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Abstract

Despite being designed for performance rather than cognitive
plausibility, transformer language models have been found to
be better at predicting metrics used to assess human language
comprehension than language models with other architectures,
such as recurrent neural networks. Based on how well they
predict the N400, a neural signal associated with processing
difficulty, we propose and provide evidence for one possible
explanation—their predictions are affected by the preceding
context in a way analogous to the effect of semantic facilitation
in humans.
Keywords: Language Comprehension; Electroencephalogra-
phy (EEG); Neural Networks; Machine Learning; Cognitive
Architectures

Introduction
Neural language models (NLMs) are valuable tools in under-
standing human language comprehension because they learn
to predict language based on the surface-level statistics of lan-
guage alone. As such, they are inherently models both of
what can be predicted and what can be learned about lan-
guage based only on linguistic input. For this reason, they
can be used to test hypotheses about how such knowledge
may be used in the human language comprehension system
that would be impossible to test experimentally.

Since the early days of their implementation, recurrent neu-
ral network language models (RNN-LMs) have been used to
investigate human cognition (Elman, 1990). However, the re-
cent development of the transformer network (Vaswani et al.,
2017) has largely overshadowed them in the field of machine
learning. Research has shown that language model perfor-
mance (operationalized as perplexity) tends to correlate with
how human-like RNN-LMs are in their processing of lan-
guage (e.g., Aurnhammer & Frank, 2019). Thus, the fact that
transformer language models (T-LMs) perform better than the
previously state-of-the-art RNN-LMs despite their vastly dif-
ferent architectures suggests that they may be a viable alter-
native model of human language processing.

It is therefore unsurprising that in the last year, researchers
interested in the cognition of language have compared RNN-
LMs and T-LMs in terms of how well they capture human
linguistic behavior (Merkx & Frank, 2020; Ettinger, 2020;
Misra, Ettinger, & Rayz, 2020; Wilcox, Gauthier, Hu, Qian,
& Levy, 2020; Eisape, Zaslavsky, & Levy, 2020). To the best
of our knowledge, only one (currently unpublished) study has
attempted to investigate whether RNN-LMs or T-LMs are

better for predicting the N400, a neural response reflecting
semantic retrieval demands. In their study, Merkx and Frank
(2020) find that the surprisal of T-LMs fit the human N400
data better than the surprisal of RNN-LMs. This is somewhat
unexpected because, as Merkx and Frank (2020) note, intu-
itively, RNN-LMs more closely match what we believe about
the human language comprehension system—they process
language word-by-word and have a limited ‘working mem-
ory’.

Here we ask whether the success T-LMs evince in predict-
ing N400 amplitude (Merkx & Frank, 2020) is connected to
other findings; for example, they appear to show semantic
priming effects and, like the N400 (Nieuwland & Kuperberg,
2008), they are rather insensitive to negation (Ettinger, 2020;
Misra et al., 2020). To do so, we investigate whether the pre-
dictions of T-LMs show an analog of semantic priming phe-
nomena that have been argued to impact N400 amplitude to a
greater or lesser extent (e.g., Brouwer, Fitz, & Hoeks, 2012;
Lau, Holcomb, & Kuperberg, 2013). If this is the case, it
would suggest that T-LMs may be analogous to the human
language comprehension system in a different way to RNN-
LMs, and may offer an insight into the relationship between
these phenomena. Such a result would also indicate that we
need to update our conception of what makes a computational
language model more or less cognitively plausible.

Background
The N400 (Kutas & Hillyard, 1980) is a negative deflection
in the event-related brain potential (ERP), peaking roughly
400ms after the presentation of a stimulus. It is thought
to index processing difficulty—if the preceding context ac-
tivates semantic content associated with an upcoming word,
the word is easier to process, and thus elicits a reduced am-
plitude N400. Recent accounts have hypothesized that the
N400 specifically indexes the extent to which the upcoming
word was not expected; a prediction error not affected by the
strength of failed predictions (Van Petten & Luka, 2012; Luke
& Christianson, 2016; DeLong & Kutas, 2020; Kuperberg,
Brothers, & Wlotko, 2020).

