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Abstract

Causal Inference and Prediction in Health Studtesironmental Exposures and
Schistosomiasis, HIV-1 Genotypic Susceptibility fsoand Virologic Suppression, and Risk of
Hospital Readmission for Heart Failure Patients

by
Sylvia Elise Keuter Sudat
Doctor of Philosophy in Biostatistics
University of California, Berkeley
Associate Professor Alan Hubbard, Chair

Causal inference-inspired semi-parametric methédseasuring variable importance are well
designed to answer questions of interest in heaitimgs. Unlike traditional regression
approaches, such variable importance measuressee lon causal parameters that have
straightforward real-world definitions, regardledghe approach used to estimate them.
Parameters of regression models, in contrast,@ratrall straightforward to interpret in real-
world settings, because their definition relies ptetely on the correctness of the pre-specified
model. Prediction-focused machine learning metladsavoid the issues of model pre-
specification, but still do not provide estimatévariable importance that can be easily
interpreted; the set of predictors chosen canladsoighly variable. Semi-parametric methods
combine the best of both approaches, and are @bi#ize data-adaptive estimation algorithms
while still returning a parameter estimate thaheaningful and can be simply understood.

In this dissertation, semi-parametric methods s&ss variable importance are applied to three
real-world health applications: the relationshipazen types of water contact and the
prevalence of schistosomiasis infection in rurain@hHIV-1 treatment regimen genotype
susceptibility scores and their relationship with tate of virologic suppression; and the impact
of a telemanagement program on and the assocttioltiple risk factors with the rates of
hospital readmission for heart failure patients pBasized are (1) the choice of parameter of
interest as motivated by the research questioreq@hator choice based on a consideration of
theoretical properties and performance under neatidonditions, and (3) the use during the
estimation process of machine learning algorithnsagorithms that utilize multiple candidate
models. Four different causal parameters are difamel described, and multiple estimators are
considered.

Each data analysis presents different opporturtitiésvestigate aspects of causal inference-
based semi-parametric methods. In the schistos@@nalysis, a traditional regression approach
is compared with semi-parametric methods. Estimagoiormance is compared in the HIV
analysis, particularly in the context of the obsehextreme violations of the experimental
treatment assignment (ETA) assumption. The G-coatjout estimator, the inverse-probability-
of-censoring-weighted (IPCW), its double-robustmeupart (DR-IPCW), and the targeted



maximum likelihood estimator (TMLE), are includedthis comparison. The heart failure
analysis addresses differences in causal parachefiaition for a community-level treatment,
and the related assumptions that must be addée typical theoretical framework. Also
included in this analysis is a comparison of supaming with traditional regression in terms of
predictive performance.
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Chapter 1

Introduction

The ultimate goal of any data analysis is to be &blprovide as the end result a real-world
answer to the research question that originallyivatgd the analysis. The initial steps in an
analysis should flow naturally from the researcksiion to the parameter of interest, or the
guantity that can best be used to answer the @sgaestion, and finally to the best approach to
estimate this parameter or quantity. While thiseoirty seems intuitive, it is surprisingly easy to
start with the data available and skip directlyntodeling or estimation, often without thoroughly
considering whether the end result will achievertsearch goals and adequately address the
guestion of interest. For example, logistic regasmodels are reflexively used when the
outcome of interest is binary, and little considierais given to the question of whether the
parameters estimates provided by such modelsrwiyl answer the research question or even
provide interpretable results outside the confidimgts of the pre-specified regression model.

A particular risk factor’s predictive value and @pkendent association with an outcome of
interest are often targeted in the same analybissd two goals are quite different, and require
different analysis approaches. Advances in comgyiower have made the use of data-adaptive
algorithms and algorithms that encompass multipledtate estimators possible for most
investigators. These approaches are very attraoduause they are flexible and allow the
researcher to maximize his or her ability to leflaom the data, and to minimize the need to pre-
specify a prediction model; this is of particulalwe when little or nothing is known about the
true form of the data-generating distribution,sathe case in most public health settings. Such
models cannot be easily used to answer the quedti@misk factor's association with an
outcome, however, and their parameters can beuliffio interpret. This does not reduce their
value in prediction, but emphasizes the need fiiffarent approach when causal inferences or
measures of association with an outcome are desired

Traditionally, researchers have turned to tradaloegression and other pre-specified models to
investigate questions of association with an ougsomith no ability to incorporate the
abovementioned improvements in prediction intogkimation process. Pre-specified models
are not only unable to incorporate additional infation about the data-generating distribution
that data-adaptive estimation approaches couldgbeptaut their parameters may not even truly
answer the questions of interest. Their pre-spztibn supposes that the researcher possesses
accurate knowledge about the true form of the dateerating distribution, which is rarely (or
never) the case in complex health systems. Ifritreasonably be assumed that most such
models are misspecified, it then becomes uncleat e parameters from these models might
mean in a real-world context. If their meaning melear, it raises the additional question of how
they can be optimally positioned to answer any psep research question.



Semi-parametric methods have emerged as a wayrtbatanany of the issues with traditional
approaches. The parameters of interest can igiti@ldefined in a causal framework, and the
assumptions required in support of a causal inkéafion identified. The statistical parameter, or
the parameter that is estimable from the datatluambe defined. Since causal assumptions are
frequently unjustifiable in many health settingssiimportant to be sure that the statistical
parameter retains subject-matter value. Note Heatéfinition of the parameter of interest is
completely separate from the estimation approauthta interpretation is therefore not confined
to the appropriateness of any model or estimagtrrtay be chosen.

Once the parameter of interest has been identifiezithen possible to proceed to the question
of how to best estimate the parameter. Many pakestimators are available, such as the G-
computation estimator, the inverse-probability-efisoring-weighted (IPCW) estimator, the
double-robust IPCW estimator (DR-IPCW), and tardeteximum likelihood estimator

(TMLE) (van der Laan & Rose, 2011; van der Laan ébRs, 2003; Robins, 1986; Robins,
2000; van der Laan & Rubin, 2006). Each estimatay hmave differing theoretical properties,
and these should be considered when choosing betivem. Estimator performance under non-
ideal conditions, particularly conditions that mag/present in the data to be analyzed, should
also be carefully considered. One common non-ideadlition is practical violation of the
experimental treatment assignment (ETA) or posytimssumption, in which data sparsity in the
face of many potential explanatory variables rasmltunderrepresentation of one or more
outcomes in certain strata of the data (van denl&aRobins, 2003; Messer, Oakes, & Mason,
2010). If such an issue is present in the dashauld be kept in mind when the estimator of
choice is selected.

Because the target parameter’s definition is cotajyleseparate from the choice of estimator and
estimation process, it is possible to employ amrgtion method available to best model the
data-generating distribution. Super learning, gor@gch that combines multiple candidate
estimators into a single prediction model usingssraalidation, is particularly appealing (Sinisi
S. E., Polley, Petersen, Rhee, & van der Laan, ; 208Yder Laan, Polley, & Hubbard, 2007).
Such an approach gives the researcher the freemloradrporate any potential model thought to
be predictive of the outcome of interest withoutihg to arbitrarily choose between them. If
nothing is known about the true form of the dataegating distribution, this can be respected by
including many candidate models; alternately, ihsthing is known, any potential model based
on the subject matter can be included as well.Stiper learning approach can provide as the
final prediction model a convex combination of calate models, weighted using cross-
validation, or can use cross-validation to selguadicular candidate model as the best choice.

This dissertation walks through three applicatiohsemi-parametric parameter estimation and
data-adaptive prediction methods to traditionalthegpplications. In each application, the
parameter of interest is chosen in response taresguestions, and not simply in response to
the type of data being analyzed. Different paramsetéinterest are considered, as are different
estimators of those parameters of interest.

Chapter 2 discusses an analysis of the relatiorstipeen types of water contact and the
prevalence of schistosomiasis infection in ruraln@hA traditional regression analysis is
compared with a semi-parametric approach usingaabed population intervention parameter,



as estimated by the inverse probability of cengprireighted (IPCW) estimator (Ahern,
Hubbard, & Galea, 2009; Greenland & Drescher, 189dscher, Fernald, & Hubbard, 2007,
Hubbard & van der Laan, 2008). Recursive partitignregression, and classification trees are
used to estimate the data-generating distribuBvaifnan, Friedman, Olshen, & Stone, 1984).
Also discussed is the difference between meastinemi@ble importance returned by prediction-
focused methods and methods derived with causadente in mind.

Chapter 3 considers HIV-1 treatment regimen gereosgsceptibility scores and their
relationship with the rate of virologic suppressibath in terms of association and prediction. A
population intervention parameter is again empldgedvestigate association with the outcome.
G-computation, IPCW, DR-IPCW, and TMLE are compasedstimators of the parameter of
interest, and super learning is applied to estirttegalata-generating distribution. Estimator bias
induced by observed extreme practical violationdheexperimental treatment assignment
(ETA) or positivity assumption is investigated wugenparametric bootstrap diagnostic (Wang,
Petersen, Bangsberg, & van der Laan, 2006; PetdPeeter, Gruber, Wang, & van der Laan,
2012). Influence curve-derived standard errordR&@W, DR-IPCW, and TMLE are also
compared to standard errors obtained using thearangetric bootstrap.

Chapter 4 describes an evaluation of a heart &ihtervention designed to reduce rates of
hospital readmission, and the estimation of thepesdent association of a variety of risk
factors with the same readmission outcomes. Twarpeters of interest are considered, and
estimated using super learning and TMLE. Causalrpaters in the setting of a community-level
intervention are discussed, and the required axhditiassumptions described (van der Laan M.
J., 2010). Also described is the method of usimgsivalidation to compute influence curve-
based standard errors for effect estimates. Pregliperformance of a readmission risk score
used by the heart failure program is also invetijaand super learner prediction models are
compared with simple main terms logistic regresgicediction models.



Chapter 2

Using Variable Importance Measures from
Causal Inference to Rank Risk Factors of
Schistosomiasis Infection in a Rural Setting in
China



This chapter has been published as a jointly-aatharticle inEpidemiologic Perspectives &
Innovations(Sudat, Carlton, Seto, Spear, & Hubbard, 2010)

2.1 Background

Schistosomiasis is a parasitic disease affectingstimated 200 million people in 76 countries
(WHO, 2006). Humans become infected with schistaasis following contact with water
containing cercaria, the larval stage of the ptgabifection can lead to liver fibrosis and portal
hypertension, and may cause anemia (King, Dick&afisch, 2005; Leenstra, et al., 2006;
Ross, et al., 2002).

Recent studies have shown that the distributidmuofian schistosomiasis infections can be
explained in part by spatial variability in watemtact, particularly with respect to differences in
cercarial density. For example, clustersSohistosoma hematobiunfections in rural Kenya

were identified near water bodies with high numlmrsercaria-shedding snails (Clennon, et al.,
2004). Also, in contrast to water contact meastirasignore spatial variability in cercarial
density, measures of water contact that adjustgttimated cercarial density at the site of contact
have shown strong correlations with human infectiensity (Li Y. , et al., 2000; Seto, Lee,
Liang, & Zhong, 2007).

Less attention has been paid to temporal varighiliinfection risk and to the variability in
infection risk from specific water contact actiesi While diurnal variations in the infectivity of
cercaria have been recognized for decades, btt@odwn about the variability in infection risk
throughout the transmission season (Nojima, SaBlas, & Kamiya, 1980). Let al. observed

two annual peaks i8. japonicuninfection prevalence in the lower Yantzee basinY(LS.,

Sleigh, Ross, Williams, Tanner, & McManus, 200@)tHe irrigated hillsides of southwest
China, temporal fluctuations in both hydrology amail populations have been documented, and
may Yyield corresponding variation in infection rifkoughout the transmission season (Remais,
Hubbard, Wu, & Spear, 2007; Remais, Liang, & Sp2@08). Specific water contact activities
may also affect infection risk, due perhaps toltisation in which these activities are performed
and the parts of the body exposed. Several spedier contact activities have been associated
with the prevalence &. hematobiurmfection in Zanzibar an8. mansoninfection in Cote
d’lvoire (Matthys, et al., 2007; Rudge, et al., 8D(However, neither analysis accounted for the
duration or timing of water contact, and such retehips have not yet been examinedSor
japonicum

The two studies d. mansonandS. hematobiurmentioned above examined numerous risk
factors for infection using traditional correlatiand multivariate regression techniques. The
multivariable regression approach, while commorpadsees an arbitrary model that limits the
interpretation of results (Robins & Ritov, 1997prfexample, parameters from such models
rarely have simply understood definitions withie ttontext of the subject matter; they only have
meaning within the context of the arbitrarily spesd model. Multivariable regression models
can also return misleading inference, becausesbunaption of an arbitrary model does not
allow for model misspecification, and thus incothgestimates variability (Hubbard, et al.,
2010).



In contrast to multivariable regression, semi-paim variable importance measures inspired
by parameters from the causal inference literataree the virtue of (1) using machine learning
algorithms to determine flexibly how to adjust fmtential confounding variables without
requiring arbitrary model pre-specification and (@urning a simple and interpretable measure
of variable importance that under assumptions tsmyaeld estimates of the effect of
intervention (Ahern, Hubbard, & Galea, 2009). Spahameters have been referred to as
population intervention parameters (Ahern, Hubb&r@Galea, 2009; Greenland & Drescher,
1993; Fleischer, Fernald, & Hubbard, 2007; Hublardn der Laan, 2008). This alternative to
a traditional regression analysis is well suiteth® exploratory analysis of high-dimensional
data, where one desires to investigate the indegperassociation of one variable and an
outcome in the presence of many correlated vasable

We analyzed data from a retrospective study in whi2l1 individuals reported their water
contact during the 200B. japonicuninfection season in rural China; infection statu2000

was also recorded for these individuals. Waterainvas calculated using the estimated
duration of water contact and the estimated bodiase area in contact with water during the
specific water contact activity. We aimed to expltre relative importance of different types of
water contact, defined by both water contact agtiand by the month in which the water
contact occurred, on the probability of schistosasisi infection. We analyzed these data in three
ways: first, by applying a prediction (machine l@ag) algorithm; second, by using a simple
multivariable regression; and third, by assesseriable importance using a causal inference-
inspired population parameter. We discuss the tesfieach method, as well as the limitations
of interpretation within the context of the methazged.

2.2 Methods
2.2.1 Data Collection

This research was conducted in Xichang County é&atat the southwest of Sichuan Province,
China. The region is hilly with irrigated agriculeuand historically high schistosomiasis
infection prevalence. Twenty villages ranging iresirom approximately 100 to 300 residents
were selected to participate in a cross-sectiandlysto characterize determinants of
schistosomiasis infection (Spear, et al., 2004Ndrember 2000, all residents in the 20 villages
were asked to participate in schistosomiasis irdacturveys and in an interview to assess basic
demographic characteristics including age, occopand educational attainment. Participation
rates were high: an estimated 90% of residentscpgaated in these surveys. This research was
conducted in close collaboration with the Xichargu@ty Anti-Schistosomiasis Station and the
Institute of Parasitic Diseases at the Sichuan&dat Disease Control. All participants
provided verbal informed consent and human dateaan protocols were approved by the
Berkeley Committee for the Protection of Human 8atg and the Sichuan Institutional Review
Board.

A 25% random sample of residents, stratified blag#é and occupation, was interviewed in

person in November 2000 about their water contattems throughout the schistosomiasis
transmission season. Participants were asked aighitdifferent activities that involve contact
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with irrigation, pond or stream water each mondnfrApril through October: washing clothes
or vegetables, washing agricultural tools, waslhiagds and feet, playing or swimming,
irrigation ditch cleaning and water diverting, piag rice, harvesting rice and fishing. These
water contact activities will be referred to suhsenfly as laundry, tool washing, bathing,
swimming, ditch digging, rice planting, rice hartieg, and fishing, respectively. Participants
were asked how often they performed each actiathenonth and for how many minutes each
time, providing an estimate of water contact freguyeand duration. Each activity was assigned
an exposure intensity weight in order to accountftierences in body surface area exposed.
Field studies in the selected villages were coretlith observe which body parts were typically
wetted for each water contact activity, and burarthwere used to estimate the percent of total
body surface area accounted for in each exposedpgroti[21]. Water contact intensities were
assigned as follows: laundry (0.05), tool washid@®), bathing (0.12), swimming (0.20), ditch
digging (0.05), rice planting (0.05), rice harvegt{0.05) and fishing (0.32). Total body surface
area for adults was estimated to be 1.626md for children age 14 and under: 1.130 m
(Mosteller, 1987). For each activityn monthk, water exposure in minutes-mefenss
calculated:

WG, = Frequencyx Duratignx Intensjity BodySurfaoed\

An individual’'s water contact for each month wakgkated by summing water exposure for all
activities that month. Likewise, an individual’'sdabwater exposure for each activity was
calculated by summing the activity-specific watep@sure over the seven months. The total
water contact over the entire period was also tatied. Because it was determined that only one
infected individual had any water contact assodiatih rice harvesting, rice harvesting was
excluded from the set of activity variables. Tlyige of water contact was not excluded from the
monthly water contact variables, or from the tetater contact variables.

At the same time as the water contact surveyscamdsponding with the end of the
transmission season, schistosomiasis infectioregarwere conducted using two different stool
examination techniques. Participants submitted stmmples from three different days and each
sample was examined using the miracidial hatchaisstrding to Chinese Ministry of Health
protocols (The Office of Endemic Disease ControlHVI@000). The Kato-Katz thick smear
procedure was also used; three 41.5mg slides wepaqed from homogenized stool samples
and examined foB. japonicuneggs (Katz, Chaves, & Pellegrino, 1972). Any pensih a
positive miracidial hatch test or at least @gaponicurmegg detected through Kato-Katz was
classified as infected. All infected individualsreeeferred to local health officials for treatment
with praziquantel.

2.2.2 Statistical Analyses

Prediction Algorithm

In our first analysis, we used a machine-learniggrithm to choose the “best” set of infection
predictors. This algorithm formed recursive pastitng, regression, and classification trees, as

implemented in the R functiaipart (R version 2.10.0, Copyright (C) 2009; BreimangBrman,
Olshen, & Stone, 1984; Therneau & Atkinson, 199He algorithm was allowed to choose
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among all of the possible water contact varialdsgjefined above: activity type, water contact
month, and total water contact. Since the actwiiee sums over all months, the months are
sums over all activities, and the total is the safrall water contact over the entire study period,
including these variables together would not madgess in an approach attempting to determine
associations between the variables and the out¢asne the analyses conducted later in the
paper). However, from the prediction standpoirg, @ahly concern is the accuracy of prediction;
it makes the most sense, therefore, to includeas/mariables as possible in the potential
prediction algorithm, which is why we included @diriables. We note thapart is just one of
many machine learning algorithms that could be usetliding algorithms that combine results
from several learners (Sinisi S. E., Polley, Peter&khee, & van der Laan, 2007). This approach
generalizes to any such routines.

In an attempt to assess the relative “importanééfi®@variables in predicting the outcome, we
applied a Monte Carlo re-sampling approach (nonpatac bootstrap) (Efron, 1982). The study
individuals were randomly re-sampled with replacetfeeaning that one subject could be
sampled more than once, but that all samples wdtesame size), and thegart tree was
recalculated. This bootstrapping method is a contiynased way of simulating re-sampling

from the target population, and can help to exarhm& small changes in the data can affect the
prediction model chosen. We performed this re-samg@pproach 5000 times, and tabulated the
number of times each variable was choserpyt in the prediction model. Multiple splits on a
given variable within the sanmpart fit were counted only once on each iteration.

Multiple Regression

Turning away from the prediction-focused approacir,second analysis was a main-effects log-
linear regression, in which we also included agegary (<18, 18-29, 30-29, 40-49, 50+) and
village indicator variables as possible confoundeiese we separated the activity types from the
months into two separate models, and excludedwattdr contact from both models. We could
not use log-linear binomial models because thegiggad predicted probabilities that exceeded
one, so we used instead Poisson log-linear models.

Model 1: Iog{ E (Y IV ity V)]
=a+ ﬂactivityWactivity + yV

Model 2:log E(Y W V) |
=a+ IBmonteronth+ y\/

In both modelsy is the (binary) outcomé/ is the vector of village and age category indicgto
andy is the vector of coefficients associated WitHn Model 1,Wacviry iS the vector of activity
type water contact variables, afid:viy IS the vector of activity type coefficients; in kel 2,
WhonthiS the vector of monthly water contact variabbesd fmonth IS the vector of month
coefficients. Because we did not wish to rely ugmnPoisson assumption for estimating our
standard errors and deriving inference, we instedclilated robust standard errors using the
Huber/White sandwich estimator (Huber, 1967; WHi®80). Regression estimates were
obtained using thglm command in Stata (Stata 10).



Variable | mportance

Our third (semi-parametric) approach estimated-easledvariable importancéVI) parameter
which compares the current distribution of the onote to its distribution under a theoretical
experiment where the variable of interest is séthédowest risk. In our data, this is equivalent t
comparing the observed infection prevalence distidin to the distribution of infection in a
theoretical experiment in which the entire studpydation never experienced a particular type
of water contact.

Assume the current variable of interesf\jthe outcome i¥,and the confounders — in this case,
all other water contact variables excépt areW, andV are the additional confounders (age
category and village). Our VI estimate is inspibgtthe following causal parameter:

E(Y,)
E(Y) .

Y, represents the outcome if — possibly contranath + everyone had exposuke a.

Outcomes defined in such a way have been refesradcbunterfactual§Rubin D. B., 1978). In
the case of our binary outcome varialid€Y)is estimated as the current disease prevalence in
our target population, which is estimated as trexagye of the observeétivalues.

If Yis binary (yes/no) — as it is in our case — tlaisameter can be interpreted as the proportional
change, relative to current rates, in the prevaeischistosomiasis in our target population if
everyone were unexposed to the particular risks parameter is akin to the attributable risk,
and its magnitude is both a function of the adgistesociation o andY and of the prevalence

of exposure. For example, removing exposure woalct hittle effect on the value of this causal
parameter if the exposure in question were very, gwen if it were strongly related to the
disease outcome. Conversely, removing a commonsexpdhat only modestly increased the
risk of disease could have a much larger impadherparameter’s value.

With regards to the distribution of the data alertéat is, without assuming the necessary
identifiability conditions for making causal inferee (no unmeasured confounders and
independence of counterfactual outcomes, or thealied stable unit treatment value assumption
— SUTVA) (Rubin D. B., 1986) — our VI measure isestimate of the following:

_EunE(]A=0W,V)
B E(Y)

Vi

The numerator is interpreted as the mean predickek ofY assuming one sets the exposure to
0 (A=0 means unexposed) but keeps the other variablbsiaobserved valueky vin the
numerator denotes that this mean predicted valYa®élso taken over aiW andV.

The denominator was estimated by simply takingilean of theY values. To estimate the
numerator, we used the so-called inverse-probgaficensoring-weighted (IPCW) estimator:



L 18 | =0)Y
Buy ECVIA=OW V) =20 IS(A(A: 0|v)v'v)

Heref’(A = 0]W,,V,) is an estimate of the probability th&t0 given the values of the

covariatesM andV; for subjecti. The form of this estimator makes obvious ano#ssumption,
which has been called positivity or experimentahtment assignment (ETA) assumption, which
in this case says thB(A=0 | W,V) > Oin the data-generating distribution (Cole & Hern2@08;
Mortimer, Neugebauer, van der Laan, & Tager, 200&sser, Oakes, & Mason, 2010).

The IPCW estimator is a type of weighted averagheY values, in which the weights are
proportional to the probability of being unexpo$8@0) given the other covariateg/andV;).
The IPCW estimator relatively up-weights the digeastcomes of unexposed individuals with
covariates underrepresented within the unexposagpgivhich has the effect of adjusting for
confounding bias. Becau8§A|W,,V;) is unknown in this case, we used a machine-legrnin
algorithm ¢part) to estimate a model for this probability.

A VI estimate was calculated for each variablentéiiest. Specifically, we define the VI
estimate for each water contact activity as follows

— EWactithy Y E (Y | A = O’Wactivity 7V)

activity — E (Y)

Vi

whereA represents the water contact activity type forolta VI estimate is being calculated,
Waciviy represents the remaining water contact activipg tyariables, and represents the age
category and village covariates. The VI estimatesiich month is defined equivalently, with
Winonth in place oMiacivi. As in the logistic regression analysis, totalevatontact was excluded;

it would not be meaningful to estimakg, , E(Y | A=0,W,V) for A=total water contact, since

none of the other water contact variables coulddrezero if total water contact were equal to
zero.

