being defined by 

(5) 

disordered state of composition c, and where 
the difference of correlation functions between 
(~O) states, the effective interaction parameters 

(6 ) 
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The physical meaning of these interaction parameters can be illustrated for 
the case of pairs (m=2). We have, for the particular pair joining pOints p 
and p': 

E pp ' I I opop,LN, L E (J') 
22 2 J' 0pop' op=±1 op,=±1 

with 

2N' L EiJ" (J' ) , 
J' 

(8 ) 

with N' = N"'; 2. Because of translational symmet'ry, the effecti ve interaction ~ 

does not depend on the location of the pair, only on its type s, so we 
have: 

E2,s = - ~ V(s) (9 ) 

with 

( 1 0) 

in the familiar notation (see for example Ref. [1J), where, for instance, + 

occupation represents an A atom, and - a B atom. It is apparent from the 
definition (8) that the quantity Vij represents the total energy of an ij 
pair embedded in an average, random medium. The difference V thus 
represents a net or exchange interaction which is typically a very small 
fraction of the V ij energies themsel ves ~ Hence, Eq. (10), cannot be used to 
compute the effective brdering energies themselves,' since the V (or E) are 
expressed as very small differences of almost identical very large numbers. 
Various schemes which have been suggested for getting around this difficulty 
will be reviewed, below. 

Note that nowhere have we tried to express the cohesive energy as a sum 
of pair energies: according to ~q. (4), the total energy is written as sum 
of Eo, the cohesive energy of a random solid solution, plus a much smaller 
term, the ordering energy: 

( 11) 

where Nr is now (N/2) times the number of neighbors in coordination shell r 
about a lat ti ce pOint, the summation being limi ted, in practi ce, to a few 
coordination shells only. It is then clear, from Eqs. (7) and (8), that the 
effecti ve interactions E' (or V) must depend on the average medium through 
the set of configurations J o , hence they must be concentration dependent. 
In Sect. 7, we shall examine how such interaction parameters might be 
obtained from electronic band structure calculations. For the next two 
sections, however, we shall regard the pair interaction parameters as given 
constants. All of the physics of phase diagram prediction in the present 
context is contained in the sets of E (or V) parameters. 

4. ORDERED GROUND STATES 

Before introducing the temperature dependence of alloy phase stability, 
it is necessary to determine what ordered superstructures are to be 
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expected at absolute zero, in other words, the question "what ordered ground 
states will be found for a given set of V parameters and for various 
compositions" must be answered. The correct superstructures are those which 
will minimize the ordering energy (11). Since, by Eq. (11), or (12), E is 
linear form, one must solve a linear programming problem, as the ~ variables 
are subject to certain constraints. First, the values of the correlations 
m us t 1 i e bet ween + 1 and -1, then, si nce cl us ter concen tra t ions must be 
non-negative, we have, by Eq. (2), the additional constraints: 

1 + I Vn r'm s(J) ~m,s ~ 0 m, s ,., 
(1 3) 

for all configuraitons J of the largest clusters (n,r) used. It turns out 
[6J that inequalities (13) define a "confi guration polytope" in 
multidimensional ~-space, the ratios of which, in principle, have 
~-coordinates which uniquely define the correct ordered ground states. 
Unfortunately, inequali ties (13) may yield vertices which produce 
"non-constructible" structures, so that a "tighter" set of inequalities must 
be derived, which is not always feasible to do. 

Early methods and bibliography are reviewed in Ref. [lJ and [6J. All 
methods are based on linear programming techni ques, although the 
inequalities and techniques of minimization may differ. Inequalities are 
derived through "cluster" considerations, as in (13). Completely solved 
problems include the ground states of fcc and bcc lattices with first and 
second neighbor pair interactions [7-9J. The case of the fcc lattice with 
VI, V2 , V1 and V~ interactions has been partially solved [7J, and so has the 
case of the fcc lattice with VI, V2 , tetrahedron and octahedron multiatom 
interactions [6J. Recently [10J, a very elegant computer code was developed 
and applied to the bcc lattice with VI, V2 , V" and Vs pair interactions. 

Many experimentally observed ordered fcc superstructures, such as the 
Ll o , L1 2 , L1 I, D0 22 , Pt 2 Mo, etc ••• have been predicted by the ground state 
analysis limited to VI and V2 • Other structures, such as the Dl a , require, 
in addi tibn, 4th neighbor pair interactions for stabili ty, as shown by 
Kanamori [7J. The complete list of fcc ground states and the ranges of the 
ratio a = V2 /V I over which the various structures are stable have been given 
in many publications, such as [1], C3J and [6J-[9]' with perspective 
drawings of the unit cells of the less symmetric structures illustrated in 
Ref. [11J. 

