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ABSTRACT OF THE THESIS

CamIoT: Recognizing and Interacting

with Distant IoT Objects using a

wrist-worn outward-facing camera

by

Amirali Omidfar

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Xiang Anthony Chen, Chair

CamIoT is an effort to add Artificial intelligence into the emerging technologies of Smart

Home services. The Features embedded in the device also enable CamIoT to be used as an

assistive technology for visually impaired people. CamIoT is the first wrist-worn platform

that uses an outward-facing camera to recognize and interact with distant IoT objects.

It provides a novel technique using the index finger’s orientation to locate an IoT object

in the camera view while supporting disambiguating selection in the presence of multiple

objects. Our study ends with the full evaluation of the contributed methods and CamIoT’s

performance, highlighting the best case appliance recognition accuracy of 96%.
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CHAPTER 1

Introduction

1.1 Motivation

1.1.1 Artificial intelligence in Smart Home

Artificial intelligence has played a significant role in enhancing Smart Home technolo-

gies lately. A Smart Home is associated with technologies containing sensors, actuators,

wired and wireless networks, and intelligent systems. Smart Homes can monitor and con-

trol activities, provide comfort in users’ interaction with appliances and save overall energy

consumption [22]. Artificial intelligence (AI) depicts a device that perceives its environment

and takes actions to maximize the chance of successfully achieving its goals [24]. The ideal

state of artificial intelligence is thinking humanly, reasoning, acting like humans, and acting

rationally [24]. Al technologies used in Smart Home products can be labeled in six core

clusters of AI functions, i.e., activity recognition, data processing, voice recognition, image

recognition, decision-making, and prediction-making [22]. Previous works have been more

focused on the task-specific deployment of such AI systems in Smart Home technologies. In

the activity recognition methods used in Hive Link and Essence Care@Home, for instance,

smart home devices can identify human activity with the help of AI. It analyzes sensor data

to track users’ actions and announce the cases of undesired activities. In the aspect of voice

recognition, AI works based on voice-based technologies allow people to interact with the

device simply by having a conversation (Voice recognition is used in Amazon Alexa, Google

Home, Ivee Sleek, Jibo, Athom Homey, Apple HomePod, Josh Micro, etc.) [22]. The as-

pect we further investigate in this work is a novel combination of image recognition and

1



prediction-making. Previous works in image recognition mostly used AI for facial and

emotion recognition. The approach analyzed humans’ behavior and physical aspects of the

body’s structure and form. It is used in Lighthouse, Nest Cam, Honeywell Smart Home

Security System, Tend Secure Lynx Indoor Camera, Canary All-In-One, Netatmo Welcome

Indoor Security Camera, etc. [7].

In prediction-making, embedded sensors are used to monitor the users while they perform

daily routines. An AI agent then processes the data collected by a computer network and

stored in a database to find useful knowledge such as patterns, predictions, and trends. [22].

Some examples of this application are Nest Thermostat, Olly and Viaroom home.

Our literature review showed a growing use of AI in Smart Home technologies. However, the

use cases were mostly quite task-specific and focused on more narrowed down applications.

Our intention, however, is to provide a platform that broadens and simplifies the use of AI

in Smart Home technologies. The focus here is the interaction with smart home appliances.

In this work, we assume an existing network of Internet of Things (IoT) objects (appliances)

with a means of controlling them. Unlike conventional user interfaces, we introduce a novel

interaction method based on image recognition. This simple interface can add any new

appliance as long as it is part of the IoT network. Such a controller would then reduce the

complexity of some of the task-specific smart home applications. We utilized a camera-based

wrist-worn device as our prototype. Our other key motivation was to provide visual assistive

technology for visually impaired people which is explained in the next section.

1.1.2 Visually Assistive Technologies (VAT)

Globally, an estimated 40 to 45 million people are blind, 135 million have low vision, and 314

million have some visual impairment 1. The incidence and demographics of blindness vary

significantly in different parts of the world. In most industrialized countries, approximately

0.4% of the population is blind, while in developing countries, it rises to 1%. It is estimated

by the World Health Organization (WHO) that 87% of the world’s blind live in developing

1https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment

2
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countries. Over the last decades, visual impairment and blindness caused by infectious dis-

eases have been significantly reduced (an indication of international public health action).

