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Abstract

Essays on the Economics of Climate Change, Biofuel and Food Prices

by

Charles Séguin
Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Larry Karp, Co-Chair
Professor Christian Traeger, Co-Chair

Climate change is likely to be the most important global pollution problem that humanity
has had to face so far. In this dissertation, I tackle issues directly and indirectly related to
climate change, bringing my modest contribution to the body of human creativity trying
to deal with climate change. First, I look at the impact of non-convex feedbacks on the
optimal climate policy. Second, I try to derive the optimal biofuel policy acknowledging
the potential negative impacts that biofuel production might have on food supply. Finally,
I test empirically for the presence of loss aversion in food purchases, which might play a
role in the consumer response to food price changes brought about by biofuel production.

Non-convexities in feedback processes are increasingly found to be important in the
climate system. To evaluate their impact on the optimal greenhouse gas (GHG) abate-
ment policy, I introduce non-convex feedbacks in a stochastic pollution control model.
I numerically calibrate the model to represent the mitigation of greenhouse gas (GHG)
emissions contributing to global climate change. This approach makes two contributions
to the literature. First, it develops a framework to tackle stochastic non-convex pollu-
tion management problems. Second, it applies this framework to the problem of climate
change. This approach is in contrast to most of the economic literature on climate change
that focuses either on linear feedbacks or environmental thresholds. I find that non-convex
feedbacks lead to a decision threshold in the optimal mitigation policy, and I characterize
how this threshold depends on feedback parameters and stochasticity.

There is great hope that biofuel can help reduce greenhouse gas emissions from fossil
fuel. However, there are some concerns that biofuel would increase food prices. In an
optimal control model, a co-author and I look at the optimal biofuel production when it
competes for land with food production. In addition oil is not exhaustible and output
is subject to climate change induced damages. We find that the competitive outcome
does not necessarily yield an underproduction of biofuels, but when it does, second best
policies like subsidies and mandates can improve welfare.

In marketing, there has been extensive empirical research to ascertain whether there is
evidence of loss aversion as predicted by several reference price preference theories. Most
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of that literature finds that there is indeed evidence of loss aversion for many different
goods. I argue that it is possible that some of that evidence seemingly supporting loss
aversion arises because price endogeneity is not properly taken into account. Using scanner
data I study four product categories: bread, chicken, corn and tortilla chips, and pasta.
Taking prices as exogenous, I find evidence of loss aversion for bread and corn and tortilla
chips. However, when instrumenting prices, the "loss aversion evidence" disappears.
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Preface

The starting point of this dissertation is the threat posed by climate change. The Intergov-
ernmental Panel on Climate Change (IPCC), an organization established by the United
Nations Environmental Programme and the World Meteorological Organization, provides
the best scientific picture of climate change and its potential impacts. In its fourth1 and
most recent assessment report [Randall et al., 2007], the IPCC states that with current
policies, the change in climate the planet experiences in the twenty-first century will be
much more important than that experienced in the last century. The consequences of
predicted changes in climate are far-reaching. Dry regions will become dryer, while both
droughts and floods will become more frequent. Ecosystems will be transformed, and
oceans are going to acidify. Coastal areas will be threatened by increased erosion and
sea level rise. The negative impacts in poor regions will create migratory pressure, and
many regions will see increased deaths from, for instance, vector-borne diseases. While
some consequences of climate change may have positive impacts, all will require costly
adaptation.

Since the publication of the IPCC fourth assessment report in 2007, a lot of attention
has been devoted to tipping points and feedbacks in the climate system. The concern is
that although climate has appeared to change gradually in response to greenhouse gas
(GHG) emissions, it might get to a point were a threshold is crossed and climate or
its consequences start to change more rapidly. Hence the optimal climate policy must
incorporate these feedbacks. Once a policy is determined, instruments must be used to
reach the policy objectives.

In the first chapter, I look at the impact of particular climate feedbacks on the optimal
abatement policy. I develop a stochastic optimal pollution management model where
the stock pollutant dynamics exhibit a non-convex feedback. I calibrate the model to
represent carbon dioxide (CO2) accumulation in the atmosphere and the mitigation of
climate change.

One policy instrument that might be used to reach the optimal abatement targets is the
promotion of biofuels as alternatives to fossil fuels. There is, however, a concern that such
an instrument may have adverse consequences for the food market. To tackle the trade-off
between reduced pollution costs and increased food prices, a co-author and I develop an
optimal control model where the constraint on fossil fuel is not its exhaustible nature,
but the damages its use creates by contributing to climate change. Two generations of
biofuels can be used to reduce emissions, but they are competing with food for the fixed
amount of land available.

Although the magnitude of the impact of biofuel production on food prices is still a
matter of debate, it will likely increase food price volatility. In the third chapter, I look
for evidence of loss aversion in demand for groceries. I consider a potential source of
confoundedness in the measure of loss aversion: price endogeneity.

1The fifth assessment report will be completed in 2013-2014.
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Accounting properly for feedbacks in devising an optimal climate policy is crucial.
Not only is most of the variation in the estimation of climate sensitivity attributable to
differences in feedback modeling in global circulation models, but the non-linearity of
some of these feedbacks makes the climate system even more difficult to predict.

Most economic literature on optimal climate policy has taken one of two approaches.
The first focuses on linear feedbacks, which can be summarized in one parameter, referred
to as climate sensitivity. An alternative approach introduces thresholds in the GHG stock
which, when crossed, trigger either catastrophic negative payoffs or a change in the climate
regime that exacerbates climate change. Nonlinear feedbacks have not yet found their way
into economic models of optimal GHG emissions.

An important contributor of GHG emissions is the transport sector. Finding a cleaner
substitute to gasoline could help reach abatement targets. Biofuels are one obvious alter-
native. There is however strong concerns that, as biofuel production compete with food
production for land, there will be upward pressure put on food prices. This might be
particularly harmful to the very poor, for whom price shocks can lead to malnutrition or
even starvation.

Most of the literature on the trade-off between food and biofuel focuses on the ex-
haustibility of oil rather than on the abatement benefits of biofuel. It is, however, possible
that the exhaustibility of fossil fuel reserves is of less concern than the effects of accumu-
lated greenhouse gases (GHG) in the atmosphere. In such a case, biofuel production is
used to mitigate GHG emissions.

In the marketing literature focusing on loss aversion, most models only estimate de-
mand taking prices as given. Hence they introduce a simultaneous equation bias in the
estimation. To justify the assumption that prices are exogenous, it is usually argued that
prices for the products studied are determined in a global market, which is little impacted
by the consumers under study because they represent only a small subset of that market.

This explanation is not entirely convincing. In practice, we know that store-level price
adjustments (such as sales) exist, especially for groceries, which are the most studied
market in this literature. In this case, there is a strong possibility that prices are somewhat
endogenous to the purchasing decisions of customers. Proper estimation would therefore
require the use of an instrument.

The model developed in chapter one is the standard stock pollution control problem
with a non-convex feedback term and a stochastic term included in the pollution accu-
mulation dynamics. The non-convex feedback introduced is similar to that found in an
energy balance model. The resulting combined model, formally incorporating stochas-
ticity, yields a non-convex dynamic optimization problem. It contributes to the climate
change literature by formally incorporating non-convex feedbacks in the dynamics of the
stock of GHG. It also contributes to the literature on non-convex pollution control models
by setting the problem in a stochastic context and applying it to climate change.

In chapter 2, my co-author and I tackle the trade-off between reduced pollution costs
and increased food prices. We develop an optimal control model where the constraint on
fossil fuel is not its exhaustible nature, but the damages its use creates by contributing
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to climate change. Two generations of biofuel can be used to reduce emissions, but they
are competing with food for the fixed amount of land available. We derive conditions
for the optimal allocation of land between food and biofuel production, and the optimal
investment into second generation biofuels. Because of the GHG externality, the market
outcome is suboptimal, and we consider different policies to improve upon it.

To assess the possibility of bias induced by price endogeneity in the context of loss
aversion models, I look, in chapter three, at the impact of reference price preferences on
the demand for four grocery product categories: bread, chicken, corn and tortilla chips,
and pasta. I test for the presence of loss aversion, both at the extensive and intensive
margins. I do this exercise both taking prices as given and instrumenting for them.

I use prices of commodities entering as inputs in the production of the relevant products
as instruments. There is evidence that food commodity prices have little impact on regular
shelf prices, but also that higher agricultural commodity prices reduce the frequency
and depth of sale promotions, hence increasing the average net retail price. Therefore,
commodity prices have the potential to be a good instrument for net retail prices.

In the first chapter, I find that the impact of non-convex feedback in a stochastic
setting is to create an optimally controlled system with two basins of attraction and a
control rule that is potentially discontinuous in between these basins.

The discontinuity of the optimal emissions policy depends on the steepness of the
feedback function. A steep function, meaning that the onset of the feedback is sudden,
leads to a discontinuous abatement policy function. A flatter feedback function, meaning
that the onset of the feedback is more gradual, leads to a continuous abatement policy
function. In both cases, the control rule is not monotonic in the stock of CO2.

Since the natural variability in the stock of CO2 is relatively low, the distance between
the basins of attraction is small. If this variability were to grow with the concentration
of CO2 in the atmosphere, the distance between the basins of attraction would grow,
enlarging the set of stock values where it is uncertain in which basin of attraction the
system will end up.

In the optimal biofuel production model, the competitive outcome overproduce fossil
fuels. Results for food and both biofuels productions are in general ambiguous. Land
scarcity plays a big role in assessing the results of the competitive outcome for food
production. If land is abundant, food is also overproduced because its GHG emissions
are not taken into account. However, that result does not follow through if land is scarce,
because competition from biofuel production may drive up land value and reduce food
production.

When appropriate, the optimal mandate for biofuel production is higher than the
socially optimal quantities. This is to add extra competition to reduce fossil fuel overpro-
duction and, if land is scarce, to also reduce food overproduction. The optimal subsidy for
each biofuel generation is equivalent to using the optimal mandate. Each subsidy can be
decomposed into four components, representing the incentive to reduce GHG emissions,
to reduce fossil fuel production, to reduce food production and to compensate for lack of
investment in second generation biofuels.
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As for loss aversion, while standard estimation does not give strong evidence of loss
aversion for chicken and pasta, it does for corn and tortilla chips and for bread. When
instruments are used to correct for price endogeneity„ that effect disappears for corn and
tortilla chips, and bread, while it still does not show up for chicken and pasta.

These results have two main implications. Empirical estimation of reference price
dependent demand ought to pay careful attention to the issue of simultaneous equation
bias. Otherwise, reported loss aversion could in fact just be confounded with the bias
due to the endogeneity of prices. From a marketing perspective, it is therefore not clear
whether supermarkets should pay attention to loss aversion in their pricing strategies.
A lot of attention has been devoted to sales pricing and how it should be adjusted in
light of reference price preferences. The absence of loss aversion would have considerable
implications for this analysis.
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1.1 Introduction

Optimal control of greenhouse gas (GHG) emissions is an ideal problem to apply the
economic theory of stock pollutant management. The benefits from emissions, arising
from consumption and production, must be traded off with the damages from changes
in the climate, arising from the accumulation of GHG in the atmosphere. However,
the GHG optimal control problem has the specificity that changes in atmospheric GHG
concentrations as well as in climate lead to nonlinear feedbacks in the climate system. In
addition, the problem is also stochastic in its nature, as climate has a natural variability
and as emissions of GHG can only be imperfectly controlled by policy makers. To tackle
these issues, I develop a stochastic optimal pollution management model where the stock
pollutant dynamics exhibit a non-convex feedback.1 I calibrate the model to represent
carbon dioxide (CO2) accumulation in the atmosphere and the mitigation of climate
change.

Accounting properly for feedbacks in devising an optimal climate policy is crucial.
Not only is most of the variation in the estimation of climate sensitivity attributable to
differences in feedback modeling in global circulation models [Webb et al., 2006], but the
non-linearity of some of these feedbacks makes the climate system even more difficult
to predict. Examples of nonlinear feedbacks include the albedo-ice effect [Hansen and
Nazarenko, 2004] and the thermohaline circulation [Rahmstorf et al., 2005].2 Feedbacks
between the cycle of carbon emissions and its sequestrations by natural sinks are also
increasingly found to be inadequately modelled by linearization. Zickfeld et al. [2011] find
that, in a coupled climate-carbon model, land and oceans carbon sinks are less effective
than predicted by a linear combination of concentration-carbon and climate-carbon cycle
feedbacks. Complex ecosystems also have the potential to generate nonlinear responses
to climate feedbacks, which traditional carbon-cycle models render poorly [Heimann and
Reichstein, 2008].

Nonlinear feedbacks in the climate system can lead to tipping points or thresholds
in the climate system. Once a tipping point is reached, the climate system can start
to change quickly without anthropogenic emissions needing to change quickly as well.
Examples of tipping points include the melting of the Arctic ice sheet, the instability
of the West Antarctic ice sheet, losses of permafrost and tundra, Atlantic deep water
formation and others [Lenton et al., 2008].

Most economic literature on optimal climate policy has taken one of two approaches.
The first focuses on linear feedbacks, which can be summarized in one parameter, referred
to as climate sensitivity [Roe and Baker, 2007]. This linear formulation does not lead

1While non-convex feedbacks are a particular type of non-linearity, it often corresponds to what the
climate literature is describing as nonlinear feedbacks. Indeed, nonlinear climate or carbon feedbacks are
often assumed to take-off at some point only to stabilize or level-off latter. In any case, the resulting
non-linearity can be represented by a non-convex function, usually a convex-concave one.

2For a more detailed description of the relationship between the albedo-ice effect, the thermohaline
circulation, and climate change see Clark et al. [1999].
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to tipping points or thresholds in the resulting climate model. This is the approach
of Ramsey-Cass-A models such as the DICE model [Nordhaus, 2008] and the model of
Aaheim [2010]. An alternative approach introduces thresholds in the GHG stock which,
when crossed, trigger either catastrophic negative payoffs, or a change in the climate
regime that exacerbates climate change [Tahvonen and Withagen, 1996]. This approach
has a stochastic analog that uses a hazard rate to represent the probability of crossing
into the catastrophic regime, as in Gjerde et al. [1999] and Tsur and Zemel [2009]. In
either the deterministic or stochastic setting, most thresholds introduced in climate change
management models are exogenous, meaning the threshold, or the probability of crossing
it, is independent of the decision maker’s actions [Tsur and Zemel, 1996, 1998, Naevdal,
2006, 2007, Fisher and Narain, 2003]. Fewer models consider endogenous thresholds that
depend on variables controlled be the decision maker [Lemoine and Traeger, 2010].

Nonlinear feedbacks have not yet found their way into economic models of optimal
GHG emissions. Moreover, there is debate over how these feedbacks should be incorpo-
rated into climate models. Zaliapin and Ghil [2010] critique the one parameter climate
sensitivity approach of Roe and Baker [2007] that has become widely used. The disagree-
ment persists as Roe and Baker [2011] have rejected this critique, only to be challenged
again by Zaliapin [2011]. However, problems with non-convexities have been tackled in
other contexts. The seminal work of Skiba [1978], on the optimal growth of a one sector
economy with a convex-concave production function, introduced the possibility of deci-
sion thresholds, since then referred to as “r points.” In environmental economics, similar
models were developed later to deal with stock pollutants that exhibited convex-concave
dynamics. Tahvonen and Salo [1996] look at a general stock pollutant with a concave-
convex decay function, while several articles on the so called “Shallow Lake Problem,”
including Carpenter et al. [1999] and Brock and Starrett [2003], looked at a similar prob-
lem but with a positive convex-concave feedback on the pollution stock. All these models
share the conclusions that the optimal steady state is not necessarily unique, and that
the control rule is likely non-monotonic and possibly discontinuous. All these conclusions
are in striking contrast to the received wisdom on GHG optimal policy, a monotonic and
continuous increase in abatement.

The model developed here is the standard stock pollution control problem with a
non-convex feedback term and a stochastic term included in the pollution accumulation
dynamics. The application to climate change adapts the framework developed by Rezai
[2010] to fit an autonomous control problem. The model of Rezai [2010] is itself a mod-
ification of c DICE model [Nordhaus, 2008], where most of the climate module of DICE
is replaced by a damage function expressed in terms of atmospheric CO2 concentration.
The non-convex feedback introduced is similar to that found in an energy balance model.
Such models, presenting temperature as the equilibrium between incoming and outgoing
radiations, have been little used in economic analysis of climate change. This is surpris-
ing given that they use the simplest representation of nonlinear feedbacks of any climate
models. The resulting combined model, formally incorporating stochasticity, yields a
non-convex dynamic optimization problem. It contributes to climate change literature
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by formally incorporating non-convex feedbacks in the dynamics of the stock of GHG. It
also contributes to the literature on non-convex pollution control models by setting the
problem in a stochastic context and applying it to climate change.