The surprisal of an NLM towards a word is a clear con-
ceptual analog of the N400—surprisal is the negative log-
arithm of the probability of an upcoming word given its
context. NLM surprisal significantly predicts N400 ampli-
tude, beating other metrics derived from NLMs (Frank, Ot-
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ten, Galli, & Vigliocco, 2015; Aurnhammer & Frank, 2019;
Merkx & Frank, 2020). Additionally, on more fine-grained
analysis, surprisal appears to behave analogously to N400
amplitude—in many cases, experimental manipulations that
impact N400 amplitude affect surprisal values in an analo-
gous fashion (Michaelov & Bergen, 2020).

However, while surprisal is a good model of the extent to
which a word is predicted in the context of a sentence, N400
amplitude is also modulated by other factors (Kutas & Fed-
ermeier, 2011; Kuperberg et al., 2020). One key finding is
that the N400 to a target word is less negative in amplitude
when it follows a semantically related word than an unre-
lated one (Kutas & Van Petten, 1988; Kutas & Federmeier,
2011). Additionally, the N400 response to a word is reduced
if it is semantically related to the most predictable upcom-
ing word—for example, the word monopoly in “Checkmate,”
Rosaline announced with glee. She was getting to be really
good at monopoly elicits a less negative N400 than the word
football by virtue of being more semantically related to the
best completion, chess (Federmeier & Kutas, 1999). The
N400 response to a word is also reduced if it is semantically
related to the previous words in the utterance—for example,
there is no difference in N400 response between the word eat
in for breakfast the boys would only eat... and for breakfast
the eggs would only eat..., despite its semantic implausibility
in the second clause (Kuperberg, Sitnikova, Caplan, & Hol-
comb, 2003).

These effects have led some researchers to argue that the
N400 can be explained by spreading activation, where words
in the preceding context partially activate semantically-
related upcoming words, regardless of whether they are ap-
propriate completions to the sentence (Brouwer et al., 2012).
This ‘bag-of-words’ approach to semantic pre-activation
(Kuperberg, 2016) has also been reflected in computational
modeling of the N400. Several researchers have used the
cosine distance between the word embeddings of the target
word and those for the preceding words to reflect the kind
of semantic similarity that may lead to facilitated processing
(Parviz, Johnson, Johnson, & Brock, 2011; Ettinger, Feld-
man, Resnik, & Phillips, 2016; Frank & Willems, 2017). This
approach is also used to control for confounding effects of
semantic similarity when explicitly investigating prediction
(Kuperberg et al., 2020).

The present study has two main aims. First, to directly
compare and quantify how well semantic facilitation (as op-
erationalized by cosine distance between embeddings) and
prediction (as operationalized by surprisal) predict N400 am-
plitude. Second, to identify the extent to which the two are
correlated and how this varies by language model architec-
ture, with the hope that this will inform why T-LMs have
been found to predict N400 amplitude better than RNN-LMs
despite their apparent cognitive implausibility.

Experiment 1: RNN-LM vs. T-LM surprisal
Modeling approach and details
This experiment follows the same general approach as pre-
vious research investigating surprisal as a predictor of N400
amplitude (Frank et al., 2015; Aurnhammer & Frank, 2019;
Merkx & Frank, 2020), namely, comparing recorded ERP
data to NLM surprisal for the same set of stimuli. We use
stimuli from an ERP study whose data have been previously
presented (Bardolph, Van Petten, & Coulson, 2018). These
stimuli were run through two NLMs, one RNN-LM and one
T-LM, and the predicted probability of target words was col-
lected. This predicted probability was then transformed into
surprisal, where the surprisal S of a word wi is the nega-
tive logarithm of its probability given its preceding context
w1...wi−1, as shown in (1).

S(wi) =− logP(wi|w1...wi−1) (1)

This surprisal was then used as a predictor in a linear
mixed-effects model to predict by-trial, by-electrode ampli-
tude from the original ERP study.

Two NLMs were used. The RNN-LM was the BIG
LSTM+CNN INPUTS model (Jozefowicz, Vinyals, Schus-
ter, Shazeer, & Wu, 2016), henceforth the JRNN. The T-LM
used was GPT-2 (Radford et al., 2019). Both models are very
large—the JRNN has roughly 1 billion parameters, while
GPT-2 has roughly 1.5 billion. One area in which the two dif-
fer is that the JRNN has a vocabulary size of roughly 800,000,
while GPT-2 has a vocabulary size of roughly 50,000. Addi-
tionally, while the JRNN was trained on approximately one
billion words, GPT-2 was trained on a dataset an order of
magnitude larger.

Original ERP Study
The original study (Bardolph et al., 2018) used stimuli
adapted from previous work (Thornhill & Van Petten, 2012).
There were 290 sentence frames with target words in one of
four conditions, for a total of 1160 sentences.