However, there is still a visible increase in the number of blind or visually impaired people

from conditions related to longer life expectancies. The great majority of visually impaired

people are aged 65 years or older. It is estimated that there is a per-decade increase of up

to 2 million people over 65 years with visual impairments. This group is growing faster than

the overall population[27]. All the systems, services, devices, and appliances that are used

by disabled people to help in their daily lives, make their activities more comfortable, and

provide safe mobility are included under one umbrella term: Assistive technology.

Assistive technologies were introduced to help with the daily problems related to infor-

mation transmission (such as personal care), navigation, and orientation aids, as part of

mobility assistance [9]. As one of its subcategory, Visual assistive technology (VAT) is

then divided into three categories: vision enhancement, vision substitution, and vision re-

placement. This technology became available for blind people through electronic devices that

allow users to detect and localize the objects and offer those people a sense of the external

environment utilizing sensors’ functions. The vision replacement subgroup is more compli-

cated than the other two as it deals with medical and technology issues. Vision replacement

includes displaying information directly to the visual cortex of the brain or through an ocu-

lar nerve. However, vision enhancement and vision substitution are similar in concept; the

difference is that in vision enhancement, the camera input is processed, and then the results

will be visually displayed. Vision substitution is similar to vision enhancement, yet the

work constitutes a non-visual display, which can be vibration, auditory, or both

based on the hearing and touch senses that can be easily controlled and felt by

the blind user.

3



Figure 1.1: Classification of electronic devices for visually-impaired people.[9]

In CamIoT, as explained in the next sections, we embedded a speaker in the camera-

based wrist-worn device. The voice feedback completes our novel AI based user interface

design and also provides vision substitution for visually impaired users (VAT). From the

perspective of assistive technologies, CamIoT helps the blind user perceive the environment

by detecting and recognizing the surrounding objects while simplifying the overall system

interface relies on its AI capabilities.
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1.1.3 Contributions

According to our literature review, cameras are highly adopted, self-contained sensing modal-

ities. However, there is yet relatively little work done to enable cameras for remote inter-

action by recognizing an interactive object from a distance. Our goal is to facilitate an

always-available mechanism for directly pointing at and interacting with IoT objects from a

distance without any instrumentation of IoT objects or the environment.

Figure 1.2: CamIoT uses a wrist-worn outward-facing camera to recognize an IoT object as

a user points at it, using finger flexion and circumduction gestures to interact with control

shortcuts of a selected IoT.

To achieve this goal, we develop CamIoT, a hardware/software platform consisting of a

wrist-worn camera that faces outward and recognizes a distant IoT object the user points

at, as well as the user’s index finger’s orientation for locating and interacting with an IoT

object in the camera view.

Figure 1.2 illustrates an application scenario of CamIoT where a user points at an

Internet-connected floor lamp. The lamp is then located and recognized via the outward-

facing camera, allowing the user to circumduct (Figure 1.3 a) the index finger to select one of

the three control shortcuts and flex the finger (Figure 1.3 b) to confirm a selection. CamIoT

can complement existing IoT interactions by providing a few control shortcuts as the user

points at an appliance.
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Figure 1.3: CamIoT’s outward-facing camera recognizes two anatomically-inspired finger

gestures: circumducting (along with a series of virtual sectors) to select a control option;

flexing the finger to confirm a selection. image credit: [28]

Our preliminary evaluation that (i) takes a data-driven approach to find optimal pa-

rameters of finger circumduction gestures and measure the performance of the finger-based

selection; (ii) reports performance of recognizing ten appliances from pointing in a real-world

household setting at various distances; and further (iii) demonstrates the generalizability of

appliance and finger gesture recognition by testing the integrated CamIoT system on un-

foreseen users.

The contributions focused on here are as follows:

• The first system that uses a wrist-worn outward-facing camera to recognize and interact

with IoT objects at a distance;

• A anatomically-motivated gesture set based on index finger circumduction and flexion,

which is amenable for capturing using a wrist-worn outward-facing camera;

• A novel technique that uses the index finger’s orientation to locate an IoT object in

the camera view that also supports disambiguating selection amongst multiple IoT

objects.