To derive our inference, we estimated standard®using the non-parametric bootstrap with
5000 iterations. Specifically, participants weresaenpled with replacement, producing 5000
bootstrap samples of size 1011. For each of th@8@ Samples, VI estimates were calculated,

including a re-calculation okS(A = 0|W,V,).The standard deviation across these 5000 estimates
was then calculated and used for inference. Bedlesmodel forP(A = 0|W,V,) was not pre-

specified, this method of calculating the standardr will account for both sampling variability
(by re-sampling) and the variability introducedragdel uncertainty with regards to

P(A =0|W,V,) (by allowing for changes in the model f&(A = 0|W,V}) at each iteration).
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2.3 Results

Figure 2.1 shows the full datpart tree formed by allowing the machine learning atbaon to
choose splits from the pool of all water contactalaes. April, May, June, tool washing, ditch
digging, bathing, and rice picking were the watantact variables chosen for classification.

When the data were re-sampled with replacementeTah lists the number and percentage of
times (out of 5000) each variable was chosen fssification in a giverpart tree. The
covariates are ordered according to the numbemefstthey were chosen to be part of each
rpart tree, from largest to smallest. This method idediApril (92%), June (92%) and total
water contact (86%) as the most frequently chosedigtors of infection status within the
bootstrapping algorithm. The six variables choserclassification in the original full data tree
(Figure 1) are among the top seven identified rfresuently for use in the bootstrap sample
rpart trees. However, total water contact, chosen 86#%etime in the bootstrap samples, was
not part of the original full data tree.

June< 12.03

Toorwashing< 0.2439
0

342/85 ) . o
April>=201- DitChedligging< 4.472

June>=20773 Re< 89.1 Djtch.digging>=19.92
0

59/32
Bathing< 149.5
0 0
132/34 2/7 16/32 713 14/32

Rice.planging>=158.5

0
102/41
Rice.planting< 107.3
0
9/1
May< 31.3

AprilN=89.02
O
10/3

0
8/3 4/11

Figure 2.1 Full data rpart classification tree
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Table 2.1 - Number of times out of 5000 that eachater
contact type was chosen bypart to form a data-adaptive
classification tree.

Water contact type  Number of times chosen Percentag

April 4608 92.2%
June 4602 92.0%
Total 4283 85.7%
Tool washing 4067 81.3%
Ditch digging 3825 76.5%
Rice planting 3677 73.5%
May 3652 73.0%
September 3326 66.5%
July 3181 63.6%
Bathing 3073 61.5%
October 2787 55.7%
Swimming 2481 49.6%
Laundry 2133 42.7%
August 1892 37.8%
Fishing 69 1.4%

Tables 2.2 and 2.3 show results from the log-limegression models, along with the prevalence
of each type of water contact in our sample. Theetations between the various water contact
variables range from -0.02 (between April and Auptes0.68 (between July and August) for the
monthly variables and from -0.15 (between swimnangd bathing) and 0.28 (between rice
picking and bathing) for the activity variables.eTteported relative risks were calculated as

e#%  where ,BI is the estimated regression coefficient 2adis the mean water contact across

all subjects for water contact variabld his relative risk therefore reports the riskhaking the
mean value for water contact variableersus the risk of having no water contact of tyges
previously mentioned, the month and activity vaeatlwere separated into two different models,
which is why the results are reported separatéig. dstimates in Tables 2.2 and 2.3 are also
adjusted for age category and village. We do nmbnterelative risks associated with age
category and village because the effects of thegar@mtes were not the focus of this study.

Table 2.2 — Relative risk estimates for water conta by month.

Month Prevalence Relative Risk 95% CI Std. error vajue
June 0.75 1.03 (0.98, 1.09) 0.03 0.20
October 0.58 0.95 (0.89, 1.03) 0.04 0.22
May 0.75 1.04 (0.97, 1.13) 0.04 0.25
April 0.73 1.04 (0.95, 1.14) 0.05 0.45
August 0.76 1.03 (0.94, 1.13) 0.05 0.51
September 0.70 0.98 (0.89, 1.07) 0.05 0.64
July 0.77 0.98 (0.91, 1.06) 0.04 0.68

These estimates are based on a main-effects legrliegression, and are also adjusted for ageaatagd village.
The relative risks reflect the difference in ridkirdfection between exposure at the mean valu¢hfarmonth and
zero exposure.
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Table 2.3 — Relative risk estimates for water conta by activity.

Month Prevalence Relative Risk 95% ClI Std. error  vajue
Tool washing 0.20 1.03 (1.01, 1.05) 0.01 <0.01
Laundry 0.22 1.02 (1.00, 1.05) 0.01 0.08
Swimming 0.21 1.02 (2.00, 1.05) 0.01 0.10
Ditch digging 0.48 0.99 (0.98, 1.00) 0.01 0.16
Fishing 0.02 1.01 (2.00, 1.02) 0.01 0.17
Bathing 0.49 0.98 (0.92, 1.04) 0.03 0.46
Rice planting 0.65 1.03 (0.94, 1.13) 0.05 0.52

These estimates are based on a main-effects legrliregression, and are also adjusted for ageargtagd village.
The relative risks reflect the difference in ridkirfection between exposure at the mean valu¢hfarmonth and

ZEero exposure.

In the log-linear regression framework, none ofrtenthly water contact variables were found
to have strong associations with the outcome. Alhth-specific relative risk estimates are very
close to one and have 95% confidence intervalsitichtde one. This implies that the risk of
having a positive stool sample when these variadnlest their mean values is indistinguishable
from the risk when there is zero water exposuréenduhese months. Similarly, the relative risks
associated with the water contact activity typesadso all very close to one, and almost all have
95% confidence intervals that include one. The veadhing-specific relative risk has a 95%
confidence interval that does not cross one; thmated relative risk is still extremely close to
one, however, implying almost no detected diffeesimcrisk. These results are of course only
interpretable in the context of the regression nwdsed.

Tables 2.4 and 2.5 show VI estimates for the twe skwater contact variables. As in the log-
linear regression framework, the monthly water aohvariables were analyzed separately from
the water contact activity variables. As previoustylained, the VI estimates were adjusted for
age category and village by including these vaeislnh the estimation &t(A|W, V). (In

similarity with the regression analysis, we did nalculate VI estimates for age category and
village.) Confidence intervals amdvalues based on the bootstrap-derived standasdseare

also reported. In contrast to the log-linear regjmsresults, which identified no detectable
adjusted associations with the outcome among thehtyowater contact variables, July’s VI
estimate indicates a strong adjusted associafiamel interprets this VI estimate as an estimate

of % , itimplies that eliminating water contact in Jwpuld reduce the prevalence of
schistosomiasis measured in the study by 84%pan §.3 to 0.05. The 95% confidence interval
for this estimate indicates a range of 78% to 8Bbe& prevalence of exposure in July is 0.77,
which along with August is the highest of any morithe VI estimates for all other months are
near one and have 95% confidence intervals thatdemne (many of which are quite broad).
No other month, therefore, has a detectable asgwtiaith the outcome.

In terms of VI, no other type of water contact la@darge an impact on infection risk as July
water contact. Tool washing and rice planting wleeonly two activities with a discernable
impact on infection risk — all other activity typ€&able 4) have VI estimates near one and 95%
confidence intervals that include one. Both of#hestimates associated with tool washing and
rice planting, in contrast, have 95% confidencerwils that do not cross one. Interpreting the
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VI results once again as estimates—Eéi(\%) would imply an estimated 12% reduction in the

prevalence of schistosomiasis by eliminating toaslkang and an estimated 29% reduction by
eliminating rice planting. The associated 95% aterfice intervals for these estimates imply a
range of 3% to 20% for tool washing and 4% to 46%tite planting. As shown in Table 5, the
prevalence of water exposure due to tool washirauirstudy population was 0.20, while the
prevalence of water exposure due to rice plantiag d65.

Table 2.4 - Variable importance estimates for watecontact by month.

Month Prevalence VI estimate 95% ClI Std. Error hiea
July 0.77 0.16 (0.11, 0.22) 0.18 <0.01
August 0.76 1.70 (0.48, 6.02) 0.66 0.42
May 0.75 1.18 (0.32, 4.30) 0.66 0.81
October 0.58 1.05 (0.60, 1.84) 0.28 0.86
June 0.75 0.97 (0.27, 3.56) 0.66 0.97
September 0.70 1.01 (0.41, 2.49) 0.46 0.98
April 0.73 1.00 (0.40, 2.50) 0.46 1.00

The prevalence of water contact for each monttuinstudy population is also shown.

Table 2.5 - Variable importance estimates for watecontact by activity type.

Month Prevalence VI estimate 95% CI Std. Error hea
Tool washing 0.20 0.88 (0.80, 0.97) 0.05 0.01
Rice planting 0.65 0.71 (0.53, 0.96) 0.15 0.03
Swimming 0.21 0.96 (0.87, 1.06) 0.05 0.38
Ditch digging 0.48 0.94 (0.80, 1.10) 0.08 0.42
Bathing 0.49 1.09 (0.88, 1.35) 0.11 0.42
Laundry 0.22 0.97 (0.89, 1.06) 0.04 0.45
Fishing 0.02 1.00 (0.98, 1.02) 0.01 0.83

The prevalence of water contact for each monthuimstudy population is also shown.

2.4 Conclusions

The three analysis approaches used here areeati@tt to answer the same research question:
what is the best estimate of the contribution & erplanatory variable to the mean outcome in
the presence of other correlated explanatory vies&We specifically hoped to see how various
types of water contact affected the probabilitygfositive stool sample, adjusting for other
types of water contact, age, and village.

The use of machine learning algorithms for modkidd®n is attractive, particularly because the
model does not have to be pre-specified; this meatisating the association parameters while
acknowledging that very little is typically knowbaut the form of the model. A comparison of
Figure 1 and Table 1, however, provides an exawiph®w simply determining whether or not a
variable is chosen by a machine learning algorifbmch aspart) is not a particularly robust
procedure for defining the importance of a varialeven a finite sample size and highly
correlated predictors — as we have in our dataall sinanges in the data often result in large
changes in the variables chosen as predictors.cBini®ccur even as the fidelity of prediction is
nearly unchanged; there are often several setar@hles in various functional forms that can
provide nearly identical accuracy of predictionisTissue is partially what inspired the idea of
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bagging or bootstrapping these machine learningrigiigms, such as in the case of random
forests (Breiman, 2001). For example, our full de¢éa could lead us to conclude that total water
contact is less predictive of a positive stool skentipan the specific activity and month variables
chosen to be part of the tree. Table 2.1, howeveu)d lead us to conclude that total water
contact is one of the top three most predictivéabdes — and therefore more “important” than
four out of the six variables identified in thelfdata tree. Due to this instability, machine
learning algorithms alone provide sub-optimal infiation for determining the importance of
variables.

The actual best set of predictor variables is ation of the type of model, the method for
constructing candidate models, and the method tgseldoose the so-called tuning parameters.
Our results here therefore do not generalize tmatthine learning routines — such as, for
example, the Deletion/Substitution/Addition algbnt, POLYCLASS or random forests
(Breiman, 2001; Sinisi & van der Laan, 2004; Kodyeeg, Bose, & Stone, 1997). Generally, as
implied by the results displayed in Table 2.1 aigufe 2.1, prediction algorithms are not
constructed to provide any easily interpretableveges of each water contact variable’s
contribution to the probability of a positive st@ample, which is ultimately what we were
trying to investigate. Machine learning algorithoas be applied most effectively to answering
our question of interest when used within an edtondramework whose parameters are defined
independently from the specific model chosen bivargalgorithm (such apart). This semi-
parametric approach, of which our VI analysis i&ample, contrasts dramatically with
estimating simple, parametric regression modelsrapdrting the resulting coefficients as
association parameters (such as the relative mgd@ted in Tables 2.2 and 2.3). Though such
regression analyses can produce parameters watlivedy straightforward public health
interpretations, the interpretations only remaraightforward if the pre-specified regression
model is correct; any interpretation of the estesatbtained must implicitly assert the truth of
the model used, though there is very rarely anyficestion for a specific parametric modebs
priori truth. In addition, the lack of data-adaptive maares can sacrifice power by resulting in
much larger residual variability than approaches tise the data to fit the models. Tables 2.2
and 2.3, for example, show that under the conggaihthe regression model, even the
coefficients with 95% confidence intervals that dt cross one yielded relative risks very close
to one, suggesting little contribution to the vhiligdy of the outcome. Whether this is a true
result, however, or merely reflective of a poorhosen model, is impossible to assess. The
regression approach, though common, is therefdengerous choice as a basis for making
causal inferences. Interpretation of parametensditional relative risks) in the context of a
misspecified model are also of dubious value, sinsedifficult to know what such
interpretations really mean. This is true of theumerable regression approaches reflexively
used throughout observational epidemiology andraghepirical fields.

Though one data analysis cannot justify the gloisal of an analysis technique, at least there is
some hope that our approach here has found pdtgmtiresting associations. Specifically, the
importance of July water contact in our VI resultsot detected by the regression analysis —
could suggest temporal variability in infectionkrduring the infection season. This could be due
to a combination of factors, since infection rigpdnds not only on water contact intensity but
also on cercarial concentration in that water. Mser peak in cercarial concentration was
observed in a number of villages in this same ar@801 using a mouse bioassay procedure

15



throughout the infection season (Spear, et al.4R0the peak occurred in August, not July, but
year-to-year variability in cercarial concentratican be expected due to seasonal fluctuations in
snail populations and agricultural activities driiey changes in rainfall, temperature, and
humidity. Temporal variability in infection risk nalso be influenced by seasonal changes in
activities known to be associated with infectiamgtsas swimming, which may increase during
summer months when school is not in session andeatriemperatures are high. In addition,
prior work has documented seasonal fluctuatiorts/drology which correspond to differences

in infection patterns between schistosomiasis emleggions within Sichuan province (Remais,
Liang, & Spear, 2008). One must consider, howebeat, this dataset has a number of
limitations. The retrospective nature of the watemtact surveys calls into question the accuracy
of recall — particularly given the relatively lopgriod of time (seven months) during which
study participants were asked to recount their m@iatact activities. The analysis also relies on
the definition of water contact, which as previguséscribed includes an estimate of the body
surface area believed to be in contact with wateind certain activities. We are additionally
limited by the need to analyze the monthly watertact and water contact activity variables
separately; while it would have been ideal to cdesthe 56 activity type-by-month variables,
the number of covariates is simply too large in panson with the sample size for any
technique to single out individual contributionse\ttherefore chose to simplify the set of
variables by considering activity separately fromnth, thus providing some power to detect
adjusted associations.

While the results of this analysis are far fromaasive, they nonetheless suggest possibly
fruitful areas for future research. If a high-rgriod in the schistosomiasis infection season
could be detected in something close to real tmee; prevention options would be opened.
Recent advances in detecting schistosome cerganaater using PCR techniques could
potentially provide such a tool (Hung & Remais, 0 he notion of changing from a
surveillance system that relies on episodic huméettion surveys to one based on water
monitoring has many attractions, including thelitkeod of lower cost. Water monitoring is also
an appealing option in areas where schistosomiassnergence has occurred or is suspected
(Liang, et al., 2007).

Though we compare here three specific analysisitqabs, we note that many different machine
learning algorithms (other than classification )e@re available, different regression models
could be specified, and different approaches tnesing our VI parameter could be used
(including G-computation and Targeted Maximum Likebd) (Robins, 2000; van der Laan &
Rubin, 2006). The general principals contrastireséhmethods remain the same, however, and
are important in the larger issue of estimatingitisependent and potentially causal association
of risk factors in data sets with large numbersamfariates. Prediction (machine learning)
algorithms are very well-designed to provide optipradiction and to balance the variance and
bias in the predicted value (the estimat&©f|A,W,V), they are not optimal for determining the
contributions of individual variables directly. Bhis particularly obvious since small changes in
the data can result in large changes in the vasatihosen. In contrast, the standard regression
model approach has a nicely interpretable parametieis entirely dependent upon the
correctness of the model specified. The definibbthe parameter itself is also generally tied to
the form of the model — for example, adding a rplittative interaction term into a regression
model changes the meaning of the main effect t&hus, the definition of a given parameter is
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only useful if the model is correct, and that paggamis interpretation changes as other variables
are added to or removed from the model. In readilgh models are never correct, and there is
no mechanism for allowing them more flexibility ¢buas through machine learning algorithms)
to reduce bias as sample size grows. These isgpeseethe need for a meaningful parameter,
one whose estimation can capitalize on the virdiése asymptotic bias-reduction of machine
learning algorithms and whose definition is notetggent upon the model chosen by these
algorithms. The VI parameter we use is an answtriscneed. We employ a machine learning
algorithm to estimate the parameter, but differennghe model chosen by the algorithm do not
change the definition of the parameter.

The semi-parametric approach is evolving, and re@agvances promise to increase the power of
this combination of machine learning and causarerice methods. We do not necessarily
advocate the details of the semi-parametric Vldtigm used here — we in fact used a relatively
inefficient method, and more refined methods arglable to target model selection towards
optimizing the particular parameter of interestn(der Laan & Gruber, 2009). We simply argue
that it is possible to devise estimation strateties, given unavoidable assumptions, can
converge to unbiased estimates of the causal sffiefined as sample size grows. In addition to
the aforementioned alternate approaches for estighatir VI parameter, one can also use so-
called asymptotically linear estimators; theseramemally distributed, and in many cases simple
standard errors based on this normality can beekkif one wishes to avoid re-sampling-based
techniques (i.e. the bootstrap).

Risk factor epidemiology has for too long reliedapnherently biased techniques, particularly
for observational data. There is no longer anyaeas do so; the bias-reduction flexibility of
semi-parametric models can be combined with estomatf simple and frankly more

meaningful parameters in public health. We suggsisty techniques that (1) define parameters
with convenient public health interpretations, (2 flexible, data-adaptive routines that do not
pre-suppose arbitrary and scientifically unjuskifeamodels, and (3) employ honest inference
that accounts for all the aspects of variationiuding model selection.
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Chapter 3
HIV -1 Genotypic Resistance Test Interpretation

Algorithms and Virologic Suppression:
Variable Importance and Prediction
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3.1 Introduction

Prediction of HIV-1 virologic suppression afteragtment change is an active area of AIDS
research. Genotypic resistance testing is thougbé tpredictive of the virologic response to a
given treatment regimen, and is recommended fobyg#ysicians in treating their HIV-1
infected patients (Ormaasen, Sandvik, Asjg, Holb&etersen, Gaarder, & Bruun, 2004; Hirsch,
et al., 2003; Vandamme, et al., 2011). Interpretatif genotypic resistance tests, however, is
challenging, particularly due to the complex int#i@gns between drug-resistance mutations
(Cabrera, et al., 2004; Schmidt, Walter, ZeitlelK&rn, 2002).

Multiple algorithms exist to interpret genotypisigance tests. These algorithms produce a so-
called genotypic susceptibility score (GSS) fortednug in a given treatment regimen,

according to the patient’s baseline HIV-1 genotyfigese individual GSS can then be combined,
typically using summation, to produce a GSS fordhtre treatment regimen, or regimen-
specific GSS (rGSS).

Various studies have investigated the value of@f&S in predicting virologic suppression,
employing traditional regression and correlatiachteques as well as machine learning
techniques (random forests) (Altmann, et al., 200&ell, et al., 2011). Most studies have found
the rGSS to be at least somewhat predictive ofagio response (Rhee, et al., 2009; Frentz, et
al., 2010; De Luca, et al., 2003; Anderson, et24l(8). At least one large study, however, found
the performance of the rGSS to be close to chamzkfar inferior to the performance of random
forest models populated by other features of thattnent regimen and other baseline covariates,
such as treatment history, baseline viral load,lzas®line CD4 count (Revell, et al., 2011).
Comparisons of different genotypic resistanceitgstpretation algorithms have also revealed
differences predictive performance between algoritiiHelm, et al., 2007; Assoumou, et al.,
2008). There is also some evidence that predictsomg the rGSS can be improved by weighting
according to drug potency (Zazzi, et al., 2009;,Fepal., 2007).

This analysis investigates (1) the association eetwthe rGSS and virologic suppression,
adjusted for other possible explanatory varialdesl, (2) the value of the rGSS in predicting
virologic suppression. This requires two statidtaggroaches, since association with an
outcome of interest does not guarantee inclusi@nioptimal prediction model; conversely,
predictive value does not imply the degree of assion, nor can such value be easily translated
into a causal framework for richer interpretation.

Causal inference-inspired semi-parametric variabfgrtance techniques are ideal for
investigating association, particularly in the gmese of many correlated explanatory variables.
A so-called population intervention parameter iBrael here as the parameter of interest (Ahern,
Hubbard, & Galea, 2009). Estimator choice is comr®d, by applying four different estimators
and comparing them, particularly in terms of vace@and bias induced by violation of the
positivity or experimental treatment assignmentAE&ssumption (Petersen, Porter, Gruber,
Wang, & van der Laan, 2012).

Predictive models including the rGSS along witheotbxplanatory variables are constructed
using super learning, which can employ multipledidate models without requiring arbitrary
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choice of a particular model by the investigatdreSe prediction models are then compared to a
super learner prediction model without the rGS& (lomposed of the other potential
explanatory variables only). Finally, rGSS is cdesed as the sole predictor of the virologic
outcome. Data from 734 HIV-1 treatment regimensaar@yzed, all from patients who had a
treatment change within 24 weeks of a baseline typiwresistance test performed at Stanford
University between September 1998 and December. ZF&i# genotypic resistance test
interpretation algorithms and three rGSS weighsidgemes are compared.

3.2 Methods
3.2.1 Data

This analysis was conducted on a retrospectivesdatantaining information from 641 patients,
drawn from a patient population from 16 clinicsleé Northern California Kaiser Permanente
Medical Care Program. These patients had plasmalHdgmples sent to Stanford University
Hospital for genotypic resistance testing betwegpt&@nber 1998 and December 2007. Patients
considered eligible for this analysis possessedlid treatment-change episode (TCE) — defined
as a change in antiretroviral (ARV) treatment regiinmeeting the following criteria:

1) Treatment change occurred within 24 weeks of aling@sgenotypic resistance test.

2) The new ARV regimen was administered for at least fveeks.

3) There existed at least one plasma HIV-1 RNA leil090 copies/mL in the eight weeks
prior to the treatment change.

4) At least two plasma HIV-1 RNA levels were obtairfedween 4 and 36 weeks after the
treatment change.

5) A complete list of all ARVs ever received by theipat was available.

6) All ARVs in the new regimen were interpretable iyfaur genotypic interpretation
algorithms (see below).

TCEs with new treatment regimens containing AR\& there only licensed in the last months
of the study period (raltegravir, maraviroc, etrang) were excluded. The final dataset consisted
of 734 eligible TCEs for 641 patients (Rhee, etz009).

The outcome of interest is virologic response tgdhlvage regimen, according to the plasma
HIV-1 RNA levels obtained in the 4 to 36 week foltaup period after treatment change. The
outcome was defined as a binary value, and setg¢df@ny plasma HIV-1 RNA level was
below the limit of quantification (BLQ; <75 copi@slL, Versant bDNA assay), and zero
otherwise (Rhee, et al., 2009).

Genotypic Susceptibility Scores
HIV-1 genotypic susceptibility scores (GSS) werevinled for each TCE, according to four
interpretation algorithms: (1) Agence National dec&che sur le SIDA (ANRS) version

2007.10 (Agence National de Recerche sur le SIDRA)); (2) HIV Drug Resistance
Database (HIVdb) (Liu & Shafer, 2006); (3) Regasuan 7.1.1 (Van Laethem, De Luca,
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Antinori, Cingolani, & Vandamme, 2002); and (4) 88eq version 2.8 (Eshleman, et al., 2004).
Each algorithm produced a value between zero aadareach ARV in the new treatment
regimen, representing the degree of predicted ptibday of HIV-1 to the ARV. A value of 1.0
denotes full susceptibility and a value of O deaditdl resistance to the ARV. For each
algorithm, the GSS for enfuvirtide (fusion inhilritevas set to 1.0 if the drug had not been taken
previously, and set to O otherwise (Rhee, et AD92.

To create a single GSS composite value for theeeséilvage regimen, or a regimen-specific
GSS (rGSS), three weighted sums of the individuas®ere computed:

1) No weighting: the weights for each GSS were seti®

2) Boosted Pl weighting: the weights for each boogredease inhibitor (P1) were set to
1.5.

3) Comprehensive weighting: the weights for each ragitee reverse-transcriptase inhibitor
(NRTI) were set to 0.5, and the weights for eacbsbed Pl were set to 2.

Non-nucleoside reverse transcriptase inhibitorsRNIs), the fusion inhibitor enfuvirtide, and
nelfinavir (an unboosted PI) were always assignemjlts equal to one. The notion of weighting
was motivated by the observation that not all AR equally potent. The comprehensive
weighting scheme in particular originated with Rega algorithm, which unlike the other three
algorithms provided instructions for calculatingvaeighted rGSS (Rhee, et al., 2009).

The four algorithms and the three weighting schededmied 12 rGSS variants.