The non-convexity of the model creates thresholds. There are no environmental thresh-
old at a particular point of the stock of CO2, but the non-convex feedback leads to a
threshold region, where the feedback processes become significant. The threshold region
in the climatic system is exogenous as it depends only on model parameters. It can lead
to an endogenous decision threshold, i.e. a level of CO2 concentration at which the level
of optimal emissions changes discontinuously. The resulting discontinuous control rule
determines the probabilities of entering different basins of attraction.

The rest of this paper is organized as follows. The generic model is presented in section
2. Section 3 presents the functional forms used to represent the problem of optimal CO2
emissions and presents some analytical scenarios. The numerical approach used to solve
the model, the calibration, and the results are presented in section 4. Section 5 concludes.

1.2 Model

The general problem involves a productive activity yielding utility that also generates
pollution, which accumulates into a stock. This stock reduces utility either directly or
indirectly by negatively affecting the productive activity.

This pollution t model is fairly standard in environmental economics. However, if the
dynamics of the stock pollutant display non-convex feedback, as in the case of climate
change, the problem becomes much more complex and much less studied [Tahvonen and
Salo, 1996, Carpenter et al., 1999, Brock and Starrett, 2003]. This paper contributes to
that literature by setting the problem in a stochastic context and applying it to climate
change.

The problem can be described as the maximization of the expected sum of discounted
net benefits from the productive activity, subject to the dynamics of the pollution stock.
Formally:

max
{xt}∞

t=0

∞�

t=0

1
(1 + ρ)t

Eξu(xt, St, ξt) (1.2.1)

subject to

St+1 = f(xt, St, ξt) (1.2.2)
xt ∈ Φ(St) (1.2.3)

where:

• xt ∈ X ⊆ R is the productive activity (control variable) at time t;

• St ∈ S ⊆ R is the stock of pollution (state variable) at time t;
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• ρ is the positive discount rate;

• ξt ∈ Ξ ⊂ R is i.i.d. and Ξ is finite;

• u : X × S × Ξ → R is the net benefit from productive activity xt, pollution stock
St and stochastic shock ξt at time t, where ∂u

∂x > 0,∂2u
∂x2 < 0, ∂u

∂S < 0, ∂2u
∂S2 < 0;

• f : X × S × Ξ → S is the transition function for the stock;

• Φ : S → 2X is the feasible action correspondence.

The existence of a solution to this problem depends on conditions that can be imposed on
the one period reward function, the discount rate, the transition function and the feasible
action correspondence. If Eξu(xt, St, ξt) is real valued, continuous and bounded, ρ > 0,
f is continuous and Φ is non-empty, compact-valued and continuous, then there exist a
unique value function V (St, ξt) that solves:3

V (St, ξt) = max
xt

�

u(xt, St, ξt) + 1
1 + ρ

EξV (St+1, ξt+1)
�

(1.2.4)

None of the stated restrictions on the problem preclude the use of a non-convex feedback
term in the pollution stock dynamics; the only additional restriction needed is that the
overall behaviour of this stock be continuous. The next section shows that while the
dynamics of the CO2 stock is continuous, the location of steady states to the system can
change discontinuously in the level of emissions.

Because of the infinite time horizon, the fact that the reward function does not depend
on calendar time, and the distribution of ξt is time invariant, this is an autonomous
dynamic programming problem. Hence the value function does not have time as an
explicit argument. Such an autonomous problem has an optimal policy function that is
stationary.

The first order condition of equation (1.2.4) gives a condition relating the marginal
net benefit of the productive activity with the marginal cost imposed by the pollution
stock along the optimal trajectory.4

ux(xt, St, ξt) = − 1
1 + ρ

EξVS(St+1, ξt+1)fx(xt, St, ξt) (1.2.5)

One interpretation of equation (1.2.5) is that for a given xt, St, ξt combination to be
optimal, it must be the case that the marginal utility derived from the productive activity
is equal to the discounted expected marginal reduction in future utility due to extra
pollution, weighted by the contribution of that marginal unit of productive activity to the
future stock of pollution. Because this condition must hold for all time periods, there is

3The proof of that theorem is that of proposition 2 in chapter 6 of Bertsekas [1976].
4I use the notation ux to denote the partial derivative of the function u with respect to variable x.



6

no opportunity for arbitrage. Hence, on an optimal path, it is impossible to rearrange the
timing or total amount of productive activity such that the sum of discounted expected
net benefits is increased.

1.3 Application to Climate Change

The application to climate change that I propose builds upon a modification of the
DICE model5 developed by Rezai [2010]. While Rezai [2010] simplifies the climate module
of the DICE model such that all stock dynamics and climate damages can be represented
by a single stock variable (CO2 concentration in the atmosphere), I also simplify the
economy side of the model by assuming constant capital stock, constant savings, and
constant production and abatement technology. These simplifications allow me to keep
the model analytically and numerically tractable when I introduce non-convex feedback
and uncertainty.

In the next subsection, I present the functional forms of the climate application of the
model and discuss in more details how these depart from the original DICE model and
its modification by Rezai [2010]. In the subsequent subsections, I present some further
analytical results to establish what type of scenarios are possible given the choice of
functional forms.

1.3.1 Applied model

While many models of climate change mitigation, such as DICE, are optimal growth
models with exogenous technical change, I make the problem static in these two dimen-
sions. This modification leads to an autonomous problem, which is more tractable for
analytical optimal control and more stable when solving for the numerical control rule.
In addition, dropping these exogenous changes does not fundamentally alter the problem
at hand. Eliminating output growth reduces future wealth, which in turn reduces the in-
centive to shift abatement costs to future periods. In addition, on the technological side,
eliminating the decline in abatement costs also reduces the incentives to shift abatement
to the future. Part of these effects are counterbalanced by the constant business as usual
level of emissions, which is due to the constant output and emissions intensity assump-
tions. Indeed since emissions are not expected to grow over time, there is less pressure to
act now than in the standard DICE model.

The model presented in the previous section can be parametrized using the following
functional forms to represent the mitigation of GHG emissions. The one period payoff, or
reward function, is a utility function with constant elasticity of marginal utility, u(mt) =
x(mt)1−η

1−η . The choice variable, mt ∈ [0, 1], is the share of output devoted to the mitigation of
CO2 emissions. This variable completely determines per i consumption, x(mt), according

5The version of the model I will be referring to is DICE-07 [Nordhaus, 2008].
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to the function x(mt) = ȳdt(1−mt−σ)
N , where ȳ > 0 is the constant gross world output,6

dt ∈ [0, 1] is the fraction of gross output remaining after climate damages have been
accounted for, σ ∈ [0, 1) is the constant savings rate, and N > 0 is the constant population
level.

To be able to numerically solve the model, given the potential for a c point in a
stochastic setting, the number of state variables must be kept to a minimum. Indeed the
curse of dimensionality is quite acute in non-convex problems, as the concept of Skiba
points must be expanded to Skiba lines, planes or hyperplanes, as the number of state
variables grows to two, three or more. To avoid these complications, I limit the model to
one state variable, which is the stock of CO2 in the atmosphere, St, measured in parts
per million volume (ppmv).7

Since CO2 is the only state variable in the model, the climate damages must be
expressed in terms of this stock. I use the formulation developed by Rezai [2010], where
the fraction of output spared from climate damages is defined as:

dt =
�

1 −
�

St − 280
S̄ − 280

�1/γ
�γ

. (1.3.1)

This damage function can lead to more or less damages than in the DICE model, de-
pending on the value of γ ∈ (0, 1). This parameter defines the curvature of the damage
function, where damages get linear as γ → 1. S̄ > 280 is the stock of CO2, measured in
ppmv, that leads to the complete destruction of world output.

I also adapted the formulation of the transition function from Rezai [2010]. Indeed, his
recast-DICE model simplifies the climate module of DICE by replacing it by a transition
function that depends only on the stock of CO2. This approach bypasses most of the
climate module of DICE, which eliminates several intermediate state variables such as
carbon in upper and lower oceans, and atmospheric and oceanic temperatures. Such a
streamlined formulation simplifies the analysis and lends itself more readily to numerical
computations. The drawback is that some of the delays in the climate system are lost
and the damage function must be specified in terms of CO2 concentration instead of
temperature.

The transition function, f , describing the evolution of the stock of CO2 between each
period is described by equation (1.3.2).

f(mt, St, ξt) = (1 − ε)St + (β − Mt)yt + g(St) + 280ε + ξt (1.3.2)

Hence the stock of CO2 next period depends on the current stock, St, which dissipates at
rate ε ∈ (0, 1), on the level of output net of climate damages, yt = ȳdt, on a non-convex
feedback term, g(St), and on a stochastic term, ξt. Output has a constant CO2 intensity,
β > 0, which can be reduced through mitigation, Mt, defined as the per unit of output

6Measured in trillions of dollars.
7The pre-industrial concentration of CO2 is fixed at 280 ppmv [Randall et al., 2007].
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reduction in CO2 emissions due to mitigation mt. The relationship between Mt and mt is
represented by the function Mt =

�
mt
θ1

�1/θ2 , where θ1 and θ2 are positive parameters that
affect the output cost of a given reduction in emission intensity as defined in DICE.

The new feature in this climate model is the feedback term, g(St), in the transition
function for the stock of CO2. The functional form chosen for g(St) is given in equation
(1.3.3).8

g(St) = µ(tanh(κ(St − Ŝ)) + 1) (1.3.3)
This function is convex-concave, where µ > 0 is a scaling parameter of the feedback
function such that max g(St) = 2µ, κ > 0 is a parameter affecting the slope of the
feedback function, and Ŝ > 280 is the stock of CO2 at which the feedback function
reaches its inflexion point. As will be illustrated in the next section with specific values,
one can describe µ as the magnitude of the feedback, κ as the suddenness of the feedback,
and Ŝ as the midpoint of the region where the feedback takes off, or the onset region.

Defining this feedback term as an increasing convex-concave function can represent
several climate scenarios. In one of its simplest representations, the climate system can
be modelled as a zero dimensional energy balance system.9 The planet’s temperature is
the resulting equilibrium of the incoming energy absorbed from solar radiation and the
outgoing energy emitted by the earth. As the temperature changes, the ice cover on the
planet changes, which in turn changes the amount of solar radiation absorbed by the
system, as more or less ice will reflect more or less radiation. This feedback effect makes
the relationship between incoming energy and temperature non-convex.

Despite the model developed in this paper not being one of energy balance, a similar
reasoning can be applied to a model of CO2 concentration balance. As CO2 concentra-
tion rises, temperature also rises, which sets in motion changes in carbon sources and
sinks that will further increase the concentration of carbon. Such positive carbon cycle
feedbacks have been found using recent data [Cox et al., 2000, Heimann and Reichstein,
2008, Randall et al., 2007] and also with statistical studies based on paleoclimatic data
[Lemoine, 2010]. The evidence is mounting that these feedbacks are nonlinear and lead
to non-convexities in the climate system [Zickfeld et al., 2011, Friedlingstein et al., 2001].
Since the model developed here is highly aggregated, like zero dimensional energy balance
models, the specific functional form of g(St) does not represent a specific climate process,
but, as in Zaliapin and Ghil [2010], it is a smoothed version of the more usual step or
piecewise linear functions used to describe non-convex dynamics.10

Finally, the last innovation in the model is the presence of uncertainty in the form
8This formulation is similar to that of Zaliapin and Ghil [2010], who use it in the context of an energy

balance model.
9The dimensionality of energy balance models refers to their level of spatial aggregation. Zero dimen-

sional models consider the planet surface temperature as uniform, one dimensional models distinguish
temperature based on latitude, and two dimensional models distinguish both latitude and longitude.

10In energy balance models, the piecewise linear formulation is referred to as Sellers-type models [Ghil,
1976], while the piecewise constant formulation, or step function, is referred to as Budyko-type models
[Held and Suarez, 1974].
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Figure 1.1: Linear CO2 dynamics with constant emissions

of an additive random term ξt. By making the next period stock of CO2, and therefore
the damages, uncertain the model encapsulate risks of crossing thresholds, beyond which
the carbon cycle will change significantly. Managing these risks is an important part of
developing comprehensive policies to address the challenges posed by climate change.

1.3.2 Climatic thresholds in a deterministic setting

Thresholds are best introduced by first tackling the deterministic analog of the model,
where ξt is always zero. In this subsection, as well as the subsequent ones, I use phase
diagrams to represent the characteristics of different formulations of the model. In general,
phase diagrams might not accurately represent the dynamics of a discrete time model,
as discrete shifts in state and control variables can make the system jump around a
point that would otherwise be monotonically reached. Appendix A shows that, in the
deterministic version of the model, the stock of CO2 is always monotonically approaching
the stable steady states. Hence, phase diagrams provide an accurate rendition of the
model dynamics.

On the purely climatic side, one must first understand the behavior of the stock of
CO2 for constant levels of emissions before moving to the optimally controlled climate-
economy. Figure 1.1 presents this situation when there is no feedback. With constant
emissions (β − M)y, the long run stock steady state is point A. If the initial stock, S0,
is below A, the CO2 concentration will increase to asymptotically reach point A, while
it would decrease to asymptotically reach point A, if S0 is above A. If M permanently
decreases, inducing an increase in emissions, the long run steady state shifts proportionally
to point A

�.
In the nonlinear case, figure 1.2 presents the deterministic components of f . Intersections
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Figure 1.2: Nonlinear CO2 dynamics with constant emissions

between the straight dissipation line and g(St) now represent the steady states of the cli-
mate system. I will refer to the part of g(St) to the left of its inflection point as the lower
branch and the part to the right of that point as the upper branch. Points A and C are
locally stable equilibria, while point B is an unstable one. Hence, for constant emissions
(β − M)y, if S0 is less than B, the stock of CO2 would asymptotically converge to point
A, while if S0 is greater than B, the stock of CO2 would converge to point C. As in the
linear case, consider a permanent decrease in M . If that decrease is large enough, such
that the shifted dissipation line now intersects only once with g(St), only one steady state
remains, C

�, and it is now globally stable.
It is now easy to construct an example where a permanent change in emissions leads

to a more than proportional change in the steady state stock of CO2. Suppose that S0 is
less than B and emissions are (β − M)y. If M permanently decreases such that emissions
increase as shown in figure 1.2, the steady state stock of CO2 will not shift to A

� as
in the linear case, but to a much higher C

�.11 That is, the increase in emissions and
their subsequent accumulation in the atmosphere have triggered feedbacks in the climate-
carbon cycle such that the ultimate steady state of the CO2 is much higher than it would
have been without these feedbacks.

To understand how thresholds come to be in the climate system, an important dis-
tinction must be made between two potential cases that the functional form of g(St) can
represent. Those are depicted in figure 1.3. In the left panel, the maximum slope of
g(St) is greater than ε, while in the right panel it is smaller. In the left panel, there are
two thresholds in the stock of CO2. Starting from a stock of CO2 below A, as emissions
increase, the steady state stock moves along the lower branch of g(St) up until point A

�,
11Note that exactly the reverse example can be created if S0 is above B and M increases enough.
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Figure 1.3: Nonlinear CO2 dynamics with and without hysteresis

where the dissipation line and g(St) are tangent. If emissions go beyond the intercept of
the doted line on the left panel of figure 1.3, then the steady state level of emissions would
go beyond point C

� on the upper branch of g(St). In addition, if emissions would decrease
back to the level where the steady state was previously A

�, the steady state would not go
back to A

� but would stay at C
�. This asymmetry in the relationship between emissions

and stock steady state is referred to as hysteresis. Hence, the stock value corresponding
to point A

� is a threshold, below which the steady state moves along the lower branch
of g(St). There is a analogous point to A

�, between B and C along g(St), beyond which
the steady state moves along the upper branch of g(St). It is the second tangency point
between the dissipation line and g(St).

In the case shown in the right panel, no thresholds exist, as g(St) is nowhere steeper
than the dissipation line. As emissions increase, the stock steady state also increases
along g(St). Also, the absence of thresholds imply there is no hysteresis effect. Indeed,
the steady state A

� in the right panel of figure 1.3 can be reached from above or below
monotonically.

I focus on the hysteretic case depicted by the left panel of figure 1.3. This case is likely
the most accurate representation of the management of CO2 emissions. Indeed, while ε

is very small because carbon sinks retire CO2 relatively slowly from the atmosphere,
the maximum slope of g(St) is likely to be very high, because nonlinear feedbacks are
believed to kick in over a relatively short range of stock values. Budyko-type models use
a step function to model such feedbacks, which leads to an infinite slope at the point of
discontinuity.
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Figure 1.4: Linear stochastic CO2 dynamics with constant emissions

1.3.3 Climatic thresholds in the stochastic setting

The introduction of the stochastic term into the function f changes the interpretation
that can be given to climatic thresholds. To tackle this change, I build on the previous
framework where emissions were kept constant over time, instead of being adjusted to
follow an optimal policy. The behaviour of the problem with an optimized emissions path
is addressed in the next subsection.

