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. NUCLEAR-STRUCTURE DEPENDENCE OF CONVERSION
' COEFFICIENTS IN ELECTRIC MULTIPOLE TRANSITIONS

. .Sven GOsta Nilsson |

Radiation Laboratory
University of California
-~ . - ' 'Berkeley, California

June 5, 1957
-Abstract

The study'of the effect of nuclear structure on internal _conyersion
"accompanying gamma-transitions‘.o_f electric mﬁltipole type which is
presented here is analogous td a treatment by Church and. Weneser (Ref. 3)
'vd_ealing with magneticv dipole transitions. The anomalous mafri_x elements
found here, corresponding to.the situation when the electron p}e_ynetraites :
thevbhvu'cleus, are of the.fdrm expectedﬂ.classi'cally,, The magnitude of these
anomalous terms for the studied:El case seems unfortunately to be - .'
sombewhat dependent on nﬁore_detailed assumptions about the Coulomb field
.inside the nucleus. Only‘terms up to the secord order in a perturbation
expansion in the electromagnetic fielci are considered here 'as‘ in other -
', publishéd treatments of internal conQersion,_ In view of an occﬁrring :
c'ancellafion,_ di‘écp.ssed'.in,some detaﬂ,‘in this work, this may not in all .

cases be a sufficiently accurate approximation.
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NUCLEAR=STRUCTURE DEPENDENCE OF CONVERSION
COEFFICIENTS IN ELECTRIC MULTIPOLE TRANSIT IONS
| Sven Gosta Nilss}on*

. Radiation Laboratory
University of California
Berkeley, California

June 5, 1957

_ The .original calculations by Rose et al. 1 of conversion coefficients
were based on the assumption of a point nuclyeus.l Later Sliv et al. 2 merely
calculated the corrections due to the change in the electron wave functions |
occurring ;,when,the assumption of a nuclear point charge is replaced by the |
assumption that nuclear charge and currents .are distributed over a finite
 nucléar surface. Church and-Weneser3 have furthermore pointed out an
additional effect of finite nuclear size that depends on the detailed intrinsic

nuclear structure. This correction is aSsoeiated'with the fact that the

electron may penetrate 1ns1de the nuclear surface In th1s case: there occur
nuclear matrix elements for the process of internal conversion that are
different from the nuclear matrix elements of gamma decay. This effect
will on the average be small, as the electron has only a very small probability
of being inside the nucleus. o

However, Church and Weneser, who treated the case of Ml
transitions, suggested that for nuclei where the Ml gamma transitions due
to special nuclear selection rules may be particularly h1ndered, the anomalous
nuclear matrix elements (electron inside nuclear surface) may become |

significant. The experimental evidence for this effect in M1 transitions SO

“On leave of abserice from the Univers.ity of Lu.nd, Lund, Sweden.

I.Cf.,e g., Rose, Goertzel, Spmrad Harr, and Strong, Phys. Rev. 83,
79 (1951).

2'L. A.Sliv and I. M. Band, Coefficients of Internal Conversioﬁ of Gamma

Radiation, Acad. of Sciences, USSR, Moscow Leningrad 1956, issued in
U.S.A. as Report 57 ICCKI, Phys. Dept., Univ. of Ill., Urbana,vlll.

’E. L..Church and J. Weneser, Phys. Rev. 104, 1382 (1956).
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far seems’ meager. 4 ‘The case. seems to be that very few Ml transitions are »
hindered by more than a factor of 10 (except for so~called K- h1ndrance, in which
. case usually also the anomalousg_‘ element is small), and that the nuclear -
selection rules (e.g. corresponding t(; neﬁeverlap) that make the normal
matrix elements small also we’algeh*the an'Qmall'c‘)u,s matrix elements.
. On the other hand, it hasl,bee’ﬁ f‘ou.nd.exxpNerimenta,lly5 that certain

El transitions in the heavy-element region of strongly deformed nuclei, which
particular transitions all-are hintiered by a factor 106 or more in comparison
with the Moszkowski single proton estimate, 6 also have conversion coefficients
that deviate from those of Shv s and Rose's by as much sometimes as a
factor of 20. In all these exper1mental cases it is found that the El hindrance 7
is due to selection rules in some partlcular quantum numbers appropriate in
describing nucleonic states of stronélf deformed nucléi.” It is furthermore
found that, on the basis of the same quantum numbers, the anomalous matrix
elements appear mainly unweakened. 4 At least qualitatively this effect thus
seems rather well acfcountedfor’. » |

' The purpose of this paper is mainly to study how these anomalous
matrix elements occur in electric transitions.® The analysis of the experi-
mental findings on the basis of the nucleonic quantum nummbers appropriate

to deformed nuclei is undertaken in a paper by S. G. N11sson and

J.O. Rasmussen (to appear in the Physmal Review).

4Cf, however, S. G. Nilssonand J. 0. Rasmussen, Phys. Rev. (forthcoming).

5Asaro, 'Hotlander, Perlman, ahd .Stephe_'ns, Phys._Reti. (fort‘hcoming).

S. -A. Moszkowski, Theory of Multipole Radiation, in Beta- and Gamma-
Ray Spectroscopy, -ed. K. Siegbahn, (North Holland Publishi‘ng' Co.,
- Amsterdam, 1955), p. 273,

7S. G.. Nilsson, Dan. Mat. Fys. Medd. 29, no 16 (1955),

.8Ca1cu1ations of a similar type have lately been reported in ‘progr'ess by
T. Green and M. E. Rose in Bull. Am. Phys. Soc. Vol 2; 4 (1957).
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General Formulation .of the Conversion Problem ‘.,b

-for Electric Transition

Interaction of electrons and nucleons with the electromagnetic field

In the Coulomb gauge.the interaction between the electrons and the

nucleons via the electromagnetic f1eld may be expressed asg’ 10

1= 8 + HY, where o o (1)

. C e e | - I o
ne- o 2E L AvCouh @) ana o (la)

. n }rn—r Ei '
-H”= Z Hn(A) + HE(A), where in turn ) (1b)
n
— en. - - —»I—> - . P S ——> -—> . .‘

Hn(A): - >y [pn A(r n)+A(r n.).p.n]\-Cﬁ;_ en[rn;:":,.A.(r n)].sn, _:._ JNH ; (‘lc)
Hp(A)= wep o Alrgl = ] 4 S

