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Host translation machinery is not a barrier to phages that 
interact with both CPR and non-CPR bacteria

Jett Liu,1,2 Alexander L. Jaffe,1,3 LinXing Chen,4,5 Batbileg Bor,2,6 Jillian F. Banfield4,5,7

AUTHOR AFFILIATIONS See affiliation list on p. 13.

ABSTRACT Within human microbiomes, Gracilibacteria, Absconditabacteria, and 
Saccharibacteria, members of Candidate Phyla Radiation (CPR), are increasingly 
correlated with human oral health and disease. We profiled the diversity of CRISPR-Cas 
systems in the genomes of these bacteria and sought phages that are capable of 
infecting them by matching their spacer inventories to large phage sequence databases. 
Gracilibacteria and Absconditabacteria recode the typical TGA stop codon to glycine 
and are putatively infected by phages that share their host’s alternate genetic code. 
Unexpectedly, however, other predicted phages of Gracilibacteria and Absconditabacte­
ria do not use an alternative genetic code. Some of these phages may infect both 
alternatively coded CPR bacteria and standard-coded bacteria. These phages typically 
rely on other stop codons besides TGA and thus should be capable of producing viable 
gene products in either bacterial host type. By avoiding the acquisition of in-frame stop 
codons, these phages may have a broadened host range. Interestingly, we addition­
ally predict that some phages of Saccharibacteria are targeted by spacers encoded in 
Actinobacteria, a phylum that includes known hosts for episymbiotic Saccharibacteria.

IMPORTANCE Here, we profiled putative phages of Saccharibacteria, which are of 
particular importance as Saccharibacteria influence some human oral diseases. We 
additionally profiled putative phages of Gracilibacteria and Absconditabacteria, two 
Candidate Phyla Radiation (CPR) lineages of interest given their use of an alternative 
genetic code. Among the phages identified in this study, some are targeted by spacers 
from both CPR and non-CPR bacteria and others by both bacteria that use the standard 
genetic code as well as bacteria that use an alternative genetic code. These findings 
represent new insights into possible phage replication strategies and have relevance for 
phage therapies that seek to manipulate microbiomes containing CPR bacteria.

KEYWORDS CPR bacteria, CRISPR-Cas systems, bacteriophage evolution, bacterio­
phage genetics, bioinformatics

I nterest in human microbiome-associated Saccharibacteria, Gracilibacteria, and 
Absconditabacteria (hereafter referred to as SGA) has increased, in part due to their 

association with disease (1). SGA are lineages within the Candidate Phyla Radiation 
(CPR), a monophyletic radiation within the domain Bacteria, characterized in part by 
consistently reduced genomes, small cell sizes, and limited metabolic capabilities (2). 
CPR bacteria adhere to lifestyles dependent upon other cells, either by episymbiotic 
attachment—whereby CPR cells attach to and obtain nutrients from a larger host 
bacterium—or by deriving essential compounds such as lipids (3) from the surround­
ing microbial community. In most cases, the hosts of CPR bacteria are unknown, but 
in the case of certain oral and environmental Saccharibacteria, the hosts have been 
experimentally established to be species of Actinobacteria (4–8). The attachment by 
Saccharibacteria can have a profound impact on the Actinobacteria host, leading to 
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cycles of rapid host evolution and drastic changes in host physiology (4, 6, 9). The 
Saccharibacteria-host-bacteria relationship in the human oral cavity has recently been 
evaluated in vivo, demonstrating that Saccharibacteria reduces the inflammatory effects 
of periodontitis and the pathogenicity of their host Actinobacteria (10). These studies 
have catalyzed a paradigm shift from the previous characterization of Saccharibacteria as 
a likely pathogen (11, 12).

In contrast to an episymbiotic lifestyle, one Saccharibacteria species and several 
Gracilibacteria and Absconditabacteria species are thought to live predatory lifestyles, 
whereby they feed on specific non-CPR bacteria (6, 8, 13, 14). Predatory bacteria are an 
emerging area of research garnering interest as an antibiotic alternative with narrow, 
targeted effects (15, 16). The predatory Saccharibacteria Ca. M. amalyticus, for instance, 
has been proposed as a tool to precisely consume mycolata bacteria that are recalcitrant 
to antibiotic and phage treatments (8).

Another intriguing feature of Gracilibacteria and Absconditabacteria is that they 
employ an alternative genetic code in which the canonical stop codon, TGA, is instead 
recognized as glycine (genetic code 25) (17–19). While the alternative genetic code of 
Absconditabacteria and Gracilibacteria is well-established, very little is known about the 
genetic code of their phages. It has become clear that phages can adopt a genetic code 
that is distinct from that of their hosts (20–23). For example, phages that have reassigned 
the TAG stop codon to be translated as glutamine infect Prevotella that use the standard 
bacterial code (21). These alternatively coded phages encode in-frame stop codons 
within late-stage phage genes to likely prevent premature production of structural 
and lytic proteins (21, 23). To enable the production of these proteins in bacteria that 
use the standard code, these phage genomes must utilize “code-switching” machinery. 
These findings raise the possibility that standard-coded phages can replicate in bacteria 
with alternatively coded genomes, but this question has not been comprehensively 
investigated to date. Here, we explored the diversity and genomic features, including 
the genetic codes, of phages that are predicted to infect SGA bacteria. In addition to 
expanding our knowledge of fundamental biology, phages of SGA bacteria could have 
practical importance, as phages can be used to alter the composition of microbiomes 
with species or strain specificity (24, 25).