Because of the randomness of ξt, one must now think of steady state distributions
instead of just steady states. The steady state distribution can be represented fairly
easily in the linear case. Adding a vertical axis to the right of figure 1.1 to represent
the probability density function of the steady state, this steady state distribution can be
represented as in figure 1.4. The situation depicted assumes that ξt has expectation zero.
In this case, A is the mean of the steady state distribution instead of being the steady
state itself.

A similar exercise can be done with the nonlinear dynamics. Figure 1.5 shows how the
density of the steady state distribution could look under two scenarios. Both scenarios
assume that S0 is below B, such that the deterministic steady state is point A. In the
stochastic case, if the variance of the random term is low relative to the dissipation rate,
the steady state distribution is clustered around A.12 That is, no sequence of random
shocks is strong enough to push the long run CO2 stock towards C. In contrast, if
the variance of the stochastic term is higher, then it is possible that a sequence of shocks
pushes the CO2 stock beyond B, where the deterministic part of the stock dynamics could
keep pushing the stock in the direction of C. That is, even when S0 is below B, there
would be a non-zero probability that the long run stock of CO2 is in the neighbourhood

12Note that the distribution is not symmetric anymore because the deterministic part of the stock
dynamics is not symmetric.
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Figure 1.5: Nonlinear stochastic CO2 dynamics with constant emissions

of C. In such a case, the steady state distribution is bimodal, as shown in figure 1.5.13

As the construction of these scenarios show, it is possible that by starting on either
side of point B, the system would reach a different steady state distribution, gravitating
towards either point A or point C. That is, the steady state distribution might not be
unique. If it is non-unique, new thresholds arise in the model. With constant emissions
and a deterministic stock, the dynamics of the model were quite simple. Start to the left
of B, end up at A and start to the right of B, end up at C. Now with the stochastic term,
there is some uncertainty when S0 is in a certain neighbourhood of B as to the direction
that the long run stock of CO2 will take. However, if we are in the low variance case
described before, it is possible that beyond certain stock values, away from B, it might be
certain that the stock will not go back beyond B. Figure 1.6 illustrates such a situation.
In this figure, D and E represent threshold stock values that mark the limit of a basin
of attraction, i.e. a region that once the stock has entered, it will never leave. When the
CO2 concentration is between D and E, there is a positive probability that it will enter
either of the basins of attraction. In the context of climate policy, these thresholds might
be perceived as bounding risk regions. For example, with this constant emissions policy,
the decision maker would know that if the stock gets above point D, there is a risk of
ending up with a much higher CO2 concentration, even if emissions remain unchanged.

13There is a third possibility that is not depicted in figure 1.5. The variance could be so big that the
stochastic part of the stock dynamics completely overwhelms the deterministic part, such that the density
of the steady state distribution is single peaked and encompasses both A and C. I however disregard this
possibility as uninteresting, because it means that the system is so volatile that it can barely be controlled.
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Figure 1.6: Basins of attraction for nonlinear stochastic CO2 dynamics with constant
emissions

1.3.4 Decision thresholds

Dropping the constant emissions assumption, I analyze the optimally controlled climate-
economy. The optimal control of CO2 emissions involves a policy rule where the level of
emissions varies according to the observed stock of CO2. As with the study of stock
dynamics, it is useful to first look at a deterministic version of the model to highlight a
few of its specificities before moving to the stochastic analog. The first step is to derive
the two isoclines in the model, the stock and the mitigation isoclines. The stock iso-
cline derivation requires only to equate f with S and then solve for M/β, the fraction of
emissions abated.14 Hence the stock isocline is:

M

β
= (280 − S)ε + g(S)

βȳd
+ 1 (1.3.4)

To find the mitigation isocline, I use the first order condition. I rewrite the first order
condition in equation (1.2.5) such that it represents the deterministic problem.

um(mt, St) = − 1
1 + ρ

VS(St+1)fm(mt, St) (1.3.5)

I apply the envelope theorem to the deterministic value function to get a second marginal
condition.

VS(St) = uS(mt, St) + 1
1 + ρ

VS(St+1)fS(mt, St) (1.3.6)

14All the phase diagrams will be presented with M/β, the fraction of emissions abated, as a function
of S. Technically M/β is not the choice variable, but it is a convenient transformation that facilitates
interpretation.
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Figure 1.7: Phase diagram of the deterministic climate-economy

Combining equations (1.3.5) and (1.3.6) and dropping the time subscripts yields the con-
dition for the mitigation isocline.

um = 1
1 + ρ

[fSum − fmuS] (1.3.7)

Substituting the appropriate partial derivatives by their parametric expressions, I obtain
an implicit expression for the mitigation isocline, equation (1.3.8). This equation can be
numerically solved for given parameter values.

1
θ1θ2

(1 − σ)
�

M

β

�1−θ2

+
�

1 − 1
θ2

�
M

β
= gS − ε − ρ

βȳdS
+ 1 (1.3.8)

Both isoclines can be represented in a phase diagram like figure 1.7. It illustrates a
situation where the optimally controlled climate-economy has three steady states; points
A and C are stable, while B is unstable. In each sector delimited by the isoclines and
the axes, directional arrows show qualitatively how the stock of CO2 and the fraction of
emissions abated evolve over time. This is only one possibility for the number of steady
states. It could be the case that the isoclines only cross one time, either early at a point
like A, or late at a point like C. In such cases, there would be only one steady state.
I focus on the depicted case where there are three steady states, both because it is the
most frequent in the numerical implementation and because it conceptually encompasses
the other cases.

Using the three steady states phase diagram, I show there are three qualitatively
different possibilities for the control rule. The first possibility is having a control rule that
leads steady state A to be globally optimal. This situation is depicted in figure 1.8. In
this case, regardless of the value of S0, the long run level of mitigation and CO2 in the
atmosphere will be point A. Note that such a control rule has to be non-monotonic in
abatement, because for stock values between B and C, it must go through a region of
the phase diagram where mitigation is increasing, while mitigation is decreasing in the
two regions adjacent to the middle one. Conversely, it could be the case that steady state
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Figure 1.8: Control rule 1 (deterministic climate-economy)

Figure 1.9: Control rule 2 (deterministic climate-economy)

C is globally optimal, resulting in a control rule that looks like that shown in figure 1.9.
Once again, for a reasoning similar to that of the previous case, the control rule has to
be non-monotonic in CO2 concentration.

A third possibility can arise where both steady states A and C are locally optimal.
This case is shown in figure 1.10. Here, the control rule is not only non-monotonic in
abatement, but it is also discontinuous. The point at which the discontinuity occurs, point
D, is the Skiba point. The Skiba point is a decision threshold. When S0 is arbitrarily close
to D, but smaller than it, it is optimal to abate a relatively large fraction of emissions
in order to push the stock of CO2 towards A in the long run. In contrast, when S0 is
arbitrarily close to D, but larger than it, it is optimal to abate a relatively smaller fraction
of emissions and let the stock of CO2 grow to its steady state value of C. That intuition
confirms the mathematical property that at the Skiba point itself, the value function
of either trajectory is the same, meaning that the decision maker is indifferent between
following the mitigation path that leads to point A or the one that leads to point C.

Just from the shape of the isoclines, one can sometimes rule out certain possibilities.
For example, the particular isoclines depicted in figure 1.8 do not allow for a control rule
that makes point C the globally optimal steady state. Point C cannot be approached
from an initial stock value below A, as the only phase region that allows the stock to
grow from point A to point B also requires the mitigation fraction to decline. When the
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Figure 1.10: Control rule 3 (deterministic climate-economy)

Figure 1.11: Optimally controlled stochastic climate-economy

stock would reach B, the mitigation fraction would be too low to let the system gravitate
towards point C. Conversely, the example presented in figure 1.9 rules out the global
optimality of steady state A. Using a similar reasoning as in the previous case, point
A could not be reached from an initial stock value above C, as the mitigation fraction
between point C and point B would become too high to enter the phase region leading to
point A from above. However, the case with a Skiba point can never be ruled out just by
the shape of the isoclines, whenever the optimally controlled climate-economy has three
steady states.

Moving from the deterministic optimally controlled climate-economy to the stochastic
one is similar to the previous discussion of the stochastic climate dynamics with constant
emissions. To illustrate the impact of the addition of uncertainty to the deterministic
optimally controlled climate-economy, I use the last example where the two stable steady
states were optimal in the deterministic case.

Figure 1.11 is very similar to figure 1.10 with the addition of probability density
functions for the steady state distribution. The control rule, however, no longer intersects
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the deterministic steady states. This phase diagram keeps the deterministic isoclines only
as a reference point for the new stochastic control rule. While the mitigation isocline
does not retain a similar interpretation in the stochastic setting, the stock isocline is still
meaningful in the stochastic setting as it represents the locus of points where the stock
of CO2 is constant in expectation. Hence one would expect the modes of the probability
density function of the steady state distribution to gravitate around the intersections of
the deterministic stock isocline and the stochastic control rule. Again, this steady state
distribution may or may not be unique and there may be one or more basin of attractions
over the state space.

The stochastic control rule depicted in figure 1.11 is arbitrary. There is very little
analytical information that can be derived from the problem statement. In particular, the
existence and location of a Skiba point cannot be analytically derived. Hence, to explore
the influence of different parameters on the control rule and to quantify the climate policy
implications of the present model, numerical solutions are necessary. The next section
discusses numerical simulations performed with several calibrations of the model.

1.4 Numerical Implementation

In this section I use numerical techniques to solve for the optimal control rule to the
problem posed in the previous section.15 In order for the results of this numerical exercise
to be of interest, I calibrate the parameters of the model to represent the problem of
climate change mitigation, within the limits of the current framework. The section begins
with a description of the algorithm used to solve for the value function. Then, I present
the calibration of reference, carefully explaining where the value of each parameter comes
from. Finally, I do some comparative dynamics and robustness checks by varying the
value of some of the key parameters.

1.4.1 Solution approach

To solve for the optimal control rule of the stochastic climate-economy, I use the
collocation method. The possibility of a Skiba point complicates the search for this
optimal control rule. Indeed, when such a point arises, the control rule is discontinuous at
that point in the state space, while the value function is kinked at that same state location.
Because it is easier to approximate kinked but continuous functions than discontinuous
ones, I apply the collocation method by using the value function iteration. Once the value
function has been solved, it is trivial to back out the control rule.

The collocation method approximates a function, here the value function, as the linear
combination of basis functions over nodes forming a finite subset of the state space. If

15This implementation draws from ideas presented in Miranda and Fackler [2004] and some of the
subroutines contained in the associated toolbox, as well as from notes from 2010 summer program from
the Institute for Computational Economics at the University of Chicago.
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the number of nodes is equal to the degree of the basis functions, the value function V ,
evaluated at the collocation nodes Si, is exactly equal to the linear combination of the
basis functions φj at these same collocation nodes:

V (Si) =
n�

j=1
cjφj(Si) ∀ Si ∈ {S1, S2, . . . , Sn} (1.4.1)

where cj represents each of the n coefficients of the linear combination that are to be solved
for. Starting with an initial guess for the values of the coefficients, those are updated by
using the equation

c = Φ−1
v(c) (1.4.2)

where Φij = φj(Si) and vi(c) = maxm

�
U(m, Si) + 1

1+ρEξ
�n

j=1 cjφj(f(Si))
�
. That is, one

performs the maximization implied by the value function at each of the evaluation nodes
to find an approximate value function from which one can recover the implied coefficients.
Those new coefficients are then compared to those of the previous round (or the original
guess if this is the first round) to decide if the iteration process should be stopped. If the
coefficient values derived from equation (1.4.2) are close enough to those of the previous
round, the process is stopped, otherwise it gets repeated.

To address the particular challenges of approximating a kinked value function, I im-
plement the collocation method with the following specification:

• cubic splines for basis functions;

• modified Chebyshev nodes;

• L∞ norm to evaluate the distance between two sets of coefficients.16

Using splines to approximate the value function, repeated break points at some state node
can be used to reduce the smoothness requirements of the spline approximation. Stacking
n break points at a given node reduces the degree of continuity requirement of the function
by n−1. By using cubic splines, having three breakpoints stacked at one point in the state
space allows the approximated function to be kinked at that point, while the derivative
of the value function must be continuous everywhere else. This approach is well suited
to the current problem of approximating a potentially kinked value function. The main
problem that remains is finding the location of the kink. Indeed, this location or even
the existence of the Skiba point cannot be predicted theoretically. To this end, I develop
an algorithm to update the location of the stacked break points in order to numerically
find the kink. Chebyshev nodes are useful because they are denser at the boundaries of
the state space, where there is less information to approximate the value function. In the
current problem however, it is also good to have denser nodes in the vicinity of the kink
to better pinpoint its exact location. To do that, I define Chebyshev nodes separately on

16The L∞ norm takes the maximum distance between any two pairs of coefficients as the distance
between the two sets.
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the intervals on each side of the presumed kink. That way, the nodes are denser both at
the boundaries of the state space but also in the presumed neighbourhood of the kink.
Finally, the L∞ norm is used because of the potential for a Skiba point. Small changes in
the value function can lead to large implied changes in the control rule. As long as any of
the coefficients keep changing significantly, the iteration process is allowed to keep going.

As for the algorithm that updates the location of the stacked break, theory says that
the kink in the value function must occur at the same point in the state space where the
Skiba point occurs in the control rule. If the stacked break points are misplaced, errors
in the evaluation of the value function will generate successive spikes in the control rule
that do not line up with the stacked break points location. These spikes emerge because I
am trying to approximate a non-smooth function with a twice continuously differentiable
combination of splines. In such a case, the stacked break points get moved toward the
state value where the largest spike on the control rule has occurred, i.e. where the first
derivative of the control rule has the greatest magnitude. The iterations are repeated
until the kink in the value function and the discontinuity in the control rule occur at the
same state node. Of course, one must keep in mind the possibility that there are no such
kink and Skiba point in the problem at hand. In that case, putting stacked break point
anywhere will not change the approximation and in the absence of discontinuities in the
control rule, the algorithm will stop right away.

1.4.2 Calibration

I now present the values used for the different parameters of the model in what will
be the benchmark specification of the numerical results. The time scale of the model is
one period for one decade.

Most numbers are either those of the DICE model at the initial point in time or of their
equivalent in Rezai [2010]. A few have been updated using the CIA World Fact Book.
The innovation in terms of calibration is the value that is given to the three parameters
of the feedback function.

• ρ = (1 + 0.015)10 − 1 is the per decade pure rate of time preference as defined in
DICE (1.5% annual rate);

• ȳ = 74 × 10 is ten times the 2010 world GDP in trillion of dollars [CIA, 2011];

• σ = 0.2 is the fixed savings rate;

• N = 6.8 is the 2010 world population in billion of people [CIA, 2011];

• S̄ = 780 is the CO2 concentration in the atmosphere in ppmv that leads to the total
destruction of world output (it is the number used by Rezai [2010]);

• γ = 0.3 is the elasticity of the damage function as defined in Rezai [2010];
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Figure 1.12: Feedback functions

• ε = 0.036 is the per decade dissipation rate of CO2 [Rezai, 2010];17

• β = 0.063
2.13 is the carbon intensity of output in ppmv per trillion dollars as initially

defined in DICE;

• θ1 = 0.051 and θ2 = 2.8 as initially defined in DICE;

• ξt is the quadrature approximation of a random variable distributed N(0, 0.5);18

• µ = 5.5 is a feedback function parameter representing the magnitude of the feed-
backs;

• κ = 0.04 is a feedback function parameter representing its maximum steepness;

• Ŝ = 560 is a feedback function parameter setting the location of its inflection point,

The benchmark feedback function and some of its alternatives are represented in figure
1.12. The most important parameter of the feedback function for the extent of feedback
mechanisms affecting climate change is µ. As it can be seen in figure 1.12, decreasing µ

reduces the magnitude of the feedback in the climate dynamics. κ affects the steepness
17One cannot give a half life interpretation to the value of ε as carbon dioxide does not decay but cycles

in between the atmosphere and terrestrial and oceanic reservoirs. Hence ε represents the net decadal rate
at which these reservoirs absorb carbon dioxide from the atmosphere.

18This is the approximation of a definite integral by the weighted sum of function values at specified
points. I use 5 points for this approximation.
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µ 4 5.5 7
Ŝ 520 560 600 520 560 600 520 560 600

κ 0.02 58.8 56.5 54.2 80.9 77.7 75.6 103 98.9 94.8
0.04 58.3 56.5 54.6 80.1 77.7 74.5 102 98.8 95.5

Table 1.1: Difference in year 2100 CO2 concentration (ppmv) between models with and
without feedbacks

of the feedback function, a measure of how quickly feedback processes kick in as the
concentration of CO2 in the atmosphere increases. As shown in figure 1.12, a lower κ leads
to a more gradual feedback function, that starts increasing earlier than the benchmark
one but that levels off later. Finally, Ŝ, the inflexion point of the feedback function,
represents the midpoint of the region where feedback processes take off. By changing Ŝ,
one can model feedbacks as arising earlier or later as the CO2 concentration increases.

