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ABSTRACT: Enantioselective cyclopropanation of α-carbonyl sulfoxo-
nium ylides (SY) has so far been limited to addition/ring closure reactions
on electron-poor olefins. Herein, we report the iridium-catalyzed
intramolecular cyclopropanation of SY in the presence of a chiral diene
in up to 96% yield and 98% enantioselectivity. Moreover, density
functional theory calculations suggest that the re face of the olefin
preferably attacks an iridium carbene intermediate in an asynchronous
concerted step that is independent of the geometry of the olefin.

The superior safety profile of α-carbonyl sulfoxonium
ylides compared to that of their diazo counterpart has

recently spurred the exploration of numerous metal-catalyzed
reactions in which a metal-carbene has been proposed to be a
pivotal intermediate.1 In this context, it is striking that
enantioselective cyclopropanation of olefins by the intermedi-
acy of a chiral metal-carbene, a hallmark of metal-carbene
chemistry,2 has never been observed in metal-catalyzed
reactions of α-carbonyl sulfoxonium ylides. Specifically, reports
of cyclopropanation of α-carbonyl sulfoxonium ylides are
limited to an arene C−H activation/cyclopropanation cascade
with electron-poor allenes3 and enantioselective addition/ring
closure on electron-poor olefins in the presence of either a
chiral organocatalyst4 or a chiral Lewis acid (Scheme 1a).5

Thus, overcoming these limitations and expanding the scope of
cyclopropanation of α-carbonyl sulfoxonium ylides beyond
electron-poor olefins would improve our understanding of the
reactivity of these ylides in homogeneous catalysis and benefit
molecular science in view of the importance of cyclopropanes
in drugs,6 natural products,7 and fragrances.8

Iridium(I) complexes are versatile catalysts in a diverse set of
reactions of sulfoxonium ylides such as X−H (X = B, N, O, or
S) insertions9 and aromatic substitutions10 that all likely rely
on an iridium carbene intermediate. We therefore hypothe-
sized that Ir(I) catalysts would be good candidates for
promoting the cyclopropanation of α-carbonyl sulfoxonium
ylides with olefins that are not activated by an electron-
withdrawing group. Moreover, we reasoned that chiral diene
ligands would offer an ideal platform for the development of an
enantioselective version of the reaction.11

Herein, we validate this hypothesis with the asymmetric
synthesis of bicyclic lactones, lactams, and ketones by
intramolecular cyclopropanation of sulfoxonium ylides
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Scheme 1. Enantioselective Cyclopropanation of α-
Carbonyl Sulfoxonium Ylides
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(Scheme 1b). In addition, a stereochemical model supported
by DFT calculations is proposed to explain how the
enantioselectivity remains high regardless of the geometry of
the olefin, in contrast with the known metal-catalyzed
intramolecular cyclopropanations of allyl diazo acetates that
have been optimized specifically for either the E or the Z
olefins.12,13

At the beginning of our study, it became rapidly apparent
during the optimization of the reaction that it was necessary to
add sulfoxonium ylide 1a slowly on a solution of the catalyst to
avoid the formation of dimeric products. Under these
conditions, and using [Ir(cod)Cl]2 (cod = cyclooctadiene) as
a catalyst in 1,2-DCE (1,2-dichloroethane) at 80 °C, we
obtained bicyclic lactone (±)-2a in 94% yield (eq 1). Other
iridium and rhodium catalysts led to lower yields, and using
Rh2(OAc)4 notably led to only traces of (±)-2a (see Table
S1).

