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Estimating optical properties in layered tissues by
use of the Born approximation of the radiative
transport equation
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We use the Born approximation of the radiative transport equation to recover simultaneously the absorption
and scattering coefficients in a single layer of a two-layer tissue sample from reflectance data. This method
reduces the estimation of both optical properties to a single linear, least-squares problem. It is valid over
length scales smaller than a transport mean free path and hence is useful for epithelial tissue layers. We
demonstrate the accuracy of this method by using spatially resolved reflectance data computed with Monte

Carlo simulations. © 2006 Optical Society of America

OCIS codes: 170.3660, 030.5620, 100.3190.

Determining optical properties of layered tissue
structures is important for biomedical diagnostics.
Several methods to determine layered tissue proper-
ties have been developed, but the vast majority of
them use the diffusion approximation of the radiative
transport equation (RTE).'® These methods are lim-
ited to systems whose reduced scattering coefficients
are much larger than their absorption coefficients
(me> u,) and that have a minimum layer thickness of
the order of a few transport mean free paths [I*
=1/(uy+p.)]. However, several tissue systems exist
that do not satisfy these requirements. Of prime im-
portance is epithelial tissue, which consists of a cel-
lular layer supported by an underlying stroma. The
cellular layer has a characteristic thickness of
<500 um, which is significantly smaller than a
transport mean free path. Hence methods based on
the diffusion approximation cannot be applied cred-
ibly for evaluation of epithelial-stromal transforma-
tions. Specialized techniques such as elastic scatter-
ing spectroscopy and differential path-length
spectroscopy have been developed to measure proper-
ties of the epithelium alone.*® While they are valu-
able, such techniques are unable to measure and iso-
late concomitant changes in the underlying stroma.
Using the Born approximation (BA) of the RTE, we
formulate a novel method with which to determine
optical properties of layered media. This method ap-
plies over a broad range of optical properties and to
layer thicknesses of the order of a single scattering
mean free path. Using the BA, we recover simulta-
neously the absorption and scattering coefficients in
a single layer of a two-layer medium from spatially
resolved reflectance data. In the calculations that fol-
low, we assume that the optical properties of the
other layer are known a priori. However, this method
extends readily for more general problems. The esti-
mates for the optical properties are the solution of an
N X 2 linear, least-squares problem with N =2 denot-
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ing the number of measurements. Using Monte Carlo
simulations for measured data, we show that this BA
method is effective over a large range of parameter
values.

Continuous-wave light transport in tissues is gov-
erned by the time-independent RTE

-V + p, V- u LV =Q. (1)

The radiance ¥ depends on direction w, a vector on
unit sphere S%, and position r. Here, u, and u, are the
absorption and scattering coefficients, respectively.
Scattering operator £ is defined as

LY =-V+ f flo' - o)V (o' r)do'. (2)
52

The scattering phase function f gives the fraction of
light traveling initially in direction @’ that scatters
into direction w. In Eq. (1), @ denotes an interior
source.

Green’s function G(w,r;w’,r’) for half-space D
={z>0} composed of a uniform turbid medium is the
solution of Eq. (1) with u, and u, constants and
Q(w,r)=8w-w')é(r-r'), with r, r’ € D. In addition,
we prescribe that ¥ satisfy the boundary condition

G|w,z:0 = R(w)G|—w,z=Oa w-2>0. (3)

Here R(w) denotes the directional variation of the
Fresnel reflection coefficient that is due to the
refractive-index mismatch at the boundary. For this
study we use the analytical representation of this
half-space Green’s function that is computed in terms
of plane-wave solutions.®’

When the absorption and scattering coefficients
are spatially heterogeneous, we represent them as

Ma,s(r) = Mgo,s0 T 5Ma,s(r); (4)
respectively. According to the BA,
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V= Wp=V-Gplou, Vol + Gpl Sus LY, (5)

with ¥, denoting the solution of the unperturbed
problem. For a function u(w,r) we define the opera-
tion Gp[u] used in relation (5) as

Qn[u]=ff Glo,r;o’,r')u(e’ r')do'dr’. (6)
DJs?

We now consider the half-space D to be composed of
two layers. The top and bottom layers are denoted
D,={0<z<z,} and D,={z>z,}, respectively. We as-
sume that layer thickness z, is known. Suppose that
either the top layer or the bottom layer has absorp-
tion and scattering coefficients w, ;= g0 50+ Oty s, TE-
spectively, with Su, and JSu, representing constant
perturbations. We assume that the other layer is un-
perturbed, so its optical properties are u,, and .
Using relation (5), we model the reflectance for the
two cases, F4(p) and F4(p), by

F%(p) = Fo(p) - 5u.FL0(p) + ouFl(p),  (7)

respectively. The quantities Fy and Ffzbs are defined as

FO(P) = J w:* éq’O(w>p’0)dwa (83.)
XA
Fi’b(P) = fz (O ég\|)t,b[‘1’0](w,l), 0)dw, (8b)

SNA

Fi0= [, w20, [Wol0p,0d0. (50

SNA

In Egs. (8), S%, denotes the set of directions within
the numerical aperture of the detector. Notice that in
Egs. (8b) and (8c) the spatial integration is restricted
to either the top or the bottom layer.