The conditions were the following. The BEST COMPLE-
TION was the completion with the highest cloze probability
(Taylor, 1957; cloze = 0.458± 0.261). The cloze probabil-
ity of a word is the proportion of participants in a norming
study that filled in a gap in the sentence with that word. RE-
LATED completions were low-cloze (0.043± 0.058) words
that are semantically related to the best completion. UNRE-
LATED completions are low-cloze (0.024±0.037) words that
are semantically unrelated to the best completion. IMPLAU-
SIBLE completions are completions that were semantically
implausible with a cloze of zero. The conditions can be il-
lustrated with the following example: It’s hard to admit when
one is wrong (BEST COMPLETION) / incorrect (RELATED to
best completion) / lonely (UNRELATED to best completion) /
screened (IMPLAUSIBLE).

As expected from previous research, Bardolph et al. (2018)
found that the BEST COMPLETION elicited the lowest-
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Figure 1: The improvement in AIC for each model compared
to the baseline model with only ROI as a main effect. The
‘Predictor + ROI’ models have main effects of the predic-
tor and ROI, while the ‘Predictor x ROI’ model also includes
their interaction.

amplitude N400, followed by RELATED, UNRELATED, and
IMPLAUSIBLE completions, in order of increasing amplitude.

In the study, 44 healthy adult experimental participants
read sentences in English one word at a time. EEG was
recorded from 29 scalp sites. In the present study, the mean
amplitude at each site over the 300-500ms time period (the
canonical N400 time-frame) was calculated for each elec-
trode in each trial. These mean amplitude measurements thus
served as the outcome measures in the regression models de-
scribed below.

Results
Linear mixed-effects models were used to predict N400 am-
plitude. All models included region of interest (ROI; Pre-
frontal, Fronto-central, Central, Posterior, Left Temporal,
Right Temporal) as a fixed effect and Subject, Sentence
Frame, and Electrode as random intercepts (more complex
random effects structures led to models that did not converge
or had singular fits).

We evaluated the statistical significance of each predictor
using likelihood ratio tests between nested models. All re-
ported p-values are corrected for multiple comparisons based
on the false discovery rate (Benjamini & Yekutieli, 2001; R
Core Team, 2020). Adding the fixed effect of surprisal to
a null model (a linear mixed-effects model with only ROI
as a fixed effect and the aforementioned random intercepts)
significantly improved model fit (JRNN: χ2(1) = 1483, p <
0.0001; GPT-2: χ2(1) = 1752.5, p < 0.0001). Further adding
the interaction of surprisal and ROI also significantly im-
proved the model fit (JRNN: χ2(5) = 467.82, p < 0.0001;
GPT-2: χ2(5) = 628.84, p < 0.0001).

A comparison of AICs (Figure 1) shows that for equivalent
models, GPT-2 surprisal fits N400 amplitude more closely.
For comparison, we also include the AIC values for equiva-

lent linear mixed-effects models with cloze probability as the
main predictor. While it may be unsurprising that cloze is a
worse predictor of N400 amplitude than surprisal in this study
due to the fact that the RELATED and UNRELATED conditions
were matched for cloze, as far as we are aware, this is the first
time that a corpus-derived metric has out-performed cloze as
a predictor of human processing difficulty (see Brothers &
Kuperberg, 2021, for discussion). To investigate the differ-
ence in AICs further, we compared the predictions of the best
models (i.e. those including the Predictor x ROI interaction)
to the real N400 in a held-out dataset of roughly 15% of the
total data (46,280 measurements).

Figure 2 shows both the true and predicted amplitudes
in the 300-500ms time window for electrodes in the Cen-
tral and Posterior ROIs (the canonical N400 ROIs). As
can be seen, the N400 amplitudes predicted by GPT-2 sur-
prisal are closer to the true amplitudes than those pre-
dicted by JRNN surprisal in 3 out of 4 of the condi-
tions: BEST COMPLETION (One-tailed t-test testing whether
N400 amplitude predicted by the GPT-2 surprisal model <
N400 amplitude predicted by the JRNN surprisal model:
t(10198) = 5.9324, p< 0.0001), RELATED (GPT-2 < JRNN:
t(9105.3) = 3.3548, p = 0.0019), and IMPLAUSIBLE (GPT-2
> JRNN: t(9363.7) = −7.4523, p < 0.0001). While there is
a difference in means in the expected direction for UNRE-
LATED completions, the difference is not significant (GPT-2
> JRNN: t(9695.5) =−1.2441, p = 0.4584).