RESULTS

CRISPR-Cas systems within SGA

As CRISPR spacers are fragments of phage genomes stored within CRISPR-Cas systems, 
a common technique used to link phages to their bacterial hosts is via spacer-phage 
matching (26–29). To find CRISPR-Cas systems encoded within SGA bacteria, we began 
with a previously compiled database that contained 861 genomes from the SGA lineages 
(30) (See Tables S1 and S2 at https://doi.org/10.5281/zenodo.8422333). SGA bacteria in 
this database are from a wide array of environments, including human microbiome, 
non-human animal microbiome, soil, freshwater, and marine ecosystems. We de-replica­
ted the database at 99% average nucleotide identity (ANI) to form a non-redundant 
set of 391 genomes (318 Saccharibacteria genomes, 44 Gracilibacteria genomes, and 27 
Absconditabacteria genomes; See Table S1 at https://doi.org/10.5281/zenodo.8422333).

To survey the incidence of complete CRISPR-Cas systems within our genome set, we 
searched for Cas loci using the full suite of TIGRFAM HMM profiles (see Materials and 
Methods) within the genomes that contained high-confidence CRISPR arrays predicted 
by CRISPRCasFinder (CCF). We manually examined scaffolds that contained cas gene 
annotations to ensure that they originated from one of our three SGA lineages (see Table 
S3 at https://doi.org/10.5281/zenodo.8422333). We identified 43 CRISPR-Cas systems 
present in our non-redundant database (Fig. 1A; see also Table S4 at https://doi.org/
10.5281/zenodo.8422333). Encoding at least one CRISPR-Cas system were: 16 Gracilibac­
teria genomes (among 44 genomes—36.3% prevalence), 22 Saccharibacteria genomes 
(among 318 genomes—7.9% prevalence), and 2 Absconditabacteria genomes (among 
27 genomes—7.4% prevalence). The 36.3% prevalence of CRISPR-Cas systems among 
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Gracilibacteria genomes is substantially higher than reported rates for other CPR bacteria 
(31) and closer to the typical CRISPR-Cas system prevalence across the domain Bacteria 
(~39%) (32, 33).

When comparing the environmental origin of the genomes containing CRISPR-Cas 
systems, there is an apparent discrepancy in system distribution between the three 
SGA lineages. In Saccharibacteria, as has been previously observed (30, 34, 35), CRISPR-
Cas systems are abundant in human and other mammal microbiomes and scarce in 
other environments. Only 3 of the 25 CRISPR-Cas systems in Saccharibacteria from 
our database are from non-animal-associated environments. In contrast, 11 of the 16 
Gracilibacteria CRISPR-Cas systems belong to genomes from non-animal-associated 
environments (Fig. 1A).

Despite the streamlined nature of CPR genomes, we also identified five genomes that 
encode multiple CRISPR-Cas systems. Remarkably, a Gracilibacteria genome (ALUM­
ROCK_MS4_BD1-5_24_33_curated) encodes three distinct cas loci, including a CRISPR 
array with 80 spacers. When cas genes and CRISPR arrays are taken together, this specific 
genome dedicates 24,788 bp of its 2,138,004 bp genome (1.16%) to CRISPR-Cas defense 
systems.

We examined the architecture of our complete CRISPR-Cas systems and categorized 
the systems, based on previous classifications (32, 36), into five distinct CRISPR-Cas 
subtypes: type II-A, type II-C1, type III-A, type III-B, and type V-A (Fig. 1B). The distribution 
of the CRISPR-Cas subtypes in relation to SGA lineage is as follows: Saccharibacteria 
encode type II-A, type II-C1, and type III-B systems; Gracilibacteria encode type V-A 
and type III-A systems; Absconditabacteria encode type V-A systems. There were two 
exceptions to these generalizations: (i) one Saccharibacteria genome encodes a type 
V-A system and (ii) one Gracilibacteria genome encodes a type II-C1 system. Four of the 
five subtypes have been previously identified in CPR bacteria, type II-A (37), type II-C1 
(34, 37), type III-A (38), and type V-A (13). To our knowledge, subtype III-B has not been 

FIG 1 Distribution of CRISPR-Cas Systems in SGA bacteria. (A) Maximum-likelihood tree based on 16 concatenated ribosomal proteins (see Materials and 

Methods). The identified CRISPR-Cas systems and the environmental origin of genomes are overlaid above. (B) Gene architecture of representative CRISPR-Cas 

types identified in our SGA database. Color corresponds to the system types displayed in panel A. Below the gene diagrams are the name and size of the scaffold 

encoding the system, along with the chromosome coordinates of the system.
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previously reported in CPR bacteria. While we expected to find primarily class 2 CRISPR-
Cas systems, which are typically more compact and utilize a single effector gene (32, 36), 
the type-III systems (class 1) we identified utilize a multisubunit effector complex. The 
type III-A and type III-B systems we identified, for instance, contained nine identifiable 
cas genes together in a single operon. The targets of these subtypes are known to vary; 
type II and type V-A systems are thought to target double-stranded DNA, while type 
III-A and type III-B systems are capable of targeting both DNA and RNA (32, 36). This 
may indicate that some Saccharibacteria are capable of targeting both DNA and RNA 
phages. Interestingly, we also found that Gracilibacteria and Absconditabacteria almost 
exclusively rely on type V CRISPR-Cas systems despite the system’s rarity among bacteria 
(<2% of all CRISPR-Cas systems identified in bacteria) (36). Furthermore, we compared 
the system architecture within each subtype based on average amino acid identity (AAI) 
of component proteins and noted a mostly uniform architecture within each subtype 
(see Fig. S1 to S3 at https://doi.org/10.5281/zenodo.8422333). Among the systems, we 
found 10 variants of the canonical CRISPR-Cas subtypes that contained unannotated 
open reading frames (ORFs) in the interior of a cas operon. These variants may represent 
novel subtypes within the broader system classification. One of these variants appears to 
be a type II-A system (see Fig. S1 at https://doi.org/10.5281/zenodo.8422333), and nine 
appear to be type V-A systems (see Fig. S3 at https://doi.org/10.5281/zenodo.8422333). 
The functions of these unannotated ORFs and whether they participate in concert with 
their respective CRISPR-Cas systems remain topics of future study.