Suppose that data are collected at N=2 detectors

located at pq, -, py. Rearranging terms in Eq. (7), we
obtain the following linear system:
O
At,b[ s } =y. (9)
Ms

Row n of the N X 2 matrices A, ; is given by [-F%°(p,),
F'*(p,)]. NX1 vector y has entries y,=Fgua(p,)
—Fy(p,). In fact, only N=2 measurements are needed
to compute the perturbations. However, we incorpo-
rate more measurements to help stabilize this system
under the influence of instrument noise. Hence we
seek the least-squares solution of Eq. (9) to obtain es-
timates for both Su, and Su,.

To demonstrate the utility of our inversion scheme,
we generate measured data Fg,,(p) with Monte
Carlo simulations of radiative transport in a two-
layer model system representative of cervical epithe-
lium. The epithelium is represented by a 500 wum
thick cellular layer supported by a semi-infinite stro-
mal layer (Fig. 1). The baseline optical properties in
both layers are taken to be those of normal cervical
stromal tissue at N\=849 nm: u,,=0.034/mm and u.,
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Fig. 1. Schematics of (a) top-layer and (b) bottom-layer
perturbations.
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Fig. 2. Estimates of u, (®) and u, (°) by the BA method for
top-layer perturbations in (a) w, and (b) u,. The optical
properties of the bottom layer are known a priori to be u,q
and .

=pug(1-g2)=0.611/ mm.?  The Henyey—Greenstein
scattering phase function is used with asymmetry pa-
rameter g=0.7. With these optical properties, the cel-
lular layer has a thickness of less than ["/3. We em-
ploy six detectors, each with diameter 200 um,
located at source—detector separations of p;=0.7 mm,
pe=1.1mm, p3=2.0 mm, p;=2.5 mm, p5=3.0 mm, and
pe=3.7mm. The Monte Carlo simulations were run
with 30X 108 photons and 2% Gaussian noise added
to the data to typify instrument noise.

For the simulations of measured data, we per-
turbed either u, or u, in either the top or the bottom
layer. We assume that the optical properties in the
unperturbed layer are known and are given by u,
and uy. Changing only one parameter at a time in
the simulated data tested the ability of our two-
parameter inversion [Eq. (9)] to decouple and recover
both Su, and Su,. The ranges of u, and u, perturba-
tions used here are representative of absorption and
scattering properties measured from ten patients
who exhibited high-grade squamous intraepithelial
lesions.

For w, and u, perturbations in the top layer [Fig.
1(a)], the recovered optical properties are shown in
Fig. 2 by filled circles and by open circles, respec-
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tively. In Fig. 2(a) we show results for seven simu-
lated measurements in which u, is held fixed and u,
varies from 33% to 300% of w,. The diagonal line in-
dicates the true values of u,, and the horizontal line
indicates the true values of u,. The results show that
the recovered values of u, and u, for all seven test
cases have relative errors within 21% and 10%, re-
spectively. In Fig. 2(b) we show results for five simu-
lated measurements in which u, is held fixed and
varies from 60% to 140% of ugo. The diagonal line in-
dicates the true u, values, and the horizontal line in-
dicates the true values of u,. For the data in which g,
is perturbed, 80% to 120% of u,,, the recovered val-
ues of u, and u, have relative errors within 15% and
18%, respectively. Outside this range, the recovered
values for u, are of similar quality. However, the re-
covered values of u, are poorer, with the maximum
relative error exceeding 40%.

For u, and u, perturbations in the bottom layer
[Fig. 1(b)], the recovered optical properties are shown
in Fig. 3. In Fig. 3(a) we show results from seven
simulated measurements in which u, is held fixed
and u, varies from 33% to 300% of u,o. The recovered
values of u, and u, have relative errors within 25%
and 5%, respectively. The recovered values of u, de-
grade systematically as the perturbation grows. In
Fig. 3(b) we show results from five simulated mea-
surements in which u, is held fixed and u, varies
from 60% to 140% of the baseline value. The recov-
ered values of u, and u, have relative errors within
25% and 3%, respectively. The bottom-layer results
are poorer than those of the top layer. This is so be-
cause the BA is less able to account for perturbations
distributed over a large volume. Nonetheless, appli-
cation of the BA to recover the optical properties of
the bottom layer provides accurate trends of the per-
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Fig. 3. Estimates of y, (®) and u, (°) by the BA method for
bottom-layer perturbations in (a) u, and (b) u,. The optical
properties of the top layer are known a priori to be u,y and

Ms0-

turbed variables. Moreover, it does so without signifi-
cant coupling between the optical parameters.

We have demonstrated the use of the Born approxi-
mation of the radiative transport equation to esti-
mate optical properties in a single layer of a two-
layer medium. This method applies to systems with
length scales smaller than [ because it is based on
the RTE rather than on the diffusion approximation.
The BA of the RTE has been used in imaging appli-
cations of photon migration.”'° Our implementation
of the BA of the RTE for the two-layer problem uses
an analytical representation of Green’s function and
yields an N X2 linear, least-squares problem. Hence
the associated computational costs are small.

This method requires knowledge of the optical
properties of some reference medium that is close to
the true medium. This a priori information is con-
tained implicitly in the computation of the half-space
Green’s function. Nonetheless, this method yields re-
sults that are accurate for a broad range of optical
parameters (6 < u./u,<25) that are not close to the
reference medium. These data suggest that the
method does not depend strongly on this a priori
knowledge. Moreover, we have assumed here knowl-
edge of asymmetry parameter g and layer thickness
zo and of which layer is perturbed. However, the BA
is not restricted by these assumptions and can be
generalized to take them into account. These issues
require more attention and will be subjects of future
research that includes validation by use of experi-
mental measurements of layered tissue phantoms.
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