5. FREE ENERGY 

It was seen that, at absolute zero, the state of order of, say, a binary 
solid solution is given by a vector ~ at the origin of multidimensional 
~-space and end point on the surface of the configurational polytope: at 
vertices in case of stoichiometric superstructures, at edges and faces, away 
from stoichiometry. At hi gher temperatures, the confi gurational entropy 
contribution favors some disorder so that the vector ~ no longer touches the 
surface of the polytope, but lies somewhere inside it. To determine 
equilibrium configurations, i.e. equilibrium values of the multiplet 
correlations, it is necessary to minimize the ordering free energy 

F '" E - TS ( 1 4 ) 

where E, in general, is gi ven by Eq. (11). 
It was first shown by Kikuchi [12J that the configurational entropy S 

could be expressed by an increasingly accurate hierarchy of cluster 
approximations, known as the Cluster Variation Method (CVM). As the name 
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implies, the CVM is a variational technique, meaning that the free energy is 
written as a functional of cluster concentrations x, which functional must 
then be minimi zed wi th respect to the unknown x. The CVM entropy is found 
to be given approximately by a sum of partial "cluster" entropies sl: 

( 1 5 ) 

where the collective index I has been used for (m,s), the sum in Eq. (15) 
running over all clusters and sub-clusters retained in the state-of-order 
description. The coefficients yare posi_ive or negative integers which may 
be obtained by geometrical considerations [12J or by recursi ve formulas 
[13,14J. The partial entropies are given by: 

sl = - kB L xl(J) In xl(J), 
J 

kB being Boltzmann's constant. 

( 1 6 ) 

Since by Eq. (2), the cluster concentrations are linear functions of the 
multiplet correlations ~, the free energy (14) can finally be written as a 
functional of the independent ~ variables 

( 17) 

or, more explicitly, in the pair-energy approximation, for the free energy 
per lattice point, 

f ~ ~ = L wr£r~r + kBT L Yl L xl(J) In xl(J) 
r I J 

. (18) 

in which wr is half the r-shell coordination number. Equation (18) is 
written for the disordered state, in which all lattice pOints are 
equivalent. In ordered states, a distinction must be made between various 
sublattices, on each of which pOints are equivalent. Thus, for ordered 
phases, the free energy expression (18) must be amended, as explained 
elsewhere [15J, though no new principles are introduced. 

Equilibrium is determined by minimizing (17) with respect to the 
(independ~nt) variables t. Usually, this is carried out by Newton-Raphson 
iteration [2,15J. Actually, one minimizes the "grand potential" .[16J: 

w = f - lJ~ ( 19) 

Where, for any ordered phase, ~ is a sum of point correlation variables over 
the sublattices, and lJ is an appropriate difference of chemical potentials. 
For gi ven lJ and temperature T, the minimization then returns equili bri urn 
values of the ~ correlations and hence, by Eq. (2), all desired cluster 
concentrations, including the average concentrations xA and xB. 

6. PHASE DIAGRAMS 

When an analytic form of the free energy, as Eq. (18), is known, much of 
the thermodynamics properties of the system can be derived, such as 
configurational energy, entropy, specific heat, etc. The vibratio~al 

contribution to these quantities is not available from the present model; 
however, it is reasonable to assume that, although strictly thermal effects 
can be as large or larger than the configurational ones, their differences, 
from one phase to another, at given temperature, will be small - recall 

." 

" 
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that the various ordered phases considered here (intermetallics) are 
superlattices of a given parent lattice. 

A critical test for a free energy model is to see how good a 
(temperature-composition) phase diagram can be derived from it. and much 
effort has been expended over the last few years in calculating phase 
diagrams from CVM free energies. 

The first such calculation was that of Van Baal [17J who considered 
first-neighbor pair interactions (VI) on an fcc lattice. the tetrahedron 
cluster (T) approximation of the CVM being used in the entropy expression. 
Next. tetrahedron interactions were included in the internal energy 
expression (11). and a very good li keness of the Cu- Au phase diagram was 
produced [18 L Calcl uated and experimentaly determined diagrams are also 
reproduced in Ref. [lJ. and compared to that obtained by the older 
Bragg-Williams (BW)'model. 

Next. second neighbor pair interactions were introduced so that both 
tetrahedron and octahedron (TO) clusters had to be used in the CVM entropy. 
The ferromagnetic (clustering) transition temperature at zero field (50/50 
composition) calculated by the TO-CVM was found to differ by only 2% from 
that obtained by the best available high-temperature expansion [2J. By 
contrast. the BW approximation gives a result which is off by 22%. 

The TO-C VM has been used to calculate a number of phase diagrams 
featuring the fcc ordered ground states proven to be stable for various 
values of the ratio a = V2/V I • Hence. a is the only physical parameter 
which enters the calculations.' In all. seven diagrams were computed for 
values a = 0.0. 0.25. 0.35. 0.45. 0.55. -0.2. -1.0. These prototype 
ordering phase diagrams have recently been collected in an overview article 
[llJ. details of the calculations being given in Refs. [15J. [19J and [20J. 
Since no real alloy system is expected to be well modeled by ordering 
energies depending on constant VI and V2 pair interactions. the accuracy of 
the TO-CVM prototype diagrams could only be tested against available 
Monte-Carlo (MC) simulations of ordering in the fcc Ising model with first 
and second neighbor interactions. In general. MC and CVM results agree 
closely. particularly at first-order transitions [11 .20J. The CVM tends to 
overestimate second-order transition temperatures;' parti cularly away from 
stoichiometry. It should be noted. however. that the Monte Carlo results 
for a = 0.0 are still somewhat controversial [21.22J. 