We further tested whether the models successfully pre-
dicted the differences between conditions by running one-
tailed t-tests between the predicted amplitudes for condi-
tions closest in mean predicted amplitude (using the val-
ues for the Central and Posterior ROIs, as shown in Fig-
ure 2). GPT-2 surprisal successfully predicts that RELATED
words elicit a higher-amplitude N400 than BEST COM-
PLETIONs (t(9601.2) = 18.466, p < 0.0001), that UNRE-
LATED words elicit a higher-amplitude N400 than RELATED
words (t(9393.7) = 5.8936, p < 0.0001), and IMPLAUSI-
BLE words elicit a higher-amplitude N400 than UNRELATED
words (t(9536.7) = 47.936, p < 0.0001). On the other hand,
while JRNN surprisal successfully predicts that RELATED
words will elicit a higher-amplitude N400 than BEST COM-
PLETIONS (t(9593.2) = 15.871, p < 0.0001), and that IM-
PLAUSIBLE words elicit a higher-amplitude N400 than UN-
RELATED words (t(9507.8) = 40.43, p < 0.0001), it does
not predict that UNRELATED completions elicit a higher-
amplitude N400 than RELATED completions (t(9392.6) =
1.2691, p = 0.4584), which was observed in the ERP data
and was successfully predicted by GPT-2 surprisal. In fact,
while its predictions are closer, in terms of predicting signifi-
cant differences between conditions, JRNN surprisal does no
better than cloze (Predicted BEST COMPLETION N400 am-
plitude < predicted RELATED N400 amplitude: t(9651.3) =
38.472, p < 0.0001; RELATED < UNRELATED: t(9384.9) =
0.5747, p = 1; UNRELATED < IMPLAUSIBLE: t(9528.4) =
3.7758, p = 0.0004).
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Discussion
There are several key results from this study. First, sur-
prisal and its interaction with scalp ROI are significant pre-
dictors of N400 amplitude, replicating previous results (Frank
et al., 2015; Aurnhammer & Frank, 2019; Merkx & Frank,
2020). Second, we replicate the finding that the surprisal of
T-LMs better predicts N400 amplitude than that of RNN-LMs
(Merkx & Frank, 2020). Finally, we find that while GPT-
2 surprisal successfully predicts differences in N400 due to
experimental manipulation—with BEST COMPLETION elic-
iting the most reduced N400, and RELATED, UNRELATED,
and IMPLAUSIBLE completions each eliciting increasingly
more negative (less positive) N400s—JRNN surprisal fails
to distinguish between RELATED and UNRELATED comple-
tions. This difficulty for the JRNN to predict the difference
between the two is consistent with the findings of Michaelov
and Bergen (2020).

Why does GPT-2 surprisal fit N400 amplitude better in
both models? It is likely that there are multiple reasons for
this, some of which may involve the simple fact of larger size
and larger training data. It is also important to note that it is
possible that the better predictions of GPT-2 surprisal are due
to different factors across the experimental conditions.

However, one architecture-related possibility is suggested
by our replication of the finding that JRNN surprisal can
struggle to predict the difference between the RELATED and
UNELATED conditions for some sets of stimuli (Michaelov &
Bergen, 2020) and our novel finding that this is not the case
with GPT-2 surprisal. As can be seen in Figure 2, the inability
of JRNN surprisal to predict the difference between the two

seems to be mostly driven by overestimating the N400 am-
plitude for the RELATED condition. This is something which
is improved upon by using GPT-2 surprisal for prediction. It
is important to note that as explained previously, the effect of
semantic relatedness on N400 amplitude has been previously
hypothesized to involve spreading activation or some other
form of shallow semantic facilitation.

This is crucial because as Merkx and Frank (2020) note,
one of the key differences between T-LMs and RNN-LMs is
that T-LMs do not have the same memory bottleneck as RNN-
LMs—they have direct access to all previous words in the
sequence. RNN-LMs, on the other hand, only have one cur-
rent state, which is adjusted with each new input. Thus, this
increased memory capacity—the capacity to ‘remember’ ex-
actly which words precede the current word—means that it is
possible for the network to use specific previous words in pre-
dicting the next word, and that these could independently (or
in a bag-of-words fashion) semantically facilitate predictions.
This may also surface as susceptibility to priming—previous
work has found that T-LMs are likely to repeat words that that
they have already seen, and their predictions can be seman-
tically primed by presenting them with an individual prime
word (Misra et al., 2020).