For thls gauge, the photon field A is purely transversal. Thevs.ea'l_ar
and longitudinal photons appearing in, e, g., the Lorentz gauge are here
aec‘ounted for by the direct Coulomb interaction term HC '(‘.One may‘ notice
in Eq. (la) that, as the unperturbed electrons are assurned to move in a static -
C_oulomb field v av.Coul. , this average Coulémb f1eld is subtracted out of the
perturbation term (la.).')' v » _

The, expreSSio'n (lc) accounting for the interaction of the nucleons
with the.transverse photon field, also includes a term arising from the spin-
orbit coupling. C I-s usually assumed as an important feature of the un-

perturbed nuclear Hamiltonian, It is necessary to take such a termi into -

9The treatment given here is s1m11ar to that of - s i G Kramer, Z.Phys.
146, 187 (1956) and 147, 628 (1957) and to some extent the notatlon of that

reference is also- adopted

Cf also Alder,. Bohr, Huus, Mottelson, and Wmther, Revs., Modern Phys,
28 432 (1956).
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account to preserve the gauge invariance of the interaction. ‘Such a term was

first studied by J. H. D. Jensen’and: M ‘Goeppert Mayer B An additional term

of the type o . _ ; B
‘ : e il .

v b TnM;[-ﬁ - K(;’n)],._ .
representing the coupling of the mé.gnetic moment of the nucleon with the
electromagnetic field, may for electric transitions be neglected, as for such
transitions this term is small of the order VTV/[ compared with the terms con-
sidered. [W is the transition e‘nervgy and M is the nucleon mass. ]

Finally, Eq. (1d) gives the relativistic interaction of electrons with '

the photon field on the basis of the Dirac equation - The velomty operator
} :E equals (?é)(_f in the two- component representatmn (For further
discussion cf. p.12). ' '

The cha.rge .paremeter eﬁ equals + e for zt_..proton and zero for a
neutron. Furthermore we have the electron charge ep = -e. The nucleo‘n
mass is denoted M. The units used in Eqgs. {l) - (1d), and also employed in
the following, are suchthat m =c = H=1, 'where m is the electron mass.

' - The vector potential X of the transverse photon field is expanded

‘in electric and magnetm mult1pole components
A(r) =- é_ j dk[qLM(k) A LM(kr) +qLM(k)A LM(kr)]( )

In this expression.7 represen‘ts the summatmn over the mdependent
dual electrlc -and magnetlc multipole fields. As we limit ourselves to
electrlc tran51t1ons the sum over 7T is left out in the follow1ng

+In the normahzatlon .applied for the electromagnetic multipoles the

' S
creation and. annihilation operators q and q have the followmg nonvanishing

matrix elements:

/nlévln+1> <n+1aq B /?“'/_ o

lli. H.D. Jensen and M. Goeppert Mayer, Phys.,‘Rev-.-‘- Z_SE, 1040 (1952).
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The electric multipole opera‘tor‘is no-rrnal.li_zedta.év

. 1 . .
—>(e) _- __—"—'— — d . ‘ ) .'
' ALM 7 (m/2) L(L+1) V ox (rx V)t]L(kr)YLM.‘ (4)
It is easy to verify that 6 ) K(g) =0, as required of a transverse field.

The probé.bility for the nucleus to emit gamrha rays under transitio‘n:
.from a state ¢i to.a state ¢f with an energy W lower than the initial state is
given as (in lowest order perturbation expansion, in which terms of order e

in T  are retained)

é C2m * | | 2 . |
=2m Vi S e, H! ¢ dT 7, : (5
T'Y ZTI nél ‘W, jq)f n ¢1_ “'n | - | 3 - ( )
where the factor ZTTrV ._(I)riginates from the matrix elements of the photon field, -

Eq. (3).

The competing pr‘dcess of internal conversion now consists of re-
moving an electron from the bound state Lpi and ejecting it into the (free)
. state Lpf,‘ at the same time changing the nuclear-state from q;i to ¢f'. The
probability for this process may be written (when terms of lowest order e
are retained in Te)

T = 2w

e 'Uf‘_i(w) \ o o . (6)

where

E
f

e Z ..S S n ) .
Uﬁ_(W) = Hﬁ(W) + , ,\(va Hvi)/(Ef +E ‘7.Ev). o A )
“The first térm in (7) corresponds to a direct effect of the static
Coulomb field. The second term, being.a 'secoﬁd-order term in"t'his-pertur-
bé;tion treatment, corresponds to two-step processes ‘inVolving,exch‘é.nge of

virtual photons between the electron and the nucleon. . The ‘eriergy"of the initial
E )
i .

the energy of the emitted photon, is written summarily E'v' The quantity W -

state is written E? + E, while the energy of the intermediate state including

represents the energy difference between initial and final nuclear state

(E%if1 - E?) or between final and initial belec'tron state-_(E];:.: —'.EEi:).
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Thus, in more detail, we have

A . :
S ' e e

Crgy o 5[ % % %n °E - | | .
n=1 rn—rAEl

av.C [ L | ' ‘
As v. Coul ? depends only on the electron coordmate r B it cannot con-

nect dlfferent nuclear > states, hence this term though it appears in Eq. (la)_,
has been left out in (8) v o
The second term in Eq (7) may be rewrltten
Z Sy 27
L (H JH f)/(E +E | L J dk e ep T
T (B )b, dry e H(B T 06, dr |
f E LM f n" LM'Ti T 'n + -
| Wk . |
. .
. [ E(A LMM dre JoH (& M)¢ a7,
| : W-k )

‘ ) e . ' .-> = N . ‘ .- ‘. )
Here HE(A LM) is -epa: A LM’ ete- The f’ufst term in parentheses in Eq. (9)
corresponds to the situation that in the intermediate state a virtual photon of

energy k. has been emitted by the nucleus. ~The latter has in the process

changed its state from "¢i to q’f’ .corresponding to a loss of energy W. The.
second.term corresponds to:the:alternat-ive situation that the electron _first,

emits the photon with energy. k and in addltlon gains energy W.

:Using the property . A LM = (- ) L M" one can easily. contract theﬂ

expression (9) to

HY= dn [ dk S el » L [ Hg(A ¥y drg Jop Hy(Ap 45 474
| o =n "E im CowéikE |

(10)
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It turns out to be a major simplification of the problem to make a

rearrangement of the matr1x elements in Eq. (10} ahead of the k integration.