Explanatory Variables

In addition to the rGSS, other potential explanat@riables included demographic variables,
information about the patient’s treatment histang &linical status at baseline, and features of
the new treatment regimen known at baseline andinettly related to the calculation of the

rGSS. Table 3.1 lists these variables by category.

Table 3.1 — Potential explanatory variables

Variable Category Variable Description
Demographic Gender, age at baseline, ethnicity
Treatment history Number of drugs in different sksreceived prior to baseline

Number of treatment regimens received prior tehas
Number of Highly Active Antiretroviral Therapy (H®RT) and non-HAART regimens
received prior to baseline
Number of ARVs received prior to baseline
History of previous virologic suppression
Year therapy began, number of years of therapy poi baseline
Clinical status Baseline viral load (log copies/naind CD4 count (cells/ml)
Year of baseline viral load and CD4 count
Year of baseline genotype
New treatment regimen Number of total ARVs and nemdf ARVs in each drug class in the new regimen
Number of new ARVs in the new regimen
Whether or not a new drug class was introducedémew regimen
Year new regimen began
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3.2.2 Variable Importance
Data Structure

The observed data = (W,A,Y)consists of three elemenW, the possible confounders or
adjustment set (baseline covariatés)he variable of interest (target variable); afidhe
(binary) outcome. In this applicatid is the set of explanatory variables listed in TaéblgA is
the rGSS, and is the binary virologic response after treatmérange.

This observed data follows some unknown distributidPy, which is in turn a component of
M. Individual observation®,,0,,...,Q, can be defined as i.i.d. observation®©of

O =(W,AY), D{12,..3.

Note that the independent unit in this analysisoisthe patient but the treatment change episode
(TCE).

Because variable importance with a binary targaatte A requires the least assumptions, the
rGSS was dichotomized. Four dichotomization scheners considered:

1) A=0when rGSS < 1A =1 otherwise
2) A=0when I<rGSS < 2A = 1 otherwise
3) A=0when X rGSS < 3A =1 otherwise
4) A =0when rGS$% 3,A =1 otherwise

This approach resulted in four possible valueAféor each of the 12 rGSS variants, or 48 target
variables in total.

The number of drugs in the new regimen and numbeérugs in different drug classes in the
new regimen define the maximum value the rGSS chiege. For example, a TCE could not
have an unweighted rGSS greater than two if thebmuraf drugs in the new regimen were equal
to two. Because each drug-specific GSS ranges batagro and one, the maximum unweighted
rGSS for a given TCE is always equal to the nunabeirugs in the new regimen. For the other
two weighting schemes, the maximum rGSS are gietovi

max( I’GS%): 21G+ 0B (et fora- &~ Gk
max( rGS%m ) = 1.5 g +CTOTAL_ 9 .

The boosted PI- and comprehensively weighted rG8%epresented above as rG38d
rGSSpi; Cpi, Curti @and GoraLrepresent the number of Pls, number of NRTIs,tatad number
of drugs in the new regimen, respectively.

For each dichotomization and weighting scheme, T@&® excluded if their maximum rGSS

limit precluded the possibility of achievifg= 0. This resulted in reduced sample sizes for
dichotomization scheme (4) for the unweighted amolsked Pl-weighted rGSS from 734 to 690.
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For the comprehensively weighted rGSS, sample siees reduced from 734 to 712 for
dichotomization scheme (3), and from 734 to 528ifohotomization scheme (4).

Model and Target Parameter

The observed data can be considered a missing data structure ohygethetical full dat,
X=(W,Y¥,Y)~ R.

W andY are still the observed baseline covariates andltserved outcome, respectively.is

the counterfactual outcome whAar= 0, which is observed fdd; with A; = 0, but is missing for

O with A = 1.

In the world of the hypothetical full da¥§ bothY andY, are always observed. In the context of
X, the following causal parameter can be defined:

w(R) =E[¥]- €Y.
This is the parameter of interest in this analyang] can be interpreted in the full data framework
as the change in the observed mean outcome (vicalegponse) wheA (the dichotomized

rGSS) is set to zero.

The statistical parameter, or the parameter thabeadefined under the observed data
distributionPy, is defined as follows:

¥(R)=E,[E(YI A<0,W]- § Y.

Additional assumptions are required in order fer ¢yuivalencey (P,) =¢ (R, ) to hold.

Assuming exogenous variablds= (Uw,Ua,Uy), we can define the following nonparametric
structural equation model (NPSEM) for the endogsrfall dataX: (Pearl, 2000)

W= f,(U,)
A= f,(W,U,)
Y=£,(W AU)

This NPSEM implies the so-called “no unmeasuredaamding” assumption, (van der Laan &
Robins, 2003)

ADY, | W.

We must also assume that the observed@atee a missing data structure Xiiconsistency
assumption) (van der Laan & Robins, 2003). Finallg,require the positivity or experimental
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treatment assignment (ETA) assumption (van der KaRwobins, 2003; Messer, Oakes, &
Mason, 2010):

Pr(A=0W)>

This means that every combination of covariatest inage a positive probability of havirg-O.
Under these assumptions, the statistical pararisegguivalent to the causal parameter.

Parameter Estimation

The statistical parameter of intergs{P,) consists of two elements,, [ E(Y| A=0,W)] and

E[Y]. E[Y] can be nonparametrically estimated by the empinizan, Y :

Y.

i=1

Y =

Sl

Various approaches could be employed to estiE;,@[dE(W A=0, V\/)] In this analysis, four

estimators are considered. First is the likelihbaded G-computation estimator (Robins, 1986;
Robins, 2000; van der Laan & Rubin, 2006). If wérdeQ°(0,W) asE[Y | A=0,W], the G-

computation estimator ap (R, ) is given by

wG COMP _— ZQ (O W) Y

The second and third estimators are derived ustigating equation methodology, and are the
inverse probability of censoring-weighted (IPCWhiresitor and its double-robust counterpart
(DR-IPCW): (van der Laan & Robins, 2003; Hubbard& der Laan, 2008)

|PCW I (A o)
“n Zl 6. OW)"

DR-IPCW _ o I(A 0) 0, 0.\ —_Y
v ;gn(mvv)( -QO.W)+ dO.W)

The estimated probability that = O givenW is represented above @40 |W ).

The fourth and final estimator is the targeted mmaxn likelihood estimator (TMLE), which is a
combination of estimating equation and likelihoggmaches (van der Laan & Rubin, 2006; van
der Laan & Rose, 2011). It is defined as follows:
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n

logit| Q;(AW) | = logit| G(AW]+e&, i AW, anc

_1(A=0)
h =7,
AW =5.0w)

YyM™E = %ZQﬁ(O,Wi)— Y, where
i=1

The parameter is estimated by maximum likelihood. TMLE's targegistep, the addition of
h(A,W)to Q° and estimation of, is designed to reduce estimator bias in relaticthe targeted

feature ofP, (the parameteqz/(PO)) instead of focusing on the entire distribution.

"W will be consistent if the so-called “treatment maaism”g is correctly

The estimatory
specified, andy®“°*"will be consistent ifY%is correctly specified. TMLE and DR-IPCW are

double-robust, meaning thg’™= and ¢#°* """ will be consistent if eitheg or Q° are correctly
specified. Consistency in this context means thagestimatoky, converges in probability to the
true parameteqz’/(PO) asn - o. TMLE and DR-IPCW are also locally efficient, m@anthat
they are asymptotically efficient if the working de contains the true models.

Estimation of Q° and g

Q° was estimated by super learning, as implementétkifR packag8uperLearner
SuperLearneusesv-fold cross-validation to construct a convex conaliion of candidate
estimators. It is most desirable to choose an asitom approach that (1) respects what is known
about the true form a®° (nothing), (2) considers multiple models and witiznachine learning
to come as close as “possible” to the ®@%and (3) avoids manual manipulation of the data in
choosing the final model. Super learning meetsfathese criteria, and in addition has the
theoretical property of performing as well asymiataty as the so-called “oracle” selector
which, in the context of a particular loss functiamninimizes risk under the true data-generating
distribution (Sinisi S. , Polley, Petersen, Rheejat der Laan, 2007; van der Laan, Polley, &
Hubbard, 2007).

For this analysis, the functiduperLearnewas used with 7-fold cross-validation. The librafy
candidate estimators for the super learner includedollowing: main terms logistic regression
(R functionglm); logistic regression with the dichotomized rGSSfee sole predictor;
generalized additive models (as implemented irRipackagegan); stepwise logistic
regression, with all main terms as the maximum siréel (as implemented in the R package
step); and polychotomous regression and multi@ssification (as implemented in the R
package polspline, 5-fold cross-validation) (Kodyezg, Bose, & Stone, 1997). The
dichotomized rGSSA) was required to be present in the model chosezabli candidate
estimator.

The functionpolyclassin thepolsplinepackage does not easily allow for covariates ttobzed
into the final model. For this reason, a workarowras constructed to allow usepadlyclassand
also ensure that the dichotomized rGSS would alwaysresent in the model selected. First,
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polyclasswas fit on the entire dataset (or, in the casgh®®uper learner, on the training
dataset). Second, the predicted probability 6fl was obtained, per thpolyclassfit. Finally,
this fit was used in a logistic regression modeitaming the dichotomized rGSS:

logit[ E(Y| AW) | =y, + 1, Arylogit] Z( AW]D Aylogit]l Z AW,
where Z, ( A W) represents the fitted probabilities frgrolyclass

The generalized additive model used smoothing ephmth two target degrees of freedom for
covariates with more than four unique values, amehl terms for all other covariates. These are
the default specifications of for tigamfunction according to the R functi®@uperLearner.

It would have been possible to also estingabsing super learning. When the sample size is
relatively modest in comparison with the numbepatential explanatory variables, however,
super learning can be overly aggressive and rspledicted probabilities whek = 0 close to
zero, which are practical violations of the ETAwsption mentioned earlier. With this
consideration in mindy was estimated using forward stepwise logisticesgion (R function
step). Collaborative TMLE (C-TMLE) can also be used¢ombat this issue, but was not applied
in this analysis (van der Laan & Gruber, 2009) ditted probabilities oA = 0 were truncated
when necessary at 0.01.

Data-adaptive restrictions on the adjustment s#t©% andg were also performed, to account
for data sparsity and in an attempt to reduce Eibfations. Specifically, binary explanatory
variables were excluded frow in the estimation of’ if less than 10 TCEs were observed to
have any explanatory variable/outcome combinattxplanatory variables with less than 20
unique values were also excluded if one outcomensasbserved for more than 30% of the
possible unique values. Any explanatory variablesueled fromQ° were also excluded from
The adjustment set fgrwas additionally restricted using the same logisatdibed above, but
with A substituted for the outcome. An automated prosesschosen over manual review and
pre-specification ofV because of both the large number of target vasapklevant only to the
restriction ofg) and so that the variability induced by the datagdive restriction o¥V could be
mimicked in the nonparametric and parametric boapstto be subsequently described.

According to this method, five potential explangteariables were excluded fro@? in all
analyses: (1) the number of regimens received pribaseline, (2) the number of HAART
regimens received prior to baseline, (3) Asian iettyn (4) unknown ethnicity, and (5) the
presence of a fusion inhibitor in the new treatmegtmen.

Inference

Standard errors for all four estimators can beregtd using the nonparametric bootstrap. For
G-computation, this is the only option. For IPCWRIPCW, and TMLE, standard errors can
also be approximated using the estimated influencee (IC), assuming the sample sizis

large enough that reliance upon asymptotic resitisasonable. Farlarge enoughy ™

n ’

WP P “and @™ will be approximately normal, with variance eqt@the variance of the
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appropriate IC, divided byﬁ . The influence curves of each estimator, as estignander the
empirical distributiorP,, are given below (van der Laan & Robins, 2003; danLaan & Rose,
2011).

I (A=0)
9,(0|W)

p—

Y- Q}(o,vv))+ Q(o,W- Y-yg™ME

IC™™(0) :(

DR-IPCW — l (A = O) DR-IPCW
IC 0)=| ——L |(y- (o, g(o,W- ¥
n ©) (gn(OIW)( Q@ (0.W)+ Q( WE

IPCW _[ 1(A=0) IPCW
IC O)=| ——=-1|Y- .
O [gn(OIW) j o

For comparison, standard errors were also calallaeng the nonparametric bootstrap with 500
iterations for the 16 comprehensively weighted r&&&ables (4 interpretation algorithms, 4
dichotomization schemes). The comprehensive weiglgtheme was chosen because the final
sample sizes were smallest. To mimic the studygdesie full dataset was re-sampled with
replacement in each bootstrap sample, and theedatas then restricted where necessary to
prevent theoretical ETA violations. This means thatnumber of observations in each bootstrap
sample could vary for the dichotomizations for whiestriction of the full dataset was
necessary. Bootstrap-derived standard errors wereafculated in all cases due to the large
number (48) of rGSS variants.

3.2.3 Bias Diagnostic

Practical violations of the ETA assumption wereaslied during the parameter estimation
process. It was therefore desirable to obtain imate of the possible bias induced by these
violations in positivity. The parametric bootstrdipgnostic of Wang et al. (2006) can be used to
diagnose the presence of bias induced by such E$énaption violations (Wang, Petersen,
Bangsberg, & van der Laan, 2006; Petersen, P@tebher, Wang, & van der Laan, 2012). The
diagnostic consists of three main steps:

Step 1: EstimateP,. This involves estimatin@° andg, which was already done during the
parameter estimation process (previous sectiorg.siime estimates were used again during the

bias diagnostic process. The true target paramy:e(tég) under the bootstrap-generating

distribution is defined as the maximum likelihoalimator applied to the observed data, which
is equivalent to the G-computation estimator désctiin the previous sectiog/f“°"").

Step 2: GenerateP” by sampling from |50. In this step, bootstrap samplBSare generated
from P,. Each samplé®” consists ofi.i.d. observationD* = (W#, A, Y#) ~ P. For each

bootstrap sample*, W*was generated first by sampling from the empiritisiribution, i.e. by
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sampling the rows diV with replacement. Next,, was applied t&W*, and the resulting
predicted probabilities used to generatas Bernoulli random variables with probability
p, =0, (1|W‘*). Finally, Q° was applied toA” andW* to generatey*as Bernoulli random

variables with probabilityp, = Q} (1| A VV’*)

Step 3: EstimateE, [l,an (P#)] . The final step involves applying the entire estioraprocess

to P*as if it were the true dataseEE,BO [z//n ( P#)}is then estimated by taking the mean of the

estimatory, across bootstrap samples. This mean is compatbdive true parameter as
defined in Step 1 to calculate the ETA bias:

Bias.y, = By [‘ﬂn( P#)] _‘/j( I%) '

This parametric bootstrap diagnostic was appligtt &0 iterations to each of the three
estimators that utilizg (IPCW, DR-IPCW, TMLE), for the 10 rGSS dichotomntinas for which

the minimum value of, (0 |W) was closest to zero. Time constraints preventeapipécation
of the diagnostic in all 24 cases when truncatibg, ¢0 |W) at 0.01 was necessary.

3.2.4 Prediction

To investigate the predictive value of the rGS$8,ghper learner was used to fit prediction
models including each of the 12 rGSS options (4rétlgms, 3 weighting schemes), along with
the other explanatory variables. Prediction modaee also constructed containing only the
other explanatory variables (no rGSS), and, altemaonly the rGSS. Since the rGSS weighting
schemes were motivated by differences in ARV poteprediction models were also
constructed for each algorithm containing sums $6®y drug class, which allowed the super
learner to dynamically choose the best weightsriog dlass. This “dynamic weighting” was
included in models both with and without the otbeplanatory variables. Finally, as a simplest
possible approach, the 12 rGSS variables weredssaléhey ranged between 0 and 1, and this
scaled value used as the predicted probabilityh E&GSS was scaled to fall between 0 and 1 by
dividing it by its maximum achievable value. Foe tinweighted rGSS, this maximum was the
number of drugs in the new regimen; for the booBteé&nd comprehensively weighted rGSS,
the maximum values were as described previouslg€esmined by the number of drugs in
different classes present in the new regimen).

Super learning with 7-fold cross-validation wasdisefitting all prediction models with the
exception of those containing the rGSS only; fasthmodels, logistic regression was used. The
super learner library of candidate estimators itetlmain terms logistic regressiaing),
generalized additive modelgg), polychotomous regression and multiple clasdifca

(polyclass 5-fold cross-validation), and stepwise logiseégnession with all main terms as the
maximum size modek{ep. The specifications for the generalized addithvedels
implementatiorgamwere the same as described previously. The fumptityclasswas used
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without modification in this context, because tlS6E was not required to be present in the
chosen prediction model.

Predicted probabilities of virologic suppressiorrevestimated for each prediction model using
10-fold cross validation, and receiver operatingrabteristic (ROC) curves were constructed
from the predicted probabilities (R package ROCHng, Sander, Beerenwinkel, & Lengauer,
2005). ROC curves depict graphically the tradeefiNgen the true positive rate (correct
prediction of virologic suppression among those #thieved virologic suppression) and the
false positive rate (incorrect prediction of virgio suppression among those that did not achieve
virologic suppression). Because predicted prokasliwvere calculated within each validation

sample, the resulting rate estimates will be urdalder sample siza(l—l/V) , whereV is the
number of cross-validation folds. In this analysi§l-1/V) =734 + 1/10= 66(

3.3 Results
3.3.1 Variable Importance

Tables 3.2, 3.3, and 3.4 show the counts and pges of the 734 TCEs defined as hawwrg

0 for each rGSS dichotomization scheme. In ternte@tinweighted rGSS, one unit can be
thought of as one fully active ARV (i.e. one ARVwdich HIV-1 is predicted to be fully
susceptible); for the boosted Pl weighting schame,unit is equivalent to one two-thirds active
boosted PI, or one fully active ARV of any otheugliclass; for the comprehensive weighting
scheme, one unit is equivalent to one half-actvesked PI, two fully active NRTIs, or one fully
active ARV of another drug class.

Table 3.2 - Unweighted rGSS. Counts and percentages TCEs with A = 0 for each dichotomization.

Definition of A= 0 HIVdb Rega ViroSeq ANRS Eligible TCEs
rGSS<1 105 14.3% 56 7.6% 68 9.3% 46 6.3% 734
1<rGSS<?2 254 34.6% 168 22.9% 181 24.7% 127 17.3% 734
2<rGSS<3 226 30.8% 259 353% 233 31.7% 253 34.5% 734
rGSS> 3 149 21.6% 251 36.4% 252 36.5% 308 44.6% 690

Table 3.3 - Boosted Pl-weighted rGSS. Counts and mmentages of TCEs withA = 0 for each dichotomization.

Definition of A= 0 HIVdb Rega ViroSeq ANRS Eligible TCEs
rGSS<1 90 12.3% 42 57% 68 9.3% 46 6.3% 734
1<rGSS<?2 222 30.2% 121 165% 149 20.3% 111 15.1% 734
2<rGSS<3 239 32.6% 256 34.9% 231 315% 242 33.0% 734
rGSS> 3 183 26.5% 315 457% 286 41.4% 335 48.6% 690

Table 3.4 - Comprehensively weighted rGSS. Countsd percentages of TCEs withA = 0 for each
dichotomization.

Definition of A= 0 HIVdb Rega ViroSeq ANRS Eligible TCEs
rGSS<1 118 16.1% 69 94% 86 11.7% 80 10.9% 734
1<rGSS<?2 264 36.0% 172 23.4% 200 27.2% 170 23.2% 734
2<rGSS<3 246 34.6% 284 399% 267 375% 255 35.8% 712
rGSS> 3 106 20.1% 209 39.6% 181 34.3% 229 43.4% 528
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The unweighted rGSS for ANRS, Rega, and ViroSegedrirom 0 to 5, and from 0 to 4.25 for
HIVdb. The mean unweighted rGSS was 1.9 for H\2IB,for Rega, 2.1 for ViroSeq, and 2.3
for ANRS. The boosted Pl-weighted rGSS ranged foaim 5.5 for ANRS, Rega, and ViroSeq,
and from 0 to 4.5 for HIVdb. The mean boosted Pighted rGSS was 2.5 for Rega, 2.1 for
HIVdb, 2.4 for ViroSeq, and 2.5 for ANRS. Finalthe comprehensively weighted rGSS ranged
from 0 to 4.5 for ANRS, Rega, and ViroSeq, and f@to 4 for HIVdb. The mean
comprehensively weighted rGSS was 2.2 for Regafot.BIVdb, 2.0 for ViroSeq, and 2.1 for
ANRS.

Tables 3.5, 3.6, and 3.7 show the variable impodastimates for the unweighted, boosted PI-
weighted, and comprehensively weighted rGSS dichtations, by estimator and genotypic
resistance test interpretation algorithm. In thenterfactual world, each estimated parameter
would be interpreted as the change in the obseatedf virologic suppression if every regimen
had an rGSS in the indicated range. For examplé fo0 when the unweighted rGSS < 1 as
calculated by the Stanford HIVdb algorithm (Tablg)3the DR-IPCW estimate was -0.224,
with a 95% confidence interval of (-0.37, -0.08jterpreted in the causal framework, this
estimate implies that were every TCE to have anaigiited rGSS of less than 1 (less than one
fully active ARV) according to the HIVdb algorithrthe frequency of virologic suppression
would go down from 64.7% to 42.3%, with a 95% cdefice interval (Cl) ranging from 28% to
57%.

The effect estimates féx= 0 when the unweighted rGSS < 1 are all negaitmplying a
deleterious effect of an unweighted rGSS less tmen The 95% Cls for the ANRS algorithm all
cross zero, while the other 95% Cls do not. Thgdstrnegative effect estimate belongs to the
Rega algorithm; the causal interpretation of theWPestimate (-0.432) would be that were all
TCEs to have an unweighted rGSS < 1 as estimatéldebigega algorithm, the proportion of
TCEs after which virologic suppression was achiewedld go down from 64.7% to 21.5%,

with a 95% CI ranging from 0% to 44%. This is aybkroad 95% CI, and the estimated standard
error is more than one quarter the size of thece@istimate. The largest negative effect estimate
among the double robust estimators is -0.304 foL. EMcorresponding to a reduction in the rage
of virologic suppression from 64.7% to 34.3%, watB5% CI ranging from 22% to 48%. For the
dichotomizatiorA = 0 when X unweighted rGSS < 2, the parameter estimatedsoakh
negative, but most 95% Cls either include zerdmioat include zero. The estimates with 95%
Cls farthest from zero belong to the ANRS algorittiior A = 0 when 2 unweighted rGSS < 3,
the parameter estimates are all positive, but ageé, most 95% Cls either include zero or
nearly include zero, and the estimates themseheesl@se to zero in most cases. The estimates
farthest from zero belong to the HIVdb algorithrar(ess all estimators). Finally, fér= 0 when
rGSS> 3, the estimates are also all positive, and ti8 @%s for DR-IPCW and TMLE do not
cross zero for any genotypic resistance test ind&pon algorithm. The 95% Cls for IPCW do
include or very nearly include zero for all algbnts. The largest positive effect estimate is for
the ViroSeq algorithm — the causal interpretatibthe TMLE estimate (0.126) would be that
were all TCEs to have rGSS3 according to the ViroSeq algorithm, the promortof TCEs

after which virologic suppression was achieved wWad up from 64.7% to 77.3%, with a 95%
Cl ranging from 73% to 83%.
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The estimates from the boosted Pl-weighted rGSBI€T&6) are similar to the estimates from
the unweighted rGSS. Fér= 0 when rGSS < 1, the effect estimates are gltiee, and most
95% Cls do not cross, zero, excepting the ANRSrdlgn. No genotypic resistance test
interpretation algorithm consistently yields thegkst effect estimate across all estimators. The
TMLE estimate farthest from zero (-0.276) corresjoto the Rega algorithm. This estimate’s
causal interpretation implies a reduction in vigiosuppression from 64.7% to 31.7%, with a
95% ClI ranging from 24% to 50%, were all TCEs ii$ #nalysis to have a boosted Pl-weighted
rGSS less than one, as interpreted by the Regataigo For the dichotomizatioA = 0 when 1

< boosted Pl-weighted rGSS < 2, the estimates are again all negative, but with 95% Cls that
cross zero in most cases. The exceptions corredpadhd ANRS algorithm and for DR-IPCW
also to the Rega algorithm. The DR-IPCW Rega es$ér@.240, 95% CI -0.42 to -0.06) is more
than two times larger than the DR-IPCW ANRS estar{ad.106, 95% CI -0.18 to -0.03), and is
the largest effect estimate across all algorithntsestimators for this dichotomization. The
causal interpretation of the Rega estimate img@liesduction in the rate of virologic suppression
from 64.7% to 40.7% (95% CI 23% to 59%), if caussdumptions hold. Féx = Owhen

2 < boosted P+ weighted rGS$ , all estimates are positive but near zero fobatlthe

HIVdb algorithm. The HIVdb estimates also havedhé 95% Cls that do not include zero. The
DR-IPCW and TMLE effect estimates for HIVdb, whdgll small, are more than three times
larger than the next largest effect estimate fatlaer genotypic resistance test interpretation
algorithm; the IPCW estimate is more than two titaeger than the next largest estimate. The
DR-IPCW and TMLE estimates are 0.091 and 0.09%ews/ely, implying an increase in the
rate of virologic suppression from 64.7% to 74%atisal assumptions hold (95% CI for both
estimators 69% to 80%). For the final dichotomatfA = 0 when boosted Pl-weighted rGSS
3), all parameter estimates are again positive alrtb% Cls for IPCW include zero, while
none of the 95% Cls include zero for DR-IPCW andUBMThe largest effect estimate with a
95% CI excluding zero is the TMLE estimate for YfieoSeq algorithm (0.127, or an increase in
virologic suppression from 64.7% to 77.4%), anddsy similar to the corresponding
unweighted rGSS estimate (0.126). The 95% confielémervals for the two estimates (boosted
Pl-weighted and unweighted) are almost the san®® (0.0.17, or 74% to 82% for boosted PI;
0.08 t0 0.17, or 73% to 82% for unweighted).