Only one prototype phase diagram is shown here. that for a = 0.35 (Fig. 
1. see Ref. [19J for a detailed description). Ordered superstructures 
labeled A5B. AlB. A2B and A2B2 are. respectively. monoclinic. tetragonal. 
orthorhombic and tetragonal superstructures of fcc [llJ. The dashed line is 
the stability limit of the disordered phase (or ordering spinodal [1.23J). 
at which (in the present case) a (1 1 /20 ) ordering wave just becomes unstable 
[1. 3. 23. 24J. Second-order phase transitions occur where phase boundaries 
(full lines) and instabilities (dotted lines) coincide. 

Recently. Sanchez and collaborators have extended the CVM calculations 
to include ordering energies obtained by Lennard-Jones potentials. This 
procedure effecti vely results in concentration-dependent ordering energy 
parameters; the lat ti ce parameter also var ies wi th concentration. This 
method has been successfully applied to mapping the experimentally 
determined NilAl phase boundaries [25J. and to producing "incoherent" 
prototype phase diagrams exhibiting fcc and bcc superstructures and 
miscibility gaps. The interesting problem of completing "ionic" and 
magnetic ordering has also been investigated [27J. A new formulation [14J 
of the CVM and various applications have also been reviewed recently by 
Sanchez and co-workers [28J. 
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7. ELECTRONIC BAND STRUCTURE CALCULATIONS 

From the foregoing, it is apparent that the statistical mechanical 
machinery is in place for calculating reliable configurational free 
energies, and hence realisti c phase diagrams. To make the calculations 
trul~ predictive, it would be necessary to derive the VI, V2 , 

interactions from first principles. It was seen that the "cluster" concept 
was essential for describing states of partial order, for determining ground 
states superstructures, and for calculating the configurational entropy. It 
is therefore expected that clusters may play an important role in 
fundamental electronic energy calculations as well. 

7.1. Basic Formulation 

It is a fairly straightforward matter to formulate the problem of 
calculating the cohesi ve energy of a metal or alloy: one writes down the 
total Hamiltonian in the form [29]: 

(20) 

when Ke and Kn are the kinetic energies of the electrons (e) and nuclei (n), 
respecti vely, Ven is the electron-nuclei interacti6n, Vee is the 
electron-electron interaction, and Vnn is the nuclei-nuclei interaction. 
The Kn term, which can be handled semi-classically, contributes to the 
.vibrational entropy and will not concern us here. Likewise, the Coulomb 
nuclear repulsion term (practicallY, an ionic repulsion term) can be treated 
classically and added on after the quantum mechanical calculations have been 
performed. The terms Ke must be written in differential operator form and 
combined with Ven and Vee to produce a strictly "electronic" Hamiltonian H, 
to be used in the Schroedinger equation: 

H'I' = E'I' (21 ) 

where 'I' is the wave function and E the associated energy eigenstate. 
Without drastic simplifications, Eq. (21) cannot be solved, the Vee 

electron-electron interaction representing a major diffi culty. Several 
schemes are now available for reducing the problem to an equivalent 
one-electron problem, the most popular one being the local density 
functional method (see for example Ref. [29]). Even so, the absolute 
magni tude of certain important physical parameters are predicted 
incorrectly unless more elaborate corrections are carried out [30]. It is 
believed, however, that these corrections will not be required· in the 
calculation of relative quantities such as ordering energies, which we are 
concerned with here. 

Solving Eq. (21) in an effective one-electron approximation with 
periodic potential (for pure or fully ordered crystals) still presents a 
formidable problem. Various approximate methods are available, the most 
useful one for alloy calculations being the tight binding (TB) and 
Korringa-Kohn-Rostoker (KKR) methods. These and other techniques are 
described in Ref. [29J, and also by Pettifor, in a particularly readable 
account [36J. BaSically, the tight binding is used as an approximation 
valid for transition metals if it is assumed that nearly all of the binding 
energy is provided by electrons in the· d band. The KKR is of more general 
applicability (s, p, d electrons) and is based on multiple scattering 
theory. If f electrons participate in the bonding (heavy nuclei), 
relativistic effects must be taken into account, so that the appropriate 

1./ 
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differential equation to solve is no longer the Schroedinger, but the Dirac 
equation, thereby further complicating the problem. 