As it is most important to correctly calibrate the magnitude of the feedback phe-
nomenon in the climate-carbon cycle, I spend the most time discussing the value of that
parameter. While the value of Ŝ is of quantitative importance, it is of relatively little
qualitative importance, as changing its location affects the aggressiveness of the abate-
ment schedule but not its fundamental shape. The case for κ is a little more subtle. As it
has already been discussed, the steepness of the feedback function affects the likelihood
of the control rule having a Skiba point. More careful robustness checks are therefore
required for its value.

I calibrate the magnitude of the feedback function using a meta study of climate-
carbon cycle feedbacks. Friedlingstein et al. [2006] apply 11 coupled climate-carbon cycle
models to the IPCC19 A2 emissions scenario to evaluate the increase in atmospheric CO2
concentration due to feedbacks by 2100. The A2 scenario is one with emissions increasing
to very high levels, which is helpful in evaluating the magnitude of the feedback function
at very high concentration levels (µ). To select an appropriate value for µ, I simulate the
evolution of the CO2 concentration using the predicted emissions from the A2 scenario
and the deterministic climate dynamics (f) with and without the feedback function (g).
I report the difference in CO2 concentrations between the simulations with and without
the feedback function for the year 2100 in table 1.1. What is obvious in this table is that
parameters κ and Ŝ play a relatively insignificant role in the contribution of the feedback
function to the stock of accumulated CO2. This small effect is due to the emissions path
used for this simulation being exogenous. These two parameters can affect significantly
the control rule and hence the CO2 stock indirectly. As for µ, it is obviously the main
parameter affecting the contribution of the feedback function to the CO2 stock in the
simulations.

The model runs from Friedlingstein et al. [2006] generate feedback contributions to
CO2 concentrations in 2100 between 20 and 200 ppmv. However, most model runs give

19Intergovernmental Panel on Climate Change.



23

300 350 400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

CO
2
 concentration (ppmv)

fr
a
ct

io
n
 o

f 
e
m

is
si

o
n

s 
a
b

a
te

d

 

 

300 350 400 450 500 550 600 650 700

−1

−0.9

−0.8

D
is

co
u
n

te
d

 s
u
m

 o
f 
u
til

ity

Control rule
Value function

Figure 1.13: Control rule and value function without feedback and uncertainty

contributions located between 50 and 100 ppmv. That is why µ = 5.5 is the benchmark
value, as it corresponds roughly to the midpoint of this restricted range. I will also consider
values of 4 and 7 for µ as those lead to approximately the lower and upper bounds of that
most frequent range.

The final element to calibrate in the model is the stochastic term of the stock dy-
namics. It represents natural variations in atmospheric CO2 concentrations. Doney et al.
[2006] show that the natural variations in atmospheric CO2 concentrations over a 1,000
year period has a range of 5 ppm for concentrations around pre-industrial levels and no
anthropogenic emissions. To calibrate ξ, I generate 10,000 runs of 100 decades using the
carbon dynamics represented by f , without emissions, and a starting value of 280 ppmv.
With ξ ∼ N(0, 0.5), the median range of variation of the 10,000 runs is 5.44 ppmv and
the ninety-fifth percentile is 7.87 ppmv. I hence use this calibration for the benchmark
case, as it closely mimics the natural variability of a more complex 3-D global coupled
carbon-climate model. However, as pointed out by Joos et al. [1999], data and models
suggest that at current higher CO2 concentrations, the variability is increased.

1.4.3 Results

I now present the results of the numerical simulation themselves. Before analyzing the
benchmark calibration, it is useful to consider what the models yields without the feedback
term. Figure 1.13 shows the control rule and the value function when the problem is solved
without the feedback function, g, and the stochastic term ξ. The control rule in this case
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Figure 1.14: Control rule and value function for the benchmark parametrization

is a monotonically increasing function of the stock of CO2, while the value function is
a decreasing one. This feedback free formulation highlights that any kink in the value
function or discontinuity in the control rule will be attributable to the feedback term and
not some idiosyncrasy of the model.

I now turn to the benchmark calibration of the model, including the feedback function
and the stochastic term. The control rule and the value function are presented in figure
1.14. The benchmark calibration yields a discontinuous control rule. The Skiba point
lies at 576 ppmv of CO2. One can see that, as expected, the discontinuity in the control
rule is associated with a kink in the value function. Indeed, just before the Skiba point,
the value function starts plunging quickly as very high abatement rates, some in excess
of 100%,20 are required to curb the stock of CO2 to lower concentrations. However, as
the stock passes the Skiba point, it is no longer optimal to try to decrease the stock. The
sudden reduction in abatement reduces initially the rate at which the value function is
falling.

To assess the impact of uncertainty on the control rule, I plot the benchmark control
rule and its deterministic analog in figure 1.15. This figure also includes the isoclines of
the deterministic problem. It shows that taking uncertainty into account leads to a more
aggressive abatement policy, as the stochastic control rule lies almost everywhere above

20The model constrains abatement expenses to be less than 100% of GWP, but that does not preclude
abatement itself beyond 100%. Such a high level of abatement would imply increasing the carbon sinks
beyond their natural levels. That could mean a variety of initiatives, going from reforestation to geo-
engineering.
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Figure 1.15: Deterministic vs. stochastic control rules, benchmark parametrization

the deterministic one. The only exception is between the Skiba points of each control
rule. Uncertainty lowers the Skiba point, i.e. the threshold at which the stock is allowed
to grow towards a higher basin of attraction falls. The intuition for these results is that
the decision maker adopts a more aggressive abatement policy to reduce the likelihood
of going to higher stocks, because she acknowledges that uncertainty reduces her control
on the stock compared to the deterministic case. The extra cost of the more aggressive
abatement policy is optimal because it reduces the likelihood of higher stock and hence
higher marginal damages, since d is convex. However, the point at which it does not
pay to prevent the stock from growing towards the upper basin of attraction is lower,
because random shocks might push the stock over the previous threshold in spite of the
high abatement effort (hence the lower Skiba point).

The steady state distribution is non-unique in the benchmark case. Using the state
nodes as midpoints for bins, I discretize the state space to compute a Markov transition
matrix representing the optimally controlled climate economy. The eigenvectors corre-
sponding to the eigenvalues of value one give the steady state distributions of the system.
In this benchmark case, there are two eigenvalues equal to one, hence two steady state
distributions. The probability density function of each of these is shown in figure 1.16.
Each of the distributions is centred around the intersection of the control rule and the
expected stock isocline. The second distribution (higher in stock) is flatter than the first.
This difference is not due to changes in the nature of the uncertainty, which is independent
of the level of the stock, but to changes in the control rule. Indeed, the control rule being
steeper in the neighbourhood of the first steady state distribution means that deviations
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Figure 1.16: Steady state distributions for the benchmark parametrization

from the mean of that distribution are corrected faster. For example, if the stock is hit
by a negative shock, it will be lower next period but so will the percentage of emissions
abated. Hence the stock will be more likely to grow back to its mean steady state value in
the subsequent period. Conversely, positive shocks will lead to rapid increases in abate-
ment, which will contribute to curb back the stock. This corrective effect is weaker around
the second steady state distribution, since the control rule is flatter there.

Each steady state distribution is contained within a basin of attraction. If the initial
stock is far enough from the Skiba point, then starting below it would lead the stock
distribution over time to converge towards the first steady state distribution, while it
would converge to the second if it started above the Skiba point. Because the uncertainty
is fairly small in the benchmark case, as shown by the tight steady state distributions,
the space between the basin of attraction is also fairly small. Figure 1.17 shows the
upper bound of the lower basin of attraction and the lower bound of the upper basin
of attraction. These bounds are at approximately 574.5 and 577.5 ppmv of CO2. This
interval is centred around the Skiba point (576 ppmv of CO2). This symmetry is however
not represented in probabilities. As shown in figure 1.18, the probability of ending in the
lower basin of attraction decreases very quickly as one moves from the upper bound of
that basin to the lower bound of the upper basin of attraction.

Because there is still so much uncertainty about the nature and extent of feedbacks
in the climate system, it is important to understand how the control rule changes as the
feedback function parameter values are varied. To look at the effect of each parameter, I
plot the control rule for alternative parameter values and I compare these to the bench-
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Figure 1.17: Basins of attraction for the benchmark parametrization
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Figure 1.19: Alternative parameter values for the feedback function

mark. The three panels of figure 1.19 depict variations in each of the three parameters of
g(St). In all panels, the solid line represents the benchmark control rule. In the left panel,
the value of κ is changed such that the steepness of the feedback function is reduced. Re-
ducing the steepness of the feedback function makes the control rule much smoother. In
fact, for κ = 0.02, the control rule is continuous, i.e. it does not have a Skiba point. This
distinction means that the suddenness of the feedback onset is crucial to the presence of
a discontinuity in the control rule. If feedback occurs moderately gradually (see figure
1.12 for the shape of the feedback function with κ = 0.02), then the control rule could
become continuous. That is not to say that the steady state distribution in this case
would become unique or unimodal. This change in the control rule is the deterministic
equivalent of point B in figure 1.10 becoming an improper unstable node instead of an un-
stable spiral. In the center panel of figure 1.19, the location of the feedback21 is increased
and decreased. The primary consequence on the control rule is to change the location
of the Skiba point. Earlier onset of feedback implies a lower Skiba point and later onset
implies a higher one. This relationship between the onset of feedback and the location of
the Skiba point is not surprising as the Skiba point represents a decision threshold that
occurs in response to the potential feedback in the stock if that stock is allowed to grow
to a certain quantity. What is less obvious is that the location of the Skiba point can be
below (Ŝ = 520) or above (Ŝ = 560 and Ŝ = 600) the inflection point of the feedback
function. This difference implies that if the feedback sets in earlier, the abatement policy
should be very aggressive to prevent the feedback from really kicking in. However, if the
feedback begins later, it would be optimal not only to start aggressive abatement later in
the stock of CO2, but later along the feedback curve as well. This asymmetry between

21Technically, the inflection point of the feedback function.
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the relative position of the Skiba point and the feedback onset is somewhat counterin-
tuitive, as one would have expected the feedback to be more dangerous when it occurs
with an already high stock, as damages would be higher. Finally, the right panel in figure
1.19 shows how the control rule changes as the magnitude of the feedback (parameter µ)
increases or decreases. The striking result from this panel is that the feedback magnitude
has virtually no impact on the location of the Skiba point. There is, however, an impact
on the magnitude of the discontinuity of the control rule at the Skiba point. The higher
the magnitude of the feedback, the bigger the discontinuity at the Skiba point. Overall
the presence of the Skiba point depends on the suddenness of the onset of feedback, while
its location depend on the location of the change in the feedback dynamics. The mag-
nitude of the feedback does not however alter the existence or the location of the Skiba
point.

1.5 Conclusion

The climate system and the carbon cycle are characterized by nonlinear feedbacks. I
have modeled these feedbacks as a convex-concave CO2 feedback function in the stochastic
dynamics of the stock of pollution. The impact of this feedback is to create an optimally
controlled system with two basins of attraction and a control rule that is potentially
discontinuous in between these basins.

The discontinuity of the optimal emissions policy depends on the steepness of the
feedback function. A steep function, meaning that the onset of the feedback is sudden,
leads to a discontinuous abatement policy function. A flatter feedback function, meaning
that the onset of the feedback is more gradual, leads to a continuous abatement policy
function. In both cases, the control rule is not monotonic in the stock of CO2.

If there is a discontinuity in the control rule, its location in the state space depends on
the location of the threshold region of the feedback function. If the onset of the feedback
occurs at higher CO2 concentrations, so does the threshold in the optimal abatement pol-
icy. The magnitude of this threshold depends on the magnitude of the feedback function.
The higher the maximum contribution of feedbacks to the flow of CO2 into the atmo-
sphere, the higher is the discontinuous change in abatement at the decision threshold.

Stochasticity of the CO2 stock dynamics reduces the level of the decision threshold.
When the natural variability in the stock increases, it is optimal to increase the fraction
of emissions abated everywhere, except in a neighborhood of the decision threshold. Since
this decision threshold is moved to a lower stock, the fraction of emissions abatement goes
down to its right until the previous decision threshold is reached. That is, the smaller the
control of the decision maker over the stock, the lower the stock level at which it becomes
optimal to let the stock grows toward the higher basin of attraction.

Since the natural variability in the stock of CO2 is relatively low, the distance between
the basins of attraction is small. If this variability were to grow with the concentration
of CO2 in the atmosphere, the distance between the basins of attraction would grow,
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enlarging the set of stock values where it is uncertain in which basin of attraction the
system will end up.

My simulations suggest that when the emissions path is exogenous, the magnitude of
the feedback has the largest impact on equilibrium CO2 concentrations, while suddenness
and onset location have comparatively small contributions. This is in contrast to the
optimal abatement policy that is most affected by feedback suddenness and onset location,
while the magnitude has a comparatively minor impact. It seems that a good share of the
empirical climate literature on feedbacks focuses on the magnitude because they consider
only exogenous emissions paths. Optimal management of GHG emissions would therefore
benefit from more empirical research on the suddenness and onset location of nonlinear
feedbacks.

Finally, this framework could be used to tackle the uncertainty in the parameters
themselves. Future work could incorporate parameter uncertainty, while also modeling
how the decision maker learns about the uncertain parameters over time.
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Chapter 2

Optimal Fuel Choice as a

Food-Pollution Trade-off
1

1In collaboration with David Zilberman
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2.1 Introduction

As oil prices increase, biofuels have received more attention as a viable substitute
to conventional gasoline. There is however strong concerns that, as biofuel production
competes with food production for land, there will be upward pressure put on food prices
[Headey and Fan, 2008]. This in turn might prove dramatic for the very poor, for whom
price shocks can lead to malnutrition or even starvation.

Several studies have used different approaches to evaluate the impact of biofuel pro-
duction on food prices. A good review on the topic is Chakravorty et al. [2009]. Corn
prices have been especially studied [Collins, 2008, Glauber, 2008, Rajagopal et al., 2009],
but results vary widely, with biofuels causing an increase in prices between 15% and 60%.

The literature on optimal biofuel production has often been tackled in an Hotelling
framework [Hotelling, 1931]. One of the best example of that is Chakravorty et al. [2008].
In their model, production of biofuels is ramped up as fossil fuel reserves are depleted.
Their approach also includes a Ricardian component, as it is possible that land constraints
change biofuel production in discrete jumps.

It is, however, possible that the exhaustibility of fossil fuel reserves is a secondary
level concern to the effects of accumulated greenhouse gases (GHG) in the atmosphere.
In such a case, biofuel production is used to mitigate GHG emissions. Chakravorty et al.
[2008] consider the impact of GHG accumulation only to the extent that there is a fixed
exogenous total stock not to be exceeded. We propose to depart from their model to shift
the focus away from the exhaustible nature of oil and towards the climate change benefits
of biofuels.

To tackle the trade-off between reduced pollution costs and increased food prices, we
develop an optimal control model where the constraint on fossil fuel is not its exhaustible
nature, but the damages its use creates by contributing to climate change. Two genera-
tions of biofuels can be used to reduce emissions, but they are competing with food for
the fixed amount of land available. The first generation as lower costs but provides less
climate benefits than the second generation. We derive conditions for the optimal alloca-
tion of land between food and biofuel production, and the optimal investment into second
generation biofuel. Because of the GHG externality, the market outcome is suboptimal,
and we consider different policies to improve upon it.