Experiment 2: Quantifying semantic
facilitation

In Experiment 2, we investigate whether the surprisal of GPT-
2 incorporates something roughly analogous to spreading ac-
tivation. That is, the finding that words are at least partly
predicted because they have been activated by the semantics
of previous words in the sequence. We do so by comparing
the extent to which surprisal in each of the two models cor-
relates with estimates of semantic similarity from each of the
two models. A higher correlation would indicate the model is
more biased towards predicting words that are semantically
related to preceding words in the utterance, i.e., that it ex-
hibits behavior akin to that commonly attributed to semantic
spreading activation in humans.

Method
The high-level process for calculating semantic similarity in
the NLMs was similar to that used for calculating surprisal.
Stimuli from the same experiment (Bardolph et al., 2018)
were run through the NLMs, and the activation states of the
model were recorded. For this study, however, we used the
context-free word embeddings for each of the two NLMs
(JRNN and GPT-2). As in previous work, we calculated the
mean embeddings of all words preceding the target word,
and calculated the cosine distance between this and the target
word embedding. We then compared the extent to which co-
sine distance and surprisal were correlated for each network.

Results and Discussion
As can be seen in Figure 3, cosine similarity and surprisal are
substantially more correlated for GPT-2 (r = −0.480) than
for the JRNN (r =−0.200), supporting the idea that semantic
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Figure 3: Cosine similarity and surprisal in the JRNN and
GPT-2. r is Pearson’s correlation coefficient.

similarity is more directly correlated with surprisal in GPT-2
than the JRNN.

To the best of our knowledge the approach here is novel.
Moreover, it is valuable because it is self-contained. We uti-
lize each model’s own semantic representations to evaluate
the degree of semantic spreading activation. Since our own
semantic representations are the only ones we have access to
during language comprehension, the approach can be seen as
cognitively plausible. Further, it can easily be applied to any
language model and any data set, without necessarily requir-
ing carefully constructed stimuli.

Experiment 3: Testing the implicit semantic
facilitation account

Experiment 1 showed that GPT-2 surprisal is a better predic-
tor of N400 amplitude than JRNN surprisal is. Experiment
2 showed that GPT-2 surprisal is more highly correlated with
semantic similarity than JRNN surprisal is. In Experiment 3,
we directly test whether the latter finding explains the former,
that is, whether the fact that GPT-2 surprisal is more corre-
lated with semantic similarity (as operationalized by cosine
similarity) leads to its better prediction of N400 amplitude.

Method
To do this, we investigated the extent to which each NLM’s
surprisal and cosine similarity metrics explain different pro-
portions of the variance in N400 amplitude. If it is indeed the
case that GPT-2 surprisal predicts N400 amplitude better than
JRNN surprisal because its surprisal is more correlated with
cosine similarity, then we should expect that adding cosine
similarity as a predictor to a linear mixed-effects model with
GPT-2 surprisal as a predictor should lead to less improve-
ment than adding cosine similarity to the equivalent JRNN
surprisal model.

Results
We tested this hypothesis by running likelihood ratio tests
comparing the previous best models (including surprisal,
ROI, and their interaction as fixed effects) with models that

also included cosine similarity as a predictor and larger mod-
els that included both cosine similarity and its interaction
with ROI as predictors. We found that each of these sig-
nificantly improved the JRNN model fit (cosine similarity:
χ2(1) = 92.782, p< 0.0001; cosine similarity x ROI: χ2(6) =
93.594, p < 0.0001), but neither improved GPT-2 model fit
(cosine similarity: χ2(1) = 0.1524, p = 1; cosine similarity x
ROI: χ2(6) = 5.7346, p = 1).

Discussion
The results show that cosine similarity explains additional
variance in N400 amplitude beyond what is explained by
JRNN surprisal. However, this is not the case with GPT-2
surprisal. The results, therefore, provide evidence that it is
not only the case that GPT-2 surprisal is a better predictor of
N400 amplitude and more correlated with semantic similarity
than JRNN surprisal, but that the two are related. Specifically,
they provide evidence for the hypothesis that it is the fact that
GPT-2 surprisal correlates better with semantic similarity that
makes it better at predicting N400 amplitude.