To this end 1t is convement to rewrite ALM as
s . " o SR N
= . {11
A 1M ALM+ALM’ : - an
where. T
LM /(n/2)L(L+1) 5T (Fig, LM V aLM/’ /
Av. = —_l k (rJ )Y ' ' | "~ (11b)
LM V(‘TT;Z.)L(L‘*'I)‘ L LM B
(One may note that % in Eq. (lla) operates only on ALM and not on the wave
function. ) '
For the relativistic electron interaction Kramer9 uses
' v o ,
_b.—’ . = ..—> . i 'A = i . § - .
e’ ALM._ a - Voary =i |Hg, qIM| & | - (12)
o : _
where HE is the unperﬁurbed eleCtr'On Hamiltonian and [, ] denotes the
commutator. o . ' ' o

For the nuclear interaction, which we have here assumed nonrelativ-

istic, we can derive a similar relation, 4 L'
" 2h W o ‘
1 6. N ' T - :
™M {(P ALM tATM: p) } c (r x A/LM)n.,»x Sn - { aLM} (13)
where the unperturbed ﬁuélear Hamiltonian is given .as ’ ’

if V(;n) is assumed to be velocity independent. 12

12In’deed, if one assumes only that H is linear in A, one.can; ‘show generally trat the

interaction term in the ""long wave length 11m1t" may be wr1tten as the
o .

Hpy a]'_‘MJ )

Cf. R. G. Sachs and.N. Austern, Phys. Rev. 81, 705 (1951).

commutator:
-1
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In the nuclear m‘atr-ix':elernent' of Eq: -(10) one may. leave out’ A 'I'JM
altogether; as kr:<<l.all over the nuclear volume.:»The’essential con-
tribution to the integral (10) comes from the‘pole k'= W, where W:in turn
.should be thought of as of the order of a few hundred kev |

Hence we have .

f¢ H (A M)¢ dr_ /(7/—2;”%—;-1—;;) f¢;%%.<er)YL_M¢i ar, o)

In deriving the above relation Eq (13) ha.s been explolted

S1m11arly, u31ng Eq (12), one can show
T ¥eHg (A MM‘ d"E /(w/Z)L(L+ ) f 4‘f( 1W (rJL)YLM+k Toe JLY_LM)qudTEJ 2

(16)
where JL denotes JL(kr)
It is now convenient to perform the k 1ntegrat10n in Eq (10), using

the relations 13

| . - : L -L-1
) e dk= - zw JL(Wr )h Wr>)+ _Z_".— (17)
o W -k 2W™(2L+1) ' -
‘and _ :
— jp Gkr )iy Ger )k : N S ,
) LV ENL - inW . Ty Sy -
[om w2 - kz — ’/dk = - J_L(Wr<)_ hL (Wr>).. S  (18)

- Here r_and r_ denote respectively the smaller and the larger of the electron-

and nucleon coordlnates Further-mo“re',. hL is the spherical Hankel fu_nctiori

of the first k1nd

The total H" fnay then be split up. into two terms:

H' = H'(1) +H"(2), - : (19)
where. the second part of Eq (117) contributeé to H'"(2), and where furthermore
. _ _Z Z M 4-n- 'k % Te el » . .
HU'@)=" L & 7 arn 4‘f‘*’f il LM(rE)Y fM(r:n)quq)i drgdr, (20)

> .

3G N. Watson, Theor? of Bessel Functions (Cambridge Univ. Press, New

York 1944) second ed.,pp. 405 429. For the prescriptions of perturbation theory

concern1ng integration over the pole see P.A .M. D1ra.c Quantum Mechan1cs
(Oxford, 1947) third ed.
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({For H"(1l) see Eq. (22).) On the other hand, expanding H(f:{(W) from
Eq (8), one obtains. o '
A o
DY
L O
L.=0

- L . L
Lo
7Y ngfq’f 74 “‘j:?+1 ¥ M(rE)Y v )¢¢ drdT .
> B

c
He (W) =

2]

n:

. (21)

It is thus found that in the expression for Uﬁ(W) given by Eq. (7) the multipole
terms of H"(Z,‘) cancel the muitipole terms .ef'Hcf:i one by one, apart from the
monopole term in chi’ which has no counterpart in the terms of Hf'. - This,
‘corresponds physically to the fact that the transverse photons always carry
a_ngulér momentum and that therefere a mdnbpole transition can on‘ly‘tak‘e
place with the help of the longitudinal and scalar photons, or eQuivalently
expressed in terms of the gauge applied here, with the help of the static
.Coulomb field. v

In the followmg we will 1eave out the monopole term, | The'remaining
terms of Ufi(w) are then all contained 11_1 HY(1): | |

n -

(1)t Z _ Z (_)M : 1 _food *O h ' fEd ke .. .+
W=t L enep G TER) T | T ORCLN | 9Tt CalL) *

Q0

fo- dr_é; O_(h )4, f dTE 4 E(JLN’ ] @2
where
OE(_]L)— {«1W8 [rJL(Wr)}+ a-r W (Wr)} YLM’ 2 (23)
o lip) = iw 2. [rj'L;(Wr)] YoM " - (24)
' th tati o rh )
Here the notation K o
. [0 d'rE

implies a complete integrétion ovér allthe electron angles, but an integration

in r

o only from 0 to T etc.
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The expression (22) may be Acony‘e‘nie‘nﬁlyVr.e‘wr_it«_ten' '
: : . Z ("") 1 o0
H'(1) =- 4n Ze e J d7e ¢ (h L j dr_ ¢ e} (J )¢
T —="n"E LM L(L+1) 0 . ) £
+ Oo;d. *o ()6, [ Par. v 0
jo Tnbs On(hp)e; | d7g 9Ol )Y

) /é dr_é; O_(j_ o, /é_n,dTE quoE(hL)qu’.; e

Evaluation of matrix elements involving electron wave functions

The next problem‘ is to evaluate terms of the type

o _ ! |
- Q(r);[) rEdrEWf f oy qu [a-?_ng-i ‘air(r‘él;)} Yo

Here Q denotes alternatively JL or h The relativisti'c'electron wave
‘ functlon correspondlng to a centra.l electrostatlc field may be wr1tten
. -if)< X': o : _
= | | B (26)
g X |

in the notatidn employed in, e.g., Rose's Multipole Fields. 14 The so-

called small and ',1arge- component radial functions -are defined by

X _ x-1 . L , » | ' : v
f -(E-v-1lg,, | (26a)

14M. E. Rose, ‘Multipole Fields (New York 1955). .
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X =(E-v+1)f % -

& SE-vEDL e 0 (26h)
where the electrostatic potentiat v{r) is later specified. _For states with T
and s "parallel" X equals -£-1,. and for states with 7T and's antiparallel