2.2 Model

2.2.1 Social Optimum

Consider a social planner that is trying to maximize the sum of discounted utility over
an infinite horizon by choosing at each instant in time the level of fossil fuel extraction,
the quantity of land to be devoted to the production of food and of each biofuel type,
the level of investment into second generation biofuels, and the amount of resources to be
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devoted to GHG emissions abatement. The problem the social planner is solving is the
following.

max
xo(t), Lb1(t), Lb2(t),

Lf (t), v(t), a(t)

∞̂

0

e
−ρt

u(x(t), Lf (t), z(t))dt (2.2.1)

subject to:
x(t) = xo(t) + f1(Lb1(t)) + f2(Lb2(t)) (2.2.2)

L̄ ≥ Lf (t) + Lb1(t) + Lb2(t) ∀ t (2.2.3)

z(t) = ȳ(1−d(S(t)))− co(xo(t))− cb(Lb1(t), Lb2(t), K(t))− cf (Lf (t))−v(t)−a(t) (2.2.4)

Ṡ(t) = g(xo(t), Lb1(t), Lb2(t), Lf , a) − εS(t) (2.2.5)
S(0) given (2.2.6)
K̇(t) = v(t) (2.2.7)
K(0) given (2.2.8)

where:

• u(·) is the utility function of the representative agent, which is increasing and con-
cave in its first three arguments and satisfy the Inada conditions;

• ρ > 0 is the rate of time preference;

• x(t) ≥ 0 is the flow of energy produced at time t, which is the sum of fossil fuel
(xo(t) ≥ 0) and the two generations of biofuel (f2(Lb1(t)) ≥ 0, f2(Lb2(t)) ≥ 0)
energy;

• L̄ > 0 is the fixed amount of land available, which is divided between food production
(Lf (t)) and biofuels production (Lb1(t) and Lb2(t)) at each instant in time;

• fi(·) is the production function for each biofuel generation i, for which ∂fi

∂Lbi
> 0 and

∂2fi

∂L2
bi

< 0;

• z(t) is the non-energy, non-food consumption flow at time t:

– ȳ the fixed income flow;
– d(St) the proportion of income diverted by climate damages, where ∂d

∂S > 0 and
∂2d
∂S2 > 0;
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– co(xo(t)) is the cost of fossil fuel extraction, where ∂co
∂xo

> 0;

– cb(Lb1(t), Lb2(t), K(t)) is the cost of biofuel production, where ∂cb
∂Lb1

> 0, ∂cb
∂Lb2

>

0 , ∂cb
∂K < 0, ∂2cb

∂Lb1∂K = 0 and ∂2cb
∂Lb2∂K < 0;

– v(t) is investment second generation biofuels;
– a(t) is spending on emissions abatement.

• S(t) is the stock of GHG in the atmosphere at time t which depends on (Ṡ =
g(xo, Lb1, Lb2, Lf , a) − εS):2

– g(·) is the growth rate of the pollution stock, for which ∂g
∂xo

> 0, ∂2g
∂x2

o
> 0,

∂g
∂Lb1

> 0, ∂2g
∂L2

b1
> 0, ∂g

∂Lb2
> 0, ∂2g

∂L2
b2

> 0, ∂g
∂Lf

> 0, ∂2g
∂L2

f
> 0 , ∂g

∂a < 0 and ∂2g
∂α2 > 0;

– ε is the natural dissipation rate of the stock.

• K(t) is the capital stock in (cost reducing) second generation biofuel technology.

All functions in the problem are assumed to be continuously differentiable, while all
variable are restricted to be non-negative real numbers. Under these conditions, the
necessary conditions for optimality derived from the Hamiltonian are also sufficient.

Define the current value Hamiltonian as:

H(x(t), Lf (t), y(t), S(t)) = u(x(t), Lf (t), z(t)) + λ(t)[g(t) − εS(t)] + µ(t)[v(t)]
+ ν(t)[L̄ − Lf (t) − Lb1(t) − Lb2(t)]

(2.2.9)
The necessary and sufficient conditions for optimality are:

∂H

∂Lf
= ∂u

∂Lf
− ∂u

∂z

∂cf

∂Lf
+ λ(t) ∂g

∂Lf
− ν(t) = 0 (2.2.10)

∂H

∂Lb1
= ∂u

∂x

∂f1
∂Lb1

− ∂u

∂z

∂cb

∂Lb1
+ λ(t) ∂g

∂Lb1
− ν(t) = 0 (2.2.11)

∂H

∂Lb2
= ∂u

∂x

∂f2
∂Lb2

− ∂u

∂z

∂cb

∂Lb2
+ λ(t) ∂g

∂Lb2
− ν(t) = 0 (2.2.12)

∂H

∂xo
= ∂u

∂x
− ∂u

∂z

∂co

∂xo
+ λ(t) ∂g

∂xo
= 0 (2.2.13)

2We use the notation Ṡ to represent ∂S
∂t .
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∂H

∂v
= −∂u

∂z
+ µ(t) = 0 (2.2.14)

∂H

∂a
= −∂u

∂z
+ λ(t)∂g

∂a
= 0 (2.2.15)

∂H

∂S
= −∂u

∂z

∂d

∂S
− λ(t)ε = ρλ(t) − λ̇(t) (2.2.16)

∂H

∂K
= −∂u

∂z

∂cb

∂K
= ρµ(t) − µ̇(t) (2.2.17)

∂H

∂λ
= g(t) − εS(t) (2.2.18)

∂H

∂µ
= v(t) (2.2.19)

�
L̄ − Lf (t) − Lb1(t) − Lb2(t)

�
ν(t) = 0 (2.2.20)

We can interpret these first order conditions in three groups. The first group includes
the first four conditions, which pertain to the four flow variables directly influencing
utility: land devoted to food production, land devoted to each biofuel type production,
and fossil fuel production. For each of these variables, the first order condition has four
components, except for fossil fuel that is lacking the land component. The first component
is a benefit component, corresponding to the marginal utility of the variable. The second
is the private production cost component, consisting of the marginal private cost of the
variable in terms of utility. The third is the external cost component, consisting of the
marginal contribution of the variable to the stock of GHG valued at the shadow price of
that stock. The fourth is the private land cost component, corresponding to the shadow
price of land. Hence for each of these variables we have the optimality condition that
the marginal utility must be equal to the marginal private cost of production plus the
marginal external cost plus the value of land.

First order conditions (2.2.14) and (2.2.15) apply to flow variables only affecting utility
through their costs and their impact on a stock variable: investment in second generation
biofuels and GHG abatement. For these two variables, optimality dictates that their
marginal cost, which is just the marginal utility of money, must be equal to their marginal
benefits. In the case of investment in second generation biofuels, the marginal benefit is
just the shadow price of capital, while for abatement, it is the marginal reduction in GHG
emissions valued at the shadow price of the GHG stock.
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The information about these shadow prices is embedded into first order conditions
(2.2.16) and (2.2.17). Equation (2.2.16) can be rearranged as:

λ(t) =
−∂u

∂z
∂d
∂S + λ̇(t)
ρ + ε

. (2.2.21)

This equation shows that the shadow price of the stock of GHG is the infinite discounted
sum of the marginal disutility from the GHG stock plus the change in that price. Note
that the discount rate of that sum is not just ρ, but ρ + ε. This modified discounting
takes into account the dissipation rate of the stock. A similar expression can be obtained
for the shadow price of capital. Equation (2.2.17) can be rearranged as:

µ(t) =
−∂u

∂z
∂cb
∂K + µ̇(t)

ρ
. (2.2.22)

From this condition, µ(t) can be interpreted as the infinite discounted sum of the marginal
benefit (marginal cost reduction valued at marginal utility) plus the change in that price.

Both interpretations of shadow prices are analogous to that of a share price. The
price of a share represents the net present value of the stream of dividends (the marginal
disutility of GHG for λ(t) and the marginal benefit of capital for µ(t)) plus a capital gain
component, which is the appreciation of the share value (the λ̇(t) and µ̇(t) terms).

The next to last two first order conditions only describe the equation of motion of
the stock of GHG and the capital. The last condition is the complementary slackness
condition on land availability. If all land is used, ν(t) is positive, but if some land is
unused, ν(t) = 0.

2.2.2 Competitive Outcome

In a competitive setting, agents maximize their private benefits. Hence they ignore
the damages created by GHG, which are an externality. They also fail to invest in second
generation biofuels, because the technology is here assumed to be a public good benefiting
all agents. Because of the model complexity, we do not explicitly model the behavior of
individual agents in the economy. Instead we rely on the results of the first welfare
theorem. Here, the behavior of agents will be represented bythe optimal decision of a
social planner who would not account for climate damages and capital benefits. The
competitive outcome can therefore be represented by modifying the first order conditions
from the social optimum. Conditions (2.2.10) to (2.2.13), become:

∂u

∂Lf
− ∂u

∂z

∂cf

∂Lf
− ν(t) = 0, (2.2.23)

∂u

∂x

∂f1
∂Lb1

− ∂u

∂z

∂cb

∂Lb1
− ν(t) = 0, (2.2.24)
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∂u

∂x

∂f2
∂Lb2

− ∂u

∂z

∂cb

∂Lb2
− ν(t) = 0, (2.2.25)

∂u

∂x
− ∂u

∂z

∂co

∂xo
= 0. (2.2.26)

Since no abatement, nor any investment would take place in the purely competitive envi-
ronment, conditions (2.2.14) and (2.2.15) are removed from the solution. The remaining
equations stay the same.

To analyze the differences between the competitive outcome and the social optimum,
it is useful to consider three cases based on the scarcity of land. If the land constraint
is not binding in the social optimum nor in the competitive outcome, we will consider
that case as abundant land. If the land constraint is binding in both the social optimum
and the competitive outcome, we will consider that case as scarce land. Finally if land is
binding only in the competitive outcome or only in the social optimum, we will consider
that case as partially scarce land.

2.2.2.1 Case 1: Abundant Land

In this case, we assume that the land constraint would not be binding in the socially
optimal situation, nor in the competitive outcome. If land is abundant, then the multiplier
on its constraint is zero in both the social optimum and the competitive outcome.

Proposition 1. When land is abundant, the competitive outcome yields an overproduction

of fossil fuel and food, but has an ambiguous effect on both types of biofuel.

For fossil fuel production, we compare first order conditions (2.2.13) and (2.2.26). The
socially optimal fossil fuel quantity, x

∗
o, solves ∂u

∂x = ∂u
∂z

∂co
∂xo

− λ(t) ∂g
∂xo

. Since λ(t) < 0, GHG
being a negative externality, it is the case that ∂u

∂x |x∗
o
>

∂u
∂z

∂co
∂xo

|x∗
o
. Hence, because utility

is concave in fuel and oil extraction costs are convex, x
c
o > x

∗
o.3

For food production, we compare first order conditions (2.2.10) and (2.2.23). The
socially optimal land use for food production, L

∗
f , solves equation (2.2.10). Since the

marginal external cost term is positive, it is the case that ∂u
∂Lf

|L∗
f
>

∂u
∂z

∂cf

∂Lf
|L∗

f
. Hence,

since utility is concave in food and food production costs are convex, L
c
f > L

∗
f .

For first generation biofuel production, we compare first order conditions (2.2.11) and
(2.2.25). The socially optimal quantity of land devoted to first generation biofuel pro-
duction, L

∗
b1, solves equation (2.2.11). In the competitive outcome, the marginal external

cost term vanishes, but the marginal utility of fuel term goes down, following the increase
in fossil fuel production. The net effect is hence ambiguous. If the marginal external
cost term is bigger than the change in the marginal utility of fuel, the marginal product
of first generation biofuels would have to increase to satisfy equation (2.2.25), meaning

3We use ∗ to denote socially optimal quantities and c for competitive ones.
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L
c
b1 < L

∗
b1. However, the situation L

c
b1 > L

∗
b1 could arise if the change in the marginal

utility of fuel is greater than the marginal external cost of first generation biofuel.
The analysis for second generation biofuels is similar to that for first generation, but

it also incorporates the impact of underinvestment in technology. While the result is
also ambiguous in general, it is more likely the case that L

c
b2 < L

∗
b2. This is because of

both the lower marginal external cost of second generation biofuel and the technological
effect. Since second generation biofuel is defined as cleaner than the first generation, we
assume ∂g

∂Lb2
<

∂g
∂Lb1

. Therefore it is less likely for second generation biofuel to have its
marginal external cost term larger than the change in the marginal utility of fuel. Hence,
L

c
b2 < L

∗
b2 is more likely than the equivalent for first generation biofuel. This asymmetry

is reinforced by the effect of underinvestment in technology in the competitive outcome.
That effect raises the marginal private cost component in equation (2.2.25) compared
to equation (2.2.12). This effect puts pressure for a higher marginal product of second
generation biofuel, implying a lower land quantity devoted to second generation biofuel.

The apparent counter-intuitive result for biofuels production can be explain by de-
composing the effect of moving from the social optimum to the competitive outcome in
two parts. First, there is the pollution part. Since both type of biofuels also generate
GHG, failing to account for that would increase their production in the competitive out-
come. Second, there is the fuel mix part. Since the advantage of biofuels over fossil fuel is
due to their lower emissions, failing to account for that would favor fossil fuel and hence
reduce the optimal amount of land devoted to biofuels production. On top of that, the
technology effect further reduces second generation biofuel production in the competitive
outcome.

The relative impact of the pollution and fuel mix effects can be made unambiguous
by one further assumption presented in the following proposition.

Proposition 2. When land is abundant, if the marginal cost of fossil fuel production is

constant and biofuels generate less GHG emissions than fossil fuel, then the competitive

outcome yields an underproduction of both generations of biofuels.

A constant marginal cost of fossil fuel extraction implies that the change in the
marginal utility of fuel is equal to the marginal external cost of fossil fuel, i.e. ∆∂u

∂x =
λ(t) ∂g

∂x0
. Since we assumed both biofuels are cleaner than the fossil fuel ( ∂g

∂Lb2
<

∂g
∂Lb1

<

∂g
∂x0

), it must be the case that the marginal utility of fuel decreases by more than the
marginal external cost of either type of biofuels. In such a case, the marginal product
of both biofuels has to go up, while its marginal private cost must go down to satisfy
conditions (2.2.24) and (2.2.25). That is, both biofuels productions must be lower in the
competitive outcome compared to the social optimum.

The intuition for this last proposition is that with constant marginal cost, fossil fuel
is guaranteed to increased its share in the fuel mix to the extent that even an increased
total fuel production would not lead to an increased biofuel production.
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2.2.2.2 Case 2: Scarce Land

In this case, we assume that the land constraint would be binding in the social optimum
and in the competitive outcome. That means ν(t) > 0.

Proposition 3. When land is scarce, the competitive outcome yields an overproduction

of fossil fuel, but has an ambiguous effect on food and both types of biofuel.

The analysis for fossil fuel is exactly the same as in the previous case, because the land
constraint does not enter its production decision. For the three land related products, it
is important to consider whether the competitive outcome will increase the shadow value
of land compared to the social optimum or if it will decrease it.

Proposition 4. When land is scarce, if the competitive outcome reduces land scarcity,

it also yields an overproduction of food and an underproduction of at least the second

generation biofuel.

As a reduction in land scarcity implies and reduction in its shadow value, it is straight-
forward that land devoted to food production will increase in the competitive outcome.
Indeed, not only does condition (2.2.23) loses its marginal external cost term compared to
the social optimum equivalent, but ν(t) also goes down. Hence the marginal utility of land
devoted to food production must go down as well, to preserve the equality, which implies
that land area devoted to food production must increase. Since the land constraint was
already binding in the competitive outcome, the expansion of food production must come
at the expense of some other land use.

Second generation biofuel production is the first candidate despite the qualitative
uncertainty surrounding the change in its first order condition. Indeed, because of its
lower marginal external cost and of the lack of technological investment effect, it is more
likely to see its land use reduced than first generation biofuel. For it, the change could
go either way depending on the magnitude of the respective land use changes in food
production and second generation biofuel.

Proposition 5. When land is scarce, if the competitive outcome increases land scarcity

such that the change in the shadow value of land is greater than that of its marginal

external cost, then the competitive outcome yields an underproduction of food and an

overproduction of at least the first generation of biofuel.

The impact on food can be shown by using equation (2.2.10). Moving to the com-
petitive outcome, this equation loses its marginal external cost term and sees the shadow
value of land increase. Since this increase is assumed bigger than the marginal external
cost, it must be that the marginal utility of food increases to preserve the equality, im-
plying land use for food decreases. Since the constraint is still binding, some other land
use must be increasing.

First generation biofuel is the first candidate to fill this role. Since its marginal external
cost is higher than that of second generation biofuel, it would be more likely for first
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generation biofuel that removing that cost from its first order condition, while increasing
ν(t), requires a decrease in the marginal product of land and hence an increase in land
used for its production. As for second generation biofuel, whether it land use goes up or
down depends to the extent to which the change in land used for food is greater than the
change in land used for first generation biofuel or not.

Proposition 6. When land is scarce, if the competitive outcome increases land scarcity

such that the change in the shadow value of land is smaller than that of its marginal

external cost, then the competitive outcome yields an overproduction of food and an un-

derproduction of at least the second generation of biofuel.

The change in land used for food production can be explained as in the case for
proposition 4. The only difference being that ν(t) increases instead of decreasing, but not
enough to offset the elimination of λ(t) ∂g

∂Lf
. Hence the marginal utility of food must still

decrease, which implies an increase in food production. That increase in land used for
food must be offset by some other land use change.

Second generation biofuel is more likely to fill that role since its marginal external cost
is smaller than that of first generation biofuel. Indeed, that implies that the elimination
of λ(t) ∂g

∂Lb2
in equation (2.2.12) is more likely to be offsets by the increase in ν(t) than the

equivalent change in equation (2.2.11). Again, the lack of technological investment rein-
forces this situation by increasing the marginal private cost of second generation biofuel
compared to the social optimum. Such an offset can lead to an increase in the marginal
product, which requires an decrease in land used. First generation biofuel land use will go
up or down depending on how whether the increase in food land use is smaller or bigger
than the decrease in second generation biofuel land use.