• An in-depth evaluation of the contributed methods and CamIoT’s overall performance.
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CHAPTER 2

Related Works

From our study of related work, there are two prominent dimensions to organize a design

space. The first dimension is the distance to objects, which we discretize into four orders of

magnitudes (0.01m, 0.1m, 1m, and > 1m). At about 0.01m distance, miniaturized wearable

devices can identify objects by their textures [30]and convert visual information into haptic

feedback [13]. At about 0.1m distance, electromagnetic waves can serve as unique signature

of digital objects [29, 18]. At the 1m distance, both NFC [21] and camera [8, 4, 10] allow

users to select nearby objects. Finally, at distances over 1m—most related to our interest on

remote IoT interaction—a myriad of sensing solutions have been explored (from prototypical

infrared remote control [3], to tag-based augmented reality [16], Ultra-Wide Band radio

[19, 1, 15], using patterns of audio [2] and light [25] signals).

The second dimension is the loci of sensors—handheld, on-body, or in the environment.

For remote interaction, most approaches require instrumenting the environment [21, 16, 3,

20, 5, 19, 25, 2, 14, 1, 15]. In the meantime, all the self-contained solutions for 1m and

beyond are camera-based [8, 10, 4, 6]; but, to the best of our knowledge, only Snaplink [6]

can handle > 1m interaction. SnapLink requires a 3D construction of the entire space for

image localization, and its performance is unknown for residential apartments with more

appliances in a smaller space. Such a gap motivates our work on developing a camera-based,

self-contained (no instrumentation in the environment) device to enable remote interaction

(> 1m) with IoT objects.
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Figure 2.1: Design space for summarizing prior works on interaction with objects based on:

(i) Distance (ii) The loci of sensors.

Previous works on remote interaction rely more on instrumenting the environment and,

little work has been done to enable remote interactions through recognizing IoT objects.

One alternative is to use pervasive smartphone cameras (similar to Snap-to-It [8]). How-

ever, the main concern is the acquisition time. We cannot expect a user to retrieve their

smartphone every time they want to interact with an IoT object. Thus we chose to develop

a custom-built, wearable camera that is always available and allows users to point, shoot,

and control an IoT object.
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CHAPTER 3

System Overview

Hardware platform As shown in Figure 3.1, we built a proof-of-concept hardware plat-

form for exploring finger-pointing and gesturing to interact with IoT. Our platform consists

of a Raspberry Pi Zero W as the controller, an MPU 6050 IMU sensor for providing ac-

celerometer and gyroscope data, a mini (8 ohm 0.5 W) speaker and a Raspberry PI Camera

Module V2 for capturing IoT and the user’s finger. The camera height (distance between

its center and the user’s wrist when worn) is about 4cm. The Pi Camera V2 module cap-

tures and sends all the images via sockets across a local area network to a server program

that performs image processing and classification (detailed below), programmed in Python.

Finally, we used the speaker embedded in the device to provide voice feedback.

Figure 3.1: CamIoT hardware prototype
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The process starts when the user raises his arm to take a picture. CamIoT senses such

arm movements through the IMU data using [15]’s method. The image is then sent to the

local server for classification. Once the result is communicated back to the device, the voice

feedback announces the result. In this step, if the user decides to hold his/her finger in the

camera view, the finger’s direction helps to crop the image (we refer to this technique as

disambiguation in later sections). After recognition, CamIoT solely tracks the index finger’s

position in the camera view (finger circumduction). The current setup matches the finger’s

location to either the left, middle, or right direction. The user confirms the finger’s direction

by dropping his/her finger from the camera view (flexion). The chosen direction is then

mapped to a particular function on the IoT device (e.g., turn down TV Volume).

Finger gestures to select a control option Once an appliance is selected, CamIoT

allows the user to interact with it using the index finger. Based on the index finger’s anatom-

ical and kinesthetic properties [28], we design two gestures to support such interactions:

(i) Circumduction for selection where the index finger first hyperextends and then ro-

tates primarily around its Carpometacarpal joint (Figure 1.3 a). The finger motion covers a

half-circle from the camera view. Thus we divided this hypothetical semi-circle in different

ways so it would have N segments (N ∈ 2, 3, 4, 5,). Later in the evaluation section, we take

a data-driven approach to compute the optimal thresholds for segmentation as well as the

user’s performance in placing the index finger into each sector given different numbers of

divisions.