General Discussion
Our results replicate and build upon previous work. As in
previous work, we find that the surprisal of both RNN-LMs
and T-LMs significantly predicts N400 amplitude, that T-LM
surprisal is a better predictor than RNN-LM surprisal, and
that JRNN surprisal struggles to predict the difference be-
tween words that are semantically related and unrelated to
the highest-cloze completion (Frank et al., 2015; Aurnham-
mer & Frank, 2019; Michaelov & Bergen, 2020; Merkx &
Frank, 2020).

Our first novel finding is that GPT-2 surprisal can better
predict the amplitude of N400s elicited by words that are se-
mantically related to the highest-cloze completions than can
JRNN surprisal. This allows GPT-2 surprisal to successfully
distinguish between low-cloze words that are semantically re-
lated and unrelated to the best completion where JRNN sur-
prisal struggles.

Our second and more important finding is that GPT-2 sur-
prisal is more (inversely) correlated with GPT-2 semantic
similarity than JRNN surprisal is with JRNN semantic sim-
ilarity. We hypothesize that this is due to the difference in
architecture—with access to the previous words in a given
input, T-LMs are able to predict the next word based on any
of these words, while RNN-LMs are limited to predict based
on their single recurrent state, which may be multi-layered,
but nonetheless does not store individual previous words ex-
plicitly. This is in concord with recent findings showing
that BERT, another T-LM, is susceptible to priming (Ettinger,
2020; Misra et al., 2020). This suggests that ‘bag-of-words’
semantic spreading activation, while not the whole story be-
hind the neurocognitive system or systems underlying the
N400 response, may still play a part in it, and thus, in the
whole language comprehension system.

As a computational modeling study, the results of our ex-
periments do not directly demonstrate a specific way in which
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language comprehension is implemented in the brain. How-
ever, they do demonstrate that it is not necessary to posit
separate systems to explain the fact that N400 amplitude
is affected both by how predictable an upcoming word is
and the prior occurrence of semantically or associatively re-
lated words in the context. While this is been previously
shown with other (more elaborate) modeling approaches (e.g.
Rabovsky, Hansen, & McClelland, 2018), we show directly
that lexical prediction could in principle implicitly incorpo-
rate semantic relatedness or similarity.

It should be noted, however, that we do not provide evi-
dence that the the same system must underlie both kinds of
N400 response. This is still an open research question. The
one fMRI-based study on the topic, for example, suggests that
the two may occur in distinct areas (Frank & Willems, 2017).
By contrast, the ERP-based work on the topic suggests that
while there are differences between the effects of semantic
facilitation and prediction that might be used to dissociate
the two, the N400 response to each exhibit a very similar
time course and topography (Kutas, 1993; Van Petten, 1993;
Lau et al., 2013; Broderick, Anderson, Di Liberto, Crosse, &
Lalor, 2018).

Another interesting question raised by our results is how to
determine the cognitive plausibility of an NLM. As noted by
Merkx and Frank (2020), intuitively, the RNN-LM architec-
ture appears more cognitively plausible as a model of lan-
guage comprehension than the T-LM. This is due to what
Keller (2010) refers to as the distance-based memory cost
of plausible language models—they have limited ‘working
memory’, and like humans, struggle with long-distance lin-
guistic phenomena (e.g. long-range dependencies). This is
something inherent in the architecture of RNN-LMs, even
those with features such as long short-term memory (LSTM)
that help them remember and forget necessary input. Trans-
formers, on the other hand, have perfect memory for their
entire context window (1024 tokens in GPT-2).

However, as discussed, some aspects of language compre-
hension may involve facilitation based on semantic similar-
ity, and as we demonstrate in Experiment 2, this is a feature
that appears to be more present in GPT-2, and combined with
the findings of Ettinger and colleagues (Ettinger, 2020; Misra
et al., 2020), the present study suggests that this may be a
widespread feature of T-LMs in general. Therefore, it ap-
pears that some aspects of human language comprehension,
specifically, those associated with language processing with
limited working memory, may be better modeled with RNN-
LM surprisal; while those that involve more shallow seman-
tic facilitation may be better modeled with T-LMs surprisal.
This may help to explain why there are conflicting results re-
garding which is better for modeling reading time (Merkx &
Frank, 2020; Wilcox et al., 2020; Eisape et al., 2020).

Understanding the differences between the two model ar-
chitectures and how these relate to different aspects of human
language comprehension may thus not only help us improve
our language models, but also offer insight into the neurocog-

nitive systems involved in language.
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