2.2.2.3 Case 3: Partially Scarce Land

In this case, the land constraint is binding in only one of the two outcomes, either
in the social optimum or in the competitive economy. Qualitatively, the conclusions of
this case are the same as for the second one. In general, there is overproduction of fossil
fuel in the competitive outcome. If land scarcity is decreasing (from scarce in the social
optimum to abundant in the competitive outcome) the results of proposition 4 apply. If,
however, land scarcity is increasing (from abundant in the social optimum to scarce in the
competitive outcome) the results of either proposition 5 or proposition 6 apply depending
of the relative magnitude of the competitive shadow value of land and the socially optimal
marginal external cost of food.

2.3 Dynamic Analysis

So far we have focused differences in levels between the social optimum and the com-
petitive outcome on optimal paths. In this section, we change the focus to look more
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closely at changes along the optimal paths, not only between them. To consider only
a situation that is plausibly relevant, we will assume that the concentration of GHG in
the atmosphere is increasing over time in both the social optimum and the competitive
outcome.

This is the situation we are most certainly confronted to. At today’s concentration,
most models predict that the optimal path has GHG concentration increasing for some
period of time. Within the model, this is possible if the initial stock of GHG (S(0)) is
sufficiently low. There always exist such a low S(0) as long as the steady state level of
S is not zero. Since dissipation is proportional with the stock, this can only arise if all
emissions are abated, a situation that is not very interesting given current technology. As
in the previous section, we will consider three cases defined by their land scarcity.

2.3.1 Case 1: Abundant Land

When land is abundant, all the dynamics are determined by the evolution of each
of the two stocks: GHG and capital. The GHG stock is increasing, because we are
assuming the initial condition is below the steady state value. As for capital, it cannot
decrease by definition. Since damages are convex in the stock of GHG, increases in that
stock imply more negative shadow value of pollution over time, i.e. λ(t) is decreasing.
That decrease can be interpreted as an increase in the marginal external cost of all GHG
emitting production processes.

Proposition 7. In both the competitive outcome and the social optimum, if land is abun-

dant, fossil fuel and food production are decreasing over time, while the change in biofuels

production is ambiguous.

In the competitive outcome, since there is no investment and climate damages are
ignored, all the dynamics are driven by the reduction in wealth brought about by increas-
ing damages to output. As output goes down, its marginal utility goes up, which means
the opportunity cost of producing fuels and food goes up. Optimality dictates that this
must be compensated by an increase in the marginal utility of these products. Increasing
marginal utility of fuel and food means fossil fuel and food productions decrease over
time. The ambiguous result for both types of biofuel comes from the opposing effects of
the increase in the opportunity cost of production and the increase in the marginal utility
of fuel. If the former dominates, biofuels production would decrease, but it could increase
if the later effect dominates.

In the social optimum, results are driven by changes in λ(t) and capital. A decreasing
λ(t) leads to increasing marginal external cost for all four GHG emitting products. Fossil
fuel and food conditions (2.2.13) and (2.2.10) imply that the marginal utility of each must
increase to preserve the optimality. That means the production of each must decrease.
For each biofuel generation, since the increasing marginal utility of fuel interacts with the
marginal product, we cannot unambiguously sign the change in production. For second
generation biofuel however, the additional impact of an increasing capital will reduce its
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marginal production cost and hence make it less likely that land used for its production
would decrease over time.

Although the results are similar between the social optimal and the competitive out-
come, it is for different reasons. In the competitive outcome, fossil fuel and food produc-
tion are decreasing because climate damages are claiming a larger share of output. In the
social optimum, fossil fuel and food production are decreasing over time as the emissions
from their production are deemed more damaging due to the increasing stock of GHG.

Proposition 8. In the competitive outcome, if land is abundant and the marginal cost of

fossil fuel is constant, fossil fuel and food production decrease over time, while production

of both generations of biofuel remains constant.

A constant marginal cost of fossil fuel has no impact on food production and makes
no qualitative difference to the path of fossil fuel production. The analysis supporting
proposition 7 also applies here. For biofuels obviously, the analysis is different. Since the
marginal cost of fossil fuel production is constant, the change in marginal utility of fuel
must be proportional to the change in the marginal utility of output, in order for equation
(2.2.26) to continue to hold as output decreases. That proportionality also applies to
conditions (2.2.24) and (2.2.25), implying that there is no need for either marginal product
to change to maintain the equality. Hence the land used for each generation of biofuel
production must remain constant.

A simple arbitrage interpretation can be given to this result. Since the competitive
outcome is not concerned by varying emission levels, the fuel mix solely depends on
relative marginal costs and marginal products. With strictly increasing marginal costs,
each generation of biofuel has a single production level that matches the constant marginal
cost of fossil fuel. In an interior solution, any reduction of fuel production must be entirely
borne by fossil fuel.

Proposition 9. In the social optimum, if land is abundant and the marginal cost of fossil

fuel is constant, fossil fuel and food production decrease over time, while production of

both generations of biofuel increases.

As in proposition 8, a constant marginal cost of fossil fuel has no impact on food
production. For fossil fuel production, the constant marginal cost implies that the change
in the marginal utility of fuel must equal the change in the marginal utility of output.
That still implies fossil fuel production decreases over time. However, since biofuels are
assumed cleaner than fossil fuel, the increase in their marginal external cost is smaller
than the increase in the marginal utility of fuel. Hence the marginal product of both
biofuels must decrease over time to keep equations (2.2.11) and (2.2.12) satisfied. This
implies that production of each generation of biofuel must be increasing over time. The
impact of the capital only reinforces that increase.

The arbitrage interpretation is here different than in the competitive outcome case,
because the impact of GHG emissions is taken into account. As λ(t) increases in magni-
tude, the wedge between the marginal external cost of fossil fuel and biofuels increases,
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which creates an increasing marginal advantage for biofuels that is exploited by increased
production.

2.3.2 Case 2: Scarce Land

In the abundant land case, only changes in the stock of GHG and in capital determine
the dynamics of different productions. When land is scarce, changes in land scarcity also
impact these dynamics. Changes in land scarcity impact the first order conditions through
changes in the shadow value of land, ν(t).

From the abundant land case, we know that land demand may go up or down as there
are many situations in which biofuel land use change is ambiguous. Hence in this subsec-
tion, we will consider situations where scarcity increases and others where is decreases.

Proposition 10. When land is scarce and scarcity decreases, the change in food produc-

tion over time is ambiguous in both the competitive outcome and the social optimum.

In the competitive case, using condition (2.2.23), we can see the increase over time of
the marginal utility of output is mitigated by the decrease in the shadow value of land.
Since it is unclear which effects dominates, the change in the marginal utility of food and
hence of food production itself is ambiguous.

In the social optimum, it is the marginal external cost term and the shadow value of
land that change in opposite directions in condition (2.2.10). This fact also implies an
ambiguous change in food production over time.

Proposition 11. When land is scarce and scarcity increases, fossil fuel and food produc-

tion decrease, while the production of at least one generation of biofuel must increase in

both the competitive outcome and the social optimum.

Note that land scarcity does not affect fossil fuel optimality conditions in either the
competitive outcome or the social optimum. Hence any result for the time path of fossil
fuel production in the abundant land case must carry to the scarce land case.

For food, the increase over time of the shadow value of land only adds to the increase
in marginal utility of output in equation (2.2.23) or to the increase in marginal external
cost in equation (2.2.10). In both situations, the impact on food is exacerbated such that
food production is further decreasing.

For both biofuel types, an increasing shadow value of land does not remove the fun-
damental ambiguity of their time path. However, since the condition is here that land
scarcity increases, knowing that food land use decreases, it must be that some other
land use increases. In the social optimum, second generation biofuel must necessarily be
increasing because of its lower marginal external cost and of the technological effect.

Proposition 12. When land is scarce and scarcity decreases, if the marginal cost of fossil

fuel is constant, results of proposition 9 apply in the social optimum.
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Just like in proposition 11, results for fossil fuel and food follow directly from the first
order conditions of the social optimum. For biofuels, the decrease in ν(t) over time in
equations (2.2.11) and (2.2.12) reinforces the dominance of the change in the marginal
utility of fuel over that of the marginal external cost. This leads to a faster decline in
both marginal products, meaning a faster increase in the production of both generations
of biofuel.

2.3.3 Case 3: Partially Scarce Land

Partial scarcity consists in situation where the land constraint is not always binding.
As the production of food and biofuels changes, so does the scarcity of the land. It is
possible that such changes make abundant land that was previously scarce, or scarce land
that was previously abundant.

In the competitive outcome, a transition from scarce to abundant land is possible
if the system starts from conditions described by proposition 10. Such a system could
eventually reach a point where land is abundant, in which case the results of proposition
7 would apply. On the other hand, if the initial condition of the system are such that land
is abundant, i.e. satisfying proposition 7. Then it is possible, only under the condition
that at least one biofuel land use is increasing, that land would become scarce and that
we would observe results from proposition 11.

In the social optimum, both scenarios described under the competitive outcome are
also possible. However, there is the possibility of a third scenario. If the marginal cost of
fossil fuel is constant and the system is initially described by proposition 12, it is possible
that at a certain point is enters the characteristics of proposition 9.

There are also transitions that are obviously not possible. Under the conditions of
proposition 8, land can never become scarce, since land uses are all decreasing or constant.
Under the conditions of proposition 11, land can never become abundant by assumption.

In the situations where there can indeed be a transition, that transition will always
be continuous. That is the time path of all variables across a change in land scarcity is
continuous, because changes in land scarcity are continuous. However, there may be kinks
at the transition in some time paths as ν(t) goes from smoothly changing on the scarce
side to always zero on the abundant one.

2.4 Second Best Policies

We now consider policies that could make the competitive outcome closer to the social
optimum. The first best policies would imply a continuously variable emission tax equal
to λ(t) and a public provision of the technological investment, financed through a non-
distortionary poll-tax. Such policies have however not been observed in practice. We will
focus on two second best policies that derive from policies that have been implemented
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in the United States to promote the production of corn based ethanol. These two policies
are biofuel subsidies and biofuel mandate.

Biofuel subsidies will be assumed to reduce the marginal cost of producing either types
of biofuels. The biofuel mandate will be assumed to require a binding minimum quantity
of either type of biofuel to be produced. It is important to note that such policies always
promote an increase in biofuel production. Hence, only in situations where the competitive
outcome yields an under-provision of either biofuels will it be welfare improving to use
these policies. That is, only conditions under which propositions 2, 4 and 6 apply will be
considered. In such situations, where some biofuels are unambiguously under-provided
by the competitive outcome, food is always over-provided. In addition fossil fuel is over-
provided in all the possible cases of the competitive outcome.

2.4.1 Biofuel Mandate

We start with the biofuel mandate, because it is easier to conceptualize than the tax.
The mandate involves choosing the level of production for each of the two generations of
biofuels. With these two instruments, the policy maker attempts to correct five deficiencies
of the competitive outcome: overproduction of food and fossil fuel, underproduction of
both generations of biofuel, and underinvestment in second generation biofuel technology.

Proposition 13. When both generations of biofuel are under-provided in the competitive

outcome, the optimal mandate for each type of biofuel is larger than their socially optimal

quantities, regardless of land scarcity.

This is easily shown by considering a mandate for both biofuels at their socially optimal
levels. In the abundant land case, the first order condition for first generation biofuel
becomes: ∂u

∂x
∂f1

∂Lb1
|L∗

b1
= ∂u

∂z
∂cb

∂Lb1
|L∗

b1
. Comparing this to the socially optimal condition,

∂u
∂x

∂f1
∂Lb1

|L∗
b1

= ∂u
∂z

∂cb
∂Lb1

|L∗
b1

−λ(t) ∂g
∂Lb1

,4 we notice that the right hand side of the later is bigger
than that of the former. Since the marginal products are equal, it must the case that the
marginal utility of fuel is lower with this mandate than in the social optimum. Since the
same quantity of biofuel is produced by this mandate as in the social optimum, it must
be that there is overproduction of fossil fuel. The mandate could therefore be improved
upon by slightly raising the quantities of both biofuels, hence lowering the production
of fossil fuel. This has to be welfare improving because the socially optimal quantity of
biofuels has by definition a marginal benefit of zero, while that of an overproduction of
fossil fuel must be negative.

A similar reasoning also applies when land is scarce. The policy marker would want
to increase the optimal mandate beyond the social optimum to reduce the overproduction
of fossil fuel. In addition land scarcity might also allow to tackle food overproduction.
The first order condition for food with a mandate at the social optimum would be ∂u

∂Lf
=

∂u
∂z

∂cf

∂Lf
+ ν(t) |L∗

b1,L∗
b2

. Comparing this to the social optimum, ∂u
∂Lf

= ∂u
∂z

∂cf

∂Lf
− λ(t) ∂g

∂Lf
+

4A similar argument applies to second generation biofuel.
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ν(t) |L∗
b1,L∗

b2
, the right hand side of the socially optimal condition must be higher than

that of the mandate condition. Hence, the marginal utility of food must be lower with
the mandate, which means there is overproduction of food. For a similar argument as
for fossil fuel, it would be welfare improving to increase the biofuel mandate beyond the
socially optimal level to bring food closer to its social optimum.

The combination of the fossil fuel and food effect when land is scarce is to push the
optimal biofuel mandate beyond its optimal point when land is abundant.

2.4.2 Biofuel Subsidies

Identical results can be achieved with two generation specific biofuel subsidies as with
biofuel mandates.5 The interesting point in considering the tax is that it highlights the
role that each of the objectives of the policy marker plays in choosing the correct price
(or quantity) for biofuel production.

Just like in the case of the mandate, the policy maker has two instruments to attempt
to influence five variables: underproduction of each type of biofuel, overproduction of food
and fossil fuel and underinvestment in second generation biofuel.

With biofuel subsidies, the first order conditions of the system remain the same as
in the competitive outcome, except for the two biofuel conditions, which see a subsidy
component added to them.

∂u

∂x

∂f1
∂Lb1

= ∂u

∂z

�
∂cb

∂Lb1
− s1

�

+ ν(t) (2.4.1)

∂u

∂x

∂f2
∂Lb2

= ∂u

∂z

�
∂cb

∂Lb2
− s2

�

+ ν(t) (2.4.2)

We decompose each per unit subsidy into four components to illustrate the multiple
objectives:

si = si1 + si2 + si3 + si4 ∀ i = 1, 2. (2.4.3)
For generation i, the per unit subsidy includes a GHG component, si1, which reflects the
lower emissions of that biofuel compared to fossil fuel. The second element, si2, is the
fossil fuel component, which improves biofuel competitiveness to reduce oil overproduc-
tion. Similarly, the food component, si3, improves biofuel competitiveness to reduce land
overuse for food production. Finally, the technology component, si4, compensates for lack
of investment in second generation biofuel in the competitive outcome.

The first restriction we can make is that since under investment only pertains to
second generation biofuel, the technological term for first generation biofuel subsidy must
be zero. Also, since the subsidy directly applies to the marginal cost of production, the

5This point of course ignores issues of heterogeneity between firms or assumes that firm specific
mandates can be set.
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technological component for second generation biofuel subsidy is of the same size as the
change in marginal cost that capital would have brought, i.e. s24 = ∆ ∂Cb

∂Lb2
.

For both generations of biofuel, the key component of the subsidy is the GHG one. The
magnitude of si1 is an increasing function of the difference between fossil fuel emissions
and each generation of biofuel emissions. The cleaner biofuels compared to fossil fuel the
higher that component. In addition, it must be the case that s11 < s21, since second
generation biofuel is assumed to emit less GHG than first generation.

Components si1 and si4 of the optimal subsidies bring each generation of biofuel to its
socially optimal production level. However, it has been shown in the case of the mandate
that it is not sufficient to maximize welfare in the absence of first best policies.

When land is abundant, biofuel policy cannot affect food production. Hence, si3 is
always zero in this case. However, when land is scarce, biofuel subsidies can affect food
production through increased competition for land. Since the difference in the marginal
utility of food between the competitive case and a mandate at the socially optimal quantity
of biofuels is determined by the marginal external cost of land used for food production,
si3 will be increasing with the marginal emissions due to food production. That is, dirtier
food production will imply higher optimal subsidy of biofuels.

For the fossil fuel component, it does not matter whether land is abundant or scarce.
The magnitude of the optimal si2 will depend on the curvature of the marginal cost
function of fossil fuel. The flatter the marginal cost function, the higher the subsidy, since
the higher will be the response of oil production to that subsidy.

2.5 Conclusion

We have developed an optimal control model to look at the trade-offs between food
production and biofuel production. Concerns over the exhaustibility of oil have been
removed to focus on the impacts of climate change induced by GHG emissions from
productive activities.

In general, the competitive outcome overproduce fossil fuels. Results for food and
both biofuels production are in general ambiguous. Land scarcity plays a big role in
assessing the impact the competitive outcome on food. If land is abundant, food is also
overproduced because its GHG emissions are not taken into account. However, that result
does not follow through if land is scarce, because competition from biofuel production may
drive up land value and reduce food production.