For the comprehensive weighting scheme (Table $&)first dichotomizationX = 0 when
comprehensively weighted rGSS < 1) yields paranmegttmates that are again all negative, and
mostly significant at the 5% level (95% Cls do imiude zero). 95% Cls for ViroSeq include
zero for IPCW, DR-IPCW, and TMLE, as does the IP@%% CI for HIVdb. The genotypic
resistance test interpretation algorithm with gngést parameter estimates overall (for this
dichotomization) is ANRS. Its DR-IPCW estimate@s272, corresponding to a decrease in
virologic suppression from 64.7% to 37.5%, with58©CI ranging from 24% to 52%, were all
TCEs to have a comprehensively weighted rGSS tessdne according to the ANRS algorithm
(and assuming causal assumptions hold). For trendestichotomizationA = 0 when K
comprehensively weighted rGSS < 2), the estimate¥ifoSeq and Rega are negative, with
95% Cls that do not include zero, with the one pkoa of the IPCW estimate for ViroSeq. The
estimates for ANRS are also negative, but their @3%ocdo include zero for all estimators. The
HIVdb-associated 95% confidence intervals incluei®zas well, and the parameter estimates
themselves are very nearly zero, much smaller fimaany other genotypic resistance test
interpretation algorithm. For the third dichotontia (A = 0 when X comprehensively
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weighted rGSS < 3), the parameter estimates aserall and positive. The 95% Cls for the
IPCW estimator all include zero. In contrast, f&RIIPCW, G-computation, and TMLE , only
the ANRS 95% Cls include zero. The largest paranestimates across estimators with 95%
Cls that exclude zero for this dichotomization Imgldo the HIVdb algorithm. This aligns with
the boosted PI results for the equivalent dichotatinon, though the DR-IPCW and TMLE
estimates are slightly smaller than the equivabemisted Pl estimates for HIVdb. Finally, for the
fourth dichotomization (comprehensively weightes8> 3), all estimates are positive and all
TMLE 95% Cls exclude zero, while all IPCW 95% calednce intervals either include or very
nearly include zero. The G-computation and DR-IP@Wo Cls include zero for HIVdb, and
exclude zero for the other three genotypic restsdast interpretation algorithms. The largest
effect estimate corresponds, once again, to theSéiq algorithm. Its TMLE estimate is 0.118,
implying an increase in the rate of virologic suggsion from 64.7% to 76.5%, with a 95% ClI
ranging from 72% to 81%, assuming causal assungptiold. This is smaller than the equivalent
estimates for the boosted Pl-weighted and unweailgt@&SS.

The parameter estimates for DR-IPCW and TMLE argmoflar magnitude in most cases, while
the estimates for G-computation and IPCW vary imgarison; the IPCW and G-computation
estimates are in many cases quite similar to tbo8R-IPCW and TMLE, and sometimes
markedly larger or smaller. Standard errors ovenalsomewnhat large in comparison with the
parameter estimates, and in a number of instameesctually larger in magnitude than the
estimates themselves. The standard errors for @MRMRNd TMLE are mostly comparable to
each other for each parameter definition. In theseases where a difference in standard error
greater than 0.009 is noted between DR-IPCW and EMhe TMLE standard errors are always
smaller. These seven occurrences were all attbbeita rGSS dichotomizations where the

minimum value of,, (O |W) was closest to zero. The G-computation standaoiseare smaller

than both their DR-IPCW and TMLE counterparts 86S < 1 and ¥ rGSS < 2 in Table 3.7,
and are comparable to the DR-IPCW and TMLE standemts for the other two
dichotomizations. The estimated standard errorGW are consistently larger in all instances
than those of the other estimates, often twicamgl This results in 95% Cls for IPCW that
cross zero in a number of cases where those aitliee estimators do not.

Tables 3.8, 3.9 and 3.10 show a comparison ofenfie curve- with bootstrap-derived standard
errors and confidence intervals for the comprehvehgiweighted rGSS dichotomizations for
IPCW, DR-IPCW, and TMLE, respectively. The sampies for the dichotomizatioA =0

when 2<rGSS < 3 ranged from 698 to 727 across bootsaaples, and for rGSS 3 the
sample sizes ranged from 496 to 566. Table 3.8 slioat the bootstrap standard errors for
IPCW are consistently smaller than the influenceewulerived standard errors — this is true in
all but one case (ANRS, rGSS < 1). The differerazedargest where the minimum value of
0,(0|W) was observed to be closest to zero (rGSS < Ijvdrinstances the difference in

estimated standard error resulted in a bootstrapeb85% CI that did not include zero while the
influence curve-based 95% CI did include zero, ¢iothe bootstrap-based 95% Cls come very
close to zero (HIVdb and ViroSeq, rGSS < 1). ForIPRW and TMLE (Tables 3.9 and 3.10),
bootstrap standard errors are mostly comparaltetofluence curve-derived standard errors.
For the DR-IPCW estimator (Table 3.9), differenbesveen standard error estimates larger than
0.009 were observed in two cases, once with theante curve-derived standard error larger
(ViroSeq, rGSS < 1), once with the bootstrap steshdaror larger (HIVdb, rGSS 3). For
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TMLE (Table 3.10), differences larger than 0.008@®=n standard error estimates were
observed in four cases, with the bootstrap staneiaod larger in each case (Rega and ANRS,
rGSS < 1; HIVdb and ViroSeq, rGSS3). In no case did the TMLE or DR-IPCW bootstr&$®
Cls return different inference from the influeneeve-derived 95% Cls.

Wald-type 95% Cls are also compared in Tables3%,and 3.10 to 95% Cls obtained using
guantiles of the bootstrap distribution. Overdlg two methods return 95% Cls that are quite
similar. The largest differences between the twiesyof 95% Cls are for the dichotomization
A=0 when rGSS < 1(ANRS for IPCW; Rega for DR-IPCW0%eq for TMLE). Some of the

95% Cls for this dichotomization also include zbyoone method and do not include zero by the
other. In these cases the standard errors ardéaatgst, meaning that the 95% Cls are broad and
one limit is near zero. The Wald-type and quartidsed bootstrap 95% Cls were comparable for
G-computation as well (data not shown), with nongjgain inference for any estimate when one
method for calculating the 95% CI was used oveiother.

Figures 3.1, 3.2 and 3.3 depict graphically the B\larameter estimates across the different
rGSS dichotomizations and weighting schemes. Ithedle Figures, the estimated parameters
across genotypic resistance test interpretatioorigiigns start out negative (correspondind\te
0 when rGSS < 1), and become progressively morgyosvith each dichotomization.

The results of the parametric bootstrap bias distinare shown in Table 3.11. Bigagfor

IPCW is larger in all cases than Biggfor either DR-IPCW or TMLE; in most cases, the
estimated bias for the IPCW estimator is an ordenagnitude larger than for the other two
estimators. The largest absolute difference in Bpdsetween DR-IPCW and TMLE is for
HIVdb, boosted Pl-weighted rGSS < 1, with DR-IPCH#/img the smallest estimated bias. For
all estimators, Biasais small in comparison with the estimated stan@ardrs.
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Table 3.5 — Unweighted rGSS. Variable importance &mates by genotypic resistance test interpretatiomlgorithm and estimator. The causal parameter
of interest is the difference in probability of virologic suppression if all salvage regimens had rG38 the indicated range versus observed values.

rGSS<1

G-computation IPCW DR-IPCW TMLE

Estimate Estimate SE 95% ClI Estimate SE 95% ClI nizte SE 95% ClI
HIVdb -0.271 -0.360 0.138 (-0.63, -0.09) -0.224 7.0 (-0.37,-0.08) -0.192 0.058 (-0.31, -0.08)
Rega -0.250 -0.432 0.111 (-0.65, -0.21) -0.275 0.0€-0.39, -0.16) -0.304 0.066 (-0.43,-0.17)
ViroSeq -0.310 -0.405 0.143 (-0.69, -0.12) -0.262 .076 (-0.41,-0.11) -0.232 0.060 (-0.35,-0.11)
ANRS -0.302 -0.314 0.179 (-0.67, 0.04) -0.195 0.1280.45, 0.06) -0.155 0.088 (-0.33, 0.02)
1<rGSS<2

G-computation IPCW DR-IPCW TMLE

Estimate Estimate SE 95% ClI Estimate SE 95% ClI nize SE 95% ClI
HIVdb -0.011 -0.017 0.051 (-0.12, 0.08) -0.012 7.02(-0.06, 0.04) -0.012 0.027 (-0.06, 0.04)
Rega -0.080 -0.119 0.074 (-0.26, 0.03) -0.101 0.0470.19, -0.01) -0.106 0.046 (-0.20, -0.02)
ViroSeq -0.051 -0.136 0.058 (-0.25, -0.02) -0.048 .030 (-0.11,0.01) -0.046 0.030 (-0.11, 0.01)
ANRS -0.095 -0.202 0.072 (-0.34, -0.06) -0.114 8.03(-0.19, -0.04) -0.130 0.038 (-0.2,-0.06)
2<rGSS<3

G-computation IPCW DR-IPCW TMLE

Estimate Estimate SE 95% CI Estimate SE 95% CI nizde SE 95% ClI
HIVdb 0.094 0.095 0.050 (0.00, 0.19) 0.102 0.025 .0%00.15) 0.103 0.025 (0.05,0.15)
Rega 0.060 0.071 0.044 (-0.02, 0.16) 0.061 0.024.01(®@.11) 0.061 0.024 (0.01, 0.112)
ViroSeq 0.039 0.054 0.047 (-0.04, 0.15) 0.050 0.024.00, 0.10) 0.050 0.024 (0.00, 0.10)
ANRS 0.016 0.013 0.044 (-0.07, 0.10) 0.021 0.0230.0@, 0.07) 0.023 0.023 (-0.02, 0.07)
rGSS>3

G-computation IPCW DR-IPCW TMLE

Estimate Estimate SE 95% CI Estimate SE 95% CI nizda SE 95% CI
HIVdb 0.040 0.084 0.100 (-0.11, 0.28) 0.097 0.04 .0200.17) 0.103 0.032 (0.04,0.16)
Rega 0.054 0.089 0.064 (-0.04, 0.21) 0.088 0.025.04(®.14) 0.088 0.024 (0.04, 0.13)
ViroSeq 0.081 0.091 0.058 (-0.02, 0.20) 0.116 0.028.07, 0.17) 0.126 0.024 (0.08,0.17)
ANRS 0.083 0.101 0.048 (0.01, 0.19) 0.111 0.022 070.15) 0.114 0.022 (0.07,0.16)

Inference for G-computation (via the nonparamdidotstrap) was not obtained for these estimatésrdnce for the other estimators was obtained usiagnfluence curve.
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Table 3.6 — Boosted Pl-weighted rGSS. Variable imptance estimates by genotypic resistance test inf@etation algorithm and estimator. The causal
parameter of interest is the difference in probabity of virologic suppression if all salvage regimes had rGSS in the indicated range versus observed

values.
rGSs<1

G-computation IPCW DR-IPCW TMLE

Estimate Estimate SE 95% ClI Estimate SE 95% ClI nizde SE 95% ClI
HIVdb -0.347 -0.400 0.143 (-0.68, -0.12) -0.295 830 (-0.46, -0.13) -0.262 0.062 (-0.38, -0.14)
Rega -0.245 -0.422 0.115 (-0.65, -0.20) -0.261 9.06-0.39, -0.14) -0.276 0.067 (-0.41, -0.15)
ViroSeq -0.312 -0.405 0.143 (-0.69, -0.12) -0.266 .076 (-0.42,-0.12) -0.239 0.061 (-0.36,-0.12)
ANRS -0.300 -0.314 0.179 (-0.67, 0.04) -0.193 0.1200.45, 0.06) -0.153 0.089 (-0.33, 0.02)
1<rGSS<2

G-computation IPCW DR-IPCW TMLE

Estimate Estimate SE 95% ClI Estimate SE 95% CI nize SE 95% ClI
HIVdb -0.030 -0.046 0.073 (-0.19, 0.10) -0.033 (7.03(-0.10, 0.04) -0.032 0.037 (-0.10, 0.04)
Rega -0.149 -0.146 0.176 (-0.49, 0.20) -0.240 0.0910.42, -0.06) -0.191 0.093 (-0.37,-0.01)
ViroSeq -0.066 -0.132 0.082 (-0.29, 0.03) -0.056 036. (-0.13,0.01) -0.054 0.035 (-0.12,0.01)
ANRS -0.096 -0.239 0.081 (-0.40, -0.08) -0.106 8.03(-0.18, -0.03) -0.116 0.039 (-0.19, -0.04)
2<rGSS<3

G-computation IPCW DR-IPCW TMLE

Estimate Estimate SE 95% ClI Estimate SE 95% ClI nizte SE 95% ClI
HIVdb 0.100 0.108 0.048 (0.01, 0.20) 0.091 0.028 .0400.15) 0.092 0.027 (0.04, 0.15)
Rega 0.022 0.038 0.049 (-0.06, 0.13) 0.022 0.028.0%; 0.08) 0.022 0.028 (-0.03, 0.08)
ViroSeq 0.027 0.020 0.047 (-0.07,0.11) 0.022 0.0260.03, 0.07) 0.022 0.026 (-0.03, 0.07)
ANRS 0.023 0.026 0.047 (-0.07,0.12) 0.029 0.0230.0@, 0.07) 0.029 0.023 (-0.02, 0.07)
rGSS=>3

G-computation IPCW DR-IPCW TMLE

Estimate Estimate SE 95% ClI Estimate SE 95% ClI nizde SE 95% ClI
HIVdb 0.059 0.111 0.092 (-0.07,0.29) 0.110 0.037.04, 0.18) 0.112 0.032 (0.05,0.17)
Rega 0.093 0.070 0.041 (-0.01, 0.15) 0.103 0.019.07(®@.14) 0.107 0.019 (0.07,0.15)
ViroSeq 0.094 0.102 0.052 (0.00, 0.20) 0.119 0.02R.08, 0.16) 0.127 0.021 (0.09,0.17)
ANRS 0.069 0.067 0.039 (-0.01, 0.14) 0.074 0.022.0300.12) 0.074 0.023 (0.03,0.12)

Inference for G-computation (via the nonparameidotstrap) was not obtained for these estimatésrdnce for the other estimators was obtained usiagnfluence curve.
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Table 3.7 — Comprehensively weighted rGSS. Variablienportance estimates by genotypic resistance tesiterpretation algorithm and estimator. The
causal parameter of interest is the difference inqbability of virologic suppression if all regimenshad rGSS in the indicated range versus observed

values.
rGSS<1

G-computation IPCW DR-IPCW TMLE

Estimate SE 95% ClI Estimate SE 95% ClI Estimate SE95% ClI Estimate SE 95% ClI
HIVdb -0.315 0.056 (-0.43,-0.21) -0.286 0.150 4%8).0.01) -0.232 0.095 (-0.42,-0.05) -0.239 0.0910.42, -0.06)
Rega -0.208 0.068 (-0.34,-0.07) -0.331 0.157 ¢06.02) -0.250 0.098 (-0.44,-0.06) -0.239 0.10(0.44, -0.04)
ViroSeq -0.241 0.062 (-0.36,-0.12) -0.256 0.1880.62,0.11) -0.166 0.124 (-0.41,0.08) -0.187 0.11(€0.40, 0.03)
ANRS -0.334 0.063 (-0.46,-0.21) -0.377 0.102 @0H.18) -0.272 0.072 (-0.41,-0.13) -0.233 0.06(40.36, -0.11)
1<rGSS<2

G-computation IPCW DR-IPCW TMLE

Estimate SE 95% CI Estimate SE 95% ClI Estimate SE95% CI Estimate SE 95% ClI
HIVdb 0.006 0.019 (-0.03,0.04) 0.017 0.056 (-0@a3) 0.006 0.030 (-0.05,0.06) 0.006 0.030 (-P0087)
Rega -0.108 0.040 (-0.19,-0.03) -0.194 0.093 8086.01) -0.180 0.056 (-0.29,-0.07) -0.177 0.05(¢0.29, -0.06)
ViroSeq -0.095 0.029 (-0.15,-0.04) -0.100 0.0860.2%, 0.07) -0.121 0.045 (-0.21,-0.03) -0.118 0.04(-0.21, -0.03)
ANRS -0.046 0.033 (-0.11,0.02) -0.083 0.090 (-p@69) -0.076 0.048 (-0.17,0.02) -0.075 0.048 .1(700.02)
2<rGSS<3

G-computation IPCW DR-IPCW TMLE

Estimate SE 95% CI Estimate SE 95% ClI Estimate SE95% CI Estimate SE 95% CI
HIVdb 0.087 0.024 (0.04,0.13) 0.066 0.044 (-0@25) 0.067 0.024 (0.02,0.11) 0.064 0.023 (0.01)0
Rega 0.038 0.019 (0.00, 0.07) 0.038 0.041 (-0.0£)0 0.039 0.021 (0.00,0.08) 0.039 0.021 (0.omg).
ViroSeq 0.071 0.021 (0.03,0.11) 0.080 0.043 (O00DG)  0.062 0.022 (0.02,0.11) 0.062 0.022 (000RY)
ANRS 0.030 0.021 (-0.01,0.07) 0.009 0.046 (-0M&D) 0.007 0.028 (-0.05,0.06) 0.008 0.028 (-00086)
rGSS=>3

G-computation IPCW DR-IPCW TMLE

Estimate SE 95% ClI Estimate SE 95% ClI Estimate SE95% ClI Estimate SE 95% ClI
HIVdb 0.043 0.042 (-0.04,0.13) 0.023 0.091 (-0ag0) 0.078 0.038 (0.00,0.15) 0.103 0.035 (000BY)
Rega 0.094 0.028 (0.04, 0.15) 0.055 0.051 (-0.0%)0 0.091 0.027 (0.04,0.14) 0.090 0.026 (0.0m4).
ViroSeq 0.113 0.030 (0.05,0.17) 0.072 0.065 (-pB0O) 0.116 0.027 (0.06,0.17) 0.118 0.027 (000X7)
ANRS 0.108 0.025 (0.06, 0.16) 0.078 0.051 (-0.028p 0.111 0.023 (0.07,0.16) 0.112 0.023 (0.0w6)0.

Inference was obtained using the nonparametricstraqt for G-computation, and using the influenceedor the other three estimators.



Table 3.8 — Comparison of influence curve (IC)-devxied inference with nonparametric bootstrap-derived
inference. IPCW estimator, comprehensive weighting.

rGSS<1
Influence Curve Bootstrap
Estimate SE 95% ClI SE 95% CI (Wald-type) 95% Claftfiles)
HIVdb -0.286 0.150 (-0.58, 0.01) 0.141 (-0.56, 0.0 (-0.51, 0.03)
Rega -0.331 0.157 (-0.64, -0.02) 0.125 (-0.58,90.0 (-0.55, -0.05)
ViroSeq -0.256 0.188 (-0.62, 0.11) 0.125 (-0.5019. (-0.53, -0.06)
ANRS -0.377 0.102 (-0.58, -0.18) 0.129 (-0.63,20.1 (-0.54, -0.06)
1<rGS5<2
Influence Curve Bootstrap
Estimate SE 95% ClI SE 95% CI (Wald-type) 95% Claftfiles)
HIVdb 0.017 0.056 (-0.09, 0.13) 0.040 (-0.06, 0.1) (-0.06, 0.1)
Rega -0.194 0.093 (-0.38, -0.01) 0.086 (-0.36,20.0 (-0.34, -0.02)
ViroSeq -0.100 0.086 (-0.27, 0.07) 0.085 (-0.2079. (-0.23,0.1)
ANRS -0.083 0.090 (-0.26, 0.09) 0.099 (-0.28, 0.11) (-0.21, 0.17)
2<rGSS<3
Influence Curve Bootstrap
Estimate SE 95% ClI SE 95% CI (Wald-type) 95% Claftjiles)
HIVdb 0.066 0.044 (-0.02, 0.15) 0.029 (0.01, 0.12) (0.02, 0.14)
Rega 0.038 0.041 (-0.04, 0.12) 0.026 (-0.01, 0.09) (-0.02, 0.09)
ViroSeq 0.080 0.043 (0.00, 0.16) 0.028 (0.03, 0.13) (0.03, 0.14)
ANRS 0.009 0.046 (-0.08, 0.10) 0.040 (-0.07, 0.09) (-0.05, 0.11)
rGSS>3
Influence Curve Bootstrap
Estimate SE 95% ClI SE 95% CI (Wald-type) 95% Claftfiles)
HIVdb 0.023 0.091 (-0.16, 0.20) 0.074 (-0.12, 0.17) (-0.11, 0.17)
Rega 0.055 0.051 (-0.05, 0.15) 0.038 (-0.02, 0.13) (0, 0.14)
ViroSeq 0.072 0.065 (-0.05, 0.20) 0.048 (-0.027D.1 (0, 0.19)
ANRS 0.078 0.051 (-0.02, 0.18) 0.038 (0, 0.15) 20m17)
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Table 3.9 — Comparison of influence curve (IC)-devxied inference with nonparametric bootstrap-derived
inference. DR-IPCW estimator, comprehensive weightig.

rGSS<1
Influence Curve Bootstrap
Estimate SE 95% ClI SE 95% CI (Wald-type) 95% Claftfiles)
HIVdb -0.232 0.095 (-0.42, -0.05) 0.099 (-0.4304). (-0.38, 0.01)
Rega -0.250 0.098 (-0.44, -0.06) 0.098 (-0.44,60.0 (-0.36, 0.01)
ViroSeq -0.166 0.124 (-0.41, 0.08) 0.094 (-0.382). (-0.36, 0.01)
ANRS -0.272 0.072 (-0.41, -0.13) 0.103 (-0.47,79.0 (-0.43, -0.02)
1<rGS5<2
Influence Curve Bootstrap
Estimate SE 95% ClI SE 95% CI (Wald-type) 95% Clafttiles)
HIVdb 0.006 0.030 (-0.05, 0.06) 0.028 (-0.05, 0.06) (-0.06, 0.05)
Rega -0.180 0.056 (-0.29, -0.07) 0.065 (-0.31,50.0 (-0.33, -0.07)
ViroSeq -0.121 0.045 (-0.21, -0.03) 0.050 (-0.2202) (-0.23, -0.03)
ANRS -0.076 0.048 (-0.17, 0.02) 0.053 (-0.18, 0.03) (-0.19, 0.02)
2<rGSS<3
Influence Curve Bootstrap
Estimate SE 95% ClI SE 95% CI (Wald-type) 95% Chaftiles)
HIVdb 0.067 0.024 (0.02, 0.11) 0.026 (0.02,0.12) 0.02, 0.13)
Rega 0.039 0.021 (0.00, 0.08) 0.021 (0.00, 0.08) .00(®.08)
ViroSeq 0.062 0.022 (0.02, 0.11) 0.024 (0.02, 0.11) (0.02,0.112)
ANRS 0.007 0.028 (-0.05, 0.06) 0.030 (-0.05, 0.06) (-0.04, 0.08)
rGSS>3
Influence Curve Bootstrap
Estimate SE 95% ClI SE 95% CI (Wald-type) 95% Claftfiles)
HIVdb 0.078 0.038 (0.00, 0.15) 0.051 (-0.02, 0.18) (-0.02, 0.18)
Rega 0.091 0.027 (0.04, 0.14) 0.031 (0.03, 0.15) .03(®.15)
ViroSeq 0.116 0.027 (0.06, 0.17) 0.033 (0.05, 0.18) (0.04, 0.17)
ANRS 0.111 0.023 (0.07, 0.16) 0.028 (0.06, 0.17) .0§00.16)

38



Table 3.10 — Comparison of influence curve (IC)-déved inference with nonparametric bootstrap-derived
inference. TMLE, comprehensive weighting.

rGSS<1
Influence Curve Bootstrap
Estimate SE 95% ClI SE 95% CI (Wald-type) 95% Claftjiles)
HIVdb -0.239 0.091 (-0.42, -0.06) 0.098 (-0.43085). (-0.41, -0.02)
Rega -0.239 0.101 (-0.44, -0.04) 0.117 (-0.47,30.0 (-0.49, -0.01)
ViroSeq -0.187 0.110 (-0.40, 0.03) 0.106 (-0.392). (-0.46, -0.02)
ANRS -0.233 0.064 (-0.36, -0.11) 0.092 (-0.41,50.0 (-0.45, -0.09)
1<rGS5<2
Influence Curve Bootstrap
Estimate SE 95% ClI SE 95% CI (Wald-type) 95% Claftfiles)
HIVdb 0.006 0.030 (-0.05, 0.07) 0.026 (-0.04, 0.06) (-0.05, 0.05)
Rega -0.177 0.057 (-0.29, -0.06) 0.060 (-0.29,60.0 (-0.32, -0.08)
ViroSeq -0.118 0.047 (-0.21, -0.03) 0.044 (-0.203%) (-0.21, -0.04)
ANRS -0.075 0.048 (-0.17, 0.02) 0.049 (-0.17, 0.02) (-0.17, 0.01)
2<rGSS<3
Influence Curve Bootstrap
Estimate SE 95% ClI SE 95% CI (Wald-type) 95% Claftjiles)
HIVdb 0.064 0.023 (0.02, 0.11) 0.026 (0.01, 0.12) 0.02, 0.12)
Rega 0.039 0.021 (0.00, 0.08) 0.021 (0, 0.08) @8
ViroSeq 0.062 0.022 (0.02, 0.10) 0.023 (0.02, 0.11) (0.02, 0.11)
ANRS 0.008 0.028 (-0.05, 0.06) 0.028 (-0.05, 0.06) (-0.04, 0.07)
rGSS>3
Influence Curve Bootstrap
Estimate SE 95% ClI SE 95% CI (Wald-type) 95% Claftfiles)
HIVdb 0.103 0.035 (0.03, 0.17) 0.054 (0, 0.22) 02.0.19)
Rega 0.090 0.026 (0.04, 0.14) 0.033 (0.02, 0.16) .02(®.16)
ViroSeq 0.118 0.027 (0.07,0.17) 0.038 (0.04, 0.19) (0.04, 0.18)
ANRS 0.112 0.023 (0.07, 0.16) 0.031 (0.05, 0.17) .0900.17)
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Figure 3.2 TMLE estimates of the difference in the@robability of virologic suppression for
salvage regimens with unweighted rGSS in the indit¢ed range versus observed values. A larger
rGSS should indicate a more effective treatment remen.
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Figure 3.1 TMLE estimates of the difference in thgrobability of virologic suppression for
salvage regimens with boosted Pl-weighted rGSS ihé indicated range versus observed values.