To evaluate the novelty of the annotated genes within the complete CRISPR-Cas 
systems, we compared each Cas amino acid sequence to NCBI’s nr database (see Fig. S4 
at https://doi.org/10.5281/zenodo.8422333). While most Saccharibacteria and Abscondi­
tabacteria Cas proteins are well-represented in Genbank, there were a number of our 
Gracilibacteria Cas proteins with less than 50% AAI to known sequences. One such 
protein is a Cas9 that only displays a 34% AAI to the best match in Genbank.

Putative SGA-infecting phages

To identify candidate phages that potentially infect the SGA bacteria of our database, we 
extracted 1,296 non-identical spacers from our quality-controlled, high-confidence arrays 
from the complete genome data set (147 arrays encoded in 119 scaffolds; see Table S3 
at https://doi.org/10.5281/zenodo.8422333). We also searched metagenomic reads for 
variant sequences that are not reflected in the consensus metagenomic assembly (see 
Materials and Methods). We recovered an additional 344 unique spacers from 10 SGA 
genomes.

We compared our set of 1,640 spacers to two large phage databases, IMG/VR 
(26) and GVD (39), using the thresholds of at least 95% coverage and less than two 
mismatches (see Tables S5 and S6 at https://doi.org/10.5281/zenodo.8422333). After 
de-replicating hits at 99% ANI, we identified 547 distinct phage scaffolds that putatively 
infect SGA bacteria (see Table S7 at https://doi.org/10.5281/zenodo.8422333). Based on 
spacer-matching, 440, 57, and 50 of our identified phages were predicted to infect 
Saccharibacteria, Gracilibacteria, and Absconditabacteria, respectively. Additionally, 26 
of the 547 phage genomes were circularized (Fig. 2A; see also Table S7 at https://doi.org/
10.5281/zenodo.8422333). We further identified 147 integrated prophages from the 
same set of de-replicated SGA genomes: 120, 15, and 12 prophages within Sacchari­
bacteria, Absconditabacteria, and Gracilibacteria, respectively (see Table S7 at https://
doi.org/10.5281/zenodo.8422333).

We characterized our candidate SGA-infecting phages, and their hosts by generat­
ing a protein-sharing network in which the proteomes of phages and SGA hosts are 
clustered based on similarity (Fig. 2B). The proteomes of the Saccharibacteria phages and 
Absconditabacteria phages predicted in this study cluster with those of their predicted 
host bacteria and those of phages previously identified to infect the same host bacteria, 
strongly supporting host inference based on our spacer targeting analyses. When 
clustered in a separate network with non-SGA reference phages, the predicted SGA 
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phages from this study tended to cluster apart from the non-SGA reference phages (see 
Fig. S5 at https://doi.org/10.5281/zenodo.8422333). This includes several phages newly 
predicted to infect Saccharibacteria, which form distinct clusters apart from previously 
identified Saccharibacteria phages or non-SGA reference phages and are thus inferred 
to be novel lineages. Within both networks, our putative Gracilibacteria-infecting phages 
did not form a singular cluster. Within the network between SGA bacteria and their 
predicted phages, three putative Gracilibacteria phages predicted by spacer-matching 
cluster with Gracilibacteria prophages or Absconditabacteria phages (Fig. 2B). Within the 
protein-sharing network containing non-SGA reference phages, a number of putative 
Gracilibacteria phages place within a sparse network that includes reference phages 
predicted to infect bacteria from either the Bacteroidota or the Firmicutes phylum (see 
Fig. S5 at https://doi.org/10.5281/zenodo.8422333).

Diverse coding strategies among predicted Absconditabacteria phages and 
Gracilibacteria phages

To investigate the genetic codes of our candidate phages, we predicted ORFs for 
each phage genome larger than 20 kb in both the alternative code 25 (the genetic 
code of Gracilibacteria and Absconditabacteria) and the standard code 11. Using these 
predictions, we calculated the coding density (a portion of the genome dedicated to 
protein-coding genes) in each genetic code. Differences in coding densities between 
code 25 and code 11 were negligible for putative Saccharibacteria phages, indicating 
that they share genetic code 11 with their predicted hosts (Fig. 3A; see also Table 
S7 at https://doi.org/10.5281/zenodo.8422333). Contrary to our expectations, 34 of 
the 38 putative Gracilibacteria-infecting phages larger than 20 kb displayed small 
changes in coding density between the two genetic codes, indicating that they are 

Saccharibacteria
Phages

Absconditabacteria
Phages

Gracilibacteria
Phages

S
e
q
u
e
n
c
e
L
e
n
g
th
(B
a
s
e
P
a
ir
s
)

Fragmented Phage Genome

Circularized Phage Genome
A.