In the competitive outcome, fossil fuel production is decreasing over time, but food
production is only decreasing with certainty if land is abundant. The same conclusions
apply to the social optimum.

If first best policies like emission taxes or cap and trade systems are not available,
second best policies such as a biofuel mandate or biofuel subsidies can improve the com-
petitive outcome. This is however only certain in cases where biofuels are unambiguously
underproduced. It is the case when land is abundant but fossil fuel marginal cost of pro-
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duction is constant. It can also be the case when land is scarce, but only if land scarcity
under the competitive outcome is lower than under the social optimum. It could only
be the case when land scarcity under the competitive outcome is greater than under the
social optimum if that difference in land scarcity would be smaller than any marginal
external cost.

When appropriate, the optimal mandate for biofuel production is higher than the so-
cially optimal quantities. This is to add extra competition to reduce fossil overproduction
and, if land is scarce, to also reduce food overproduction. The optimal subsidies are equiv-
alent to using the optimal mandate. They can be decomposed in four components each,
representing the incentive to reduce GHG emissions, to reduce fossil fuel production, to
reduce food production and to compensate for lack of investment in second generation
biofuels.

This is a highly stylized model, but we believe it is a useful tool to understand the
interactions between climate policy, biofuel promotion, food concerns and land availability.
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Chapter 3

Loss Aversion in Grocery Panel

Data: The Confounding Effect of

Price Endogeneity



50

3.1 Introduction

Psychology has had a growing influence in economics since the 1970s. In choice model-
ing, a landmark paper has been Kahneman and Tversky [1979], which introduced prospect
theory. It revolves around the idea that when making decisions, people value gains and
losses differently, i.e. not just to the extent that one is the opposite of the other.1

This has lead to the development of a literature, in the 1980s, attempting to incor-
porate different conceptions of price perception into empirical models. The bulk of the
work has been done in marketing by incorporating reference price in the estimation of
brand choice models (see among others Winer [1986] who looks at coffee, and Lattin and
Bucklin [1989] who distinguish between the effect of regular prices and promotions on the
reference price).

Studies on the topic continued to flourish in the 1990s. In the overwhelming majority,
strong evidence was found to favor the importance of reference price formation and the
existence of a loss aversion phenomenon, i.e. that losses (prices above the consumer
reference point) are more salient than gains (prices below the consumer reference point)
such that consumers purchases are more sensitive to them. Given the mounting evidence,
Kalyanaram and Winer [1995] and Meyer and Johnson [1995] argued that reference price
based decisions and loss aversion had become empirical generalizations.

This view has more recently been contested by Bell and Lattin [2000]. They show
that, when heterogeneity in consumer price responsiveness is accounted for, the evidence
of loss aversion disappears for many products.

In this paper, I consider another potential source of confoundedness in the measure
of loss aversion: price endogeneity. Like in every market, prices are here simultaneously
determined by supply and demand. Given that most models only estimate demand,
taking prices as given might introduce simultaneous equation bias in the estimation. This
is precisely what is done in the overwhelming majority of papers in this field. To justify the
assumption that prices are exogenous, it is usually argued that the prices for the products
studied are determined in a global market, which is little impacted by the consumers
under study because they represent only a small subset of that market.

This explanation is not entirely convincing. There seems to be a strong possibility
of store level price adjustments, such as sales, especially in the case of groceries, which
are the most studied market in this literature. In that case, there is a strong possibility
that prices are somewhat endogenous to the purchasing decisions of customers. Indeed,
in a more general random utility model applied to scanner data, Villas-Boas and Winer
[1999] find that prices are often endogenous in that context, which leads to significant
estimation bias.

To assess this possibility in the context of loss aversion models, I look at the impact
of reference price preferences on the demand for four grocery product categories: bread,
chicken, corn and tortilla chips, and pasta. Using the theoretical framework developed

1Earlier work on the psychological theory of adaptation level formation dates back to Helson [1964].
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by Daniel Putler [1992], I test for the presence of loss aversion, both at the extensive and
intensive margins. I do this exercise both taking prices as given and instrumenting for
them.

I use prices of commodities entering as inputs in the production of the relevant products
as instruments. Solis [2009] presents evidence that food commodity prices have little
impact on regular shelf prices, but he also reports that higher agricultural commodity
prices reduce the frequency and depth of promotions, hence increasing the average net
retail price. Therefore, commodity prices has the potential to be a good instrument for
net retail prices.

Initially, I find evidence of loss aversion for the bread and corn and tortilla chips
categories. However, when instruments are used, most of that evidence disappears.

The next section presents the data used in the estimation, while section 3.3 and 3.4
describe respectively the model and the estimation strategy. Finally, results are presented
in section 3.5.

3.2 Data Set

I use scanner data from a major U.S. supermarket chain. The data set includes all
the purchases made from May 2005 to March 2007 at a single store located in California.
The neighbourhood in which the store is located is relatively wealthy. The median family
income for the subset of the sample for which income data is available is $106,000. The
sample is also overwhelmingly composed of Caucasian. The scanner data is combined
with agricultural commodity prices obtained from Global Financial Data.

3.2.1 Scanner Data

As bar codes and scanner have become almost universal in grocery retailing, the use
of scanner data by researchers has exploded. In most cases scanner data sets include a
limited range of products and cover a varying number of locations.

The data set used for this paper is on the contrary very thorough. Every single
product purchased during the time period is included. In all, it includes more than 18
million observations. An observation is one particular product bought by a given customer
at a certain point in time.

Households are tracked over time with their customer fidelity cards. Overall, 96% of
the 18 million observations are linked to a specific household through their fidelity card
number. This represents 67,000 households making purchases at that supermarket over
the two year period. For about 38,000 of those, there is information about their income,
which will be useful in our estimation.

My analysis focuses on four product categories: bread, chicken, corn and tortilla
chips, and pasta. Figure 3.1 presents the densities of the monthly purchases by product
categories. Chicken, corn and tortilla chips, and pasta present very similar patterns. Each
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Figure 3.1: Densities of monthly product purchases

of the product is not bought in a given month by about 80% of the households, while very
few customers by more than 5 units in the month. The pattern for bread is markedly
different. More people buy it and in greater quantities than for the other three product.

Nevertheless, all product categories display an important proportion of corner solu-
tions. Indeed, a zero can be assimilated to a negative demand that a consumer would have
had for that good at a particular purchase occasion. In the data, we define a purchase
occasion a period (here a month) in which a household made at least one trip to the store.

Here I must emphasize again that this data is from a single store. The proportion of
people who buy of a given category in a given month might seem low, but it does not
take into account the fact that people are certainly buying at other stores also.

3.2.2 Commodity Prices

All the commodity prices needed to instrument the retail prices were available at the
daily or monthly interval. Figure 3.2 presents the monthly evolution of those prices for
the period 2005 - 2007. That group of commodities has been chosen because it represents
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Figure 3.2: Commodity prices
January 2005 Price = 100

inputs in the production of the four product categories of interest as well as of some of
their substitutes.

The period that is covered by the scanner data set has been characterized by very
volatile commodity prices. That volatility reduces the possibility that some of the com-
modity prices are collinear. This is confirmed by figure 3.2 where we can see that both
commodities do not systematically follow the price path of the other. There is also very
rich variation in that data.

In addition, I never use all the commodities simultaneously as instruments. Relevant
products sets are defined and only the appropriate subset of commodities is used.2

3.2.3 Aggregation Issues

The level of detail at which the data was recorded is very fine. For example, the pasta
category counts almost 2,000 UPC codes. To make the data more usable in terms of the
question addressed in this paper, I have had to aggregate it both across UPC codes and
across time.

Scanners record the exact time of each transaction up to the exact second. There
is therefore a complete latitude on the part of the researcher to aggregate the data at
whatever level he wishes. The week is the natural time unit in which to conceptualize
grocery purchases. Most people buy grocery every week. Aggregating data on a weekly
basis gives me 96 periods to work with. However, further examination indicates that
weekly aggregation might not be the best way to proceed in this case. Although most

2The relevant product sets and appropriate commodity subset are defined in the next section.
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people buy groceries every week, some tend not to always shop at the same store. Kim and
Park [1997] find that only 30% of grocery shoppers have a relatively high cost of switching
store. Even when consumers visit the same store over and over, they do not buy exactly
the same products every week. Since I am looking at a relatively small subset of products,
this is an important issue. These considerations warrant the use of an alternative monthly
aggregation level, which leaves the data set with 22 periods.3 Any further aggregation
would seriously reduce the time dimension of the panel.

Figure 3.3: Levels of UPC aggregation

Product aggregation was done along the lines of a classification supplied by the super-
market. Figure 3.3 presents the different levels of aggregation of UPC codes. The product
categories in this paper have been constructed at group and category levels.

Aggregation poses the problem of creating both price and quantity indices. In the data
itself, there is actually no price per se. Each transaction recorded includes the quantity
of the good purchased and the amount spent to acquire that good. At the UPC level,
price can directly be computed by dividing amount spent by quantity. When purchases
are aggregated by groups or categories, the creation of a price index is necessary for each
aggregation unit. Equation (3.2.1) gives the simple formula of how this is done.

pit =

C�
c=1

Ni�
n=1

sncit

C�
c=1

Ni�
n=1

qncit

(3.2.1)

Where:
3May 2005 has to be dropped because the data set only contains 2 weeks of it.
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pit is the price index for product category i at time t;
sncit is the total amount spent on product n (which is part of category

i) by consumer c at time t;
qncit is the total quantity of product n (which is part of category i)

purchased by consumer c at time t;
C is the total number of consumers
Ni is the total number of products in category i.

This procedure is equivalent to creating a quantity weighted price average of all products
within a category. Note that this price index also implicitly defines a quantity index,
which is the denominator on the right hand side of equation (3.2.1).

3.3 Model

In this section, I present the theoretical model of reference price preferences. This is
largely borrowed from Putler [1992] and a more complete exposition can be found in that
paper.

The model is constructed around three assumptions. The first, known as temporal
separability, implies that the consumer’s actions in one period do not directly affect those
in other periods. The second, referred to as perfect information, states that consumer
are well informed about any product’s quality and more specifically that prices are not
perceived as conveying information on the level of quality. The last, reference price
exogeneity, defines any given reference price as based on past price levels and is therefore
exogenous at the time the consumer makes his decision.

The consumer maximizes his utility every periods

max
x

U(y, L, G) (3.3.1)

subject to his budget constraint

I�

i=1
Piyi = M, (3.3.2)

where:

y is an I-vector of consumption levels;
L is an I-vector of perceived losses;
G is an I-vector of perceived gains;
Pi is the price of good i;
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yi is the consumption level of good i;
M is the predetermined level of expenditures for the current period.

Losses and gains for each individual product are defined as4

Li = Ii(Pi − RPi)yi (3.3.3)

Gi = (1 − Ii)(RPi − Pi)yi, (3.3.4)

where:

Ii is an indicator that takes the value 1 if Pi > RPi and 0 otherwise;
RPi is the reference price for good i.

The maximization of (3.3.1) subject to (3.3.2) leads to Marshallian demand functions
that depend not only on prices and budget level, but also on marginal gains and marginal
losses.

3.4 Estimation Strategy

The estimation of the demands implied by the model poses several challenges. First is
the choice of an appropriate functional form for the utility function. Because the product
categories I look at are somewhat aggregated, a utility function that leads to Marshallian
demands that can be easily aggregated over products seems best suited.

Second, consumers exhibit a lot of corner solution behaviour, i.e. the demand for
a given product in a given period would be negative, but appears as zero in the data.
Taking that into account not only improves the validity of the estimation, but also allows
to look at the impact of reference price preferences on both the extensive and the intensive
margins. At the extensive margin, households decide whether or not to buy the product.
This can be represented as the probability of buying the product. At the intensive margin,
households decide how much to buy given that they will buy. They is represented by the
quantity purchased conditional on purchasing a positive amount.

Finally, because we are dealing with demands, careful attention must be paid to the
endogeneity of prices. Preferably, instruments would be used to avoid any simultaneous
equation bias.

4Putler discusses a possible monotone nonlinear transformation of the marginal loss (or gain) term.
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3.4.1 Choosing functional forms

The first step of the estimation is to choose appropriate functional forms to be esti-
mated. Functional forms must be chosen for both the reference price formation and the
demand equation (through the appropriate choice of a utility function).

The reference price formation we consider is memory based. On any purchase occa-
sion, a consumer compares current prices to previous prices of the same good at the last
purchase occasion. We define a purchase occasion as a time period in which the consumer
went to the store. By going to the store, the consumer learns about current prices and
updates his reference point. If he does not go to the store in a given period, then his
reference price does not change. More formally

RPcit = Sct−1Pit−1 + (1 − Sct−1)RPcit−1, (3.4.1)

where:

RPcit is the reference price about good i of consumer c in period t;
Sct is an indicator of store visit that takes the value 1 if consumer c

visited the store in period t , and 0 otherwise;
Pit is the price of good i in period t.

This is admittedly a very simple reference price concept. Nonetheless, it has advantages.
Most importantly, because it does not depend on specific product chosen by the con-
sumer, it avoids the confounding effects of price-response heterogeneity on estimates of
loss aversion as noted by Bell and Lattin [2000].

As proposed by Putler [1992], we consider two different sets of preferences that lead
to two distinct functional forms for demand estimation. The first group of preferences is
characterized by a modified version of the well-known Klein-Rubin utility function and
takes the form

Ucit =
I�

i=1
ρi log (ycit − ai − liLcit − giGcit) (3.4.2)

where ρi, ai, li and gi are all parameters. This utility function translates into a demand
function of the form

ycit = α
0
i + α

1
i Lcit + α

2
i Gcit + ρi

M

Pi
+

I�

j �=i

Pj

Pi

�
α

3
ij + α

4
ijLcjt + α

5
ijGcjt

�
(3.4.3)

where α
0
i = (1 − ρi)ai; α

1
i = (1 − ρi)li; α

2
i = (1 − ρi)gi; α

3
i = ρiaj; α

4
i = −ρilj and

α
5
i = −ρigj.
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Product categories Other products in the group
Bread Rice, Potatoes, Pasta

Chicken Beef, Pork, Turkey
Corn and Tortilla Chips Hard Bites, Potato Chips, Salty Snacks

Pasta Bread, Potatoes, Rice

Table 3.1: Products included in the group of each relevant product categories

This demand specification allows for exact linear aggregation of goods into groups. It
is also consistent with the representative consumer hypothesis. It is however inflexible.
This inflexibility leads to a potential for confounding the reference price effect with the
misspecification of the price response parameters. A more flexible functional form is
therefore used to evaluate the potential for this problem to affect the results. It is the
translog demand function which can be expressed as

ycit = γ
0
i +

I�

j=1
γ

1
i log Pj + 1

2

I�

j=1

I�

k=1
γ

2
ij log Pj log Pk +

I�

j=1
γ

3
ijLcit +

I�

j=1
γ

4
ijGcit +γ

5
i log M. (3.4.4)

This demand specification also allows for exact linear aggregation, but it is not consistent
with the representative consumer hypothesis.

To make the number of parameters to estimate manageable, we need to restrict the
set of relevant commodities for each product category. Assuming preferences are weekly
separable over groups, only prices of products within a given group are relevant for any
product of that group (see Deaton and Muellbauer, 1980). Table 3.1 presents the relevant
products for each of the product categories of interest. Those were chosen as obvious
potential substitutes for the products analyzed.

3.4.2 Regression specifications

The equations estimated are (3.4.3) and (3.4.4), to which I add quarterly dummies, to
control for seasonality, and an error term. Those two equations can therefore be rewritten
for estimation as follows

ycit = α
0
i +α

1
i Lcit+α

2
i Gcit+ρi

M

Pi
+

I�

j �=i

Pj

Pi

�
α

3
ij + α

4
ijLcjt + α

5
ijGcjt

�
+

4�

h=2
α

6
ihqh+�cit, (3.4.5)

ycit = γ
0
i +

I�
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1
i log Pj+
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γ

2
ij log Pj log Pk+
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γ

3
ijLcit+

I�

j=1
γ

4
ijGcit+γ

5
i log M+

4�

h=2
γ

6
ihqh+�cit.

(3.4.6)

The length of a time period is defined as one month. As mentioned previously, this
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appears as a good compromise. It is long enough such that each product is purchased
by a reasonable proportion of households every period.5 It is also short enough such that
short term variation in prices and reference price are not completely smoothed out and
that the data retains a reasonable number of periods (22 complete months).

3.4.3 Estimation techniques

To tackle the issues of corner solutions and endogeneity mentioned at the beginning
of this sections while taking into account the potential for simultaneous equations bias, I
proceed in several steps.