40



0.2

0.1

0.0
|

E[Y4] - E[Y], a = rGSS in indicated range
0.1
|

—+— HIVdb
’ --A-- Rega
S ~+- ViroSeq
ANRS
(32}
@
<
3
I I I I
rGss<1 1<1GSS<2 2<rGSS<3 1GSS 23

Range of rGSS (comprehensive weighting)

Figure 3.3 TMLE estimates of the difference in the@robability of virologic suppression for salvage
regimens with comprehensively weighted rGSS in thedicated range versus observed values.

Table 3.11 — Estimates of bias induced by ETA vidlens for ten target variables.

IPCW DR-IPCW TMLE
Estimate SE Bias, Estimate SE Bias, Estimate SE Bigs,

Boosted Pl weighting, A=0 when rGSS< 1

HIVdb -0.400 0.143 -0.054 -0.295 0.083 -0.006 -2.26.062  0.016
ViroSeq -0.405 0.143 -0.051 -0.266 0.076 0.003 39.20.061 0.010
ANRS -0.314 0.179 -0.070 -0.193 0.129 -0.016 -0.183089 -0.011
Comprehensive weighting, A=0 when rGSS< 1

HIVdb -0.286 0.150 -0.026 -0.232 0.095 0.003 -0.23p091  0.011

ViroSeq -0.256 0.188 -0.041 -0.166 0.124 -0.007 18©. 0.110 -0.003

Unweighted, A=0 when rGSS < 1

HIVdb -0.360 0.138 -0.087 -0.224 0.074 -0.009 -2.19.058  0.002
Rega -0.432 0.111 -0.036 -0.275 0.060 0.001 -0.30066  0.002
ViroSeq -0.405 0.143 -0.047 -0.262 0.076 -0.002 23R. 0.060 0.006
ANRS -0.314 0.179 -0.061 -0.195 0.128 -0.008 -0.1865088 <0.001
Unweighted, A=0 when 2<rGSS< 3

ANRS 0.013 0.044 0.001 0.021 0.023 0.002 0.023 3.020.002
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3.3.2 Prediction

Figures 3.4, 3.5, and 3.6 show cross-validatedhastid ROC curves for the full super learner
prediction models incorporating the unweighted,dted Pl-weighted, and comprehensively
weighted rGSS, respectively. ROC curves for eadhefour genotypic resistance test
interpretation algorithms are shown separately,camdpared with the ROC curve for the super
learner prediction model including all other exg@tory variables but excluding any rGSS
variable. The ROC curves for the different genatypisistance test interpretation algorithms
appear nearly indistinguishable, and their perfercean terms of the area under the ROC curve
(AUC) is also very similar, ranging from 0.77 t@0. The best performer in terms of AUC is
HIVdb, with AUC = 0.80 for the boosted Pl and coetpensive weighting schemes, and AUC =
0.79 for the unweighted rGSS. The worst perform&NRS, with AUC = 0.77 for the
unweighted rGSS and AUC = 0.78 for the other twaghveng schemes. The prediction models
including an rGSS variable appear to perform véghsy better than the model containing no
rGSS variable (AUC = 0.76).

Figure 3.7 compares weighting schemes, with RO@esuaveraged across genotypic resistance
test interpretation algorithms. The choice of rG&f$ghting scheme does not appear to make
much of a difference in prediction model performgnn terms of AUC, the model allowing the
super learner to weight the drug class-specific @&8s (“dynamic weighting”) performs better
than the other weighting schemes (AUC = 0.79) siute the worst performer (unweighted) has
an AUC = 0.77, the improvement is barely detectilblee curves appear almost interchangeable.

Figure 3.8 compares weighting schemes again,ithesdcross logistic regression models with
the rGSS as the sole predictor. The ROC curvethéofull prediction model including the
comprehensively weighted rGSS and the predictiodehwith no rGSS are also shown for
comparison. The ROC curves for the weighting sctseane noticeably different in this
comparison, with the unweighted rGSS performingastv@hUC = 0.66), and the comprehensive
and dynamic weighting performing best with AUC ¥®and AUC = 0.74, respectively.
Interestingly, the performance of the rGSS-only eiedor the comprehensive and dynamic
weighting schemes appears only marginally diffefearh the model with no rGSS, which
includes 31 explanatory variables (AUC = 0.76).

The simplistic “scaled rGSS” approaches, in whioh iGSS values were scaled to fall between
0 and 1 and then treated as predicted probabjlitiese also compared to the more sophisticated
modeling approaches (ROC curves not shown). The Add@he unweighted rGSS-only logistic
regression model was no better than the AUC fostated unweighted rGSS (AUC = 0.67).
The scaled comprehensively weighted rGSS perfotmeéer in terms of AUC (AUC = 0.71)

than both of the rGSS-only logistic regression ne & the unweighted and boosted Pl
weighting schemes

The ROC curves in figure 3.9 compare the best pedos of each model type. The full
prediction models with the dynamically and compredieely weighted rGSS perform best, the
scaled comprehensively weighted rGSS performs wanst the prediction models with no rGSS
and with the comprehensively weighted rGSS asdleedictor fall in between. Overall, the
AUC values range between 0.71 and 0.79.
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3.4 Discussion

In the context of this analysis, there did not @pge be much difference between the different
genotypic resistance test interpretation algorithertber in terms of variable importance or
prediction. Different algorithms did yield diffegrparameter estimates for the different
dichotomizations, but mostly these differences vgenall in comparison with the estimated
standard errors. The rGSS for all algorithms wamdbto be associated with the virologic
outcome, even after adjusting for the many othetamatory variables. The rGSS also
moderately improved predictive power when addea poediction model including the other
explanatory variables.

There appears to be a fair amount of shared infitomaetween the rGSS and the other
explanatory variables, manifesting itself in bofiAEviolations and in the predictive value of the
rGSS when used as the sole predictor of the virologtcome. While the addition of the rGSS to
a prediction model including the other explanataayiables resulted in a moderate gain in
predictive power, the rGSS alone performed almsstell as the prediction model including all
31 other explanatory variables but no rGSS. Whiidlgrediction model would be preferable,
this does seem to imply that the rGSS alone cdulde useful in identifying patients at high
risk for virologic failure after a treatment changée rGSS weighting scheme only seemed to
matter when the rGSS was used alone in predictio¢pgic suppression — in that case, the
comprehensive weighting scheme was the best ckaigeediction in this dataset. There did not
seem to be an appreciable gain in predictive vilalowing data-adaptive weighting of the
drug class-specific GSS.

Practical violations of the ETA or positivity assption were extreme in this analysis; out of the
48 estimates calculated, 16 had minimum valueg, f@|W)less than 0.005, 31 had minimum

values less than 0.025, and 39 had minimum vaksgssthan 0.05. The cost of these violations in
positivity seems to have been increased estimatgance rather than bias. This is suggested by
both the large estimated standard errors and byethéts of the parametric bootstrap diagnostic,
which did not raise any red flags in terms of eation bias due to ETA violations. Increased
bounding org, (0 |W) would likely have improved variance, but couldoafgve induced more

bias, particularly for the IPCW estimator.

In this analysis, the IPCW estimator performed worderms of variance and estimated ETA
violation-induced bias, with standard error estesatonsistently close to twice as large as the
next largest standard error for any other estim&toe estimated ETA bias for IPCW, though
not large enough to raise a red flag accordinpéddias diagnostic, was in all instances still
many times larger than the estimated ETA bias itbee DR-IPCW or TMLE. Both double-
robust estimators performed similarly in terms afiance in most cases, but it should be noted
that TMLE was always more efficient in the sevesasain which the largest difference in
standard error between DR-IPCW and TMLE was obskerzgamination of the estimated
influence curves in these seven cases revealeththastimated DR-IPCW influence curve
always contained more extreme positive values iisahMLE counterpart. Since these seven
cases coincided with the most extreme practicdatians of the ETA assumption, it appears that
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TMLE may have an advantage over DR-IPCW in termsffafiency wheng, (O |W) nears zero
for some observations.

The G-computation standard errors for the comprakiely weighted rGSS dichotomizations
were in many cases smaller than those of the deublest estimators, most likely due to the fact
that G-computation estimates will be least affedctgd®TA violations. The differences are rarely
large, however, and the standard error estimatd3RsIPCW and TMLE were almost always
comparable to those of G-computation, and in scamseswere smaller. The lack of any
appreciable efficiency gain, combined with the fiaett G-computation relies completely upon
correct specification of the model chr[Y| A= O,M, suggests that a double-robust estimator

would be a better choice. Standard errors for Gprdation also must be estimated using the
nonparametric bootstrap, which can become cumbersamen the number of estimated
parameters is large.

Both G-computation and TMLE are substitution estors which has the benefit that they
respect the bounds on the parameter. In this asatye true parameter cannot exceed in
absolute value the observed rate of virologic seggion (64.7%). IPCW and DR-IPCW are not
substitution estimators, and as such theoreticaltyexceed the bounds on the parameter. This is
seen numerous times for the IPCW 95% confiden@svats — in many cases, the lower bound
exceeds in absolute value the observed rate dbgimsuppression. For the parameter to attain
this value, it would have to be possible for the @& virologic suppression to fall below zero,
which is impossible. The DR-IPCW estimates in Hnalysis do not encounter this problem —
however, the theoretical possibility is still theYeéhile noticeable differences in performance
between the two double-robust estimators were bs¢wed in this analysis, this theoretical
difference could make TMLE preferable — particilavhen parameter estimates or confidence
interval limits could reasonably be expected to eap against the bounds on the parameter.
TMLE also is the only estimator option designedaduce bias with respect to the desired
feature of the data-generating distribution (theapeeter of interest).

It is important in any analysis that involves esties of variable importance in relation to an
outcome of interest to choose a parameter definthat has meaning in the real world, and not
only in the context of an arbitrarily pre-specifieddel. The statistical parameter (the parameter
that is identifiable under the observed data digtron Py) should also have subject-matter value,
so the results do not depend completely upon theityaof the usually untestable causal
assumptions. The estimator used for estimating#nameter of interest (such as IPCW, DR-
IPCW, G-computation, or TMLE) does matter, partaly when there are ETA violations. Of

the estimators considered in this analysis, DR-IP&\W TMLE appeared to be the best choices,
with TMLE having a slight theoretical edge. Othstimators are available, such as collaborative
TMLE, which can have smaller bias and variance WEEA violations are present than any of
the estimators used here, due to its adaptive psdoe selecting the best covariates to include in
g,(A|W) (van der Laan & Gruber, 2009). Good theoreticapprties are important, because
while many estimators may perform equally undeaidenditions (correct model specification,
no ETA violations, etc.), such conditions are naielevidence in real applications — therefore, it
is worthwhile to consider the behavior of the estion of choice when conditions are not ideal.
When ETA violations are present, this could invadweploying the parametric bootstrap to
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estimate the degree of ETA violation-induced estimhbias, and possibly using this diagnostic
to select a bound ay, (A| W) that provides an acceptable tradeoff between vegiand bias.

Use of asymptotic results to estimate standard®(r@. using the estimated influence curve) is
convenient, particularly when a large number ofhesttes must be calculated. The nonparametric
bootstrap is also available, however, when sanipés s@re small or when there are other
concerns regarding the behavior of an estimatoeutiee conditions of the application of

interest. In this analysis, the influence curvedobstandard errors and inference for DR-IPCW
and TMLE were found to be comparable to the bampstrerived standard errors and inference.
Influence curve-based standard errors for IPCW vigrad to be conservative with respect to

the boostrap-derived standard errors. Overallctimeparison of bootstrap-based with influence
curve-based results supported the use of asymstaticiard error calculations in this analysis.

Estimation procedures and model selection, whethealculating variable importance estimates
or forming prediction models, should respect wedriown about the form of the data-
generating distribution, which is usually nothilgachine learning techniques and techniques
that utilize multiple candidate models (such assigarning) for model selection are therefore
particularly valuable — they can cast a wide nekt@m not require any manual intervention from
the researcher, other than in choosing the irsgalof candidate models. This makes it possible
to employ inference in variable importance estiorathat includes model choice as part of its
estimate of variability — this is impossible whée thoice of model is determined via manual
researcher intervention. In the prediction contiéxdan be of value to assess models ranging in
complexity, because an increase in model complenéy not necessarily result in a
commensurate increase in predictive value.
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Chapter 4

An Assessment of Factors Contributing to
Hospital Readmission Risk and Evaluation of a

Telemanagement Intervention for Heart Failure
Patients
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4.1 Background

Prevention of unnecessary readmissions to the tab$is been identified as an area of
opportunity to improve quality and reduce costbedlthcare delivery, particularly in the
hospital setting (Averill, McCullough, Hughes, Ghdd, Vertrees, & Fuller, 2009; Jencks,
Williams, & Coleman, 2009). In 2008, the Medicayent Advisory Commission (MedPAC)
recommended to Congress that high readmission fiatsglect conditions be used as a basis for
reduced Medicare payments to hospitals; the Affolsi&are Act, signed into law in March
2010, called for the establishment of programshfmspitals with high severity-adjusted
readmission rates to reduce these rates throudhygugrovement (Agency for Healthcare
Research and Quality; Medicare Payment Advisory @@sion, 2008). In October 2012,
Medicare will begin to penalize hospitals by redigciee-for-service payments if their
readmission rates for heart failure, heart attackneumonia are higher than expected
(Andrews, 2011). Despite the increased urgencynfwave quality and to implement processes
that will positively impact rates of readmissioowever, hospital readmission rates have so far
proven difficult to impact, and the best approagiwiich a desired rate reduction can be
achieved has yet to be identified (Rau, 2012).

Heart failure patients have long represented al&agtion of Medicare beneficiaries, and have
been identified as one of the populations receipagicular focus from the new Medicare
regulations (Krumholz, et al., 1997; Ross, et2008; Andrews, 2011). In 2008, a heart failure
program was implemented at two hospitals in Alam@danty, California, with the aim of
increasing the time to readmission, and therebyaied short-term readmission rates, for
patients initially hospitalized for heart failufehe program was community-level, in that the
entire heart failure population at both hospitaéswimultaneously targeted for intervention
without any randomization or separation into ingrion and control groups. The intervention
consisted of two main components: (1) a hospitakdantervention, during which patients
identified as hospitalized primarily for heart taik were visited by specially trained nurses, and
provided education and information pertaining teitllisease and specifically to self-
management of their heart failure symptoms pospital&zation; (2) a telephone management
intervention, during which patients identified lagitr hospitalization as being high risk for
readmission after discharge (and appropriate fefegphone management program) were
followed telephonically by specialty nurses, whopded additional support for symptom and
medication management, as well as assistance waatfdination of outpatient care. The specific
focus of this program was readmission for healtifaj because this is the largest subset
amongst the all cause readmission diagnoses aftertel heart failure hospitalization; heart
failure readmissions are also the most straighthotvto target, because the causes of
readmission are easier to identify.

The telephone management portion of the heartréaihtervention required identification of
patients at high risk for readmission. While matudges have assessed the relationship between
various clinical and demographic variables withils& of readmission after a heart failure
hospitalization, only a handful have concerned thedaes with the development of readmission
risk models or tools that could be used to idertifyh-risk patients (Ross, et al., 2008). Of these,
only the risk tool of Philbin and DiSalvo (1999)esjfically targeted readmission for heart

failure, as opposed to readmission for any reaBobiilin & DiSalvo, 1999; Ross, et al., 2008;
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Wang, et al., 2012). The heart failure program @ygd a modified version of this risk tool,
which was deployed as a paper checklist to belfitemanually by evaluating clinicians.
Though the modified risk tool was developed usimgut from clinicians with many years of
experience with heart failure patients, it was megsted or validated with sample data before
being put to use.

This analysis considers 30-, 90-, and 180-day résgilom outcomes after an initial
hospitalization for heart failure, based on tworgeworth of retrospective administrative data
from the two Alameda County, California hospitaisvhich the heart failure program was
implemented. This encompasses data from the st gf the program and from one pre-
intervention year. Both all cause (readmissiorafty reason) and heart failure readmission
outcomes are considered. Three main goals are¢drgd) the evaluation of the heart failure
program’s impact on readmission; (2) an investagatisk factors for readmission; and (3) a
consideration of the readmission risk score’s mtadt value. The impact of the heart failure
program on readmission outcomes was evaluated oaumgl inference-inspired semi-
parametric variable importance measures. Unlikarmpaters of arbitrary regression models,
these measures are not intrinsically linked to @ayicular model. This means that the parameter
of interest can be interpreted in a real-world eghtregardless of the method used to estimate
the data-generating distribution. Similar variaiphportance methods were also applied to
evaluate the association of various risk factotf wie readmission outcomes. Prediction of
readmission outcomes using the heart failure pragraeadmission risk score was compared to
prediction of readmission using multiple explangteariables. Prediction models utilizing super
learning, which can incorporate multiple modelswiit requiring manual model selection by
the researcher, were also compared to simple raaimstlogistic regression models in terms of
predictive accuracy.

4.2 Methods

4.2.1 Data

This analysis was conducted on a retrospectivesdatd administrative data from two hospitals
in Alameda County, California. The dataset condisteall inpatient hospitalizations for heart
failure with discharge dates between August 1, 28@6July 31, 2007 (control group) and
August 1, 2008 to July 31, 2009 (intervention gno@nnsecutive years could not be considered
due to partial implementation of the heart failumervention in November 2007. Full
implementation of the heart failure interventionsveechieved in both hospitals on July 12, 2008.

Heart failure was defined by the coded primary dasgs, according to the International
Classification of Diseases, Ninth Revision, Clihigkdification (ICD-9-CM). See Table A4.1
in the Appendix for the full code list.

Heart failure inpatient hospitalizations were exigd from the dataset if their hospital discharge
dispositions indicated that the patient expirefl tlee hospital against medical advice, or was
transferred to another facility (hospital, skilledrsing facility, or long term care) after
hospitalization. Also excluded were hospitalizati@t which dialysis was received (according to
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the hospital admission’s coded procedures). Thespitalizations were excluded because they
were not the intended target population of the tfedure intervention. The final dataset
consisted of 788 hospitalizations for 617 uniquigpés in the control group, and 588
hospitalizations for 471 unique patients in thelinéntion group. The combined dataset
contained 1376 hospitalizations for 1034 uniquéepés.

The outcome of interest was readmission to theitedspithin a specified period of time. Six
binary outcomes were considered: (1) readmissiohdart failure within 30 days, (2)
readmission for any reason within 30 days, (3) mgasion for heart failure within 90 days, (4)
readmission for any reason within 90 days, (5) ma@asion for heart failure within 180 days, and
(6) readmission for any reason within 180 daysortter to qualify as a readmission, a given
subsequent hospital admission was required torfmmalective acute inpatient hospitalization at
either one of the two hospitals considered. Reaslonidor heart failure was determined
according to the primary diagnosis ICD-9-CM codggia according to the list in Table A4.1.
Days to readmission was defined as [Readmissiorita#te] — [Prior hospitalization discharge
date].

The list of potential explanatory variables was inaded primarily by the readmission risk
prediction score of Philbin and DiSalvo (1999), d¢se a modified version of this score was
used by the heart failure program to identify paseat high risk for readmission (Philbin &
DiSalvo, 1999). Some additional explanatory vaealihought to be possibly related to
enrollment in the heart failure program and toghebability of readmission were also
considered. The list of baseline covariates indyakient demographic variables (African
American race, age at hospitalization), featurehefpatient’s treatment history (cardiac surgery
in the past year, inpatient hospitalization in plast year), current disease status (type of heart
failure, presence of certain comorbidities, numifetiagnoses), and features of the
hospitalization (whether the admit or dischargesdaicurred on the weekend, hospital length of
stay, whether patient was in a telemetry unit dutive hospitalization, whether the patient was
Medicare or Medicaid insured, whether the patieas @ischarged to home health). The full list
of explanatory variables is shown in Table 4.1. Vagables shaded in gray are the components
of the readmission risk score used by the heduréprogram; the score is constructed by
simply adding the individual binary variables tdgst

For prior cardiac surgery and inpatient hospitaiarain the past year, only hospitalizations at

the two hospitals examined in this study were agreid. The list of ICD-9-CM procedure codes
that qualified as cardiac surgery can be foundabld A4.1 in the Appendix, as are the lists of
ICD-9-CM diagnosis codes that defined the presefeach disease state listed in Table 4.1. For
these additional disease states, all coded diagnvesiee considered, not only the primary
diagnosis. Medicare or Medicaid insurance was detexd according to the payer listed for the
hospitalization, and a patient was considered @ haceived telemetry if he or she was
documented as having been housed in a known telgnmat of the hospital at any point during
hospitalization. Discharge to home health servias determined according to the

hospitalization discharge disposition.

52



Because of the very small number of patients witbreaeeived cardiac surgery in the prior year,
this explanatory variable was excluded from inditanalysis and included only in the

readmission risk score.

Table 4.1 - Explanatory variables. Components of threadmission risk score are shaded in gray.

Variable Category

Variable Description

Demographic

Treatment history

Current disease status

Hospitalization

African American race

Age at hospital admission
Cardiac surgery in past year
Inpatient hospitalization in past year
Chronic lung disease

Diabetes mellitus

Ischemic heart disease

Renal disease

Idiopathic cardiomyopathy
Valvular heart disease

Number of diagnoses
Discharged to home health
Hospital length of stay (days)
Medicaid

Medicare

Telemetry during hospitalization
Weekend hospital admission
Weekend hospital discharge
Hospital

4.2.2 Variable Importance

Data Structure

The heart failure program can be thought of asnanconity-level intervention on two

“communities:” heart failure hospitalizations tleatcurred between August 1, 2006 and July 31,
2007, and heart failure hospitalizations that o@ibetween August 1, 2007 and July 31, 2008.
The observed data, a collection of hospital adminssican be thought of as a random sample of

i.i.d. observations of the random varialde=( E,W, A Y). This random variable follows some

unknown distributiorPo, which is itself a component 8ff, a set of possible probability
distributions. The individual hospitalizatiofs,O,,...,Q, can therefore be defined as

O =(E,W,AY), D{12...H

The eIements(E,W, A Y) that comprisé are as followsE represents the community-level

variables A represents the binary treatment or target variddlegpresents the set of possible
individual-level confounders, andrepresents the binary outcome variable. In thigiegtion, E



is the time period in which the hospitalization meed (August 1, 2006 - July 31, 2007 or
August 1, 2008 - July 31, 2009,is the presence or absence of the heart failteeviention W
is the set of other possible individual-level exgltory variables outlined in Table 4.1, ands
one of the six readmission outcomes describeddmptlvious section.