10 kb

100 kb

Saccharibacteria Phage

Saccharibacteria Prophage

Borges et al., 2021 Putative Absconditabacteria Phage

Gracilibacteria Prophage

Gracilibacteria Phage

Co-targetedB.

Paez-Espino et al., 2016 Absconditabacteria Phage

IMG/VR Gracilibacteria Phage

Previously Identif ed SGA Phages

Phages From This Study

OVD Saccharibacteria Phage

Gracilibacteria

Absconditabacteria

Saccharibacteria

SGA Genomes

Absconditabacteria Prophage

Absconditabacteria Phage

FIG 2 SGA phage genome size and protein-sharing network analysis. (A) Size and completeness of the putative SGA phages. (B) Protein-sharing network of the 

putative SGA phages and SGA bacterial genomes, where each node represents a phage or bacterial genome. Nodes are clustered together based on protein 

similarity and a number of shared proteins. Previously identified SGA phages (23, 40, 41) were included in the network. Nodes are colored based on the predicted 

host of the phages or the SGA genome taxonomy. Co-targeted phages indicate those targeted by spacers from CRISPR-Cas arrays of both SGA and non-SGA 

bacteria.

Research Article mBio

November/December 2023  Volume 14  Issue 6 10.1128/mbio.01766-23 5

https://doi.org/10.5281/zenodo.8422333
https://doi.org/10.5281/zenodo.8422333
https://doi.org/10.5281/zenodo.8422333
https://doi.org/10.1128/mbio.01766-23


not clearly alternatively coded (Fig. 3B; see also Table S7 at https://doi.org/10.5281/
zenodo.8422333). Most putative Absconditabacteria-infecting phages displayed a much 
higher coding density in code 25 compared to code 11, indicating that they mainly 
share their predicted host’s alternative genetic code (Fig. 3C; see also Table S7 at https://
doi.org/10.5281/zenodo.8422333). However, 6 of the 50 predicted Absconditabacteria 
phages are not clearly alternatively coded (less than a 10% change between code 25 
and code 11 coding densities). Notably, Gracilibacteria prophages and Absconditabac­
teria prophages displayed a much higher coding density in code 25, indicating they 
preferentially adhere to the alternative genetic code 25 (see Table S9 at https://doi.org/
10.5281/zenodo.8422333).

To further assess the genetic code of the putative Gracilibacteria phages and 
Absconditabacteria phages, we annotated and visualized the predicted ORFs of each 
phage in both code 11 and code 25. Examination of 40 putative Gracilibacteria and 
Absconditabacteria phage genomes that were not clearly alternatively coded showed 
that they had very similar gene annotations and genome architectures in both genetic 
codes (Fig. 4A, see also Table S8 at https://doi.org/10.5281/zenodo.8422333). Further­
more, their genes displayed an absence of in-frame TGA codons and the presence 
of multiple, different stop codons in close proximity at gene termini (Fig. 4A; see 
also Table S8 at https://doi.org/10.5281/zenodo.8422333). These phage genomes are 
therefore likely compatible with both code 11 and code 25. They contrast with the 
clearly alternatively coded Gracilibacteria phages and Absconditabacteria phages, which 
contained high densities of in-frame TGA codons and displayed almost no gene 
annotations in code 11 (Fig. 4B).

Notably, all Gracilibacteria prophages and Absconditabacteria prophages contained 
ORFs with high densities of in-frame TGA codons. The classification of these genome 
regions as prophage rather than novel portions of bacteria genomes is supported by 
the identification of canonical phage genes that produce a portal protein, tail-related 
protein, terminase, or integrase (Fig. 4C; see also Table S10 at https://doi.org/10.5281/

0

20

40

N
u
m
b
e
r
o
f
P
h
a
g
e
s

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Code-25 Coding Density Minus Code-11 Coding Density

0

2

4

0

5

10

Phages Predicted by Spacer-Matching

Prophages

A.

B.

Saccharibacteria

Phages

Gracilibacteria

Phages

Absconditabacteria

Phages

C.

FIG 3 Phage genetic code analysis. Histogram of phages displaying the change in coding density between code-25 and code-11 predictions for predicted 

phages of (A) Saccharibacteria, (B) Gracilibacteria, and (C) Absconditabacteria. A larger x-value indicates a higher likelihood of adhering to genetic code 25, while 

an x-value near zero indicates the likely usage of genetic code 11. Only phages larger than 20 kb were included in this analysis.

Research Article mBio

November/December 2023  Volume 14  Issue 6 10.1128/mbio.01766-23 6

https://doi.org/10.5281/zenodo.8422333
https://doi.org/10.5281/zenodo.8422333
https://doi.org/10.5281/zenodo.8422333
https://doi.org/10.5281/zenodo.8422333
https://doi.org/10.5281/zenodo.8422333
https://doi.org/10.5281/zenodo.8422333
https://doi.org/10.1128/mbio.01766-23


zenodo.8422333). We conclude that the Gracilibacteria prophages and Absconditabacte­
ria prophages are likely exclusively compatible with code 25.