Actually, for cohesive energy calculations, the wave function itself is 
not required; what is needed is the eigenvalue spectrum of the operator H, 
i.e., the density of states (DOS), the spectrum being virtually continuous. 
The total electronic energy is then obtained by filling up the DOS with 
electrons according to the Fermi-Dirac distribution. Techniques for 
carrying out this computational program are now under control. Impressive 
applications of such calculations to elemental solids" or stoichiometric 
compounds are, for example, those of Moruzzi, Williams and Janak C31J or 
those of Cohen and collaborators [32J who use the pseudopotential method. 
Accurate absolute zero values have been obtained for the lattice parameter; 
elastic moduli and cohesive energy. Usually, the crystal structure is 
assumed, but in some cases [33J, it has been possible to perform the 
calculations for various crystal structures to see which one gave the lowest 
energy; often, though not always, the correct structure was predicted. High 
accuracy is required, of course, as energy differences between competing 
structures are usually very small. In favorable cases, then, a true first 
principles calculation was performed: physical properties were derived from 
a knowledge of the atomic number Z alone. 

7.2. Single-Site CPA 

For pure crystals and stoichiometric compounds, all of the 
crystallographic information is contained in the unit cell, and translation 
symmetry reduces' the computational problem to manageable proportions. In 
the case of alloys, the disordered nature of the system precl udes the use of 
such simplifications. Since it is out of the question to perform the 
required quantum mechnical calculations on all possible configurations of a 
(large) representative region of the disordered crystal, it is imperative to 
attempt to restore translational symmetry by suitable averaging techniques. 

As was mentioned in connection wi th the state of order descri ption 
(Sect. 2), if complete disorder is assumed, it is sufficient to regard the 
lattice sites as being occupied by identical "average atoms". In this 
"point" approximation, the question is: how does one define' an average 
atom? In the regular solution or Bragg-Williams free energy models, each 
lattice site is assumed to be occupied by an average atom of concentration 
xB (or xA)' given by the average concentration on the given lattice or 
sublattice. In electron theory a lattice site must be occupied by an 
"average atom" having sensible physical properties, in other words, one must 
associate with each site an appropriate potential Vav(r), function of 
postion r, which can properly scatter electrons. Following the BW idea, the 
Simplest procedure consists in setting: 

(22) 

where VA and VB are the A and B atomic potential, respectively." Such is the 
so-called virtual crystal approximation which has been shown to yield 
unreliable results, particularly for transition metal alloys [29J. 

Electronic structure calculation on fully disordered systems improved 
considerably with the advent of the coherent potential approximation (CPA). 
For a review, see Ref. [34], for example. The density of states can be 
obtained directly from the Green's function, the operator that is inverse to 
the Hamiltonian of Eq. (21). Actually, an average Green's function <G> is 
required, i.e., averaged over all configurations. The function <G> is then 
written as the inverse of an effective Hamiltonian Heff which is expressed 
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in terms of an effective potential w(r), which is the same at every site. 
In such a way, an effective medium is created which possesses translational 
symmetry. The problem now consists in calculating the scattering of an 
electron off a real atomic potential, VA or VB' imbedded in the CPA. medium. 
The effective potential w is chosen in such a way that the replacement of 
the average potential by a real one at a given site causes no change in the 
scattering. This requirement leads to the basic CPA equations which must be 
solved self-consistently. 

7.3. Cluster CPA 

The CPA has been found to gi ve satisfactory results in those cases for 
which comparison could be made with exact calculations [29, 34J; it is thus 
regarded as the best available single-site approximation, valid for complete 
composi tional disorder. As such, this approximation cannot begin to do 
justice to the complexities of order-disorder phenomena any more than the 
regular solution model of statistical thermodynamics is able to handle 
order-disorder reactions. 

It is possible to treat long-range ord~r through the so-called 
"inhomogeneous CPA" which is to the "point" (homogeneous) CPA what the 
Bragg-Williams model is to the regular solution: the trick is to subdivide 
the lattice of the disordered state into distinct sub-lattices, and perform 
"point" CPA's on each. The inhomogeneous CPA is thus still a single-site 
approximation; short-range order cannot be treated in this framework, nor is 
it possible to obtain values for the ordering interactions Vn • 

As anticipated, the richness of order-disorder phenomena can only be 
produced from a theory which can handle states of partial order, i.e., from 
theories which are based on cluster methods. Ideally, one would like to do 
for electronic theory what the CVM has done for the statistical aspects of 
ionic ordering. Despite repeated efforts, a fully self-consistent 
Cluster-CVM remains, as of this writing, an elusive goal. A fundamental 
difficulty is that quantum mechanical operators must be dealt with rather 
than the simple scalars of the ordinary CVM. Nevertheless, some progress 
has been made, as will be now briefly described. 

Gonis and Freeman [37J list three types of cluste·r-CPA models: (I) 
cluster theories in which the average medium reflects the cluster 
configurations in a self-consistent way, (II) cluster theories in which the 
cluster is embedded in a medium determined in a non self-consistent way, and 
(III) cluster theories in which the cluster is embedded in a medium that is 
determined in some self-consistent way which involves clusters smaller than 
the embedded one. If the medi um cluster is a single-site, the average 
mediull _3 then that of the Single-site CPA. 