K equals £, Furthermore, we have

b Z L s j s | ' B
X X C mm_ K Fm Ylm v (27)
S s :
where Cri ri l‘l are the vector cohp'ling coefficients, addihg £ and's toa
v . . _
vector _T]P, and where Fri is the Pauli spin function.

s : _ .
In this two-component representation we have

~a°r = <10> g - rv —v<10> rO'r. . o | : | .- v _.,(28_)

where O‘r'fulfills the relation

B W o o |
Uer X _y v o (29)

Thus o. changes, e.g., the angular e1genfunct10n SI/Z into pl/Z’ and in
addltlon changes the s1gn _ »

' Using Eqs. (28) and (29) one can show, employ1ng the methods ‘used
by Rose in Ref., 14, ' ‘ '

Q) =iw x| vl ey sty SRR € 1)
where T v D ‘ -
24 d o .

where the primed coord1nates denote the initial state and the unprimed the
final state. - For x = oo this expression is equivalent, as shown by Kramer,

to

s(oo,r;L)#.jt;ix_-zarf.'_[;i(k-.»c-) fvél;-l.(g,{fKﬁfxgg.)—iL{éL_'l'u('g;(fK' LY (B8, +fo,(.%]

(32)

which is the expression derived by Rose on the basis of point source fields. ™’ 4
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- We now proceed to calculate NY the number of photons emitted under
change of nuclear state ¢; = <l>f From how on we simpiify the notation by
limiting- ourselves to the case of single-particle transitions, i.e., we drop

.the sum ove‘r’ n. Using Eq. (5), one: then obtamsl'5

4T e n 1 , Z Z l >
N = . g" <Im (rj, )Y IIm I
Y w 2I'+1 - LM / L(L+1 ) 8 L L-M

81're | - ' - .
o Bl oo

Here< “ “ >denotes the reduced matr1x element in the usual def1n1t10n 16 In
'calculatmg NY we have summed ove;' fmal ‘nuclear substates m and averaged
over mltlal nuclear substates m'

The number of electrons emltted per second under change of the

nuclear state from $; =~ ¢ is given from Eq. (6) as

' 2m : ' |2 .
= . [E]
Ny =apm & | H'UO ‘ (34)
. mm'up

where we sum over initial and final electron substates p' and w, average over
* initial nuclear m-states, and sum on}e‘r final nuclear substates m'. (That we
‘sum and ﬁet a\'rerage over initial electron substates corresponds to the fact .
that all electron substates are occupled and we do not care which of the '
substate electrons is em1tted ) ‘

Rearrang1ng (25) we wr1te

»H.'"(l) ~4m-e A°E i— L(L—+1T L( ) <)(|J. lYLMIKp> <Im]XLMlI m'>,
S . (35)'

, .15This may.ea.silylbe transformed into the familiar expression f‘o_.r the
transition .pi‘Obability:(where M =m-m') '
:ZS'N(L+1) 2L+l CKI

I (zL+‘1Tr ]

r Y
°n

I'm /l
sum over flnal states, average over initial states

1_6G.Racah, Phys. Rev. 62, 438 (1942).
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where |
<Im’XLM]I'm > S(oo h. )<Irn IO (JL) ,I'm >+

» 2 o . . ' '\\ . .
(1|0 b ) S(x. 5 ) - 'On(JL) S(r,hy)|I'm' ) - (352)
where S and O_ are defined in Eqs. (31) and (24). o

" Thus '

-
o322 5 1 _
Ny = 32m e e 51, LA T(L)

L'j'j |
M'p-'u

_ ' 1 LI'I L'I'I L j'j
Z | I+ (2;+1) qu' mq M'm'mCMp,'pL c
MM'mm :

t

HL

..<1“XL“I' ¥ <,< e (| ) i_:
et Lo L 1 Gl 1»><»<HY =3

. I
E L Lz.(L+1‘)2 2I'+1 2L+1

(36)

The ''partial' conversion coefficient corresponding to a transition
from electron state X' to electron state K. can now be calculated from (33) and

(36)

(EL = 2 =8 e A 37)
BTN T e Sleo,hy)- o en
where -
o (BL)= TOEmaTe) (ZJ+1) (zz+1)(zJ +1)(21'+1) ( é éf;) W45 LS (e, b))

(38)

vW(!ZjZ‘“' ; é—L)_ is the Racah coeffici.ént-v in the conventional definition. L6 The
quantity S(oo, hL) equals’'S(r, h_L) with r = oo.. . - ‘ Z

- Equation-(38) should be compared with Ref. 14. The sum xl i -
. is equal to the conversion coefficient calculated by Rose on the basis of a

nuclear point source, prov1ded electron wave functions appropriate to a
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central point charge are used in calculating S(co, h An improved value of

D
8,(,(,' is, however, obtained by the use of electron wave fuhctiorrs appropriate

"to a finite charge distribution. Finally

(lo,my)- stz jL);oh(j,L)s(r, h.l#" i
<I“Qn(jL)“Il>

From now on we restr1ct ourselves to the case L.=1. To calculate

.. (39)

)\ we use the ”long wave length" expans1ons

© (40a)

hy = i ——, . (40b)
Thus

' r 2.2 '
: -2 Wr 2Wr '
S(r:Jl) = 0/ r dr Ii—?—' (f,(_gxl Er Nv) + -3 (f){f\(l'*-g)(g'(lg\
(41)

'S(r,hy) % rPdr |-ige (8 KB Bl ——p (xfotegi)|
As the limit of 1ntegrat1on corresponds to a dlstance less than or equal to
the nuclear radius, the second. term in. Eqs (41) and (42) contamlng
foK,'f' gk g is expected to be highly dominant. However, 1ts dominance is
diminished for the case X =-X' bya cancellatmn, and then the first term
-~ may be neglected only to the extent to which W can be. treated: as small

compared with the electron rest mass. The first term is therefore

retained for the present for the purpose of comparison:.
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To get an un&ei;standihg of 'the”meﬁtiohe‘d s':ancellation; We now turn
to the Dirac equatlons for an electron moving in a central field, Eq. (26a) and
(26Db). Correspondmg toa homogeneous charge distribution inside the nucleus

1
we assume an electrostatlc potent1a1 inside the nuclear radlus of the type

eZZ

2R (43)

(3 -

H
le oo
. .

v(r) = -

where R is the nuclear radius (in units used here (R 1.9 x 10_2 for A = 230),

~

and e the unit charge (‘ez‘— in these units). The depth of the Coulomb

1
potential at the center of the nucleus is then =~ 52 mc~. It is useful to notice
that v(0)- R =-% e2 Zz=-1.