As it was surprising to find code 11-compatible phages that were targeted by the 
code-25 Gracilibacteria or Absconditabacteria, we sought to further verify that these 
phages infect their presumed alternatively coded hosts. Three putative code 11-com­
patible Gracilibacteria phages and Absconditabacteria phages in the protein-sharing 
network (Fig. 2B) cluster with clearly alternatively coded Gracilibacteria prophages 
or Absconditabacteria phages (see Fig. S7 at https://doi.org/10.5281/zenodo.8422333). 
Additionally, we predicted the taxonomic affiliation of each gene within our iden­
tified phages. Most putative Absconditabacteria phages contained genes with taxo­
nomic affiliations matching their host (see Fig. S6; Table S10 at https://doi.org/10.5281/
zenodo.8422333), including one possible Absconditabacteria phage compatible with 
code 11. Five of the 57 putative Gracilibacteria phages contained genes predicted 
to originate from Gracilibacteria, including one predicted Gracilibacteria phage that 
was compatible with code 11 (see Fig. S6; Table S10 at https://doi.org/10.5281/zen­
odo.8422333). These two analyses, in tandem with the spacer-phage matching, strongly 
suggest that there are, indeed, some Gracilibacteria phages and Absconditabacteria 
phages that are compatible with code 11.

As many of these code 11-compatible phages did not cluster coherently within the 
protein-sharing networks (Fig. 2B; see also Fig. S5 and S7 at https://doi.org/10.5281/
zenodo.8422333) and did not contain any genes predicted to originate from their 
predicted host bacteria, we considered the possibility that some of the Gracilibacteria 
and Absconditabacteria spacer-to-phage hits might be artifactual matches within the 
large phage databases. Such spurious matches would be most probable if the spacer 
length is unusually short. Thus, to constrain this probability, we examined the median 
spacer length that matched with predicted code 11-compatible Gracilibacteria phages 
and Absconditabacteria phages. We found that these spacers, at 26 bp, were only 
slightly smaller than those that matched Saccharibacteria phages (30 bp) and those 
that matched clearly alternatively coded Absconditabacteria phages (28 bp), for which 
predicted phages generally clustered as expected (see Tables S5 and S6 at https://
doi.org/10.5281/zenodo.8422333). Additionally, when compared to spacers extracted 
from across the domain Bacteria, a spacer length of 26 bp is within the range of a typical 
spacer length (29) (see Fig. S8 at https://doi.org/10.5281/zenodo.8422333).
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Phages that interact with SGA and non-SGA bacteria

We next explored the host range of our putative SGA-infecting phages by comp’aring 
them to a large spacer database from a wide diversity of bacterial genomes (see 
Materials and Methods). As members of Actinobacteria are known hosts of Saccharibac­
teria, we augmented this database with spacers from diverse Actinobacteria genomes 
(see Materials and Methods). In comparing these spacers to our predicted SGA phages, 
we identified 23 probable SGA phages also targeted by spacers from non-SGA bacteria 
(see Tables S11 and S12 at https://doi.org/10.5281/zenodo.8422333). We considered that 
these spacers may have been acquired in either the SGA bacteria or in the non-SGA 
bacteria by horizontal transfer. In comparing the spacer inventories of the co-targeting 
bacteria, we did not find evidence that they shared identical spacers, likely ruling out the 
possibility that these spacer matches can be attributed to horizontal transfer.

These 23 co-targeted phages (i.e., phages targeted by both SGA and non-SGA 
bacteria) included nine predicted to infect Saccharibacteria, five predicted to infect 
Absconditabacteria, and nine predicted to infect Gracilibacteria. Seven of the nine 
putative Saccharibacteria phages were co-targeted by bacteria from the phylum 
Actinobacteria, including Corynebacterium sp. NML130628, Actinomyces oris, Actinomyces. 
sp. HMSC075C01, Actinomyces naeslundii, and Actinomyces viscosus. These species are 
particularly notable as a majority of cultured Saccharibacteria attach to host bacteria 
from the Actinomyces genus (5, 42). When placed in the context of our two protein-shar­
ing networks, many putative Saccharibacteria phages co-targeted by Actinobacteria are 
situated within a dense cluster of previously identified Saccharibacteria infecting phages 
(representative example in Fig. 5A and 2B; and see also Fig. S5 at https://doi.org/10.5281/
zenodo.8422333).

Similarly, we also examined putative Absconditabacteria phages and Gracilibacte­
ria phages that matched spacers from non-SGA bacteria. Three of the five putative 
Absconditabacteria phages matched spacers from arrays in the genomes of Firmicutes. 
One such phage is situated in the primary Absconditabacteria cluster within the 
protein-sharing network (Fig. 5B). Among the nine putative Gracilibacteria phages, five 

FIG 5 Representative phages targeted by both SGA and non-SGA bacteria. The leftmost circular windows display a cutout of the protein-sharing network in Fig. 

2, with colors listed in the Fig. 2 legend and the co-targeted phage spotlighted in yellow. The rightmost panels display a genome diagram of the highlighted 

co-targeted phage. Overlaid are gene taxonomic predictions and the location of spacer matches. (A) Putative Saccharibacteria phage co-targeted by A. oris. 

(B) Putative Absconditabacteria phage co-targeted by Bacillus sp. H1a. (C) Putative Gracilibacteria phage co-targeted by Enterococcus faecalis.
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have matches to spacers from arrays within Bacteroidetes species and two matched 
spacers from arrays within Actinobacteria species. Notably, one predicted Gracilibacteria 
phage was targeted by multiple spacers from Enterococcus faecalis strains and was linked 
to the Absconditabacteria phage cluster in the protein-sharing network (Fig. 5C).