Moreover, during the initial optimization of the reaction, we
noted that decreasing the temperature to 40 °C led to
incomplete conversion after the slow addition of the substrate.
Nevertheless, we reckoned that the catalyst was still active at
this stage and that full conversion could be reached by longer
exposure. We were pleased to verify this hypothesis and
observed full conversion of 1a to (−)-2a with 84% ee when
commercially available (R,R)-3 was used as the ligand (Table
1, entry 1). After other chiral dienes such as 4−8 had been
examined, (R,R)-3 remained the best ligand, and (−)-2a could
be obtained in 90% ee when the reaction was conducted at
room temperature (Table 1, entry 4 vs entries 2, 3, and 5−7).
With these optimized conditions in hands, we examined

their generality on α-carbonyl sulfoxonium ylides 1a−o and
were delighted to obtain the envisioned racemic bicyclic
lactones, lactams, and ketones in 32−98% yields (Scheme 2).
Thus, (hetero)aryl substituents were well tolerated [(±)-2a−
d], as were alkenyl [(±)-2e] and alkyl substituents [(±)-2k].
Moreover, Z olefins led to the expected cyclopropanes with an
only slight decrease in yield in the case of (±)-2f−h or in
identical yield in the case of trisubstituted olefins that gave
(±)-2i and (±)-2j. Another trisubstituted substrate 1l gave
(±)-2l in 70% yield. In addition to lactones, other tethers were
efficient and bicyclic ketone (±)-2m and lactam (±)-2n were
obtained in 98% and 86% yields, respectively. However, six-
membered ring lactone (±)-2o could be obtained in only 32%
yield.
Then, using (R,R)-3 as the chiral ligand and under the

conditions optimized for the asymmetric variant of this
cyclopropanation, we obtained the enantioenriched products
in 34−96% yields and 52−98% ee (Scheme 2).14 The best
results were obtained with aryl-substituted olefins, whereas a
pyrazole [(−)-2d], an alkenyl [(−)-2e], or an alkyl [(−)-2k]
substituent was more detrimental to the enantioselectivity.
Remarkably, when comparing the results of the enantiose-
lective cyclopropanation of 1a and its Z isomer 2f, we
established that the enantioselectivity remained high for both
geometrical isomers of the olefin to give (−)-2a and (+)-2f
with 90% ee.15 This observation is in strong contrast with the

catalyzed reactions that have been developed to give optimal
results with either the E or the Z isomer of allyl diazo acetates,
but not with both (Table S2).12,13 Other pairs of geometrical
isomers such as 1b and 1g, 1c and 1h, and 1i and 1j gave
equally good results when treated with the chiral Ir-diene
catalyst. The enantioselectivity remained high for bicyclic
ketone (−)-2m and for six-membered lactone (−)-2o, but
lactam (−)-2n was obtained with lower enantioselectivity.
Stereochemical models were evaluated by DFT calcula-

tions16 to understand the origins of the enantioselectivity
observed in those reactions (Scheme 3). Iridium-carbenes I
and II are most likely formed from 1a and 1f, respectively,
under the reaction conditions (Scheme 3a).9 In the reactive
conformers of I and II that connect with the transition states
leading to the observed products, the C−Ir bond length [1.85
Å (I and II)] and the dihedral angle between the carbon−
iridium bond and the carbonyl [θ = 287° (I), and θ = 309°
(II)] are similar to those measured in an isolated iridium(I)-
carbene formed from the reaction of [Ir(cod)Cl]2 and methyl
2-diazo-2-phenylacetate.17 Significantly, we found that a
perpendicular approach of the olefin with respect to the
iridium-carbene in TS1 and TS3 is favored over a parallel
approach in TS2 and TS4. Thus, TS1 is favored over TS2 by
1.3 kcal mol−1 in the case of E olefin 1a, whereas TS3 is
favored over TS4 by 6.0 kcal mol−1 in the case of Z olefin 1f. In
all cases, the tether is pointing toward the less sterically
congested quadrant of the C2-symmetrical ligand (Scheme 3b).
In addition, the C1−C2 and C1−C3 bonds of (−)-2a and
(+)-2f are formed in an asynchronous concerted mechanism
from TS1 and TS3, respectively. In contrast, TS2 and TS4 are
the highest-energy transition states of a two-step mechanism in

Table 1. Optimization of the Enantioselectivitya

entry ligand T (°C) yieldc (%) eed (%)