(ii) Flexion for confirmation happens to confirm a selection users have made. So they

would confirm the selection by dropping (flexing) their index finger as shown in Figure 1.3

b (a similar to the ‘airtap’ gesture in Microsoft Hololens1).

We now focus on the two key technical components of CamIoT: The unsupervised finger

gesture recognition pipeline and how we can leverage the finger’s orientation to augment an

appliance’s recognition using a Convolutional Neural Network (ConvNet).

1https://docs.microsoft.com/en-us/windows/mixed-reality/interaction-fundamentals
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1. Unsupervised Finger Gesture Recognition Pipeline: To recognize the finger

direction, CamIoT performs automatic finger segmentation from the camera view. One

popular method that achieves the state-of-the-art accuracy for object segmentation is using

ConvNets [23, 11]. However, such methods heavily rely on supervised learning from large-

scale data with detailed annotations, which can be very labor-consuming to label. In contrast,

our method utilizes skin color and edge detection characteristics for compact but robust finger

segmentation without any supervision.

Figure 3.2: Finger Segmentation Pipeline

Figure 3.2 demonstrates the pipeline with one example image. We first derive a rough

finger mask with the skin color model in YCbCr space [17] that is designed to be adaptive for

most populations. Multiple false-positive regions can exist in the segmentation map, mainly

because of background objects having similar colors to skins. Meanwhile, an edge mask is

generated with the Canny filter, which is then applied to the finger mask with rolling in

up/down/left/right directions for one pixel, to cut off bordering regions with connectivity

less than four. We take the largest isolated region on the resulted finger mask that lies on

the lower part of the image as the finger prediction and further derive the finger direction by

linearly interpreting the row-wise midpoints of the segmentation. If no region has an area

size larger than a preset threshold, the image is detected as no finger. The whole pipeline

runs at 39.84 frames/second as measured on an Intel Core i5 processor.
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2. Appliance Recognition with Finger tracking aid: In this work, we carry out

the few-shot learning of a ConvNet for appliance recognition, as ConvNets are better for

capturing small objects from images with features of large receptive fields [26, 12]. Moreover,

we propose to utilize the finger for disambiguation and feed the model with the indicated

portion of an image for prediction. Such a method can potentially benefit model performance

because: Model attention can focus on the appliances with reduced background areas, thus

reducing the probability of wrong classifications by eliminating other potential appliances

from the background.

One limitation of such a method is that the object needs to occupy a larger space in the

query image for reducing mismatches caused by background noises. Thus it is not optimal

for our task of interacting with an IoT object from a distance, where appliances can take

only a small portion of the camera view.

Figure 3.3: Appliance Recognition pipe line

In the setup stage, five images of each appliance are taken by CamIoT from various

angles as training data. During the deployment, the finger segmentation is first derived

automatically from the query image. Then, guided by the finger’s direction, the image is

cropped to 0.6 of its size and fed into the model for inference.

We now compare the performance of the ConvNet model with template matching methods

and perform ablation tests to demonstrate the effectiveness of the finger-based disambigua-

tion.

12



CHAPTER 4

Evaluation

Due to the COVID-19 pandemic, we had limited access to participants. We collected

data from one participant (P1, male, aged 25) pointing and finger-gesturing at IoT objects

to evaluate the index finger tracking and IoT objects recognition. Then we performed an

integrated test of the whole CamIoT system on two other participants (both male, ages

27 and 30, living in the same household as (P1) to evaluate CamIoT’s generalizability and

usability.

We first evaluate the model accuracy on detecting the selection via finger circumduction

on a virtual panel with different numbers of sectors, ranging from two to five. We then report

the detection accuracy of the finger’s flexing, which happens after each selection.

Figure 4.1: Finger interaction accuracy. Red lines show the determined angle thresholds for

splitting the sectors. Bold numbers represent the detecting accuracy of finger pointing at

the sectors and finger flexion.