. For such a potential one may find series expansions for the electron

. . 1 i
wave function inside the nucleus. 8 For K= +‘)(0 one has to lowest order in r

0 - Kg ,
g8 (R) i (44)
O ; Ké'l )
fK:;fK(%) s, | | (45)
with the additional relation
‘R : o _ .
: o]
- For ®x= .~ h‘o the corresponding lowest-order terms are
o ){0;_1 ' Co o
gx=ex(g) o - (47)
9 r.%o ‘ - v '
£, R O S (48)
s‘u‘bject»‘tov the relation
o _ R ) o} ‘ . )
C iy X 1 (E-v(0)-1) g . = (49).

17Cf.' L.A..Sliv’,;'J.' Exp. Theoret; PhyAs 17, 1049 (1947)

181f one is 1nterested only in the leadlng term as we are here, the result

depends only on the value of the potentlal at. the or1g1n v(O) and not on 1ts

detailed shap_e__ Cf however, : Appendlx B
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_ Thus for a transition from a state X '= —)(O to a state X = KO we have

Ll + e, = §> : fx gy 21 [2+w.+V'(0)_Y(O)]
. (50a). -
Correspondingly, for X'= K6= - X, '
i 2x -1 % ' '
L T fe) o O R -
fyfs ¥ 8,8, = <§> gnf i 541 [2—_Wev'(0,)+v(0) ]
C o) S o : S
v (50b) ,
The term f*{gh,', g’(f)(,wﬂl be g1ven for compar1son here even though
the . .eontmbutlon to Eqs. (40)-(42) derived from this term will be neglected

as small of order W compared with the electron rest mass.

_[E ¢ro2 00 o " . »
.fxg&l - g)(fk,' “{R] fﬁg)(' ) o ' ' Gla)

Correspondingiy, for x' = ko»Z -X,

f = r |02 °f ., 51b)
- Kg)(' - gx k' T T ﬁ g){, x! ( ]
‘We may now rew.rite’Eqs.(40.)—(42) as:
for 'K—H =K | . _
| 20N \2’( 2 1 1. oo '-‘2“’(04-3 -
S(r.jj)z W[ g ) C STl TRT3 fxEx T - [2+v'(0)-v(0) ],
‘ : "o e S
(52)
S(r,h) = ( j“ Lo Bd r ® 20 vo)]
r, T -5y * oy o g4 T +v -V 5
. 1 WZ R, _ ZK0+_ X, XS x L
(53)
andf_or)('=+)(o—-)(,
. 2% -2 " 2% _+3
2 (1. o.~ 1 1 © o : .
(r 31)~ 3 W(ﬁ)" e oz gl T e V'(O“V(O)] " (54)
0 )

*It is 1mpf1t1y assumed in the convent10na1 but not quite self cons1stent
perturbation treatment presented here that the "unperturbed" Hamiltonian
is the same in initial and final states. A generalization in line with the
treatment of the problem of rearrangement collisions (see, L. I. Schiff,
Quantum Mechanics, New York (1949)) would bear .out the seeming conjecture -
behind. Eqs (50a,b). The author is 1ndebted to Prof.G.Chew for a clar1fy1ng.

" discussion on this point.
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i 1)2"6‘2 1 1 oo 2%, | |
S{r,h,)~ — | =} : — s s— g £, r T [2=¥v"(0)+v(0)] ,
1 WZ <_R Zxo+l 2)(0 X K‘ - IR |
where Eqgs. (54) and (55) might have been obtained from (52) and .(53)'b§ ex-
: 0.0 NS ,
change of primed and unprimed quantities f, g and v(0). "

' The magnitude of S(r, j;) and S(r,hy) is thus greatly affected for the -

caselx!| = IKI by the cancellation apparent in (50a) and (50b). It is thus found
'that—providedvlrt ": |r{,| —the sum fkf)’&.' t+gxg,0 is smaller by a factor
R= ~1062) 19 then either of the two terms; i. e. the ratio .
E=xo . ' v fxo 20
f is very nearly equal to - — .
E 3" : -
e Ko

A slight chaﬁge in the effective electrbstatic potential is, however,
to be expected, as the nucleonic transition associated with the conversion
process may cause a change in the nuclear charge distribution. Those terms
of - S(r, QL) that are o_.f‘vlowest or.der in r will be a.ffécted"mainly by a change
in v(0}, the potential depth at the origin, as indicated in Eqgs. (52) - (55).
As shown in Appendix B, the term.s of next higher oi‘devr in r will in addition

" of the electrostatic potential assumed.

depend on chénges in the ''curvature
- In summaAry‘, one f_nay emphasize that the underlying assumptions in
calculating the electron wave functions inside the nucleus imply an independent -
- particle description of the electrons, and imply a purely electrostatic potential
of a simple. shape, independent of.ele.ctron-and nuclear state, substituted into

the Dirac equation.

19

-"As the cancellation corresponds to.a weakening by an order of magnitude
e2 of the transition amplitude; it will probably be of interest to study higher-

order perturbation terms in addition.

B lya- f X, '

' .’(’o by x and —2 b , one finds that x and y fulfill the
f y Yy , y fu

=Kg 8 xo ' ' -

2 'ZKO -
x' = x"(E-v-1) + x - (E-v+1),

2‘ODenoting

equations
) 2, 2Ko . :
y' =y (E-v+l) + y—- + (E-v-1),

which thus are highly similar provided I E-v l > 1.

» . . . -
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One might expect the cancellatmn effect to be relatlvely more

sensitive to a relaxation of these cond1t1ons than the wave functmns f, and
8 x themselves o : ‘

' We rewr1te the anomalous operator ale

2K +1 5.