The latter method has been used to calculate the DOS of a 
one-dimension~l "alloy" e~hibiting various degrees of short-range order 
(SRO), described by either positive (clustering) or negative (ordering) 
nearest neighbor pair correlations. Clusters of various sizes (one to nine 
points) . were embedded in both single-site and pair-site CPA media. 
Calculations were performed for a Single-band tight-binding Hamiltonian and 
compared to exact results obtained by direct summation of energy eigenvalues 
for systems of various configurations having chosen SRO val ues. It was 
shown [37] that, parti cularly wi th the larger clusters, the embedded cluster 
m'2thod reproduced the considerable complexities of the exact DOS to a 
remarkable extent. 

Gonis, Stocks, Butler and Winter [38J used method III in an fcc binary 
alloy choosing, as embedded cluster, a central si te and its 12 nearest 
neighbors (cuboctahedron), the effective medium being that of the 
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self-consistent single-site CPA. A muffin-tin Hamiltonian was used and the 
calculations were performed in the KKR framework, the complications of 
electron-electron interactions having been neglected. The authors believe, 
as was surmised above, the Vee corrections to be relatively unimportant when 
ordering energies are required. To express the average internal energy 
gi ven above by Eq. (2) in terms of the embedded cluster formalism, let us 
focus on a particular (central) fcc lattice point (po) of the crystal and 
its coordination shell of first nearest neighbors. The expectation value of 
the energy can then be written as: 

<E> = I X(J )E(J) 
J 

I x(j) I X(j,J') E(j,J') 
j J' 

where x(j) is the probability of finding, in the ensemble of systems, a 
13-point cluster centered at Po having configuration j, xCj ,J') being the 
probability of observing configuration J' outside the central cluster, given 
that the latter has configuration j. If it is assumed that correlations do 
not extend much beyond the first coordination shell, we may take this 
conditonal probability to be approximately independent of j, so that we may 
write: 

where 

<E> 

Ei,z = .2. I X(J') ECi,z;J') 
N J' 

(24) 

(25) 

and where the index j has been replaced by the double index i (= A or B, for 
the central atom) and z (denoting the first-shell configuration). In Eq. 
(24), xi,z has the same meaning as x(j) in Eq. (23). 

The energy defined by Eq. (25) is the energy per site of a crystal 
having atom i at the point considered when surrounded by a particular 
first-shell configuration z. That energy can be calculated from the 
corresponding local DOS ni z as follows [39J. , 

where EF is the Fermi energy determined by the CPA. 
approximation, Eq. (24) would give simply: 

(26) 

In the single-site 

where Eo is the random-solution energy defined by Eq. (5). Note that, 
despite a superficial resemblence, Eqs. (27) and (22) mean very different 
things. An expression similar to the one in square brackets in Eq. (24) has 
been used by Gonis, Butler and Stocks [39J to evaluate approximate ordering 
energies in a 50/50 AgPd alloy. To obtain correct energies, in partially 
disordered states, one would have to know, at given temperature and average 
concentrations, all probabilities xi,z, of which there are 288 distinct ones 
[40J, and calculate all corresponding energies Ei z. This is a formidable , 
undertaking which, not surprisingly, has not been carried out. 
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Gonis et al. [38, 39J did obtain, however, some extremely interesting 

. and promising results for the local DOS ni,z for selected first-shell 
configurations z in AgPd. The various computed ni,z clearly exhibited the 
expected results for partially ordered systems. In particular, the pure-Ag 
or pure Pd cluster DOS resembled those 'of the pure elements, while that of, 
say, Pd surrounded by an all-Ag 'shell exhibited a single peak characteristic 
of a single impurity embedded in a pure medium, though somewhat broadened by 
the disorder [38J. 

7.4. Generalized Perturbation Method 

These are encouraging results; unfortunately it is not clear how to 
extract directly from the cluster CPA the various Vn effective interation 
parameters required by. statistical thermodynamic theories, such as the CVM. 
Hence. the generalized perturbation method (GPM) of Gautier and Ducastelle 
[42-47J may turn out to be more convenient. In this approach, the energy of 
a given alloy configuration is expressed by a "cluster expansion" of the 
reference medium E. 

1 
E ( { Y}) .. Eo + - . L. V ( PiP j ) Y ( Pi) Y ( p j ) 

2 l,oJ 

1 
+ -3 .I. V(PiPjPk)Y(Pi)Y(Pj)Y(Pk) 

l"J 
j ,ok 
k .. i 

(28) 