Model and Target Parameters: Heart Failure I ntervention

In the context of the observed data, the commueitgt nature of the heart failure program
means that the environmental variaBles completely confounded with the treatment vde#$

and only one outcome can be observed for eachtabzation — if the hospitalization is part of
the control group, it is impossible to observedh&comeY that would have occurred if the
hospitalization were part of the intervention grpapd vice versa. One could, however, conceive
of a hypothetical full data structureunder which it would be possible to observe any

combination of( E,W, A and the resulting outcome; the observed data @amltk considered a
missing data structure on this hypothetical futtd&ollowing the notation in van der Laan
(2010), a nonparametric structural equation mod®ISEM) for endogenouX = ( EW, A Y)
can be constructed as follows, assuming exogebougu . ,U,,,U ,,U,) ~P,: (Pearl, 2000;
van der Laan M. J., 2010)

E=1(Ue)

W= 1, (EU,)
A= f,(EW,U,)
Y=1(EW, AU)

Let ED{Q), q} , Whereg,is the pre-intervention time period, agi$ the intervention time period.
AD{0,3 is the absence or presence of the heart failurgrano. Assume also that
a =P(E=g)is known.

We can now define the counterfactugsnd Y, on this NPSEM, which are the random

variables obtained by settidg-0 andA=1, respectively. We can also define the observed @ata
as i.i.d. observations from the post-interventionrderfactual distribution of the intervention
A=0,E=¢andA=1E=¢. Specifically, forn=n, + n, we observe,observations on the

counterfactua(W(e), Y( g,0)) ~ P ,and n observations on the counterfactual
(W(e), Y(@1) ~ P,. In this analysisp, =588and n, = 788,

Let us define the random varialide= Bernoull{a) D{(O, e), (1, @} . We can now re-define the
observed dat® asO = (B,W(B), Y( B). Conditional orB = (0,g,), O followsP, ,, and
conditional orB=(1,¢), O followsP, , .

The first parameter of interest is the additivesadeffect, which is defined as follows:
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w(Rx)=E[Y]- H Y]

R, x denotes the probability distribution @, X ) . This is the difference in the probability of

hospital readmission in an ideal experiment whergrol and intervention groups could be
randomly sampled from the full data, witiandE approximately evenly distributed across
groups, meaning that the parameter would not eetEd by environmental confounding.

The statistical parameter, or the analogous paexméthe observed data distribution, is as
follows:

¢(R)=Euo E((BIWB BL8)- EYH WB 80,3}

E, (g @bove indicates that the mean of the differen@xpected outcomes is also taken over all
individual-level W(B) . Assumptions are required in order {p(P, )to be equivalent to
t/l(PU’X ) . We must assume the NPSEM defined above, andhthabarginal distribution dt is

known. We must also assume tRatnly affectsY throughW, which has been referred to as the
exclusion assumption, or no residual environmecaafounding. It is also necessary that there
be a positive probability of inclusion in eitheetmtervention or control group given the
covariate values present in the sample, or:

0<P(B=(1g)W)< la.

Finally, we require the strong randomization asstiompwhich says thakg), is such that
(E,w, Ais independent o¥ (e w gfor all e, w, a (van der Laan M. J., 2010).

The second parameter of interest is the additiusalaeffect among the treated population,
which can be thought of as the mean differencautna@ne amongst the intervention group if the
intervention group had not received the interventRecall that the outcome of interest is
hospital readmission after initial hospitalization heart failure. In the context of the same
NPSEM defined above, the causal parameter is akéisdollows:

W' (Rx)=E[X-YI(ALE g
Under the observed data distributi&y we have the following statistical parameter:
W' (R)=Eus[{E(MBIWB B@LE- EXYHB WB BO,¥ | B, k

The causal parameter' (F{JYX ) and the statistical paramewf(Po) are equivalent under the
same assumptions described for the additive tredtaféect.
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Model and Target Parameters. Explanatory Variables

The additive effect was also of interest for thplaratory variables (these other target variables
will be referred to a#&\ ). Most were already binary, but the few that wesewere dichotomized
as follows:

« Age at hospitalizationA” = 1 when age > 69

« Hospital length of stay (LOSK = 1 when LOS > 4 days

« Number of diagnose# = 1 when number of diagnoses > 12
« Readmission risk scor& = 1 when score > 5

To avoid uncontrolled differences between the ir@stion and control groups due to the
presence of the heart failure program, each graagpasnsidered separately in this portion of the
analysis. This resulted in two effect estimatesefach target variablé .

Let P,. .denote the observed data distribution within aipaler group — specifically, for the
group with environmental variable= e. These observed da@, = (W, A, Y) could be

considered a missing data structure on a hypo#idtitt data structurex”™ = (W, A, Y) which,

assuming exogenous” = (UW,UA, ,UY) ~ P, could have the following NPSEM:

W= £, (Uy)
A=f (WU,
Y= f(W, A, U,).

Under this NPSEM, the causal parameter of intdeeklitive effect) would therefore be

(R )= EIY]-H Y],

and the statistical parameter would be
w(P;.)=E[E(YI A=1W- & Y A= 0, ]

For the equivalence!/(Po*’e) :w( Pi x ) to hold, slightly weaker assumptions are requihesh

in the case where the target variahlis the heart failure intervention; this is duetie fact that
the community-level variablg is used in defining the target population, antheefore no
longer an additional variable requiring considenain the NPSEM. First, as implied by the

NPSEM for X", we must assume that, give) A" is independent of the counterfactual outcome
Y. for a'0{0,3 . This has been called the “no unmeasured confaghdissumption, and is the

analog of the exclusion assumption previously erplh (van der Laan & Robins, 2003). Also
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required is the positivity or experimental treatmassignment (ETA) assumption (van der Laan
& Robins, 2003; Messer, Oakes, & Mason, 2010):

P(A =4 |w)>0.

Finally, we must assume that the observed @atare a missing data structureXn
(consistency assumption) (van der Laan & Robin6320

Parameter Estimation

Parameters were estimated using targeted maxinkafihibod estimation (TMLE), which
combines features of both estimating equation &etliood approaches (van der Laan & Rubin,

2006; van der Laan & Rose, 2011). First, let usnge®(A W) asE[Y| AW and g(0|W) as
the estimated probability that= 0 givenW. Q°( A W) then denotes the initial estimate of

Q(A'W) and g,(0|W) denotes the estimate g0 |W). Arepresents the treatment or target
variable of interest. The TMLE for the additiveesff is then defined as follows:

l//n z%il:Qi(LW)_ Q}(O,W):', where

i=1

logit| Q;(AW) | = logit| G(AW]+e&, i AW, anc

I(A=1) 1(A=0)

h = }
AW =5 aw) g ow)

The parameter is estimated by maximum likelihood.

The TMLE for the additive effect amongst the trelgtepulation is as follows: (Hubbard, Jewell,
& van der Laan, 2011)

> 1(A=1Qaw)- QW)

Gyl 1
7/ (Qn’ gn) Zin:ll (A :1) o

g are estimated. At each iteratipmQ! (A W) and g} ( A|W) are then computed as follows:
logit[ Q) (AW) | =logit] @™*( AW ]+&l, Og §')( AW anc
logit[ g, (AIW) ] =logit] ¢( AW]+el,0¢( @ §7)( W.
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The estimateg, andg), are obtained by maximum likelihood. The definigaof
c(g™)(AW)andc,(Ql™, ¢/ ™)(W)are given below:

| (A=0)g/*@IW)
01 (0|W)

c(9)(AW) = I(A=1)-

e, Q% g7) (W)= QP (LW - (0, W-¢/,( Q. ')

This process is repeated ungj| and ), converge to zero, ag] and g, are defined as
Q! (A W) and g} (A|W) at the final iteration. Convergence was considéoetave been
reached when botl/ and &) achieved an absolute value less thar.

TMLE has several valuable theoretical properties thake it a good estimation choice. Itis a
substitution estimator, which means that it resp#et bounds on the parameter. TMLE is also

double-robust (DR), meaning thet, andy; will be consistent if eitheg or Q are correctly
specified. In this context, consistency meansadhagstimatory, converges in probability to the
true parametew(Po)as n - oo; TMLE is also asymptotically efficient when the tking model

contains the true models. Instead of focusing eretitire distributiod’o , TMLE also attempts
to reduce bias in relation to the desired feat@itb@observed data distribution (the parameter of
interest); this is the goal of updating the inigatimate or estimates witi{A,W)(additive effect)

or with ¢, (g)( A W)andc,(Q, g)(W) (effect amongst the treated).

Initial Estimation of Q and g

The initial estimate of) was obtained by super learning, as implementéldeniR package
SuperLearnerthis implementation usdsfold cross-validation to construct a convex
combination of candidate estimators. Super learigrggdesirable estimation choice because it
(1) respects what is known about the true forr@@hothing), (2) considers multiple models and
utilizes data-adaptive methods to increase theilpibgsof capturing the tru€, and (3) avoids
manual manipulation of the data in choosing thalfmodel. Super learning also performs as
well asymptotically as the so-called “oracle” sédeavhich, in the context of a particular loss
function, minimizes risk under the true data-getiegadistribution (Sinisi S. , Polley, Petersen,
Rhee, & van der Laan, 2007; van der Laan, Polleidukbard, 2007).

The library of candidate estimators for the suparrier included the following: main terms
logistic regression (R functiogim); logistic regression with the target variablas the sole
predictor; generalized additive models (as impleteein the R packaggam); stepwise logistic
regression, with all main terms as the maximum sipélel (as implemented in the R package
step); and polychotomous regression and multi@ssification (as implemented in the R
package polspline, 5-fold cross-validation) (Kodyeeg, Bose, & Stone, 1997). Seven-fold
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cross-validation was specified for super learnedehahoice, and the target variable of interest
was always required to be present in the final meelected by each candidate estimator.

For all candidate estimators lpdlyclass it was possible to force the target variablentéiiest
into the final model. This was not possible wittiie framework of th@olyclassfunction, so the
following workaround was constructed. Finsglyclasswas fit on the entire dataset (or, in the
case of the super learner, on the training dataSetond, the predicted probabilityYof=1 was
obtained, per thpolyclassfit. Finally, this fit was used in a logistic regsion model containing
the target variable of intereAt

logit[ E(Y| AW) =y, +1, Ary,logit] Z( AW]D Aylogit] Z AW,
whereZ, ( A W) represents the fitted probabilities frgralyclass

The generalized additive model used smoothing ephmth two target degrees of freedom for
covariates with more than four unique values, amebr terms for all other covariates. These are
the default specifications of for tigamfunction according to the R functi®@uperLearner.

The so-called “treatment mechanisgi(also known as the propensity score) was estimated
using forward stepwise logistic regression (R fiorcstep. Though super learning could also
have been applied to estimgtgt can be overly aggressive and result in predigirobabilities
near zero or one when the number of covariat®¥ imreasonably large and the sample size
moderate in comparison. Stepwise logistic regressias therefore determined to be preferable
for initial estimation ofy. Collaborative TMLE can also be applied to minienthis issue, but
was not utilized in this analysis (van der Laan &kger, 2009). No truncation of predicted
probabilities was required.

Inference

Inference was obtained using the estimated infleencve (IC). Fon large enoughy, andy!
will approximately follow a normal distribution, ti variance equal Mar(IC)/\/ﬁ. Under the
empirical distributiorP,, the estimated influence curvé§, and IC! for the estimatorg/, and

. , respectively, are given below (van der Laan & iRep2003; van der Laan & Rose, 2011,
Hubbard, Jewell, & van der Laan, 2011).

ICn(O)Z( [(A=1) I(A:O)J(Y—Q,’(AVV))"' Q(l, V\)— qo’ V)/_‘//n

9,1IW) g (0|W)
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I(A=1) 1(A=0)g,(AIW))/, _
P(A=1) P(A=1)gi(0|W)j(Y Q:(AW))

IC.(0) =(

(A=) [Q;( W)-G( W -¢.( Q ’*g)]

P(A=1)

For comparison, and to provide the most consereatiference fory' , standard errors were
also computed using 10-fold cross-validation. Atteeross-validation sample split, the entire
parameter estimation process frdescribed above was conducted on the training ket.

estimated influence curve was then evaluated atdhéation set, with parameter estimates
determined by the training set. This was repeaieédch cross-validation sample split, and the

resulting cross-validated influence curve estimested to estimate the standard errogf

Though the technique was not applied in this amalylsere can also be advantages to using
cross-validation in conjunction with TMLE for calation of the parameter estimates themselves
(Zheng & van der Laan, 2010).

Power Calculation

Because the estimated standard errors were foubel telatively large in relation to the effect
estimates, it was of interest to investigate thpgaiot of sample size on the power of the statistical
test, within the framework of the estimated effgze. The treatment effect among the treated

. for the 30-day heart failure readmission outcornas fiound to be the largest estimated

treatment effect, so this was chosen as the foctse@ower calculation. Standard errors for
parameter estimates at different sample sizes estimated using a parametric bootstrap, as
described below.

Each parametric bootstrap samjtéwas generated from the estimated observed data
distributionP, , as defined by th® and g’ previously estimated. Each saméwasN i.i.d.

observationg0* = (W#, A, Y#) of P,. For each bootstrap sampié, W*was generated first by

sampling the rows diV with replacemeni times. Next,g° was applied t&W*, and the

resulting predicted probabilities used to genepdtes Bernoulli random variables with
probability p, = g° (1|W#). Finally, Q° was applied toA” andW* to generater”as Bernoulli

random variables with probability, = Q7 (1] A*,W*). The parameter estimaje, (P*) was

then obtained from the bootstrap sample accordiniye same process employed for the original
sample.

B = 500 bootstrap samples were generated\fﬁr{1376, 2500,3500,50§)C At eachN, the
power 77, to detect at the 5% level an effect at least agelas the estimated original full data

effect zpr‘](lso) was then approximated as
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7, =1~ (1964 (R.) fo ),

where ®@ represents the standard normal cumulative digtabdunction ando,, denotes the
sample standard deviation @f, (P#). This approximation is appropriate because of the

asymptotic normality of the estimator, and the oeable sample size (1376) in the original
sample.

4.2.3 Prediction of Hospital Readmission

Five prediction models were constructed for eactnefsix readmission outcomes: two full
prediction models including all explanatory varedin Table 4.1, two prediction models
including the risk score components only (shadetiaile 4.1), and one prediction model
incorporating the risk score alone. Logistic regras was used to fit the model including the
score alone. One full prediction model utilized sulearning (10-fold cross-validation), and the
other employed main terms logistic regressionstirae was true of the two score component
models. The super learner library of candidateregtrs included the following: main terms
logistic regressionglm), generalized additive modelgai), polychotomous regression and
multiple classificationgolyclass 5-fold cross-validation), and stepwise logisagmession

(step. The specifications for the generalized additivadels implementatiogamwere the same
as described previously. The workaround descrilbedigusly to fix variables intpolyclasswas
not needed here, because no variable was requitse present in the final prediction model.

Because the heart failure intervention was interidedduce readmissions, only the control
group £ = 788) was used in this assessment of predicevi®pnance.

Predicted probabilities of hospital readmissionevestimated using 10-fold cross-validation,
and receiver operating characteristic (ROC) cuwee used to assess the predictive
performance of the various models (R packa@CR (Sing, Sander, Beerenwinkel, &
Lengauer, 2005). ROC curves plot the true positte (correct prediction of hospital
readmission in the cases when readmission occusigadhst the false positive rate (incorrect
prediction of hospital readmission in the casesmfeadmission did not occur). Rate estimates

calculated usiny-fold cross-validation will be unbiased for samp’laasn(l—llv) , WhereV is
the number of cross-validation folds; in this asa@yn(1-1/V) = 784 + 1/10= 70¢

4.3 Results

Table 4.2 shows descriptive statistics for therirgation and control groups. The number of
admissions for patients with cardiac surgery inghst year was so small in both groups that the
variable had to be excluded from any adjustmenfaset from individual analysis).

The variable importance estimates of the additieatinent effect are shown in Table 4.3. In the
causal world, these represent the estimated diféeren the prevalence of hospital readmission
after an initial hospitalization for heart failufehe heart failure intervention had been avagabl
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for everyone, and the equivalent prevalence ofmmesslon if the heart failure intervention had
been available to no one. The final column in di#d shows the estimate as a percent change

from the expected mean outcome with no heart filotervention é[YO]). The largest

estimated percent change is for the 30-day heitutéaeadmission outcome, at a reduction of
16.8% over the predicted mean outcome with no ta#ute intervention (11.8%), with a 95%
confidence interval (CI) ranging from a 48.1% reithitto 14.6% increase. All 95% confidence
intervals cross zero, however, so the results arsignificant at the 5% level (two-tailed).

Table 4.2 - Descriptive statistics. Mean values faach explanatory variable
in the intervention and control groups.

No HF Intervention HF Intervention

African American race 0.57 0.53
Age at hospital admission 68.5 69.6
Cardiac surgery in past year 0.03 0.01
Chronic lung disease 0.38 0.40
Diabetes mellitus 0.38 0.36
Discharged to Home Health 0.27 0.30
Hospital length of stay (days) 4.0 4.5
Idiopathic cardiomyopathy 0.31 0.35
Inpatient hospitalization in past year 0.55 0.56
Ischemic heart disease 0.38 0.38
Medicaid 0.46 0.47
Medicare 0.59 0.64
Number of diagnoses 9.6 12.6
Renal disease 0.24 0.37
Telemetry during hospitalization 0.87 0.88
Valvular heart disease 0.19 0.26
Weekend hospital admission 0.21 0.21
Weekend hospital discharge 0.24 0.29
Readmission risk score 4.7 4.9
Total hospitalizations 788 588

Table 4.4 shows the estimated treatment effect geidhe treated for the six readmission
outcomes. If causal assumptions hold, these estintain be interpreted as the difference within
the intervention group between the mean outconevgbence of hospital readmission after an
initial hospitalization for heart failure) after ptementation of the heart failure intervention and
the mean outcome that would have been observediiftarvention had been available. The

column E[YO | A:]] in Table 4.4 is the no-intervention estimated meatcome within the
intervention group, and the final column is theiaile importance estimate shown as a
percentage OE[YO | Azl] . As in Table 4.3, all confidence intervals incluggo, so no estimate

is significant at the 5% level (two-tailed). The-88y heart failure readmission effect estimate
once again represents the largest percent chamgean outcome, and is also the largest in
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magnitude. This estimate represents a 26.5% reduictiprevalence of 30-day readmission for
heart failure (after an initial hospitalization foeart failure) over the predicted mean outcome
for the intervention group were there no intervemt{12.6%), with a 95% CI ranging from a
reduction of 67.3% to an increase of 14.2%.

Table 4.3 - Heatrt failure intervention, estimated dditive treatment effect.

Outcome Estimate SE 95% ClI é[\%] Estimate as % change
All Cause Readmission
30-Day 0.001 0.024 (-0.047,0.049) 0.208 0.5%
90-Day 0.004 0.028 (-0.052,0.059) 0.381 0.9%
180-Day 0.021 0.029 (-0.035,0.078) 0.480 4.5%
Heart Failure Readmission
30-Day -0.020 0.019 (-0.057,0.017) 0.118 -16.8%
90-Day -0.022 0.023 (-0.067,0.024) 0.215 -10.0%
180-Day -0.019 0.026 (-0.069, 0.031) 0.284 -6.7%

Table 4.4 also compares standard errors estimaiad the original full data influence curve

with the cross-validated influence curve, and thieasponding 95% Cls. In all instances the
standard errors are larger using cross-validafibe. differences between the two standard errors
are smallest for the estimates associated witB@heay and 90-day heart failure readmission
outcomes; the corresponding effect sizes for tleeimates are also the largest in magnitude
amongst those in Table 4.4.

Table 4.4 - Heart failure intervention, estimated teatment effect amongst the treated.
Cross-validated

Outcome Estimate SE 95% ClI SE 95% ClI Ié[Yo | A:]] Estimate as % change
All Cause Readmission

30-Day 0.000 0.029 (-0.056,0.056) 0.033 (-0.063649) 0.213 0.2%

90-Day -0.004 0.034 (-0.071,0.062) 0.039 (-0.087m) 0.395 -1.1%

180-Day 0.009 0.034 (-0.057,0.074) 0.038 (-0.@W6T84) 0.494 1.7%

Heart Failure Readmission

30-Day -0.034 0.025 (-0.083,0.016) 0.026 (-0.@B618) 0.126 -26.5%

90-Day -0.026 0.029 (-0.082,0.031) 0.030 (-0.@Ba@33) 0.220 -11.7%

180-Day -0.017 0.031 (-0.078,0.044) 0.037 (-0.@RA56) 0.290 -6.0%

For the 30-day heart failure readmission outcome elstimated statistical power to detect a
treatment effect amongst the treated equivalentagnitude to the effect estimate in Table 4.4
(0.034) is shown in Table 4.5 for four possible pensizedN. The power estimates assume the
estimated observed data distributiyn and a desired two-tailed significance level of. 3%e

smallest sample size (1376) is equivalent to tihgpdasize of the original sample, and its
estimated standard error from the parametric bagss 0.028, which is very close to the cross-
validated standard error (0.026) for the equivaéstimate shown in Table 4.4. The estimated

power 7z, at the original sample size is very low (0.218)] atN = 5000 (over 3.5 times larger
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than the original sample size) is estimated atQ.@hich corresponds to an estimated false
negative rate (17, ) of 0.343, meaning an estimated 34.3% failurectoeve statistical

significance at the 5% level (two-tailed) when thes effect size is0.034.

Table 4.5 - Estimated power at different sample s&s
N to detect at the 5% level (two-tailed) a treatment
effect amongst the treated with absolute value ofta
least 0.034 for the 30-day heart failure readmissio

outcome.
N oy I,
1376 0.028 0.218
2500 0.021 0.359
3500 0.018 0.476
5000 0.014 0.657

Additive effect estimates for the binary explangteariables for the 30-day, 90-day, and 180-
day readmission outcomes are shown in Tables 46add 4.8, respectively. For a given
readmission outcome, results are shown only folaggbory variables found to have effect
estimates with at least one 95% CI that did nossmero. Full results for all explanatory
variables and all outcomes are listed in Table8AA4.4, and A4.5 in the Appendix. The causal
interpretation of these effect estimates is thiedihce between the mean outcome were all
hospital admissions to have a given charactemstfeature (the binary explanatory variable of
interest) versus the mean outcome were no hogltaission to have the same characteristic or

feature (E[YO]). As before, the mean outcome is the prevalent®sgiital readmission after an
initial hospitalization for heart failure.

For the 30-day readmission outcomes (Table 4.6y, ame explanatory variable, inpatient
hospitalization in the past year, was found to hefieect estimates with 95% Cls that excluded
zero in all cases; for both heart failure and allse 30-day readmission outcomes within the
intervention and control groups, inpatient hosptlon within the past year was associated
with an increase in mean outcome (effect estimatgs all positive). Within the control group
only, valvular heart disease and age at hospitaisgion over 69 were associated with a
decrease in the mean 30-day all cause readmisstoare; age at hospital admission over 69
was also associated with a decrease in the medaydQeart failure readmission outcome (95%
Cls excluded zero). African American race and raasgion risk score greater than 5 were
associated with an increase in the prevalence -afaytheart failure readmission in the control
group, and had effect estimates with 95% Cls exetudero. Among the effect estimates with
95% Cls excluding zero for the intervention groupypchronic lung disease was associated
with an increase in the prevalence of 30-day alkeaeadmission, and telemetry during
hospitalization was associated with an increagkarprevalence of 30-day heart failure
readmission; discharge to home health servicesvae#tend hospital discharge were associated
with a decrease in the prevalence of 30-day heduré readmission. The effect estimate largest
in magnitude in Table 4.6 (0.130) was associated wpatient hospitalization in the past year
for the 30-day all cause readmission outcome irctmtrol group, and represents a 100.7%
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increase in mean outcome over the expected meaanroatwith no inpatient hospitalizations in
the past year for anyone (12.9%), with a 95% Cgragn from 0.074 to 0.185, or from a 57.3%
increase to an 144.1% increase.