13



1. Unsupervised Finger Gesture Recognition Pipe line: We first evaluate the

model accuracy on detecting the selection via finger circumduction on a virtual panel with

different numbers of sectors, ranging from two to five (we call each number of sectors a

sector design). We also report the detection accuracy of the finger’s flexing, used as the

confirmation gesture.

To determine the most natural thresholds of angles for dividing the virtual panel, we

carried out a pilot study asking one participant (P1) to point at each sector based on their

estimation without any visual/audio reference or feedback. Specifically, we asked the user to

perform three pointing tasks for each sector with their order randomized to avoid temporally-

dependent behavior. We repeated this process for all the four sector designs and logged the

pointing angles across all the trials. We then determined the optimal thresholds to be the

angles that best split different sectors based on an exhaustive search.

Then, we informed P1 about the angle thresholds and measured how accurate P1 could

point at each sector across all the four designs (N ∈ 2, 3, 4, 5). We randomly selected ten

appliances from P1’s household setting. With P1 pointing at the devices, we checked for the

effect of background on the recognition accuracy. Specifically, P1 was asked to point at each

sector and then perform a finger flexing gesture. Each sector design was performed three

times randomly, and this process was repeated using the ten appliances as the background,

which in total results in 10×(3+4+5+6)×3=540 images.

Our algorithm achieves a sector-wise mean accuracy of 98.33%, 84.44%, 71.67%, and

65.33% for the 2-, 3-, 4- and 5-sector designs, respectively. The results clearly show the

design trade-off between the number of sectors and recognition accuracy: while more sectors

enable more control options, it also causes more errors.

The selection errors can be mainly caused by: (i) the sector range being too small so

the user’s pointing falls out of the intended area; or (ii) the finger segmentation not being

good enough, leading to discrepancies between the real directions and the predicted direc-

tions. Figure 4.2 shows an example of accurate finger segmentation and its finger direction

prediction. In contrast, Figure 4.2 b shows a typical imperfect segmentation caused by the

14



Figure 4.2: Case study for finger gesture recognition and appliance recognition. (a) An

accurate finger segmentation with its derived direction. (b) An imperfect finger segmen-

tation with direction discrepancy. (c) A failure case for finger flexion recognition. (d, e)

Finger-based disambiguation localizes the desired appliance in the images where multiple

appliances exist. (f) A typical failure case for other feature matching methods.

image’s underexposure, such that a part of the finger shifting out of the predefined skin color

distribution. The segmentation error can then lead to a discrepancy between the predicted

finger direction and the user’s expected direction, as shown in Figure 4.2 b.

For the recognition of finger flexion, our algorithm achieves a high detection accuracy of

80.00%. As demonstrated in Figure 4.2 c, flexion recognition failure would happen if some

background object with similar skin color existed.

15



2. Appliance Recognition with Finger Disambiguation: To evaluate the accu-

racy of selecting appliances from a distance, we built a dataset consisting of 10 appliances

randomly chosen from P1’s household. First, we asked the participant (P1) to collect five

templates for each appliance, all from about 0.5 meters away, to ensure the object’s details

could be captured (although our recognition can handle the much longer distance, as shown

below). Moreover, an appliance’s templates were taken roughly from the angles that evenly

divided the outward surface of that appliance to profile its visual appearance comprehen-

sively. Then we asked the participant to point at the appliances using CamIoT. For each

appliance, the participant pointed at it 20 times from random positions. We controlled the

distance between the participant and the appliances to study the robustness of our algorithm

to distances: the participant pointed at each appliance at three ranges of distance: ∼2m,

∼4m and ∼6m. In total, we collected 10×15×3=450 images. which we used as our appliance

recognition dataset.

We compared our algorithm with two template matching methods; one utilizes SIFT

as the feature descriptor while the other uses SURF. Both methods were fed with cropped

images based on finger disambiguation for a fair comparison. Moreover, we also perform

an ablation test on our algorithm to investigate the impact of the figure disambiguation on

recognition accuracy. To measure accuracy, we calculate the hit rate for the target appliance

in the top 1, top 2, and top 3 of the ranked list of results returned by each method.