+ 2. . . L. V(Pi Pj PkPg)Y(Pi)Y(Pj)Y(Pk)Y(P2.) + ••• 
4 l"J ,J .. k 

k,02.,2. .. i 

In this expansion, the occupation variables are defined [1J as the deviation 
from the average concentration (c II xB) of the occupation (1 or 0) of site 
Pi' and the V are effecti ve cluster interactions. By taking an ensemble 
average of (28), one recovers an expression similar to Eq. (4), with the 
ensemble averaged yls related linearly to the correlations ~ [Eq. (1)J and 
pair interactions V ij .. <v (Pi Pj ) > having the same meaning as the quanti ties 
defined by Eqs. (7) - (10). The multisite interactions differ somewhat from 
the effective cluster interactions of Eqs. (4) and (6): the restrictions on 
the summations in Eq. (28) indicate that the multisite interactions involve 
paths along clusters of points, over which steps may be retraced. The 
ensemble average of Eo is just Eo itself, the energy of the reference 
medium, calculated as that of the single-site CPA medium; it is identifed 
wi th the corresponding term in Eq. (4), the energy of the completely 
disordered state. Both in Eqs. (4) and (28), the reference energy Eo is 
seen to depend on concentration, as do the interactions V themselves 
arising. as they do, from the expansion of the reference state. It is 
indeed because the energy of the reference medium is in some sens'e "close" 
to that of the actual configuration considered that expansion (28) converges 
rapidly. Calculations based on a tight-binding Hamiltonian have shown [46J 
that pair interactions are dominant. In parti cular, for fcc transition 
metal substi tutional alloys. it was found that. in general, 
IVII» <lV21. Ivll. Iv .. l) » <lVsl. IV6j) (the index indicating first, 
second ••• neighbor separation) [46J, [48J. but with V .. (in magnitude) of the 
order of V2 but larger than Vl • For bee. one has, in general, 
IVII> Iv 2 1 » IVll = IVsl > IV .. I. Ducastelle and co-workers [48.49. 50J 
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have also shown by performing moment expansions of the density of states, 
that the Vn pair interactions must necessarily change sign a number of times 
as a function of d-band filling. This implies that, for certain ranges of 
concentration in certain transition metal alloys, e.g., VI must become very 
small so that V2 , say, will become the dominant interaction. 

Studies by the French school have also shown that multisite interactions 
are generally negligible in magnitude compared to pair interactions. In 
certain cases, however, cluster interactions involving self-retraced path 
may become important. Most importantly, calculations have shown that, 
although V I is generally expected to be larger than V 2 for substitutional 
alloys, the reverse can be true for off-stoichiometric interstitial 
compounds [48, 49J. This explains why such structures as "AsS" [Fig. 1 J or 
"CuPt" (see, for example, Ref. [llJ), which require VI, in magnitude, 
comparable to V2 , are far more common in interstitial sublattices than in 
substitutional fcc lattices~ 

In the TS approximation, it is in fact possi ble to express the pair 
interactions in transition metal alloys analytically:as [44J 

(29 ) 

where c is the average concentration, Nd is the number of electrons in the d 
band, and where Od and Ond are the so-called diagonal and off-diagonal 
disorder. The average d band width W appears in Eq. (29) merely as a scale 
factor. In this approximation, Eq. (29) thus enables one to predict 
transition metal alloy ground state superstructures, since these are known 
as a function of VI"'V_ from the work of Kanamori and co-workers [9J. In 
this way, Gautier and collaborators [44, 47J have produced a remarkable 
structural map showing predicted regions of stability of various common fcc 
superstructures as a function of the parameters Nd and 0d, for various 
concentrations c. These extremely important results are also summarized by 
Pettifor [36J •. Agreement with experimental data is, in most cases, 
satisfactory. 

The possiblity offered by Eq. (29) of computing the Vn pair interactions 
directly from band structures is an exciting one, leading to ordered ground 
states and even phase diagram predictions. It would be deSirable, however, 
to check the pair interaction values experimentally, or better yet, the 
densities of states themselves. Ways of doing this are described briefly 
below. 

8. EXPERIMENTAL VERIFICATION 

Ideally, one would like to obtain direct experimental evidence of 
densities of state. This is a very difficult undertaking, especially in the 
case of alloys; but two techniques are becoming available for carrying out 
such a program: angle-resolved photoemission and posi tron annihilation 
spectroscopy. 

An application of the former method has been used by Jordan et ala [51J 
to ordered and disordered C u)Au. DOS spectra were obtained at various 
temperatures and compared to those calculated ab initio by fully 
relati visti c (ordered state) and semi-relati vistic (disordered state) KKR 
CPA formalisms. The disappearence, at higher temperatures, of small ordered 
state peaks were correlated in both theoretical and experimental DOS [51J. 
The technique is thus promising, but suffers from the serious drawback that 
only electron states near the surface of the specimen are sampled which, 
because of alloy surface segregation problems, may not be representative of 
the bulk. 
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Positron annihilation spectroscopy does not have the latter 

disadvantage and appears to be quite well suited for the study of the Fermi 
surface of metals and, particularly, of alloys (for reviews, see Refs. [52J 
and [53J). However, studies of electronic structure in general will require 
careful differentiation of effects due to point defects, particularly 
vacancies. 

Val ues of the effecti ve interaction parameters V n themsel ves may be 
determined by comparing experimental and theoretical values of short-range 
order intensi ty (ISRO) fluctuations in disordered solid sol utions, 
particularly just above a transition temperature. The art of measuring ISRO 
entails measurements of (x-ray or Neutron) diffuse diffracted intensity in 
substantial regions of reciprocal space, followed by fairly complex 
corrections for displacement effects. For a review of the current methods, 
see Ref. [54J, for example. 