. . , . . . . . _ . O . i . . ., ’ .
'On(hl)s(?’ 91) - On(.Jl)S_(rf h_l) - ‘,Yl -M 3 _F)t)(' qcorr ’ (56)

- Values of Fx' i and -C are listed in Table I. - What is/:s"aid.ab-ove' serves -
: KK corr .

to emphasize the uncertainty of the factor ccorr‘ for cases | X|= | '|‘.
Table I
Values of Fyx and Ceof‘z' for some particular ihiﬁial and final electron
states. '
’ 144 Ly l. v K— . . ‘ - ) ] : .
Transﬂ;on X . X, A FK?{' o | C’_corr
— : — .
S =D 5 T IEEE T RS U I 97308
/2" P12 ol i '<0) v(0)
. 7 . B ) 3 0 fo) N . ,' Zm :
P3/27d3/2 -2 2 2 | 70 fxex
o _ 1.0 v'(0)-v(0)
P1/2751/2 R L 5 &k B
S =D | _2 1 .
1/2 p3/2 : 3.1 oo
A | 7 | 10" R~ Bty
" P3/27%1/2 I N
: _ : , 1
' 1 ‘ | L] 3L
P1/27d3/, , 2 0" R "X
.ZlFor |>\| = | w'|, % _is defined as|x|. For|x|#|%'| we denote b X the
o} . : Y %o

smallest of the two absolute values. |
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" Evaluation of Nuclear Matrix Eleménts on the Basis of a Particular

Nuclear Model

The last section dealt with an integration over the electron coordinates.
Our next step co’nseqﬁently will be to integrate over the nucleon coordinates;
in other words. we wil_i now study the nuclear matrix elements. This
necessarily involves an assumption of a particular nuclear model.

As the El conversion anomalies are, so far, experimentallly_,found
in the regions .of nuclei displaying featﬁres of a deformed nuclear Shape, we
will in the follo{&ing"limit ourselves to employing tﬁe nuclear wave functions
of the unified ‘model22 that are appropriate for describing nuclei of large
stable equilibrium deformations. It is found that these huc_lei display a very
simple coupling scheme. The large mass transport involved in the -collective
rotational motion (simple consequences of which ‘are empirically encduntered,_
e.g., in'the occurrence of rotational en.ergy bands in this region of nuclei)
implies a low frequency for the latter mode of excitation. The rotational
motion may thus occur with such a low frequency that its effect on the
intrinsic nucleonic motion may to a good first approximation be neglected.
The nuclear wave function may then be separated into two parts, one, D
describing the rotation of the system as a whole, one, X, describing the
nucleonic motion with respe'ct to a system fixed in the nucleus:Z

bag “Dax (@B Y) Xy (M (57)
o) 0 :

N Bohr, Dan. Mat. Fys. Medd. 26, No. 14 (1952;)

_A. Bohr and B. R. Mottelson, Dan. Mat. Fys. Medd. 27, No: 16 (1953).
For the later modifications, see ref (10), where also a complete list of v
references is provided. |

'Z3To assure a definite parity the total wave function has to be symmetrized

according to a prescription in Ref. 22.- 'This'symmetrizaﬂ._’cion is of importance

. only for the case K =1/2.
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where a, [3 y are the eulerian angles defmmg the orientation of the nuclear
symmetry axes with respect to the space-fixed system, and where I, M, and
K are the total angular momentum, its projections on the space-fixed z-axis

" refers

and-on the nuclear symmetfy axis, respectively. 'Furthe.rmor,e,' T
.to the nucleonic coordinates defined with respect to a body fixed coordinate
system. In this so-called adiabatic approximation the additional forces of the
noninertial rotating system, Coriolis forces and centrifugal forces; have
..been neglected.  The effect of Coriolis forces (which is the most important
neglected effect) is to admix to the first order states of the same I, but with
K differer;t"from Ko by one unit (and.to higher order still more different K-

values}. We may formally account for this effect by modifying Eq. (57):

4’1{4:2 gi,DI X | (57a)

Here g = 1, While all other €; are small ~The smallness of~ei
prov1des a measure of the purity of the ad1abat1c approximation.

‘The 1ntr1ns1c wave function XK is partlcularly simple 1n the couphng.
scheme appr.opnate to deformed nuclei.® The deformation of the nuclear field
removes the degeneracy of the- spher1ca1 shell-model states, apart from a
twofold degeneracy corresponding to ‘the retention of rotational symmetry
- The nucleons now fill up the doubly degenerate levels pairwise. The angular
rmomentum components along the nucleon axis (the relevant quantity) of a pair
- of nucleons cancel.

'In an odd-A nucleus the nucleonic properties are essehtia‘lly given by
- the wave function of the last odd nucleon. | |

In the cases of anomalous El conversion coefficients empirically.
encountered we have presumably to do with cases in which only the last odd
nucleon is-involved in the eonversion process, The wa_vé f-ﬁnCtion‘XK may
‘then be thought of as the single-particle wave function of this particular -un-
~ paired nucleon. Calculations of intrinsic wave functions Xg by several

authors are now ‘_available:ZS’ 7,26 o o

24Fof the effects of this K-impurity, cf. Alaga, Alder; Bohr, and Mottelson,

Dan. Mat. Fys. Medd. 29, No. 9 (1955).

255. A. Moszkowski, Phys. Rev. 99, 803 (1955).
26 K. Gottfried, Phys. Rev. 103, 1017 (1956).
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In order to be able to convemently estimate the magmtude of the
correctmn term and to apply the tabulated wave functmns of Ref. 7 dlrectly,

it is convenient to introduce coordinates r' suitable to nuclear dimensions,

(Ve S (58)
0 .

r' in the units employed here). Here M is

(which may be written v
: / Mw
v . ) —1/3 2' .
the proton mass and ﬁwo, assumed equal to = 80 A"’ mc~, is.the
characteristic oscillator energy of the nuclear potential assumed in
calculating the wave functions of Ref. 7. »

We may now write considering the dominant anomalous conversion

terms in K and L-conversion .
i 1

. >\ Z e — . F |’ ° X - : (59)
w?  Me  AK ‘ '
. where F}fJ(' ‘is given from Table I, and where
| | X ¢ I"’;3 iY X
< l ‘corr : I;KO—K'O ‘ 'K|o>
(60)

<ch') = T [ Fxe )

provided the K impurity in the nuclear wave function (57a) is of negligible
importance. However, one may generalize Eq. (60) to include the effect of

K impurity. Such a modified expression for x reads

I 1 I / ; '3 _ _ '
. Z €;€; Cxr. K;-K'; K <XK. (r') I‘Ccorrﬂr kK, lXK'.(r )>'
X = 1] J : ' SR 1 ) J
Zv I| 1 . . , . .
i 1] h 1
7 €€ CK‘J KK, K <XK ) = Y1K17K3 | Xk, (x )>

J -
(60a)
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. Using Eqs (37) and (59) we now write the expressmn for the

conversion coeff1c1ent in a more compact and f1na1 form

»

- e L M, 2
a (B =) a(E]) =) gx’w b-x ‘1”3/2" —5 /o
x X X w eV

(61)