Given that the data set is primarily composed of corner solutions, I express the general
data generating process as

y
∗
cit = Xcitβ + ucit, ucit|Xcit ∼ Normal(0, σ

2) (3.4.7)

ycit = max(0, y
∗
cit) (3.4.8)

where Xiβ is the deterministic part of either equation (3.4.5) or (3.4.6), and yi is the
observed outcome. This formulation lends itself to a pooled Tobit estimation. This
seems particularly appropriate to the problem, because it allows to estimate a global
effect

�
∂E[y∗|X]

∂x

�
, the extensive margin effect

�
∂P r(y∗>0|X)

∂x

�
and the intensive margin effect

�
∂E[y|X]

∂x

�
. Some caution against the use of the Tobit model to estimate all these effect

noting that it forces the set of determinants of the extensive and intensive margins to
be the same. In the present problem, this appears particularly plausible. The fact that
prices and income dictate both whether or not someone buys a given product and if so
how much that person buys is rational.

The normality and homoskedasticity assumptions are very important to the validity
of the estimation. Violation of either assumptions makes the estimator inconsistent. It
is unlikely that these assumptions are exactly satisfied, but in the next section, I present
evidence that they are not significantly violated. Note however that the model allows for
serial correlation of the error term across time within individuals. This is very convenient,
because unobserved individual effects are most certainly creating serial correlation at that
level.

There are good reasons to suspect that the price variables in equation (3.4.7) could
be endogenous. To address this problem we use instrumental variables with the two step
Newey’s minimum chi-squared estimator [Newey, 1987]. This estimator is asymptotically
consistent under the normality assumption. However, it does not allow to compute the
effects on the intensive and extensive margin. In addition, it is relatively sensitive to the
presence of instruments that are somewhat collinear.

The instruments used are prices of commodities entering as inputs in the production
of the goods considered in the relevant group. Since those commodities are traded on

5For each category between 15% and 60% of households buy a product during a given month.
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Product categories of interest in the relevant group Commodities
Bread Rice, Potatoes, Wheat

Chicken Corn, Beef cattle, Hog, Live turkeys
Corn and Tortilla Chips Corn, Rice, Potatoes, Wheat

Pasta Wheat, Potatoes, Rice

Table 3.2: Commodities used as instruments in each group

world markets, consumption of their transformed consumer products in a local market is
almost certainly not affecting them. In the other direction however, recent price spikes in
the price of many commodities have had impact on the prices of the final goods in which
they are production inputs (see among others Solis, 2009).

In addition to the price of commodities themselves, several lags are included in the
specification. I do some sensitivity analysis with the number of lags, but beyond 3 or 4
issues of multicollinearity arise. Table 3.2 present the different commodities of which the
prices are used in each group.

To complement the Tobit estimation, I will also report OLS estimates. Although
OLS estimates are biased in this context, they can be useful in two settings. First and
foremost, whether or not the Tobit model is correctly specified, a regression of ycit on Xcit
for positive values of ycit approximates the intensive margin effects near the mean values of
the regressors.6 Second, it is possible all the OLS coefficients be inconsistent by the same
multiplicative factor. Since I am mostly interested in the relative coefficients of Losses
and Gains, it would be possible to evaluate that situation with OLS coefficients. However,
the assumptions under which the previous result is valid are very restrictive, for example
requiring the joint normality of the regressand and the regressors (see Wooldridge, 2002).

3.5 Results

In this section I present the results of the estimation of both the Klein-Rubin and
translog demands. Since the question of interest concerns only the importance of reference
price preferences and the prevalence of loss aversion, only the estimates for the coefficients
on own losses (losses for the price of the product in question) and own gains are reported.
Those correspond respectively to α

1
i and α

2
i in equation (3.4.5) for the Klein-Rubin utility

and to γ
3
ii and γ

4
ii in equation (3.4.6) for the translog.

According to the theory, the coefficient on losses should be negative, while the one on
gains should be positive. There is loss aversion if the coefficient on losses is of a greater
magnitude than the one on gains.

Table 3.3 presents the results of the pooled regressions for the bread category. The
striking result is that the coefficients on own gains has the wrong sign in all the specifi-

6Given that all the second moments are finite.
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VARIABLES
Klein-Rubin OLS Tobit ext. int.

Own Losses -9.167*** -16.81*** -0.914*** -6.893***
(0.367) (0.876) (0.0477) (0.359)

Own Gains -2.487*** -6.547*** -0.356*** -2.684***
(0.599) (1.456) (0.0792) (0.597)

Observations 188905 188905 188905 188905
R

2 0.024
Translog

Own Losses -9.852*** -17.94*** -0.979*** -7.352***
(0.425) (1.036) (0.0565) (0.425)

Own Gains -2.536*** -4.921*** -0.269*** -2.017***
(0.629) (1.570) (0.0857) (0.644)

Observations 188905 188905 188905 188905
R

2 0.028
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3.3: Result of the pooled regressions of quantity on prices, gains and losses for
Bread

cations. There is however strong evidence of loss aversion, almost too strong. Looking at
the effect of losses on the probability to buy bread, we note the coefficient would mean
that if the loss increased by one dollar, the probability to buy bread that month at that
given store would decrease by 91%. Although we should expect more responsiveness from
consumers given that they likely have the option to go to another store, this appears
somewhat high.

Table 3.4 gives the results for chicken. The sign and magnitude of the coefficients
are a little more plausible than for bread. Although the sign of coefficients for losses is
almost always positive, it is never significant. There is no evidence of loss aversion. On
the contrary, it seems that there might be something like “deal loving” going on.

As for corn and tortilla chips, for which the results are presented in table 3.5, it is
probably the category that exhibits the prototypical expected results. Loss aversion is
moderate but significant. For example, consider a one dollar increase in losses. This would
reduce average individual monthly purchases by 1.4 units. This effect would materialize
both at the extensive margin, by a reduction in the probability to purchase of 12%, and
at the intensive margin, by a reduction of average monthly quantity purchased by those
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VARIABLES
Klein-Rubin OLS Tobit ext. int.

Own Losses 0.00620 0.0536 0.00507 0.0133
(0.0154) (0.0827) (0.00783) (0.0206)

Own Gains 0.380*** 1.447*** 0.137*** 0.360***
(0.0281) (0.131) (0.0124) (0.0327)

Observations 188913 188913 188913 188913
R

2 0.018
Translog

Own Losses -0.00401 0.0323 0.00306 0.00803
(0.0153) (0.0832) (0.00787) (0.0206)

Own Gains 0.644*** 2.714*** 0.257*** 0.674***
(0.0312) (0.166) (0.0157) (0.0411)

Observations 188913 188913 188913 188913
R

2 0.020
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3.4: Result of the pooled regressions of quantity on prices, gains and losses for
Chicken
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VARIABLES
Klein-Rubin OLS Tobit ext. int.

Own Losses -0.198*** -1.415*** -0.119*** -0.306***
(0.0315) (0.231) (0.0193) (0.0498)

Own Gains 0.0317 0.377 0.0316 0.0813
(0.0532) (0.339) (0.0284) (0.0731)

Observations 188904 188904 188904 188904
R

2 0.014
Translog

Own Losses -0.210*** -1.534*** -0.129*** -0.330***
(0.0334) (0.251) (0.0211) (0.0541)

Own Gains -0.00343 0.160 0.0134 0.0345
(0.0543) (0.343) (0.0287) (0.0738)

Observations 188904 188904 188904 188904
R

2 0.015
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3.5: Result of the pooled regressions of quantity on prices, gains and losses for Corn
& Tortilla Chips

who still by the products of 0.3 units.
Note that for the first three categories, the results are very consistent across specifi-

cations. In addition, the OLS estimate is often very close to the intensive margin. This
should not be surprising because both attempt to evaluate the impact of gains and losses
on purchases for the sub-population of households that buy a positive amount of the
product.

Pasta is the only group category for which the two demand specifications differ signif-
icantly.7 In table 3.6 we see that the coefficient on losses goes from negatively significant
to insignificant when the demand specification switches from Klein-Rubin to translog.
This could be due to the fact that the translog model is more flexible than the Klein-
Rubin which may confound the loss term with something else. Note however that this
discrepancy does not tell two different stories on the front of loss aversion. Even in the
Klein-Rubin specification, the magnitude of the loss coefficients are much smaller than
those of the gains. Hence, there is no evidence loss aversion in either cases for pasta.

Before proceeding to the IV estimation, I evaluate the validity of the estimation speci-
7Although it conserves the nice symmetry between OLS and intensive margin estimates.
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VARIABLES
Klein-Rubin OLS Tobit ext. int.

Own Losses -0.264*** -1.164** -0.0742** -0.256**
(0.0804) (0.500) (0.0318) (0.110)

Own Gains 0.575*** 2.696*** 0.172*** 0.594***
(0.0797) (0.400) (0.0255) (0.0881)

Observations 188899 188899 188899 188899
R

2 0.016
Translog

Own Losses -0.116 -0.416 -0.0264 -0.0913
(0.0822) (0.526) (0.0334) (0.115)

Own Gains 0.517*** 2.623*** 0.167*** 0.576***
(0.0835) (0.480) (0.0305) (0.105)

Observations 188899 188899 188899 188899
R

2 0.017
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3.6: Result of the pooled regressions of quantity on prices, gains and losses for
Pasta
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fication for both demands. As suggested by Wooldridge [2002], I do a probit comparison of
the tobit coefficients. This is not an exact test, but it allows to detect if the tobit model
is clearly misspecified. The procedure consists in comparing the coefficients obtained
from running a probit regression on equations (3.4.5) and (3.4.6) to the tobit coefficients
rescaled by the standard error of their own regressions. If coefficients have different signs
or magnitudes, then the tobit model is almost surely misspecified.

Results of this test for all coefficients are reported in the appendix B for both demands.
In general there is very little concern for misspecification. Virtually all coefficient pairs
have the same sign. The vast majority also are very similar in magnitude. The only
specification for which some concern arises is the translog for bread. One coefficient pair
in particular is very dissimilar. That could explain why some of the results for bread are
somewhat surprising.

I now turn to the results of the IV estimations. If results change significantly when
prices are instrumented for, it gives a good indication that there might be some simul-
taneous equation bias in the previous results. That is an important point, because most
of the research in loss aversion never makes use of instruments. Because the data used
is often very disaggregated, researchers just argue that prices are determined at a higher
level and hence are exogenous.

In the case of bread, the peculiar results from the original estimation go away in the
Klein-Rubin specification. Not only do gains no longer have a negative coefficient, but
the magnitude of the coefficient on losses is reduced such that it is no longer significant.
As one can see from table 3.7, the story is not as clear cut for the translog demand.
The two stage least squares and two step Newey’s minimum chi-squared estimators tell
completely opposite stories, both coefficients being significantly positive in the first case
and significantly negative in the second. That might be due to the fact that the translog
demand in the case of bread is the most likely to be misspecified of all the specifications
for all products (see the appendix B).

As for chicken, except in the case of the two stage least squares estimate for losses
in the Klein-Rubin specification, all other coefficients are not significant. In the non-
instrumented regressions, the gains coefficients were highly significant.

With the same exception for corn and tortilla chips, the significant loss aversion effect
previously noted has now disappeared.

Finally, table 3.10 tells a similar story for pasta. While there was no loss aversion in the
Klein-Rubin model but a significant negative coefficient on losses, it becomes insignificant
when prices are instrumented. In the case of the translog model, two stage least squares
give similar results as those of the Klein-Rubin. The two step Newey’s minimum chi-
squared estimators seems to give peculiar results just as in the case of bread. Note
however two important differences. For pasta, both coefficients have the expected sign.
In addition, even if the coefficient on losses is significant, it is not of a significantly greater
magnitude than the coefficient on gains. Hence, there is no loss aversion in that case
either.

Globally, there is moderate evidence of loss aversion when prices are not instrumented.
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Klein-Rubin Translog
VARIABLES 2SLS Newey’s two step 2SLS Newey’s two step

Own Losses 1.050 5.173 5.605*** -190.6***
(0.946) (3.397) (1.547) (43.49)

Own Gains 5.779*** 6.740 9.168*** -235.4***
(1.254) (4.524) (2.333) (53.77)

Observations 188905 188905 188905 188905
R

2 0.020
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3.7: Result of the IV regressions of quantity on prices, gains and losses for Bread

Klein-Rubin Translog
VARIABLES 2SLS Newey’s two step 2SLS Newey’s two step

Own Losses -0.164*** -0.290 -0.163 -0.0342
(0.0359) (0.209) (0.103) (1.469)

Own Gains -0.0211 -0.345 0.119 1.143
(0.0631) (0.359) (0.161) (3.632)

Observations 188913 188913 188913 188913
R

2 0.015
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3.8: Result of the IV regressions of quantity on prices, gains and losses for Chicken
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Klein-Rubin Translog
VARIABLES 2SLS Newey’s two step 2SLS Newey’s two step

Own Losses 0.196** -0.509 0.760*** 8.265***
(0.0981) (3.041) (0.137) (2.101)

Own Gains 0.108 11.78 -0.231* 2.241
(0.107) (9.447) (0.127) (1.421)

Observations 188904 188904 188904 188904
R

2 0.008 0.010
Newey’s two step

*** p<0.01, ** p<0.05, * p<0.1

Table 3.9: Result of the IV regressions of quantity on prices, gains and losses for Corn
and Tortilla Chips

Klein-Rubin Translog
VARIABLES 2SLS Newey’s two step 2SLS Newey’s two step

Own Losses 0.232 -23.62 -0.251 -30.91***
(0.161) (38.16) (0.250) (6.994)

Own Gains 0.873*** 11.33 1.412*** 27.26***
(0.165) (17.12) (0.299) (5.230)

Observations 188899 188899 188899 188899
R

2 0.015
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3.10: Result of the IV regressions of quantity on prices, gains and losses for Pasta
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Bread and
corn and tortilla chips display evidence of loss aversion while chicken and pasta do

not. However, when the models are estimated in an IV setup, almost all the loss aversion
goes away, with the notable exception of the very imprecise two step Newey’s minimum
chi-squared estimator in the context of the translog specification for bread. This casts
some doubt on the validity of the results of other research that finds strong evidence of
loss aversion, but that does not account for the potential endogeneity of prices.

3.6 Conclusion

In this paper, I have proposed a novel explanation of why appearance of loss aversion in
a reference price model might be confounded with other factors. If prices are endogenous,
as it is often the case in demand estimation, the loss aversion parameters might just be
picking up the bias in the estimation.

The results bring some evidence to support this hypothesis. While standard estimation
does not give strong evidence of loss aversion for chicken and pasta, it does for corn and
tortilla chips, and bread. When instruments are used to make the prices exogenous, that
effect disappears for corn and tortilla chips, and bread, while it still does not show up for
chicken and pasta.

These results have two main implications. Empirical estimation of reference price
dependent demand ought to pay careful attention to the issue of simultaneous equation
bias. Otherwise, reported loss aversion could in fact just be confounded with the bias
due to the endogeneity of prices. From a marketing perspective, it is therefore not clear
whether supermarkets should pay attention to loss aversion in their pricing strategies. A
lot of attention has been devoted to sales pricing and how it should be adjusted in light of
reference price preferences. Without loss aversion, it considerably modifies these analysis.

As such, results from this paper should be interpreted with care. Because the sample
studied is relatively wealthy, it is possible that it displays less loss aversion than a the
overall population. Also, because the extent of the market looked at here is relatively
limited, it is not clear whether or not we should expect more or less loss aversion in a
broader market.

Future research should off course pay particular attention to these issues. There is no
question that behavioral scientist have found that many individuals display loss aversion in
several contexts. Does that however necessarily transpose to the marketplace? And if so,
does it depend on the extent of the market? Does it vary across individuals or products,
and according to what characteristics? Overall, the debate is less about whether loss
aversion exist, but whether it plays a significant role in some markets.
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Appendix A

Monotonic Approach of the Steady

States
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To ensure that the phase diagram exposition is correct in this discrete time setting, I
check that the optimally controlled stock approaches stable steady states monotonically.
Of course, such reasoning can only apply to the deterministic setting, as random shocks
do shift the stock around stable steady states in the stochastic setting.

For the optimally controlled stock to approach the stable steady states monotonically,
it must be the case that the function describing the future stock, f(m∗

t , St), intersects the
45° line in the plane St, St+1 with a positive slope. In the benchmark parametrization,
it is the case that f(m∗

t , St) has a positive slope everywhere, hence the condition for
a monotonic approach of the steady states is satisfied. This is graphically represented
in figure A.1, which depicts the change in stock, f(m∗

t , St) − St, as a function of the
stock. Since the slope of the depicted function is everywhere greater than −1, the stock
approaches monotonically each steady state. The evolution of the stock over time is
represented by the arrows in figure A.1. For any initial stock, one can read the change
value on the function itself and report it as the stock next period by drawing a line of
slope −1 between the point on the function and the horizontal axis.
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Figure A.1: Monotonicity of the steady state approach
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Appendix B

Specificiation Test of Tobit Model
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