Theoretical expressions for ISRO can be obtained by applying the 
fl uctuation-dissi pat ion theorem to whatever analyti cal free energy model 
one wishes to consider. At any point k in the first Brillouin zone, ISRO(k) 
is proportional to the expectation value of the Fourier transform XI of the 
point correlation function ~I [55J: 

(30 ) 

where (F-I)II is the first element of the inverse of the Fourier transform 
of the matri x of second deri vati ves of the free energy wi th respect to 
correlation variables. Equation (30) is exact, and would yield exact 
results if an exact free energy were available. For the one-dimensional 
Ising model wi th nearest neighbor interactions, the condi tion of 
conservation of integrated intensity is rigorously obeyed [55] if the CVM 
free energy is used. For higher dimensional systems, the CVM integrated 
intensity no longer has the required property, but does significantly better 
than that deri ved by BW models, such as the Kri voglaz and Clapp-Moss 
formulas (for a review of BW deri vations, see for example Ref. [1 J, and 
references cited therein). 

Recently, CVM and BW calculated ISRO were compared for the fcc Ising 
model with first (VI) and second (V 2 ) neighbor (constant) pair int~ractions. 
Contours of constant intensity in a (001) section of reciprocal space are 
shown in Fi g. 2, calculated according to the Sanchez formula (CVM, left 
frame) and the Krivoglaz-Clapp-Moss (KCM) forumla (BW, right frame), for the 
case of a" V2 /V I ,. 0.35, at temperature T = To/0.95, where To is the 
instability temperature, indicated by the dashed line at the chosen 
concentration of c = 0.5 in the phase diagram of Fig. 1. It is seen that 
the CVM diffuse intensity peaks at·< 1 1/2 0> are· much sharper than those of 
the BW calculation. The differences'may not appear that dramatiC, but the 
sharpness of the CVM peaks insure a' more nearly constant integrated 
intensi ty at all temperatures except very close to the instabili ty To. 
Furthermore, the ISRO calculations (Fig. 2) are completely consistent with 
the calculated phase diagram (Fig. 1) which, at least for a = 0.25, is known 
to agree closely wi th that obtained by Monte Carlo simulations (see Ref. 
[ 11 J ) • 

Up to now, the KCM has been used exclusively for extracting pair 
interactions from diffuse intensity measurements: the procedure consists in 
choosing the correct set of Vn in an attempt to reproduce theoretically the 
experimentally determined intensity contours (see Ref. [56J, for example). 
A simpler method would be to use the author's fcc and bcc "eigenvalue 
tables" [23J to fit major and minor axes of closed intensity contours about 

v 
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diffuse intensity peaks. The resulting Vn values are only as good as the BW 
model itself, however, whi ch is not good at all for fcc- based ordering 
systems. 

A very interesting comparison of back-calculated Vn values obtained by 
C VIII] and BW methods has just been performed. The technique used has been 
called the "inverse CVM" [57J, and was first suggested to the author by E
Van Royen [58J. It is, in a sense, an extension of Clapp's Probabili ty 
Variation method (PVM) [40J, itself an offshoot of Kikuchi's CVM (see, for 
example pg. 247 of Ref. [1 J). As in the PVM, one must assume that the 
internal (ordering) energy can be expressed by means of pair interactions 
alone, as in Eq. (12), the V's and £'s being related simply by Eq. (9). At 
equilibrium, the corresponding CVM free energy, Eq. (18) must be minimized, 
with pair correlations ~r being known from experiment, but with unknown 
interaction parameters £r. Equation (18) can be wri tten equivalently, by 
means of Eq. (2), as 

(31) 

where s designates the configurational entropy per lattice Site, expressed 
as a function of the n (known) pair correlations ~n and L (unknown) 
multiplet correlations ~~. The equilibrium conditions are [2J 

af 
wr£r - T 

as 0 (32a) - ... 
a~r a~r 

af as 0 
(32b) 

- = - T - ,. 
a,~ a,~ 

since the correlation variables are independent. Equations (32b) represent 
a maximum entropy condition, just as in the PVM, which return the 
equili bri um multi plet correlations. These values are then inserted into 
(32a) along wi th gi ven ~r' yield·ing s*, say, from which the required 
interactions (£ or V) can be obtained directly: 

T as* £r C -- (r,. 1, ••• n) 
W a~ r r 

In a recent study [57J, [59J, pair correlations in an fcc lattice were 
determined "experimentally" by Monte Carlo simulation wi th up to 
fourth-neighbor pair correlations. The set VI ••• V~ was then back-calculated 
by the inverse CVM in the "quadruple tetrahedron" approximation. The CVM 
interactions were found to agree much more closely with the MC input values 
than did those calculated by the BW model. 

In another recent development, Gyorffy and Stocks [60J have performed 
first-principles KKR-CPA calculations of ISRO in one-dimensional disordered 
systems and have also confirmed the existence of flat portions in the 
(3-Dim) Fermi surface of CuPd alloys for certain ranges of average 
concentrations. This latter calculation predicts, in the disordered state, 
the wavelength on long-period modulations as a function of concentration in 
excellent agreement with experimental observations. 