Table 4.7 (90-day readmission outcomes) shows madap between the explanatory variables
found to have effect estimates with 95% Cls exelgdiero in the intervention and control
groups. African American race, chronic lung diseaggatient hospitalization in the past year
and readmission risk score greater than 5 weredftabe associated with an increase in the
mean 90-day all cause readmission outcome for dpailnps, and use of telemetry during
hospitalization was associated with an increaskaémmean 90-day all cause readmission
outcome in the intervention group only. Within bgtioups, age at hospital admission over 69
was associated with a decrease in the mean 90eaday failure readmission outcome, and
readmission risk score greater than 5 was assdaidgte an increase in the mean 90-day heart
failure readmission outcome. African American raopatient hospitalization in the past year,
and weekend hospital discharge were associatedawithcrease in the mean 90-day heart
failure readmission outcome for the control groapypand chronic lung disease and use of
telemetry during hospitalization were associateith an increase in the same mean outcome for
the intervention group only. Readmission risk s@reater than 5 was the only explanatory
variable with effect estimates whose 95% Cls exatfluzero for both 90-day readmission
outcomes and in both groups. The effect estimagest in magnitude (0.266) corresponds once
again to inpatient hospitalization in the past yfeathe all cause readmission outcome in the
control group, representing a 121.0% increasearptkvalence of all cause 90-day readmission
over the expected prevalence were no one to havamapatient hospitalization in the past
year (22.0%). The 95% ClI for this estimate rangethf0.199 to 0.333, or from a 90.6%
increase to a 151.5% increase.

Among the estimates with 95% ClIs excluding zerdable 4.8, inpatient hospitalization in the
past year and readmission risk score greater thveer® associated with an increase in all mean
180-day readmission outcomes in both the intereardnd control groups. African American
race was associated with an increase in mean lB@ldeause readmission in both groups, and
with an increase in mean 180-day heart failuremession for the control group only. Also in

the control group, valvular heart disease was &ssatwith a decrease in mean 180-day all
cause readmission, and age at hospital admissiemé®was associated with a decrease in mean
180-day heart failure readmission. In the interi@ngroup, chronic lung disease and use of
telemetry during hospitalization were associatetth an increase in mean 180-day readmission
(both all cause and heart failure); ischemic hémsease, hospital length of stay greater than 4
days, and discharge to home health services weoeiated with a decrease in mean 180-day
readmission, but for the heart failure readmissiottome only. Once again, the effect estimate
largest in magnitude in Table 4.8 corresponds patient hospitalization in the past year for the
all cause readmission outcome in the control grdtas estimate (0.305) represents an increase
of 105.0% in the prevalence of 180-day all causeméssion over the expected prevalence
(29.0%) were no one to have had an inpatient halggation in the past year at the time of initial
hospitalization for heart failure (95% CI 0.2340t875, or an 80.7% increase to an 129.2%
increase).
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Diabetes mellitus, renal disease, idiopathic cangigpathy, number of diagnoses > 12,
Medicaid payer, Medicare payer, weekend hospitalisgion, and hospital at which heart failure
initial hospitalization occurred were not founda® significantly associated (5% level, two-
tailed) with any readmission outcome.

Figures 4.1, 4.2 and 4.3 compare cross-validatéh&ed ROC curves for models predicting
each of the six readmission outcomes in the cognaip. The largest difference between the
ROC curves for the main terms logistic regressiaaefs and the equivalent super learner
models was observed for the 30-day all cause ressiloni outcome; the main terms logistic
regression score components model performed sfigketter than the analogous super learner
model, with an AUC of 0.61 versus an AUC of 0.5Btfte super learner model. Otherwise, the
ROC curves for the main terms logistic regressiau@efs were almost identical to the
corresponding super learner models, and the AUGegalvere always within 0.01 of each other.

For all outcomes, the full prediction models pemied best, with an area under the ROC curve
(AUC) ranging from 0.64 for the super learner mddelall cause 30-day readmission to 0.73
for heart failure 90-day and 180-day readmissiaith(Isuper learner and main terms logistic
regression models). The score only models perfomadt, with an AUC low of 0.54 for heart
failure 30-day readmission and high of 0.6 for hé&ature 180-day readmission. The score
components models fell in between, with AUC valtasying from a low of 0.59 for the super
learner model for all cause 30-day readmissionaahidh of 0.65 for the main terms logistic
regression model for all cause 90-day readmisdiba.largest difference in predictive power
between the full prediction model and the scoremaments model, in terms of AUC, was
observed for the 180-day readmission outcomes.

All prediction model types performed worst for 8@ day readmission outcomes. Predictive
performance of analogous score components and sntyrenodels was similar for heart failure
and all cause 30-day readmission outcomes, anfdith@ediction models predicted heart failure
30-day readmission slightly better than all caud&l8y readmission (AUC = 0.69 versus AUC =
0.64-0.65).

ROC curves and AUC values were fairly similar witimodel types for analogous 90-day and
180-day readmission outcomes; the largest differéme¢erms of AUC was observed between
the score components predictive models for 90-dayl80-day all cause readmission outcomes,
with better prediction of 90-day readmission (AUi@atence of 0.04). All cause and heart
failure readmission were predicted comparably wtin the 90-day and 180-day readmission
outcomes, with no AUC difference larger than 0.02.
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Table 4.6 - Variable importance estimates for explaatory variables, 30-day readmission outcomes. Egtiates highlighted in gray have 95% confidence
intervals (ClIs) that do not cross zero. Only explaatory variables with at least one 95% CI excludingzero are shown.

No HF Intervention

HF Intervention

Estimate Estimate
A as % - as %
Estimate SE 95% ClI E[\G] change Estimate SE 95% ClI E[\G] change
All Cause Readmission
African American 0.072 0.032 (0.009, 0.135) 0.136 52.7% 0.014 0.038 (-0.061, 0.089) 0.202 7.0%
Valvular Heart Disease -0.107 0.033 (-0.171,-0.043) 0.213 -50.2% -0.075 0.039 (-0.152, 0.001) 0.229 -32.9%
Chronic Lung Disease 0.026 0.034 (-0.04,0.092) 9®.1 13.6% 0.108 0.039 (0.031,0.184) 0.168 64.2%
Inpatient hospitalization in past year 0.130 0.029 (0.074,0.185) 0.129 100.7% 0.092 0.037 (0.02,0.163) 0.163 56.3%
Age at hospital admission >69 -0.091 0.046 (-0.181,-0.002) 0.214 -42.6% -0.020 0.062 (-0.143,0.102) 0.194 -10.5%
Readmission risk score >5 0.095 0.035 (0.025,0.164) 0.185 51.1% 0.015 0.037 (-0.058, 0.089) 0.214 7.2%
Heart Failure Readmission
Telemetry during hospitalization -0.011 0.039 (8800.065) 0.119 -9.7%  0.073 0.020 (0.033,0.112) 0.028 260.1%
Discharged to home health -0.026 0.021 (-0.067,%).0 0.106 -245% -0.087 0.022 (-0.13,-0.044) 0.115 -76.2%
Inpatient hospitalization in past year 0.114 0.022 (0.072,0.157) 0.047 242.9% 0.057 0.024 (0.01, 0.104) 0.062 92.2%
Weekend hospital discharge 0.049 0.029 (-0.00®8).1 0.100 48.5% -0.058 0.022 (-0.101, -0.015) 0.109 -53.0%
Age at hospital admission >69 -0.090 0.041 (-0.171,-0.01) 0.140 -64.4% -0.039 0.024 (-0.087, 0.008) 0.093 -42.3%
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Table 4.7 - Variable importance estimates for explaatory variables, 90-day readmission outcomes. Egtiates highlighted in gray have 95% confidence
intervals (ClIs) that do not cross zero. Only explaatory variables with at least one 95% CI excludingzero are shown.

No HF Intervention

HF Intervention

Estimate Estimate
A as % - as %
Estimate SE 95% CI E[\@] change Estimate SE 95% ClI E[\@] change

All Cause Readmission
African American 0.114 0.036 (0.044,0.185) 0.258 44.4% 0.098 0.048 (0.004,0.192) 0.335 29.3%
Chronic Lung Disease 0.091 0.042 (0.008,0.174) 0.350 25.9% 0.122 0.047 (0.03, 0.213) 0.362 33.6%
Telemetry during hospitalization -0.046 0.069 (81.10.09) 0.400 -11.4%  0.138 0.050 (0.04, 0.237) 0.254 54.3%
Inpatient hospitalization in past year 0.266 0.034 (0.199, 0.333) 0.220 121.0% 0.166 0.043 (0.082,0.251) 0.295 56.3%
Readmission risk score >5 0.123 0.037 (0.05, 0.197) 0.332 37.1% 0.091 0.044 (0.005,0.177) 0.356 25.5%
Heart Failure Readmission
African American 0.104 0.033 (0.041,0.168) 0.134 77.9% 0.032 0.040 (-0.046, 0.111) 0.174 18.5%
Chronic Lung Disease 0.042 0.036 (-0.028,0.112) 203. 20.7%  0.082 0.037 (0.008,0.155) 0.161 50.6%
Telemetry during hospitalization -0.054 0.059 (6210.061) 0.255 -21.19  0.086 0.038 (0.012, 0.16) 0.112 76.4%
Inpatient hospitalization in past year 0.211 0.029 (0.154,0.268) 0.095 221.9% 0.064 0.035 (-0.005, 0.133) 0.165 38.7%
Weekend hospital discharge 0.069 0.035 (0, 0.138) 0.195 35.5% 0.016 0.036 (-0.054, 0.086) 0.187 8.4%
Age at hospital admission >69 -0.123 0.043 (-0.207,-0.039) 0.241 -51.1%  -0.119 0.042 (-0.201, -0.036) 0.222 -53.5%
Readmission risk score >5 0.087 0.032 (0.025,0.149) 0.188 46.1% 0.103 0.037 (0.031,0.174) 0.156 66.0%
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Table 4.8 - Variable importance estimates for explaatory variables, 180-day readmission outcomes. Estates highlighted in gray have 95% confidence
intervals (Cls) that do not cross zero. Only explaatory variables with at least one 95% CI excludingero are shown.

No HF Intervention

HF Intervention

Estimate Estimate
A as % - as %
Estimate SE 95% ClI E[Yo] change Estimate SE 95% ClI E[Yo] change
All Cause Readmission
African American 0.108 0.039 (0.032, 0.183) 0.354 30.4% 0.095 0.047 (0.003, 0.188) 0.463 20.6%
Valvular Heart Disease -0.106 0.051 (-0.206, -0.006) 0.473 -22.4% -0.007 0.049 (-0.102, 0.088) 0.514 -1.3%
Chronic Lung Disease 0.074 0.043 (-0.009, 0.158) 44®. 16.6% 0.109 0.045 (0.021, 0.197) 0.480 22.7%
Telemetry during hospitalization -0.015 0.068 (4710.118) 0.469 -3.29 0.208 0.053 (0.105, 0.311) 0.307 67.7%
Inpatient hospitalization in past yea 0.305 0.036 (0.234, 0.375) 0.290 105.0% 0.261 0.044 (0.175, 0.348) 0.359 72.7%
Readmission risk score >5 0.088 0.039 (0.012, 0.165) 0.443 20.0% 0.107 0.044 (0.02, 0.193) 0.465 22.9%
Heart Failure Readmission
African American 0.114 0.036 (0.043, 0.185) 0.187 61.0% 0.047 0.043 (-0.038,0.131) 0.240 19.4%
Ischemic Heart Disease 0.015 0.032 (-0.048,0.077)0.232 6.3%  -0.097 0.041 (-0.178,-0.017) 0.299 -32.5%
Chronic Lung Disease 0.014 0.038 (-0.061,0.088) 27%. 4.9% 0.107 0.042 (0.025, 0.188) 0.234 45.5%
Telemetry during hospitalization 0.010 0.060 (-®@10.128) 0.264 3.7Y 0.146 0.041 (0.066, 0.226) 0.140 104.5%
Discharged to home health -0.035 0.034 (-0.1081).0 0.263 -13.2%  -0.093 0.040 (-0.171,-0.016) 0.281 -33.2%
Inpatient hospitalization in past yea 0.261 0.032 (0.198, 0.323) 0.133  196.2% 0.157 0.039 (0.081, 0.233) 0.189 83.0%
Hospital length of stay (days) >4 0.015 0.036 (50,0.086) 0.285 5.19 -0.086 0.037 (-0.158,-0.013) 0.305 -28.0%
Age at hospital admission >69 -0.154 0.067 (-0.286,-0.022) 0.330 -46.7% -0.094 0.118 (-0.326, 0.138) 0.353 -26.7%
Readmission risk score >5 0.102 0.036 (0.031, 0.172) 0.255 40.0% 0.104 0.040 (0.025, 0.183) 0.234 44.3%
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Figure 4.1 ROC curves for prediction of readmission withi 30 days after initial hospitalization for heart failure. The left plot shows prediction of readmissin for any reason,
and the right plot shows prediction of readmissiorfor heart failure. “SL” denotes super learner prediction models.
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4.4 Discussion

There was no evidence in this analysis that thet fi@éure program impacted mean rates of
readmission during its first year, in that no tneant effect estimate was significant at the 5%
level (two-tailed). There were, however, some iegéing differences in the effect estimates for
the heart failure versus the all cause readmissibcomes. While both the additive effect and
treatment effect amongst the treated estimates veggenearly zero for almost all of the all
cause readmission outcomes, the effect estimatésddneart failure readmission outcomes were
consistently negative, and in most cases muchrdangeagnitude than their all cause
counterparts. For the estimated treatment effecinaist the treated, differences between effect
estimates for the heart failure and all cause onésowere particularly noticeable. The estimated
treatment effect amongst the treated for the 30kaayt failure readmission outcome was the
largest in magnitude of any treatment effect edand represented a 26.5% reduction in the
mean rate of 30-day heart failure readmission tweexpected rate of readmission within the
intervention group had there been no heart fajuogram. Though the estimate’s 95% CI
included zero, the estimated standard error wae lar relation to the small effect size, and the
estimated statistical power was very low. This nse@at while this analysis cannot reject the
null hypothesis that the true treatment effect agritve treated for the 30-day heart failure
readmission outcome was truly zero, there is atgéstmong evidence to accept the null
hypothesis. If possible, further analysis with acreased sample size would be desirable,
particularly because one of the heart failure paiogs stated goals was to reduce readmission
rates by 30%, a number very close to the percarigdin 30-day heart failure readmission
implied by the estimated treatment effect amongstiteated. Based on the estimated effect
sizes, the most likely areas of impact are 30-day30-day heart failure readmission; it seems
less likely that any impact on all cause readmissédes would be discovered.

A major challenge inherent in any attempt to evi#ule impact of the heart failure program is
that it was community-level, and the program wasletely implemented at both hospitals at
the same time. The control group is retrospectne, any treatment effect is completely
confounded with the effect of time. The treatméfect is only estimable with assumptions,
such as that time only influences the outcome tjindhe measured explanatory variables
included in the adjustment set, which may or maybaoa reasonable. Any future analysis would
benefit from careful consideration of possible vidiial-level variables that could further
express the time differences while retaining thesgulity of achieving similar values in both
intervention and control groups (van der Laan M2010).

Out of the 20 explanatory variables consideredyé&g found to be associated with at least one
readmission outcome after adjusting for the otlxptamatory variables. Differences were noted
between the sets of explanatory variables fourmetassociated with heart failure versus all
cause readmission, and differences were also alx$detween those explanatory variables
found to be associated with the same readmissitmome in the intervention versus the control
group. Inpatient hospitalization in the year ptmhospitalization for heart failure was found to
be associated most consistently with readmissitar atljusting for the other explanatory
variables, and also yielded the largest effechests in all but one instance.
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There does appear to be an opportunity for incocepssdictive accuracy of both all cause and
heart failure readmission — the addition of jughéivariables to the score components model
noticeably improved predictive performance for 8#eday and 180-day outcomes. Prediction of
30-day readmission was poor for all models, butatbkely be improved with careful selection
of additional predictors. By combining a large n&mbf relevant variables available from the
electronic health record, Wang et al. (2012) wéde #o achieve an AUC of 0.82 in prediction of
30-day and 1-year all cause readmission for haduré patients receiving care from the
Veterans Health Administration (Wang, et al., 2012jis analysis does not argue, therefore, for
the predictive value of the particular set of erpl@ry variables or particular models used here;
rather, it points out that improved prediction @spible, and should be further investigated if
readmission risk assessment is to be used to fdéiné target population for an intervention.

Philbin and DiSalvo reported an AUC ostatistic of 0.6 for their risk score, and an AOC

0.62 for the corresponding multiple regression nadzuding the risk score component
variables (Philbin & DiSalvo, 1999). For 180-dagdenission outcomes, the modified risk score
used by the heart failure program performed egentgl in terms of AUC to the original risk
score of Philbin and DiSalvo, despite differencethe number of variables included in the
score, the study populations being consideredtt@ndefinition of the readmission outcome.
Performance of the score components models irsthdyy was also comparable to the
performance of the multiple regression model oftiand DiSalvo. While this is an interesting
result, neither the risk score nor the risk compismienodels were strongly predictive of any
readmission outcome, and the risk score performédlmrely better than chance in predicting
30-day readmission.

There was no observed gain in predictive accurgaysing super learning over simple main
terms logistic regression. It should be noted, h@tethat the super learner library of candidate
estimators was quite minimal, and could be easipaaded to include others, possibly with
improved results. The advantage of super learmmmi that its resultant model will always
outperform a simpler model, but that one need hobse between potential candidate models —
it is instead possible to include any candidate ehtitht could be predictive of the outcome of
interest, and allow the super learner to weightciredidate models for optimal results. Discrete
super learning is also possible; instead of refigysionvex combination of the candidate
estimators, discrete super learning will insteagl aress-validation to choose the single best
estimator among the library of candidate estimafbingre is operational value in choosing the
simplest prediction method that will achieve thsick results, and more complexity does not
guarantee a commensurate increase in predictiveanc Given that super learning is available,
however, it would be of value to the researcheroimpare results from such an approach with
simpler methods to ensure that an avenue for ingat@vediction is not being ignored.

In this analysis, semi-parametric variable impoteameasures inspired by causal parameters
were used to investigate the association of expdap&ariables with rates of readmission after
hospitalization for heart failure, and to evalutiie impact of a heart failure intervention on those
same readmission outcomes. These measures weenahids the goals of the analysis in mind:
to be able to evaluate the questions of intereatviray that would result in effect estimates that
could be interpreted in a real-world setting. Thuied out traditional regression approaches,
because parameters from such models are only iatalpe in the context of the particular
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model chosen. Such models are almost always inttagieen the complexity of the systems
involved in most public health applications, andecomes unclear what an estimated parameter
of an incorrectly specified regression model tnumgans in a real-world context. This does not
mean that such parameters have no meaning, buatbeyf limited value if their interpretation
cannot be easily defined outside of the estimatjgoroach used. Variable importance measures
such as those applied in this analysis addresguéstions of interest and are defined separately
from the estimation methods and models chosen. "gisimptions, they can be extended to
make causal inferences, but even when causal aisasipre not met, effect estimates remain
informative and have interpretations that can laglihg understood in the context of the
application being considered. These sorts of meastan also utilize the flexibility of machine
learning algorithms and methods that utilize mistigandidate models (such as super learning)
in the estimation process, maximizing what candlaerled from the data and respecting the lack
of prior knowledge about the true form of the dgéserating distribution.
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Chapter 5

Conclusions

This dissertation has been intended as a pradticsttation of causal inference-inspired semi-
parametric methods and data-adaptive estimati@ppléed to three real data problems. Because
all three analyses handle real data, they faceghtral issue inherent to all real analyses: ldck o
knowledge about the true parameter of interestla@drue data-generating distribution. In
Chapter 2, a different story was told by the searametric variable importance analysis than by
the regression analysis: a significant associgon 0.05) with the outcome was found for a
particular explanatory variable by the former methat not by the latter. While the semi-
parametric variable importance method has the@leditvantages over traditional regression
analysis, it remains unknown which method returthedcorrect result in a general sense: we
have no way of knowing whether that particular erpltory variable was in truth associated with
the outcome or not. Similarly, in Chapter 3, fostimators were considered, and while these
could be compared somewhat in terms of estimatadlatd errors and parametric bootstrap-
estimated ETA bias, it is impossible to determiriecl estimator came closest to the true
parameter value for that particular application.

Simulation is the only way to truly evaluate andnpare estimator performance, because only
then is the truth actually known. While various glation studies have been conducted
evaluating the behavior of the estimators usedlisxdissertation, it is unlikely that any closely
mimicked the complex data structures analyzed Hérere remains, therefore, an opportunity
for further evaluation and benchmarking of estimaterformance in more complex simulation
scenarios. It would also be of interest to invesegn such scenarios whether the use of super
learning with a limited library of candidate mod#&sestimate the data-generating distribution
resulted in an appreciable gain over the use gblsinestimation methods.

The challenges of real data problems and opporésrivr further comparison of estimators and
estimation algorithms only highlight the need fiefble variable importance and estimation
methods such as those considered in this dissertdthe search for answers to research
guestions in the real world should always starhwaiparameter or quantity of interest that has
meaning in the real world. When the true form @& tlata-generating distribution is unknown,
this means that the definition of the parametentarest must be separated from the specifics of
the estimation process. Once this separation haxs lade, there is flexibility to investigate
multiple estimation options and make the best @wmossible for a given analysis without a
resulting change in the definition of the estimgbadameter. This is a marked difference from
measures of effect based on parameters of prefigglegiodels, where any change to the model
changes the interpretation of a given parametdrdnmodel. If more public health analyses were
based on estimation of parameters with straightiodweal-world interpretations, one could
perhaps hope for more comparability of results s&gtudies of similar applications.
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Appendix

Table A4.1 - ICD-9-CM codes

Code Category

Codes

Heart Failure

402.01 Malignant, hypertensive hdagase with heart failure
402.11 Benign, hypertensive heart disease witht ffieifure
402.91 Unspecified, hypertensive heart disease hveitit failure
404.01 Malignant hypertensive heart and kidneyadisewith heart failure
404.03 Malignant hypertensive heart and kidneyatisewith heart failure and chronic kidney disease
404.11 Benign, hypertensive heart and kidney deseéth heart failure
404.13 Benign hypertensive heart and kidney disedtkeneart failure and chronic kidney disease
404.91 Unspecified, hypertensive heart and kidnsgede with heart failure
404.93 Unspecified hypertensive heart and kidnsgatie with heart failure and chronic kidney
disease
428.0 Congestive heart failure, unspecified
428.1 Left heart failure
428.20 Unspecified systolic heart failure
428.21 Acute systolic heart failure
428.22 Chronic systolic heart failure
428.23 Acute on chronic systolic heart failure
428.30 Unspecified diastolic heart failure
428.31 Acute diastolic heart failure
428.32 Chronic diastolic heart failure
428.33 Acute on chronic diastolic heart failure
428.40 Unspecified combined systolic and diastodiart failure
428.41 Acute combined systolic and diastolic h&salire
428.42 Chronic combined systolic and diastolic hizdiure
428.43 Acute on chronic combined systolic and dlasheart failure
428.9 Heart failure, unspecified

Ischemic Heart Disease

4140 41400 41401 414064142 4148 4149

Valvular Heart Disease

3940 3941 3942 3949 3950 3352 3959 3960 3961 3962 3963 3968 3969 3970 3979 4240
4241 4242 4243 42490 42491 42499 7852 7853 V42BV43

Diabetes Mellitus

24900 25000 25001 7902 79021 Z9®D29 7915 7916 V4585 V5391 V6546
24901 24910 24911 24920 24921 24930 24931 249441224950 24951 24960 24961 24970 24971
24980 24981 24990 24991 25002
25003 25010 25011 25012 25013 25020 25021 250223288030 25031 25032 25033 25040 25041
25042 25043 25050 25051 25052
25053 25060 25061 25062 25063 25070 25071 250723288080 25081 25082 25083 25090 25091
25092 2509

Renal Disease

5810 5811 5812 5813 58181 58189FRAM5821 5822 5824 58281 58289 5829 5830 5832 5834
5836 5837 58381 58389 5839 587 585 5853 5854 5856 5859 7925

Chronic Lung Disease

4910 4911 4912 49120 49122248918 4919 4920 4928 494 4940 4941 496
49300 49301 49302 49310 49311 49312 49320 493222493381 49382 49390 49391 49392
4950 4951 4952 4953 4954 4955 4956 4957 4958 406%61 502 503 504 505 5060 5061 5062
5063 5064 5069 5071 5078 5080 5081 5088 5089