By examining the genetic code of the nine candidate Gracilibacteria phages that 
matched spacers from non-SGA bacteria, all nine had similar genome architectures 
and gene annotations in both code 11 and code 25 (representative example in Fig. 
5C; see also Table S8 at https://doi.org/10.5281/zenodo.8422333). Thus, if they indeed 
infect Gracilibacteria and another standard-coded bacterium, they are likely capable of 
producing viable gene products in both their alternatively coded Gracilibacteria host 
and their standard-coded non-SGA host. Two of the five putative Absconditabacteria 
phages that matched spacers from non-SGA bacteria, however, contained ORFs dense 
with in-frame TGA codons and clearly use code 25 (representative example in Fig. 5B).

DISCUSSION

Here, we examined the genetic code of predicted SGA phages and observed that some 
share the genetic code of their putative hosts. This analysis required us to link phages 
to host bacteria, which we did primarily via CRISPR-Cas spacer targeting. This has been 
done many times previously (26–29) and is believed to be generally robust given that the 
spacers in a CRISPR locus of a host bacterial genome derive directly from the genomes 
of phages that infect them (28, 43, 44). A recent study, however, proposed several 
alternative methods by which a spacer targeting a phage may be acquired in non-viable 
bacterial host cells: (i) by uptake or entry of phage DNA into physically proximal bacterial 
cells; (ii) horizontal gene transfer of spacer arrays into non-viable bacterial cells, and (iii) 
the host-range of the phage is altered after spacer acquisition (45).

To further support our CRISPR spacer-based links, we performed a number of 
additional analyses. We observed highly similar phage and putative bacterial host genes. 
Phages are well known to acquire genes from their hosts, so the most likely explanation 
is that these phage genes are derived directly from the genome of their host bacte­
rium (46–48). Furthermore, in multiple protein-sharing networks, we observed strong 
clustering between bacteria and many of their predicted phages identified by spacer-
matching. While it is possible that these linkages may be the result of horizontal gene 
transfer, we observed that many of our predicted SGA phages cluster exclusively with 
other identified SGA phages when placed in a protein-sharing network with reference 
phages. Finally, given that only a tiny subset of microbial community members use an 
alternative genetic code (17, 19), our linkage of alternatively coded phages to alterna­
tively coded host bacterial groups using spacer-phage matching, as has been shown 
previously (20, 23), suggests that spacer-phage matches are very likely not coincidental. 
Thus, a variety of methods reinforce our confidence in the spacer-matching approach 
to identify hosts of phages. It is important to note, however, that our host-prediction 
methods do not fully indicate the capacity for identified phages to replicate in predic­
ted host cells. To confirm the predicted host range of phages identified in this study, 
isolation, and experimental validation are still necessary.

In addition to identifying alternatively coded phages targeted by alternatively coded 
Gracilibacteria and Absconditabacteria, we were surprised to identify phages without 
in-frame TGA usage targeted by either Gracilibacteria or Absconditabacteria. These 
phages appear compatible with the standard code 11. The phenomenon wherein 
phages utilize a genetic code that is different than that of their host bacteria is 
not without precedent (20, 21, 23). For example, some Lak phages, despite infecting 
standard-coded bacteria of the genus Prevotella, have alternatively coded genomes 
in which the canonical stop codon TAG is reassigned to glutamine (21). Alternatively 
coded phages that infect standard coded hosts may use an alternative code in part 
to prevent premature production of proteins that are important in late-stage infection 
(e.g., in-frame TGA codons within ORFs annotated as structural or lysis-related proteins) 
(23). To enable the translation code shift needed to produce these proteins, phage 
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genomes often encode a suppressor tRNA that recognizes a canonical stop codon as a 
sense codon and incorporates a specific amino acid (20–23, 49, 50). Some alternatively 
coded phage genomes also encode tRNA synthetases that can charge suppressor tRNAs 
with amino acids (23) and release factors that terminate translation at only two of the 
three canonical stop codons (20, 21, 23). For example, some alternative code 4 phage 
genomes, in which UGA is interpreted as tryptophan, encode release factor 1 (RF1), 
which only recognizes UAA and UAG, a suppressor tRNA that decodes the UGA stop 
codon as tryptophan, and a tryptophanyl tRNA-synthetase which charges the suppressor 
tRNA with tryptophan (23). In combination, these previous observations underline the 
conclusion that phage genomes that use fewer stop codons than their host genomes 
require specific adaptations in the form of code shift machinery.

The situation with code 11-compatible phages, such as the predicted Gracilibacteria 
phages and Absconditabacteria phages we identify in this study, is different because 
their lack of in-frame canonical stop codons presents no issue for translation. Where TGA 
is used as a stop codon, it is followed by alternative stop codons in close proximity to 
terminate translation. In general, this backup stop codon strategy is not uncommon in 
bacterial genomes and likely evolved to reduce the impact of accidental stop codon 
read-through (51, 52). Thus, phages that employ three stop codons should generally 
produce viable gene products even if the bacterial translation system only recognizes 
two stop codons. Unlike alternatively coded phages that infect standard-coded host 
bacteria, phages that use the standard genetic code generally do not need to alter the 
translation environment of their hosts.