' The: constant MRK" is given in Table I for the dom_inant terms of K and L
conversion. It is c'alculated for the case Z = 91, A = 231 and should be
suff1c1ently accurate for all the act1n1de nuclei. The' numerical estimatesof ,

_ O

~and g on which the numerical values of M are based, are discussed in

KK
Appendlx A~ In view of the discus 51on there it is apparent that the values of

.M K! are only’ roughly approximate. Furthermore,: K is the partial

co}iaversmn coefficient defined in Eq. (38) ap'propriate )‘:o the hypothetical

case of negligible anomalous matrix elements. As has been poin-ted out
earlier, the coefficients & ,3,’0{5 ‘equal Rose's published conversion coefficients, !
provided point-source electron ane funCtions are employed. Sliv's refined.
values2 correspond to (a) usmg electron wave functions corrected for flnlte-‘
size effects, (b) takmg the nuclear correction term x into account in an
average way on the basis of an assumption that nuclear currents are all »
confined to the nuclear surface. The results correspond formally to setting -

2 ) . . . ;
.x = R, where the nuclear radius R is measured in units ——— . No values
' C ’ ) \/M[u

xy! are at present ava11ab1e The

. v S o
of the partial conversion coefficients a
" furthermore, enters with-a phase e}é , the value of which

: amplitu‘dev"‘gm(, .,
is also unpublished. (This phase equals the phase of the quantity S{oo, hL)
defined in Eq. (32)) _ o

_ The quantity X Tmneasures the strength of the anomalous matrix -
. element r3Y Compared with the r° Y1 matrix element. For a hypothetical
completely unhindered case both have the order of 'ma.gn1tude one.  In view

~of the smallness of the quantity M ¥ need to take on very large values -

i
in order for the effect of the anomKaTous terms to be pronounced. A large x
requires a very small rY, matrix element; i.e., the gamma transition should
be very hindered. As the angular dependence of both operators (rY, and r3Y )
is the same, it is apparent that a hindrance due to the K- selection rule

(See Ref. 24) will 1n general not lead to a large x. However, the selection
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rules due to nucleonic structure ((ari'd to a considerable extent borne out by
the wave functions of e.g. Ref. 7 and understood largely in terms of the so-
‘called asymptotic quant'um‘"nﬁmbers'7) that effectively hinder most El

t'ransitions27’ 28,29 i

n the region of odd-A elements in the rare earth
region and beyond Ac are expected to be greatly relaxed for the r3Y1
~operator. Cf. the scheme of selection rules displayed in Table III of Ref. 4.

A preliminary analysié of the expefimenta‘lly anomalous conversion_'
.coefﬁcients, réported,by Asaro et al. 5vhats been prepared for the Physical
Review by S. G. Nilsson and J. O. Rasmussen. 4, In all the anomalous _ca,sés
discussed there it appears that the rYl matrix element :is efhpiricélly small
by a factor 10-3 while correspondingly the 1'3Y1 matrix element appears
unwéakened or less'weakeneq than the .rYll'element in terms of the asymptotic
quantum numbers. _ _ _

The uncertainty in the correction factor ccorr above and the absence
of published values of 8»{»& makes a more detailed comparison difficult;
except maybe in a particular case of exceedingly large experimental
deviations from Rose's or‘Sli'v9s‘ values (in which case the second term
in Eq. .(61) becomes dbminant)'. This c.ase séems to indicate either that

the correction factors CC are unexpectedly large or ,that terms of higher

orr
order in the perturbation expansion, Eq. (7),are also of importance; C{.

 Ref. 19.

2.75.. G. Nilsson, Dissertation (Berlingska Boktr., Lund, 11 955).,

28

D. Sfrbm’inger and J. O. Rasmussen, Nuclear Phys. 2, 197.-(195_7)°

29B--. R.Mottelson and:S. G.: Nilss'on, Dan.  Mat. Fys. Medd. '.

~ (forthcoming).



..:26_

Table II

UCRL-3803

Values of“MK)d for some_' ~particular initial-and final electron s__t‘a.t,ésf '

. . Initial state Final state 10° Myg -
Shell “Orbital I
S P3/2 3.9
281/2 P1/s -2l
Ly _ : .
”. p3/2 _ 1.6
Lo o
o . "
d3 /2 0.1
_ 2P3 /2 S1/2 L4
Lo " d3/2 *
i n d *
5/2 |

!

1

* X . : . _
.-The leading anomalous terms for these transitions is of the form

r5Y1; in ‘addition the coefficient corresponding to Mk‘(. is negligibly

small.
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-~ APPENDIX A - o
To get an app1;)ox1mate estimate ‘of the coefficients FKK' [Cf. Eq (56)]
we 'need to know f xand gy- Table Iil. shows these quantities for the bound states
151/2’ 251/2’ ‘2p1/2, and 2p3/2,v corresponding to the. electron shells K, L
Lyp and Lyp e . 1S
from diagrams: of Brysk .and Rose, with Z = 91, A = 231. Their values

respectively. The third column gives values of - f and g obtamed

‘are corrected for "'finite size" and in a somewhat approximate way for
Ascreening. [The. values obtained under these assumptions are denoted (a);

they are employed in calculating F ] The fourth column gives for com-

i
parison the corresponding values cfbxt—amed by Re1tz3 for the K and Ly shell,

| =92, R = l 91x 10 2, with screening taken into account [denoted (b)] The
constants of f and g in this column are estimated from the values of f and g

at the nuclear surface, which values are given in Ref. 31, by matching

" solutions inside and outside the surface. For f and g inside,“ eﬁcpansions of
the type (Bvl) - (B4) of Appendix B have been used, retaining terms of the two
lowest orders in r. Such expansfons for the potential assumed in Eq. (43)

~have been studied by L. A. Sliv, 17 M. E Rose32‘and others. The deviation
between. Columns 3 and 4 may prov1de a measure of the uncertamty 1nvolved
in the values of f and cg)

The correspondfng constants for the free solutions (whlch are assumed
to be normahzed in the convent1onal manner,per unit energy ch) are exhibited
in Table IV. The second and third columns [denoted by (c)] in this table list |
values of f and g at the nuclear surface corresponding to the simple-free,‘
regular, unscreened and zero- energy wave functlons appropr1a.te to a nuclear

point charge. The effect of screenmg, and furthermore of the energy dependence,

"may be studied in Columns 4-7 [denoted by (b}]. These latter values are taken

30y, Brysk and M. E. Rose, ORNL 1830 (1955).