Cardiac Surgery

35.10 OPEN VALVULOPLASTY NOS
35.11 OPN AORTIC VALVULOPLASTY
35.12 OPN MITRAL VALVULOPLASTY
35.13 OPN PULMON VALVULOPLASTY
35.14 OPN TRICUS VALVULOPLASTY
35.20 REPLACE HEART VALVE NOS
35.21 REPLACE AORT VALV-TISSUE
35.22 REPLACE AORTIC VALVE NEC
35.23 REPLACE MITR VALV-TISSUE
35.24 REPLACE MITRAL VALVE NEC
35.25 REPLACE PULM VALV-TISSUE
35.26 REPLACE PULMON VALVE NEC
35.27 REPLACE TRIC VALV-TISSUE
35.28 REPLACE TRICUSP VALV NEC
35.31 PAPILLARY MUSCLE OPS

35.32 CHORDAE TENDINEAE OPS
35.33 ANNULOPLASTY

35.34 INFUNDIBULECTOMY

35.35 TRABECUL CARNEAE CORD OP
35.39 TISS ADJ TO VALV OPS NEC
35.42 CREATE SEPTAL DEFECT
35.50 PROSTH REP HRT SEPTA NOS
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Table A4.1 - ICD-9-CM codes

Code Category Codes
35.51 PROS REP ATRIAL DEF-OPN
Cardiac Surgery 35.53 PROS REP VENTRIC DEF-OPN

35.54 PROS REP ENDOCAR CUSHION
35.60 GRFT REPAIR HRT SEPT NOS
35.61 GRAFT REPAIR ATRIAL DEF
35.62 GRAFT REPAIR VENTRIC DEF
35.63 GRFT REP ENDOCAR CUSHION
35.70 HEART SEPTA REPAIR NOS
35.71 ATRIA SEPTA DEF REP NEC
35.72 VENTR SEPTA DEF REP NEC
35.73 ENDOCAR CUSHION REP NEC
35.81 TOT REPAIR TETRAL FALLOT
35.82 TOTAL REPAIR OF TAPVC
35.83 TOT REP TRUNCUS ARTERIOS
35.84 TOT COR TRANSPOS GRT VES
35.91 INTERAT VEN RETRN TRANSP
35.92 CONDUIT RT VENT-PUL ART
35.93 CONDUIT LEFT VENTR-AORTA
35.94 CONDUIT ARTIUM-PULM ART
35.98 OTHER HEART SEPTA OPS
35.99 OTHER HEART VALVE OPS
36.03 OPEN CORONRY ANGIOPLASTY
36.10 AORTOCORONARY BYPASS NOS
36.11 AORTOCOR BYPAS-1 COR ART
36.12 AORTOCOR BYPAS-2 COR ART
36.13 AORTOCOR BYPAS-3 COR ART
36.14 AORTCOR BYPAS-4+ COR ART
36.15 1 INT MAM-COR ART BYPASS
36.16 2 INT MAM-COR ART BYPASS
36.17 ABD-CORON ARTERY BYPASS
36.19 HRT REVAS BYPS ANAS NEC
36.31 OPEN CHEST TRANS REVASC
36.91 CORON VESS ANEURYSM REP
36.99 HEART VESSEL OP NEC

37.10 INCISION OF HEART NOS
37.11 CARDIOTOMY

37.32 HEART ANEURYSM EXCISION
37.33 EXC/DEST HRT LESION OPEN
37.35 PARTIAL VENTRICULECTOMY
37.36 EXC LEFT ATRIAL APPENDAG
37.41 IMPL CARDIAC SUPPORT DEV
37.49 HEART/PERICARD REPR NEC
37.51 HEART TRANSPLANTATION
37.52 IMP TOT INT BI HT RP SYS
37.53 REPL/REP THR UNT TOT HRT
37.54 REPL/REP OTH TOT HRT SYS
37.55 REM INT BIVENT HRT SYS
37.60 IMP BIVN EXT HRT AST SYS
37.62 INSRT NON-IMPL CIRC DEV
37.63 REPAIR HEART ASSIST SYS
37.64 REMVE EXT HRT ASSIST SYS
37.66 IMPLANTABLE HRT ASSIST
37.67 IMP CARDIOMYOSTIMUL SYS

Dialysis 39.95 HEMODIALYSIS
54.98 PERITONEAL DIALYSIS
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Table A4.2 - Variable importance estimates for alexplanatory variables, 30-day readmission outcomes.
Estimates highlighted in gray have 95% confidenceniervals that do not cross zero.
No HF Intervention

HF Intervention

Estimate Estimate
~ as % - as %
Estimate SE 95% CI E[YO] change Estimate SE 95% CI E[YO] change

All Cause Readmission
(0.009, (-0.061,

African American 0.072 0.032 0.135) 0.136 52.7% 0.014 0.038 0.089) 0.202 7.0%
(-0.049, (-0.158,

Medicare 0.030 0.041 0.11) 0.160 18.8% -0.029  0.0660.1) 0.248 -11.7%
(-0.062, (-0.077,

Medicaid 0.007 0.035 0.076) 0.200 3.5% -0.013  0.0330.052) 0.194 -6.7%

Idiopathic (-0.005, (-0.052,

Cardiomyopathy 0.069 0.0380.143) 0.196 35.1% 0.029 0.0410.109) 0.197 14.5%
(-0.055, (-0.129,

Ischemic Heart Disease 0.004 0.03@.062) 0.182 2.1% -0.043  0.0440.043) 0.219 -19.7%
(-0.171, (-0.152,

Valvular Heart Disease -0.107 0.033 -0.043) 0.213 -50.2% -0.075 0.039 0.001) 0.229 -32.9%
(-0.061, (-0.122,

Diabetes Mellitu 0.01¢ 0.03¢ 0.092 0.21: 7.4% -0.04t  0.03¢ 0.032 0.23¢ -18.8%
(-0.056, (-0.044,

Renal Disease 0.021  0.0390.098) 0.207 10.0% 0.031 0.0380.105) 0.186 16.5%
(-0.04, (0.031,

Chronic Lung Disease 0.026  0.0340.092) 0.193 13.6% 0.108 0.039 0.184) 0.168 64.2%

Telemetry during (-0.206, (-0.003,

hospitalization -0.082  0.063 0.041) 0.272 -30.3% 0.079 0.0420.161) 0.134 59.1%

Discharged to home (-0.082, (-0.141,

health -0.026  0.029 0.03) 0.188 -13.7% -0.059  0.0420.023) 0.221 -26.8%

Inpatient hospitalization (0.074, (0.02,

in past year 0.130 0.029 0.185) 0.129 100.7% 0.092 0.037 0.163) 0.163 56.3%
(-0.04, (-0.055,

Facility 0.021 0.031 0.081) 0.205 10.2% 0.012  0.0340.08) 0.208 6.0%

Weekend hospital (-0.075, (-0.056,

admission -0.002  0.037 0.071) 0.204 -0.9% 0.030 0.0440.117) 0.210 14.4%

Weekend hospital (-0.056, (-0.075,

discharge 0.010 0.0340.077) 0.198 5.3% -0.001  0.0380.073) 0.219 -0.6%
(-0.083, (-0.021,

Number of diagnoses >13 -0.007 0.039.068) 0.196 -3.8% 0.055 0.0390.131) 0.176 31.1%

Hospital length of stay (-0.079, (-0.089,

(days) >4 -0.013  0.034 0.054) 0.209 -6.1% -0.020 0.0360.05) 0.214 -9.2%

Age at hospital admissior (-0.181, (-0.143,

>69 -0.091 0.046 -0.002) 0.214 -42.6% -0.020 0.062 0.102) 0.194 -10.5%

Readmission risk score (0.025, (-0.058,

>5 0.09t 0.03¢ 0.164 0.18¢ 51.1% 0.01¢ 0.037 0.089 0.21¢ 7.2%

Heart Failure Readmissic
(-0.011, (-0.066,

African American 0.044  0.028 0.098) 0.079 55.0% -0.012  0.0280.043) 0.106 -10.9%
(-0.058, (-0.064,

Medicare 0.016 0.038 0.091) 0.105 15.5% -0.016  0.0250.032) 0.082 -19.2%
(-0.077, (-0.069,

Medicaid -0.025 0.027 0.027) 0.122 -20.1% -0.018 0.0260.033) 0.106 -16.8%

Idiopathic (-0.006, (-0.05,

Cardiomyopathy 0.070  0.0390.146) 0.101 69.1% -0.002  0.0240.045) 0.090 -2.5%
(-0.03, (-0.102,

Ischemic Heart Disease 0.010 0.02D.051) 0.092 11.0% -0.049  0.0270.003) 0.104 -47.6%
(-0.09, (-0.061,

Valvular Heart Disease -0.038  0.0270.015) 0.111 -33.9% -0.007  0.0280.047) 0.099 -7.0%
(-0.058, (-0.053,

Diabetes Mellitus 0.006 0.0330.071) 0.115 5.5% 0.010 0.0320.073) 0.098 10.7%
(-0.022, (-0.023,

Renal Disease 0.036  0.0300.094) 0.101 35.9% 0.038 0.0310.098) 0.076 49.1%
(-0.015, (-0.028,

Chronic Lung Disease 0.036  0.0260.088) 0.099 36.8% 0.019  0.0240.066) 0.079 23.6%
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Table A4.2 - Variable importance estimates for alexplanatory variables, 30-day readmission outcomes.
Estimates highlighted in gray have 95% confidenceniervals that do not cross zero.

No HF Intervention HF Intervention
Estimate Estimate
~ as % - as %
Estimate SE 95% CI E[YO] change Estimate SE 95% CI E[YO] change

Telemetry during (-0.088, (0.033,
hospitalization -0.011  0.039 0.065) 0.119 -9.7% 0.073 0.020 0.112) 0.028 260.1%
Discharged to home (-0.067, (-0.13, -
health -0.026  0.021 0.015) 0.106 -24.5%  -0.087 0.022 0.044) 0.115 -76.2%
Inpatient hospitalization (0.072, (0.01,
in past year 0.114 0.022 0.157) 0.047 242.9% 0.057 0.024 0.104) 0.062 92.2%

(-0.02, (-0.037,
Facility 0.02¢ 0.02t 0.077 0.10¢ 26.9% 0.01¢ 0.02¢ 0.067 0.09¢ 16.2%
Weekend hospital (-0.076, (-0.042,
admission -0.023  0.027 0.03) 0.116 -19.8% 0.022  0.0320.086) 0.093 23.7%
Weekend hospital (-0.008, (-0.101,
discharge 0.049 0.029 0.106) 0.100 48.5% -0.058 0.022 -0.015) 0.109 -53.0%

(-0.081, (-0.062,
Number of diagnoses >13 -0.034 0.024.014) 0.110 -30.7% -0.017  0.0230.028) 0.094 -17.8%
Hospital length of stay (-0.061, (-0.081,
(days) >4 -0.004 0.029 0.052) 0.121 -3.7% -0.037  0.0230.008) 0.101 -36.6%
Age at hospital admissior (-0.171, (-0.087,
>69 -0.090 0.041 -0.01) 0.140 -64.4% -0.039  0.024 0.008) 0.093 -42.3%
Readmission risk score (-0.012, (-0.014,
>5 0.041  0.027 0.094) 0.104 39.3% 0.036  0.0260.087) 0.080 45.3%

Table A4.3 - Variable importance estimates for alexplanatory variables, 90-day readmission outcomes.
Estimates highlighted in gray have 95% confidenceniervals that do not cross zero.

No HF Intervention HF Intervention
Estimate Estimate
o as % ~ as %
Estimate SE 95% ClI E[YO] change Estimate SE 95% ClI E[YO] change

All Cause Readmissi

(0.044, (0.004,

African American 0.114 0.036 0.185) 0.258 44.4% 0.098 0.048 0.192) 0.335 29.3%
(-0.108, (-0.259,

Medicare -0.012 0.046 0.078) 0.325 -3.8% -0.103  0.0790.053) 0.532 -19.4%
(-0.053, (-0.048,

Medicaid 0.024 0.039 0.101) 0.348 6.8% 0.042 0.0450.131) 0.355 11.7%
(-0.062, (-0.08,

Idiopathic Cardiomyopathy 0.019 0.0410.1) 0.371 5.2% 0.014 0.0480.107) 0.367 3.7%
(-0.108, (-0.126,

Ischemic Heart Disease -0.040 0.039.028) 0.362 -11.1% -0.023  0.0520.079) 0.379 -6.2%
(-0.166, (-0.058,

Valvular Heart Disease -0.068  0.0500.03) 0.376 -18.1% 0.037  0.0490.132) 0.401 9.2%
(-0.02, (-0.118,

Diabetes Mellitus 0.058 0.0400.136) 0.353 16.5% -0.027  0.0460.063) 0.413 -6.6%
(-0.075, (-0.07,

Renal Disease 0.010  0.0440.096) 0.363 2.8% 0.026  0.0490.121) 0.385 6.7%
(0.008, (0.03,

Chronic Lung Diseat 0.091 0.04: 0.174 0.35( 25.9Y% 0.12: 0.047 0.213 0.362 33.6%

Telemetry during (-0.181, (0.04,

hospitalizatiol -0.04¢ 0.06¢ 0.09 0.40( -11.4% 0.13¢ 0.05( 0.237 0.25¢ 54.3%
(-0.083, (-0.153,

Discharged to home health -0.009 0.038.065) 0.360 -2.5% -0.052 0.0510.049) 0.375 -13.8%

Inpatient hospitalization in (0.199, (0.082,

past year 0.266 0.034 0.333) 0.220 121.0% 0.166 0.043 0.251) 0.295 56.3%
(-0.029, (-0.043,

Facility 0.035 0.033 0.1) 0.359 9.9% 0.037 0.0410.116) 0.376 9.7%
(-0.053, (-0.122,

Weekend hospital admission 0.031  0.048.114) 0.359 8.5% -0.029  0.0480.065) 0.394 -7.3%
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Table A4.3 - Variable importance estimates for alexplanatory variables, 90-day readmission outcomes.
Estimates highlighted in gray have 95% confidencentervals that do not cross zero.

No HF Intervention

HF Intervention

Estimate Estimate
~ as % ~ as %
Estimate SE 95% ClI E[YO] change Estimate SE 95% ClI E[YO] change

(-0.021, (-0.055,

Weekend hospitedischarg 0.05¢ 0.03¢ 0.13 0.35¢ 15.4% 0.031 0.04¢ 0.117 0.38¢ 8.1%
(-0.098, (-0.062,

Number of diagnoses >13 0.022 0.06D.142) 0.364 6.1% 0.037  0.0500.135) 0.358 10.2%

Hospital length of stay (-0.061, (-0.103,

(days) >4 0.013 0.038 0.086) 0.373 3.4% -0.014 0.0460.076) 0.406 -3.4%

Age at hospital admission (-0.166, (-0.056,

>69 -0.076  0.046 0.014) 0.341 -22.3% 0.090 0.0740.235) 0.369 24.3%
(0.05, (0.005,

Readmission risk score >5 0.123 0.037 0.197) 0.332 37.1% 0.091 0.044 0.177) 0.356 25.5%

Heart Failure Readmission
(0.041, (-0.046,

African American 0.104 0.033 0.168) 0.134 77.9% 0.032  0.040 0.111) 0.174 18.5%
(-0.062, (-0.166,

Medicare 0.015 0.040 0.093) 0.179 8.6% -0.048 0.0600.069) 0.226 -21.4%
(-0.054, (-0.059,

Medicaid 0.008 0.031 0.07) 0.198 4.0% 0.011  0.0360.081) 0.188 5.7%
(-0.04, (-0.063,

Idiopathic Cardiomyopathy 0.038  0.0400.115) 0.203 18.5% 0.007 0.0360.077) 0.175 3.8%
(-0.009, (-0.136,

Ischemic Heart Disease 0.047 0.029.104) 0.167 28.5% -0.059  0.0400.019) 0.201 -29.2%
(-0.062, (-0.015,

Valvular Heart Disease 0.023 0.0430.108) 0.202 11.4% 0.077 0.0470.168) 0.190 40.4%
(-0.04, (-0.1,

Diabetes Mellitu 0.03¢  0.03¢ 0.11 0.19¢ 18.0% -0.02¢  0.03¢ 0.048 0.20¢ -12.5%
(-0.062, (-0.048,

Renal Disease 0.008 0.0360.078) 0.193 4.0% 0.032  0.0410.113) 0.183 17.7%
(-0.028, (0.008,

Chronic Lung Disease 0.042  0.0360.112) 0.203 20.7% 0.082 0.037 0.155) 0.161 50.6%

Telemetry during (-0.169, (0.012,

hospitalization -0.054  0.059 0.061) 0.255 -21.1% 0.086 0.038 0.16) 0.112 76.4%
(-0.058, (-0.13,

Discharged to home health 0.004 0.03D.067) 0.200 2.2% -0.063  0.0340.003) 0.197 -32.0%

Inpatient hospitalization in (0.154, (-0.005,

past year 0.211 0.029 0.268) 0.095 221.9% 0.064 0.035 0.133) 0.165 38.7%
(-0.014, (-0.059,

Facility 0.043 0.029 0.101) 0.197 21.9% 0.006 0.0330.071) 0.194 3.1%
(-0.056, (-0.082,

Weekend hospital admission 0.013 0.038.082) 0.207 6.2% -0.005 0.0390.072) 0.192 -2.4%
(O, (-0.054,

Weekend hospital discharge 0.069 0.035 0.138) 0.195 35.5% 0.016 0.036 0.086) 0.187 8.4%
(-0.12, (-0.118,

Number of diagnoses >13 -0.056  0.033.008) 0.206 -27.3% -0.041  0.0380.034) 0.200 -20.4%

Hospital length of stay (-0.037, (-0.131,

(days) >4 0.025 0.032 0.088) 0.212 12.0% -0.066  0.0340) 0.216 -30.4%

Age at hospital admission (-0.207, (-0.201,

>69 -0.123 0.043 -0.039) 0.241 -51.1% -0.119 0.042 -0.036) 0.222 -53.5%
(0.025, (0.031,

Readmission risk score 0.087 0.03z 0.149 0.18¢ 46.1% 0.10:  0.037 0.174 0.15¢ 66.0%
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Table A4.4 - Variable importance estimates for alexplanatory variables, 180-day readmission outcomes
Estimates highlighted in gray have 95% confidenceniervals that do not cross zero.

No HF Interventio

HF Interventiol

Estimate Estimate
~ as % ~ as %
Estimate  SE 95% C E[YO] chang Estimate  SE 95% C E[YO] chang

All Cause Readmission
(0.032, (0.003,

African American 0.108 0.039 0.183) 0.354 30.4% 0.095 0.047 0.188) 0.463 20.6%
(-0.079, (-0.247,

Medicare 0.014 0.047 0.106) 0.391 3.5% -0.093 0.0780.061) 0.619 -15.0%
(-0.027, (-0.058,

Medicaid 0.055 0.042 0.137) 0.416 13.2% 0.030 0.0450.118) 0.479 6.3%
(-0.076, (-0.11,

Idiopathic Cardiomyopathy 0.006 0.0420.089) 0.459 1.4% -0.016  0.0480.079) 0.493 -3.2%
(-0.118, (-0.193,

Ischemic Heart Disea -0.04: 0.03¢ 0.031 0.44¢ -9.7% -0.09¢ 0.051 0.006 0.52¢ -17.8%
(-0.206, (-0.102,

Valvular Heart Disea:s -0.10¢ 0.051 -0.006 0.47: -22.4% -0.007 0.04¢ 0.088 0.51¢ -1.3%
(-0.029, (-0.099,

Diabetes Mellitus 0.049 0.0400.127) 0.462 10.7% -0.011  0.0450.078) 0.514 -2.1%
(-0.071, (-0.067,

Renal Diseas 0.017 0.04¢ 0.106 0.457 3.8% 0.02¢ 0.047 0.117 0.49¢ 5.0%
(-0.009, (0.021,

Chronic Lung Disease 0.074  0.0430.158) 0.446 16.6% 0.109 0.045 0.197) 0.480 22.7%

Telemetry during (-0.147, (0.105,

hospitalization -0.015 0.068 0.118) 0.469 -3.2% 0.208 0.053 0.311) 0.307 67.7%
(-0.129, (-0.175,

Discharged to home health -0.052  0.040.026) 0.462 -11.2% -0.065 0.0560.045) 0.489 -13.3%

Inpatient hospitalization in (0.234, (0.175,

past year 0.305 0.036 0.375) 0.290 105.0% 0.261 0.044 0.348) 0.359 72.7%
(-0.038, (-0.032,

Facility 0.031 0.035 0.099) 0.456 6.7% 0.049 0.0410.129) 0.486 10.0%
(-0.055, (-0.138,

Weekend hospital admission 0.036 0.046.126) 0.453 7.8% -0.041  0.0490.055) 0.509 -8.2%
(-0.04, (-0.079,

Weekend hospital discharge 0.038 0.040.117) 0.455 8.4% 0.009 0.0450.097) 0.506 1.8%
(-0.088, (-0.069,

Number of diagnoses >13 0.041 0.060.169) 0.453 9.0% 0.036 0.0540.142) 0.473 7.7%

Hospital length of stay (-0.067, (-0.098,

(days) >4 0.008 0.039 0.084) 0.466 1.8% -0.008 0.0460.082) 0.522 -1.5%

Age at hospital admission (-0.2186, (-0.094,

>69 -0.10: 0.057 0.01 0.45¢ -22.6% 0.04: 0.07C 0.18 0.55¢ 7.7%
(0.012, (0.02,

Readmission risk score >5 0.088 0.039 0.165) 0.443 20.0% 0.107 0.044 0.193) 0.465 22.9%

Heart Failure Readmission
(0.043, (-0.038,

African Americal 0.1122 0.03¢ 0.185 0.18% 61.0% 0.047 0.04: 0.131 0.24( 19.4%
(-0.078, (-0.155,

Medicare 0.008 0.044 0.094) 0.244 3.2% -0.034  0.0620.086) 0.275 -12.5%
(-0.026, (-0.048,

Medicaid 0.045 0.036 0.116) 0.245 18.3% 0.026  0.0380.099) 0.252 10.1%
(-0.031, (-0.073,

Idiopathic Cardiomyopathy 0.050 0.0410.131) 0.262 19.0% 0.008 0.0410.089) 0.257 2.9%
(-0.048, (-0.178,

Ischemic Heart Disease 0.015 0.032.077) 0.232 6.3% -0.097 0.041 -0.017) 0.299 -32.5%
(-0.107, (-0.039,

Valvular Heart Disease -0.018 0.0460.072) 0.270 -6.5% 0.057 0.0490.154) 0.260 22.0%
(-0.039, (-0.108,

Diabetes Mellitus 0.040 0.0400.118) 0.266 14.9% -0.028 0.0410.053) 0.283 -9.7%
(-0.067, (-0.05,

Renal Disease 0.012  0.0400.09) 0.258 4.5% 0.039 0.0460.129) 0.261 15.0%
(-0.061, (0.025,

Chronic Lung Disease 0.014 0.0380.088) 0.275 4.9% 0.107 0.042 0.188) 0.234 45.5%
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Table A4.4 - Variable importance estimates for alexplanatory variables, 180-day readmission outcomes
Estimates highlighted in gray have 95% confidenceniervals that do not cross zero.

No HF Interventio

HF Interventiol

Estimate Estimate
~ as % ~ as %
Estimate  SE 95% C E[YO] chang Estimate  SE 95% C E[YO] chang

Telemetry during (-0.109, (0.066,

hospitalization 0.010 0.060 0.128) 0.264 3.7% 0.146 0.041 0.226) 0.140 104.5%
(-0.102, (-0.171,

Discharged to home health -0.035 0.034.032) 0.263 -13.2%  -0.093 0.040 -0.016) 0.281 -33.2%

Inpatient hospitalization in (0.198, (0.081,

past year 0.261 0.032 0.323) 0.133 196.2% 0.157 0.039 0.233) 0.189 83.0%
(-0.03, (-0.049,

Facility 0.034 0.033 0.098) 0.267 12.6% 0.022  0.0360.093) 0.266 8.4%
(-0.041, (-0.094,

Weekend hospital admission 0.035 0.039.111) 0.267 13.1% -0.012  0.0420.07) 0.268 -4.3%
(-0.035, (-0.073,

Weekend hospital discharge 0.037 0.030.11) 0.265 14.1% 0.004 0.0400.082) 0.269 1.6%
(-0.127, (-0.092,

Number of diagnoses >13 -0.016  0.05D.095) 0.266 -6.1% -0.009 0.0420.074) 0.264 -3.4%

Hospital length of stay (-0.057, (-0.158,

(days) >4 0.015 0.036 0.086) 0.285 5.1% -0.086 0.037 -0.013) 0.305 -28.0%

Age at hospital admission (-0.286, (-0.326,

>69 -0.15¢ 0.067 -0.022 0.33( -46.7% -0.09¢ 0.11¢ 0.138 0.35: -26.7%
(0.031, (0.025,

Readmission risk score 0.102 0.03¢ 0.172 0.25¢ 40.0% 0.10¢ 0.04C 0.183 0.23¢ 44.3%
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