16



Figure 4.3: Accuracy comparison between different methods for appliance recognition at

different distances. All values are in percentage.

Figure 4.3 shows that our method achieves top 1 recognition accuracy of 96.00%, 77.33%

and 60.67 for 2m, 4m, and 6m distances, respectively, which are the highest among all the

methods. Note that CamIoT also achieves a high top 3 accuracy of 98.00% (2m), 86.67%

(4m), and 82.67% (6m), which suggests that the user can select the desired appliance with

two extra steps ( via a wrist rotation gesture that selects the next best in the result list).

17



3. Informal User Testing on the Integrated System: Finally, we conducted an

informal user testing with P2 and P3 on the integrated CamIoT system. Given the COVID-

19 pandemic, we did not intend this study to replace a full user evaluation; rather, our

goal was to provide preliminary performance results of CamIoT to investigate whether our

appliance and finger gesture recognition techniques (trained on P1) can generalize (for P2

and P3).

The main task was to use CamIoT to interact with a new set of five appliances1: pointing

at each of the five appliances and the following audio prompts to perform index finger-based

selection and confirmation of appliance-specific control options. Based on the performance

measured earlier, we chose a three-sector design to balance the number of options and the

accuracy of locating each sector.

Each participant was asked to interact with each appliance five times in a randomized

order. Participants were standing the entire time. Each time for each appliance, we randomly

changed the participant’s position (while maintaining a line of sight of the appliance) to vary

the angle and distance from which CamIoT captured and recognized the appliance. The

distance between the participant and an appliance was always between three to five meters.

For each trial, if an appliance was misrecognized, we asked the participant to abort and

restart a new trial. For finger gesture recognition, to maintain consistency and comparability

with the earlier P1’s testing, participants performed the circumduction and flexion gestures

without any feedback.

In total, the participants performed 2 × 5 × 5 = 50 trials of finger pointing + gesturing

interaction with appliances. The results are reported as follows.

1We used TV, toaster, lamp, printer and coffee maker. Except for the TV, all appliances were not
Internet-connected. Thus their control options were just proof-of-concept mock-ups that provide audio
feedback (described in the System section) without real functionalities.
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Accuracy. Participants made a total of 58 attempts for selecting appliances, resulting

in a recognition accuracy of 86.21%. Amongst the 50 trials, for 44 times, an appliance was

correctly recognized in one shot (88.00%), three appliances took two attempts, and the other

three took three tries. Note that the performance numbers here are higher than those in

Figure ?? because the number of appliances was smaller (five compared to ten).

The overall accuracy of using finger circumduction to select a sector was 76.00%; in

comparison, the aforementioned P1 testing accuracy was 84.44%. Such a drop in performance

was expected, as the optimal thresholds were determined based on P1’s data. Multiple cross-

user variances (finger appearance, finger agility, perception of different sectors, how the device

was worn) could have contributed to the discrepancy in circumduction gesture recognition

performance. On the other hand, all finger flexion gestures were recognized correctly.

Best-case response time. We profiled each trial in two phases: (i) the appliance

selection phase starting from the prompt and ending when the system correctly recognizes

an appliance; (ii) the control option phase starting after the system correctly recognizes an

appliance and ending when the user selects the correct control option via a finger gesture.

Across all trials, the application selection phase took an average of 3.0s and the control

option phase 3.5s, resulting in a total of 6.5s per interaction. Note that this result of

6.5s only indicates the best-case response time where both the appliance and the control

option are selected correctly in one shot. If a feedback loop (using audio) is provided, the

response time will be longer. As the user can continuously adjust their arm and finger

until the intended appliance or control option is selected. At present, our best-case response

time is mainly bottlenecked by latency due to the video capturing routines and suboptimal

networking speed in a residential household setting.
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CHAPTER 5

Limitations

Based on our preliminary findings, we summarize the limitations of CamIoT and discuss

future works in this section.

Latency. Our integrated system currently experienced latency issues (running at ∼3

FPS) due to a combination of video capturing on an embedded device and suboptimal

networking speed.