An intriguing finding of this study is that all identified integrated phage sequences 
(prophages) in Gracilibacteria and Absconditabacteria genomes were clearly alterna­
tively coded (contained ORFs dense with in-frame TGA codons). This observation 
suggests that there is an advantage for a prophage to share the alternative genetic 
code of its host. This contrasts with the finding that some prophages adopt an alter­
native genetic code yet reside in bacterial genomes that use the standard bacterial 
code (23). One potential explanation may be that, akin to codon optimization, higher 
levels of the alternative code tRNAs are expressed within alternatively coded host 
bacteria compared to canonical tRNAs, allowing phages with dense in-frame TGAs a 
more efficient translation of their gene products. The codon optimization hypothesis is 
supported by the high usage of TGA as a glycine codon within code 25 host bacteria 
(17), that the use of rare codons can lead to various translation errors (53), and that 
competition over rare tRNAs can incur lower expression of gene products (54, 55).

If code-11 compatible phages can, in fact, proliferate in Gracilibacteria and Abscondi­
tabacteria, there are two possible explanations for why the predicted code 11-compati­
ble Gracilibacteria phages and Absconditabacteria phages do not need to incorporate 
in-frame TGA codons. First, these standard-coded phages may have recently evolved 
to infect alternatively coded hosts. However, if this were true, we would expect such 
phages to be rare. As standard code compatibility is apparently not uncommon among 
Gracilibacteria and Absconditabacteria phages (Fig. 3 and 4), we infer that there is an 
advantage for these phages to retain their standard code. Second, use of the standard 
code may broaden their host range, a possibility that is supported by our finding 
that some standard code compatible Gracilibacteria phages and Absconditabacteria 
phages are targeted by spacers encoded within standard code non-SGA bacteria. Phages 
capable of replicating in hosts across phyla have been reported in a previous experi­
mental study by Malki et al. (56), but have not been fully characterized or definitively 
confirmed.

Some predicted Saccharibacteria phages are also targeted by Actinobacteria spacers. 
For cases where Actinobacteria are hosts for episymbiotic Saccharibacteria, these phages 
may infect both partners. CPR bacteria thus may serve as a decoy to protect their larger 
bacterial symbionts from phage infection, as has been suggested previously (31, 57).

The phages reported here expand known phage diversity. Our results suggest that 
some of them may infect both standard and alternatively coded host bacteria, and we 
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deduce that there is no fundamental barrier to this phenomenon. Given interest in the 
use of phages as therapeutics, this finding raises the possibility of producing phages 
to infect SGA bacteria in standard code bacteria, which may be substantially easier to 
cultivate than SGA bacteria themselves. Furthermore, this may provide a path by which 
SGA phages can be generated for morphological characterization.

MATERIALS AND METHODS

Absconditabacteria, Saccharibacteria, and Gracilibacteria database prepara­
tion

We began with a database of 861 CPR genomes derived from a previous publication 
(30) that contained bacteria from three different lineages: Absconditabacteria, Sacchari­
bacteria, and Gracilibacteria. We de-replicated the database using dRep (58) at 99% ANI 
clustering and default alignment fraction (10%). For each genome, we predicted protein 
sequences using the “single” mode of Prodigal (59). For Saccharibacteria genomes, genes 
were predicted in genetic code 11. As Gracilibacteria and Absconditabacteria adhere to 
a non-standard genetic code, code 25 (17, 18), Gracilibacteria and Absconditabacteria 
genes were predicted in genetic code 25. Gene taxonomic predictions were performed 
using USEARCH (60) with the UniRef100 (61) database.

A phylogenetic tree of the nonredundant genomes was constructed, as previously 
described (30), using a concatenated set of 16 syntenic ribosomal proteins. Briefly, 
sequences were individually aligned using MAFFT (62), trimmed using BMGE (63), 
and concatenated. A maximum-likelihood tree was then inferred for the concatenated 
alignments using IQ-tree (64) (ultrafast bootstrap, -bb 1000, -m MFP) and visualized with 
iTOL (65).

CRISPR-Cas array prediction and curation

To search for CRISPR arrays in the SGA genome database, we ran CRISPRCas Finder (66) 
(CCF) on all genomes. We then selected scaffolds containing CRISPR arrays designated 
as evidence level 3 or 4—arrays deemed highly likely candidates by CCF—for further 
curation.

We manually curated the scaffolds containing high evidence-level CRISPR arrays to 
ensure they did not originate from misbinning. Our manual curation considered three 
complementary metrics: we considered a scaffold to be from SGA bacteria if (i) the 
majority of predicted proteins appeared to have the closest taxonomic hits to SGA 
bacteria, (ii) if individual, phylogenetically informative proteins appeared to have the 
closet taxonomic hits to SGA bacteria, and (iii) if scaffolds displayed high coding density 
in code 25 relative to code 11.

Identification of complete CRISPR-Cas systems

To identify complete CRISPR-Cas systems present in our database, among the genomes 
containing high-confidence, manually curated CRISPR arrays, we searched for Cas 
proteins using the full suite of TIGRFAM HMMs (67) (hmmsearch, model-specific noise 
cutoff). We additionally manually curated all scaffolds containing cas gene annotations 
to ensure they were from SGA bacteria using the metrics described above. We defined 
complete CRISPR-Cas systems based on previously published descriptions of various 
CRISPR-Cas systems (32, 36). For each array, (i) if cas9, csn2, cas1, and cas2 genes were 
also encoded within the same genome, we categorized it as a type II-A system; (ii) if 
cas9, cas1, and cas2 genes and no csn2 genes were encoded within the same genome, 
we categorized it as a type II-C1 system; (iii) if cpf1, cas1, cas4, and cas2 genes were 
encoded in the same genome, we categorized it as a type V-A system; (iv) if cas10, cas7, 
cas5, and csm2 genes were encoded in the same genome, we considered it a complete 
type III-A system; and (v) if cas10, cas7, cas5, and cmr5 genes were encoded in the same 
genome, we considered it a complete type III-B system. Complete CRISPR-Cas systems 
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were visualized using gggenes (https://github.com/wilkox/gggenes). For CRISPR-Cas 
systems containing all Cas proteins on the same scaffold, AAI similarities and cas operon 
architectures were visualized using Clinker (68) at default parameters.