It is clear that diffraction methods, coupled with CVM ISRO analysis in 
partially ordered crystals can, in principle, yield reliable values of Vn 
interactions, which may then be compared to theoretical values obtained, for 
instance, by the Generalized Perturbation Method of Gautier, Ducastelle and 
co-workers. It is also expected that synchrotron radiation will play an 
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increasingly important role (a) by providing high-intensi ty, 
high~resolution ISRO data and (b) through angle-resolved photoemission 
spectroscopy, by proviaing insight into the electronic density of states 
itself • 

9. DISCUSSION: TOWARDS A GENERAL ALLOY THEORY 

It snould be clear from the foregoing that, if the uni t cell is the 
fundamental structural unit for elemental crystals and stoichiometric 
compounds, and the lattice pOint that for completely disordered solid 
sol utions, the' cluster of points is the fundamental unit for partially 
ordered crystals. Cluster methods are indispensable to characterize the 
state of order (Sect. 2), to predict ground states of order (Sect. 4), to 
approximate the confi gurational entropy (Sect. 5). In combination, these 
cl uster methods culminate in the cal culation of "prototype" ordering phase 
diagrams (Sect. 6) constructed with given, fixed sets of pair interactions, 
Vn · 

The internal energy also can be expressed in terms of cluster expansions 
(Sect. 3). If one could calculate reliably cluster interactions, pair's 
primarily, from electronic band structure theories, one would obtain, from 
first principles, the free energy, configurational entropy, specific heat, 
SRO, LRO, diffuse intensity (Sect. 8), phase diagrams, etc .. for those alloy 
systems which can be described fairly well by Ising models. Presently, the 
most critical problem of course remains that of calculating the DOS of 
alloys with sufficierit accuracy. 

It is not surprising that cluster methods play an important role in 
electroni c energy computat ions. In fact, a parallel can be establishea 
between statistical models and band structure methods (Sect. 7): 

Level 1: 
Level 2: 
Level 3: 

Regular Solution Model 
Bragg-Williams Model 
Cluster Variation Method 

~-~ Single-Site CPA 
~-~ Inhomogeneous CPA 
~-~ Cluster CPA, or Generalized 

Perturbation Method. 

A complete Alloy Theory must operate at Level 3; it should integrate the CW1 
and the CPA, ideally in a self consistent loop, as was done ini tially by 
Kittler and Falicov [61,62J on simple models. The CVM is well under 
control, although, in practice, calculations are limited to small clusters, 
and numerical convergence of the algorithms often poses serious problems. 
On the electronic theory Side, trie CPA appears to be very promising as a 
means of calculating the all-important Vn effective pair interactions which 
constitute the major input fOr ground state calculations and the CVM free 
energy. For phase diagram computations, the average energy Eo must also be 
known as a function of concentration and pernaps atomiC volume. Thus far, 
the GPM has been formulated in the ti.ght-binding approximation, 1 imi ting its 
application strictly to transition metal alloys for which only d~electron 
states need be considered. Furthermore, the alloy elements must be 
non-magnetic, unless one wished to perform CVM calculations involving both 
magnetic and ionic ordering. Finally, T-B calculations are model ones, hence 
not truly of the "first-principles" category. 

By contrast, the KKR-CPA used in conjunction with a muffin-tin 
Hamiltonian can be regarded as a truly first-principles method, not limited 
to transition metal alloys. Codes have even been developed for the heavier 
elements which require a relativistic approach [63J. Unfortunately, even in 
the single-site CPA version, calculations are very laborious and require 
considerable supercomputer time. Cluster CPA codes are even more elaborate 

v 
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and, despite recent successes, 
interactions. What would be 
generali zed perturbation method 
trivial undertaking [64J. 
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do not yield directly the effecti ve Vn 
required is the implementation of the 

in the KKR-CPA framework. which is not a 

still, if, as a first approximation. the effect of atomic displacements 
can be neglected (dynamic and static). the exciting possibility exists today 
of predicting thermodynamic properties and phase diagrams. for certain 
classes of binary alloys (AS). strictly from first principles. i.e •• from a 
knowledge of the atomic numbers ZA and ZB only. Best candidate systems 
include those phase equili bria invol ving only superstructures of a gi ven 
parent lattice. This limitation may not be as restrictive as it may appear: 
even in alloy systems featuring stable "incoherent" intermetallic 
compounds. the first product of solid state precipitation reactions 
generally consist of "coherent" superstructure phases. for which little 
experimental information is available. but which often determine final and 
are thus of crucial importance for the alloy designer. 

In conclusion. a General Alloy Theory is an idea whose time has come. 
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FIGURE CAPTIO~S 

Fi g. 1 

Fig. 2 

Prototype ordering phase diagram calculated by the TO aproximation 
of the CVM with a = V2/Vl = 0.35 [15]. Dashed line is <1 1/2 0> 
instabili ty. 

Equal SHO intensity contours in a (001) reciprocal lattice 
section calculated for a = 0.35, at c= 0.5 and T = To/0.95, where 
To is the instability temperature (see Fig. 1). The left frame 
is based on the CVM and the right on the BW approximations. 
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