Lighting Condition: Lighting condition is one of the most common factors that can af-

fect the performance of a vision-based system. In this work, we did not intentionally control

the lighting when carrying out the experiments to study its impact formally. However, we

have noticed the finger segmentation pipeline does get affected by lighting changes. Specif-

ically, a lack of lighting or colored interior lighting reflections can change the tone of the

finger’s color, possibly affecting our skin-color-based finger segmentation algorithm.

Virtual Panel Design: Due to our limited access to participants during the COVID-19

pandemic, we designed the sector thresholds for the virtual panel by referring to the finger

data from one user. Such thresholds might not represent most users; thus the next step

would be to develop a per-user calibration mechanism, which involves a user performing

finger circumduction with CamIoT to determine the best thresholds for each individual

automatically. Long-term future work should conduct a larger-scale study to generalize the

optimal threshold angles for the panel.
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Control options: Currently, we employ an absolute mapping from finger orientation to

the selection of a control option. One challenge of such design is the scalability to handle

many control options since the experiments show the pointing error rate increases when

having more sectors in the virtual panel. One alternative solution is to use relative mapping

by tracking sequences of index finger actions, e.g. moving the finger clockwise or towards

some directions, to act as arrow keys that navigate a list of control options. Based on our

real-time finger segmentation pipeline, the recognition algorithm for finger actions can be

further developed in the future for the purpose.

Variation in wearing the device. We found that the device position/orientation/tightness

is different each time it was put on a user’s wrist during our studies. Due to the limited

number of participants, we did not formally study how such variation can impact the perfor-

mance of CamIoT’s interactions. We will address this issue in future work by having more

people wear the device and test our system’s robustness against such variation.
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CHAPTER 6

Conclusion

This work was an effort in the space of utilizing AI in smart home technologies. The

idea was to simplify the current existing smart home technologies by unifying the underlying

controller used for different home appliances (a universal controller). Using AI’s recognition

and prediction-making capabilities, CamIoT proposed a novel method for interaction with

home appliances. Assuming the appliances are IoT objects in the same network, we showed

new devices could be added by just taking five close-up shots of them with minimal training

time (we used the transfer learning model in this work). Our method also provided a novel

finger tracking approach, which helped us both in appliance recognition and interaction with

them.

Employing the user’s index finger, we created a more reliable appliance recognition

method, which outperformed SIFT Matching, Surf Matching, and solo ConvNet models

(Top 1 accuracy of 96%). Although the training images were collected from a close distance

(∼ 0.5m), to capture more image features, our results remained promising with the proper

processing techniques. So we claimed CamIoT as an appropriate method for interacting with

distant IoT objects.

This characteristic, coupled with CamIoT’s on board voice feedback system, placed us

closer to our second motivation in terms of visual assistive technologies (VAT). As explained

in Chapter 1, our focus in terms of VAT in this work was vision substitution. Although

CamIoT was not solely designed towards visually impaired people’s needs, relying on the

camera feed, we demonstrated accurate and viable vision substitution via auditory. Most of

the works in VAT domain focus on navigation needs and obstacle avoidance, which would
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require further work (e.g., sensor implementation) on the current design of CamIoT. An

exciting approach would be to treat obstacles as other objects and again utilizes CamIoT’s

object recognition and computer vision features. Our observations showed how the audio

could help the users to get a better sense of their environment. Thus we see great potentials

in taking this approach given proper analysis (e.g., asking visually impaired individuals for

user studies, etc.).

These promises, however, should not distract us from the concerns provided in the Limita-

tions chapter. Both our appliance recognition and finger tracking methods can be improved;

there were scenarios requiring optimizations for both methods. In appliance recognition, for

instance, we faced test cases where the pointing angle did not have enough coverage of the

object leading to a wrong classification. Similarly, the current finger tracking approach is

quite sensitive to the background color, which caused wrong predictions in cases with a too

bright background.

In conclusion, CamIoT presented an innovative approach for interaction with smart home

appliances using AI capabilities and computer vision. The two main novelties introduced

here were: Unsupervised Finger Gesture Recognition and Appliance Recognition

with Finger Disambiguation. Finally we evaluated and analyzed our methods in detail

to show CamIoT’S potentials and provide future works directions.
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