To assess the novelty of identified Cas proteins, we compared the Cas proteins within 
each complete CRISPR-Cas system to the NCBI nr database using BLASTp (evalue ≥ 1e−3, 
coverage ≥ 0.75) and retained the best hit per gene product based on percent identity.

Compiling a Saccharibacteria, Absconditabacteria, and Gracilibacteria spacer 
database

To compile a spacer database, we extracted all spacers from high evidence-level arrays 
on scaffolds from our redundant SGA database (861 genomes) that passed our manual 
curation step. In addition, we ran a previously described spacer array expansion step to 
gather additional spacers from variant sequences that are not reflected in the consen­
sus metagenomic assembly (38). Briefly, if available, we gathered the metagenomic 
reads originally used to assemble each genome. We then reassembled the reads using 
MEGAHIT at default parameters (69), mapped reads back to assembled contigs using 
Bowtie2 at default parameters (70), and predicted proteins using the “meta” flag of 
Prodigal. We compared the newly assembled scaffolds to the original, publicly available 
scaffolds. If a newly assembled scaffold matched an original, manually curated scaffold 
above the thresholds of 95% coverage and 90% ANI, we predicted CRISPR arrays in 
the newly assembled scaffold using CCF, extracted spacers from high-evidence level 
arrays, and added extracted spacers to our spacer database. We de-replicated the spacer 
database at 100% ANI using USEARCH.

Identification of putative SGA phages

To search for phages putatively infecting SGA bacteria, we compared each unique spacer 
in our spacer database to two phage databases: IMG/VRv3 (26) and GVD Human Gut 
Virome (39). BLASTn parameters were set to at least 95% coverage of the spacer and 
one or less allowed mismatch with the specific flags: -task “blastn-short” -word_size 
7 -gapopen 10 -gapextend 2 -penalty −1. Prophages within the CPR genomes were 
predicted using VIBRANT at default parameters (71).

Absconditabacteria, Saccharibacteria, and Gracilibacteria phage characteri­
zation

To de-replicate the putative SGA-infecting phages, we ran dRep at 99% ANI cluster­
ing and default alignment fraction (10%). We additionally predicted phage genome 
circularization using VIBRANT.

To identify the likely genetic code of putative SGA-infecting phages larger than 
20 kb, we used the Prodigal “single” flag to calculate the coding density of each phage 
in genetic codes 11 and 25. Furthermore, genome diagrams of Gracilibacteria and 
Absconditabacteria prophages and phages greater than 20 kb were generated using the 
Prodigal ORF predictions in code 11 and code 25. In-frame TGA codons were additionally 
located within the ORF predictions. The genome diagrams of the phages in both code 11 
and code 25 were visualized using gggenes.

To annotate phage proteins, we used the Prodigal gene predictions in genetic 
code 11 for putative Saccharibacteria phages and the Prodigal gene predictions in 
genetic code 25 for putative Gracilibacteria phages and Absconditabacteria phages. 
We annotated predicted proteins using pVOG (72) HMM profiles with hmmsearch from 
HMMER3. Gene taxonomic predictions were performed using DIAMOND (73) with the 
UniRef100 database.

To compare the putative SGA-infecting phages to reference phages and their 
predicted host bacteria, we constructed two protein-sharing networks using vContact2 
(74) (--rel-mode Diamond, –vcs-mode ClusterONE, and --pcs-mode MCL). One network 
linked the proteomes of the putative SGA phages (including prophages) identified in this 
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study, previously identified SGA phages (23, 26, 40, 41), and SGA bacteria. The second 
network linked the SGA phages identified in this study, the previously identified SGA 
phages, and non-SGA reference phages (--db “ProkaryoticViralRefSeq201-Merged”). The 
resulting protein-sharing networks and their associated metadata were visualized in 
Cytoscape (75).

Host range of putative SGA-infecting phages

To examine the host range of putative SGA-infecting phages, we compared spacers from 
four comprehensive databases (41, 66, 76, 77) composed of spacers from across the 
domain Bacteria to the predicted SGA-infecting phages. As before, the BLASTn parame­
ters were set to at least 95% coverage of the spacer and one or less allowed mismatch 
with the specific flags: -task “blastn-short” -word_size 7 -gapopen 10 -gapextend 2 
-penalty −1.

We additionally constructed a database for Actinobacteria, some of which are known 
hosts of Saccharibacteria, by sampling one genome per species-level group from GTDB 
(release 95, August 2020). Using a similar workflow as with the SGA database, we 
searched these genomes for high evidence-level arrays with CCF, extracted spacers, 
and compared them to the putative CPR-infecting phages with the above parameters. 
Visualization of spacer hits was performed using DNA Features Viewer (78).

To assess if the co-targeting of phages by SGA bacteria and non-SGA bacteria 
occurred due to the horizontal transfer of CRISPR spacers, we compared the spacer 
inventories of SGA scaffolds to the comprehensive non-SGA spacer database. For this 
comparison, we used BLASTn at the parameters: 100% identity and 100% coverage.
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