Reitz, Relativistic Wave Functions for a Fermi-Thomas-Dirac- Statistical

AR

Atom (University of Chicago, 1949);

M. E. Rose, Phys Rev. 82, 389 (1951).
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from Ref. 31. The last columns givé the constants ? and g (obtain'ed by the
| matching procedure described in the previous paragraph)_ i;sing only (a). This
should be a satisfactory estimate for our .purpose, as._screeniﬁg and energy.
dependence here appear to be minor corrections. N
In review it might be stated that the second figure in the numbers

listed often carries no significance.

Table III
The quantities g and P of bound electrons in K, LI’ LH’
L..; shells compiled from Refs. 30 and 31.
111
, @y (b)
1 | g +3.0 | 43l
o : :
f -0.9 . -1.7
2 i +1.2 . 6
o
f -4.0(-1) - -6.2(-1) .
- B
Zpl/2 g -1.3(-1) --
o .
f -4.1(-1) Bl
- ) - |
2p3./2 g +2.6(-3) L
0
f -4.3(-4) ‘ --
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Table IV

This table exhibits radial éomponents g and f at the nuclefar"’s'urface from_‘

free, régular, unscreened, zero-energy solutions, (c), and the‘corresponding

quantities from Ref. 31 . furthermore, values of g and‘-?f obtained on the basis

“of (c) are listed. ‘Brackets [ ] denote values obtained by the -additional use

of Eqs. (46) and (49).

Ib) 0.1 mc2

(c) | (®) 0.05 mc? (c)
\ ‘ [7 ) . . .
gR) JER)  |e®) | fR) | g®) | fR®R) | g 1

sya| s |- 5.5 22" 58 |-23 | s [-2.1]
151/2 - 2.0 ‘.o,?_' | _’--2,3" _'1‘.0_ -2.5 B [=O;8] | 2.4
P32 1.4(-2)]-- 1.6(-2) _2.8(-3)| -1.9(-2) -3.3(-3)| 1.6(-2) [-3.1(-3]
d5| - -2.4(-3) ~6.0(-4) -3.3(-3)] -8.8(-4) -4.9(-3) {-5.5(4)] -2.6(-3')
as_/z 4.6(<5)|-- '2.2(-5) '2-.5‘(‘6? 3.3(-5)| 3.7(-6)| 5.0(-5) | [-6.9(6)]
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APPENDIX B

As a cancellation takes place that greatly d1mlmshes the magmtude of the

usw.lly leading anomalous term r Y1 in the conversion amphtude, it is of
interest to study whether the terms of the next higher order are also subject

to the same cancellation, or if they p0351b1y may become dominant.

For K = -X, we assume the follow1ng expansmns for £ and g: j
_.'O.rko A2 -
EEIVER Ve [1+a(g] + -1, o S (B1) .
. r“o_l~_' rZ , '.
and correspondingly for K =k o ‘ | |
Ko-1 /' \2 _ '
f =? z [1+c%] +..] : (B3) -
xTEAR| . g, T--1 : . :

g, = g}(%jﬂé [1+d<§> +..]. : ' (B4)

One then finds, from Eq,.:.(26), E

' . 2 2 -
- UE-v(0)]” - 1}R .
b=ec=- 22+ 1) | - (B5)
22 2k 41
. {[E-v(0)] - I} R"™ 1 _ o 1 ,
& 2(2»(0]+ 7 370 mem o (BO)

where the minus sign holds for a and the plus sign holds for d.
Neglecting terms of order ;nv— compared to terms of order.l but retaining
the terms of the lowest and next higher order in r, one finds, for

Fzy-x K= K
KKK o

. 9 0
. : 2 \x_-1 f g4
_[r- Yo Ko ' 2 4:v(0) (»(0+1) _
f 6o+ Exlx —<—R> r Zr_F1 [2 + v'(0)-v(0)+r (_—TR_—K T (2w 73) Dcor‘r]’

(BT7)
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where

L R o
- . » L oraR0- (0)-V(0)
Peorr = 2( +1)[V 0)- V(O)] T YORALTTR -+ I
T he correspondmg formulae for X!'= X ; Xri, - ’(' are obtamed by exchangmg

- primed and unprlmed quant1t1es fK’ gK , v(O) and R

'Thus, - one has the same type of cancellation in the r5Y ter‘ms as
in the ‘r3-Y1 terms. -However, the cancellation is now sens1t1ve not only to
diffe.rehces;in v(0) of the final and 1n1t1al electron states, but also to
c_lifferenc‘es in R, the "curvature" parameter of the potential. A change in R
' of.lOf’fo inoplie_s' a':.D:C' r -of order 335 _, neglecting the effects -of changes in
- v(0). . _
If terms of the leading order and of the next higher order 1n r are

retalned Eq. {56) has to be modified:

- e 2 2Kl r2
.On(hl')’S(r’Jl)_on(‘]l) S(I‘, hl)- ? Yl—MFMK’Fr‘_ [C-COI'I' KK'( ) corr]’
_ . (B9)
where Ccorr ' and FKK, are found in Table I Wh1le Gh’h’ and Dcorr are

listed in . Table V. (In view of the d1scussmn in Append1x A the uncertamty

in Gy mlght be of the order 50% ) ! '

‘ Table V shows that the terms of order r> Y, are on the average still
small compared with the r3Y terms. If, however, th_e single-particle
transition is accomparued, e.g., bya »great.change in the nuclear deformation,
; | T orr may‘_b’e of '-e'nough

‘there is a possibility that the r5.Y1_ term due to D_
magnitude to affect the conversion coefficient significantly.
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Table V

Approximate values of the cénstants GX‘K.' and Débfr for sc')n\)e' particular
initial and final electron states, obtained under the aséumption Z = 90,
A '5230,_ and' W << mczv.. ~Furthermore the relation v(0)RZ= -1 has been

employed at some pIaces.

' TraﬁsitiOp' ! L4 Ko —VGK_.K' 4‘ ) | JDcorrv-
_Si/i*px/z_"'l_" 11 | =008 1f§[v'<0)-y<d>]- %{[I-}i{'-“%v;@] -
VATV LN R “é[v_“_”-""“’?]-‘,§R[R'£R'2',V‘°v)_<'5’>_'-(0)-']
,sl‘/Z_ ->p3/2' -1 ._’z 1 :o.os. 1

o pg/'zfél/z -2 | SRS =0.08|1
'pl/zg—fdf,’/z_ | 1 | ”2. 1 :0._68_ 1