1 (R,R)-3 40b 92 84
2 (R,R)-4 40b 80 78
3 (R,R,R)-5 40b 99 30
4 (R,R)-3 24 89e 90f

5 (S,S)-6 24 21 0
6 (R,R)-7 24 86 87
7 (R,R)-8 24 75e 75f

aSlow addition of a solution of 1a (0.2 mmol) in 1,2-DCE (3 mL) to
the metal catalyst and ligand in 1,2-DCE (9 mL) under N2 over 3 h
and then stirring at the indicated temperature for 12 h. coe =
cyclooctaene. bTemperature of the heating block. cYield determined
by 1H NMR of the crude with 1,3,5-trimethoxybenzene as the internal
standard except where otherwise indicated. dEnantiomeric excess of
the crude material determined by HPLC. eYield of the isolated
product. fEnantiomeric excess of the isolated product determined by
HPLC.
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which the C1−C2 bond is formed first to give intermediates
III and IV, before eventually leading to the minor enantiomers
through TS5 and TS6. Moreover, a distortion−interaction
analysis18,19 shows that the enantioselectivity mainly arises
from a greater distortion in the substrate in least favored

transition states TS2 and TS4 (Table 2). The origins of the
substrate distortion were investigated through independent
gradient model analysis.20 It revealed a stabilizing π interaction
between the C1−H bond of the substrate and one of the
phenyl rings of the ligand in TS1−TS4. However, maintaining

Scheme 2. Enantioselective Intramolecular Iridium-Catalyzed Cyclopropanation of α-Carbonyl Sulfoxonium Ylidesd

aUnder the conditions of eq 1. bAs in entry 4 of Table 1. cSlow addition for 9 h and stirring for 96 h. dYields and ee’s of the isolated product.

Scheme 3. Stereochemical Modela

aComputational method: M06/def2-TZVPP-SMD(dichloromethane)//B3LYP-D3/def2-SVP. bLigand omitted for the sake of clarity; energies
(ΔG) are in kilocalories per mole.
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that favorable C−H···π interaction in TS2 and TS4 comes at
the cost of greater steric hindrance,21 and hence greater
distortion, within the substrate. Overall, the DFT calculations
suggest that the re face of the olefin is attacked preferentially in
TS1 and TS3, in agreement with our experimental results.
Finally, as mentioned in the introduction, cyclopropanes are

important motifs in drugs, and we could demonstrate the
synthetic utility of the products obtained in this study by
converting (±)-2d into (±)-9, which displays the same
cyclopropane substitution pattern as (±)-10, a nanomolar
inhibitor of hematopoietic kinase 1 (Scheme 4).22

In conclusion, we have demonstrated the first example of
enantioselective intramolecular cyclopropanation of α-carbonyl
sulfoxonium ylides in the presence of a chiral iridium catalyst.
Hence, the method enables access to enantioenriched bicyclic
lactones, lactams, and ketones. This strategy expands the scope
of cyclopropanation of α-carbonyl sulfoxonium ylides that had
so far been limited to addition/ring closure reactions on
electron-poor olefins. Moreover, DFT calculations revealed
that an orthogonal approach of the re face of the olefin to an
iridium carbene intermediate is preferred regardless of the
geometry of the olefin, while the distortion of the substrate in
the transition states is the main differentiating factor that
determines the enantioselectivity.
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Table 2. Distortion−Interaction Analysisa

ΔEdist(cat) ΔEdist(sub) ΔEint ΔEact
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TS4 13.2 3.8 −88.6 −71.6
ΔΔE(TS4−TS3) 0.2 15.9 −9.7 6.4

aDistortion−interaction analysis was performed at the M06/def2-
TZVPP//B3LYP-D3/def2-SVP level of theory. Energies are in
kilocalories per mole. The details of distortion−interaction analysis
are provided in the Supporting Information.

Scheme 4. Potential Synthetic Utility
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