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Abstract
As climate changes, understanding the genetic basis of local adaptation in plants be-
comes an ever more pressing issue. Combining genotype-environment association 
(GEA) with genotype–phenotype association (GPA) analysis has an exciting potential 
to uncover the genetic basis of environmental responses. We use these approaches to 
identify genetic variants linked to local adaptation to drought in Pinus ponderosa. Over 
4 million Single Nucleotide Polymorphisms (SNPs) were identified using 223 individu-
als from across the Sierra Nevada of California. 927,740 (22.3%) SNPs were retained 
after filtering for proximity to genes and used in our association analyses. We found 
1374 associated with five major climate variables, with the largest number (1151) as-
sociated with April 1st snowpack. We also conducted a greenhouse study with various 
drought-tolerance traits measured in first-year seedlings of a subset of the genotyped 
trees grown in the greenhouse. 796 SNPs were associated with control-condition trait 
values, while 1149 were associated with responsiveness of these traits to drought. 
While no individual SNPs were associated with both the environmental variables and 
the measured traits, several annotated genes were associated with both, particularly 
those involved in cell wall formation, biotic and abiotic stress responses, and ubiqui-
tination. However, the functions of many of the associated genes have not yet been 
determined due to the lack of gene annotation information for conifers. Future stud-
ies are needed to assess the developmental roles and ecological significance of these 
unknown genes.
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1  |  INTRODUC TION

Genomics promises exciting advances toward understanding 
adaptive genetic variation and evolutionary potential of plants 
under a rapidly changing and often increasingly variable environ-
ment (Capblancq et  al.,  2020; Harrisson et  al.,  2014; Hoffmann & 
Sgrò, 2011; Sang et al., 2022; Savolainen et al., 2013). Intraspecific 
genetic variation represents the potential for adaptive change 
in response to new selective challenges, which is critical for 
local species persistence under environmental change (Bell & 
Gonzalez, 2009; Brooker et al., 2022; Leites & Benito Garzón, 2023; 
Pauls et  al.,  2013; Rice & Emery,  2003). Adaptation to local cli-
mate conditions has been considered typical for tree populations 
(Kitzmiller, 2005; Langlet, 1971; Wright, 2007; Ying & Liang, 1994), 
but organisms with such long generation times and a sessile life-
style can become maladapted if environmental shifts rapidly occur 
(Aitken et  al.,  2008; Alberto et  al.,  2013; Benomar et  al.,  2022; 
Frank et al., 2017; Gougherty et al., 2021). Plants also exhibit plastic 
changes in their growth form and physiology in response to stress, 
and the level of plasticity can itself be heritable (Auld et al., 2010; de 
la Mata et al., 2022; Van Kleunen & Fischer, 2005; Wu et al., 2023; 
Zeng et al., 2017) and may be under the selection (Zettlemoyer & 
Peterson,  2021). Understanding the distribution of genetic varia-
tion related to environmental responses may help us better predict 
changes and manage forests in a shifting climate (Leites & Benito 
Garzón,  2023; Neale & Kremer,  2011; Oney et  al.,  2013; Razgour 
et al., 2019). This includes selecting seed sources for restoration or 
breeding that have desirable characteristics such as drought tol-
erance (Beaulieu et  al.,  2014; Cortés et  al.,  2020; Isik,  2014; Ray 
et al., 2022).

Landscape genomics offers enormous potential to discover 
genes responsible for local adaptation by investigating the statistical 
association between genetic variation at individual loci and the puta-
tive causative environmental factors (Eckert et al., 2010, 2015; Feng 
& Du, 2022; Lu et al., 2019; Shaffer et al., 2022; Sork et al., 2013). 
This approach is sometimes known as genotype-environment asso-
ciation (GEA) analysis. Prior studies in Arabidopsis – the primary plant 
model organism – have found that environmentally associated SNPs 
can predict performance in common gardens (Hancock et al., 2011). 
A Pinus pinaster study suggests this could be true in trees as well, 
even when only a modest number of the genetic variants involved 
have been identified (Jaramillo-Correa et al., 2015). However, GEA 
studies do not by themselves reveal why specific alleles are more 
prevalent in particular environments – for example, are they re-
sponsible for selectively favored traits? Genotype–phenotype asso-
ciation (GPA) analysis identifies loci linked to a specific phenotype 
(Depardieu et  al.,  2021; Eckert et  al.,  2009; Holliday et  al.,  2010; 
Housset et al., 2018; Santini et al., 2021). In plant GPA studies, in-
dividuals are typically grown in a common environment to eliminate 
the effects of environmental variation on phenotypes. However, this 
approach does not reveal whether a trait variant would be favored 
in the field. GEA and GPA association are thus complementary, and 
combining them might better identify the loci and traits that are 

selectively favored in particular conditions than either could alone 
(Eckert et al., 2015; Mahony et al., 2020; Talbot et al., 2017).

The large genome size of conifer trees (>19 GBP) represents a 
challenge for analysis. Most association studies in conifers have fo-
cused on Single Nucleotide Polymorphisms (SNPs) within a few hun-
dred genes (Dillon et al., 2014; Eckert et al., 2009, 2015; Hamilton 
et al., 2013; Holliday et al., 2010; Housset et al., 2018), or fewer than 
2000 genome-wide SNPs (Uchiyama et al., 2013). One notable ex-
ception is a recent study on lodgepole pine that used a sequence 
capture dataset created by mapping the Pinus contorta transcriptome 
to the Pinus taeda genome sequence (Mahony et  al.,  2020). Most 
genome-wide studies, however, are limited to pines species with a 
full genome sequence (Cappa et al., 2022; De La Torre et al., 2019; 
Lu et al., 2019; Weiss et al., 2022). Still, most conifers have neither a 
published genome sequence nor a complete transcriptome. Though 
targeted sequencing is efficient, candidate gene approaches may 
miss other vital genes with previously unsuspected roles in local 
adaptation, and focusing solely on variants within genes may miss 
significant variants within regulatory regions.

Several approaches to identifying more genetic variants for ge-
nome-wide association studies (GWAS) utilizing next-generation 
sequencing (NGS) have been proposed in recent years (Badenes 
et  al.,  2016; Davey et  al.,  2011; Poland & Rife,  2012; Younessi-
Hamzekhanlu & Gailing,  2022). Genotyping-by-Sequencing (GBS), 
which can generate tens of thousands of SNP markers without the 
need for a reference genome or whole transcriptome, has emerged as 
a cost-effective strategy (Andrews et al., 2016; Elshire et al., 2011). 
By combining the power of multiplexed NGS with restriction-en-
zyme-based genome complexity reduction, GBS enables the geno-
typing of large populations for thousands of SNPs in an increasingly 
rapid and inexpensive way (Poland et al., 2012; Poland & Rife, 2012).

Despite the high economic and ecological importance of pon-
derosa pine (Pinus ponderosa) in the western United States (Graham 
& Jain, 2005), no previous study has attempted to identify the re-
lationship between gene sequence variation and drought tolerance 
in this species. Some studies have investigated the evolutionary 
history and phylogeography of P. ponderosa using mitochondrial 
DNA markers; these reflect the long-term biogeographical process 
contributing to the modern distribution of the species but have lim-
ited adaptive significance in themselves (Johansen & Latta,  2003; 
Potter et al., 2013). Other studies have emphasized the importance 
of intraspecific variation of P. ponderosa in environmental responses 
but focus on the phenotypic variation within and among popula-
tions without identifying the underlying genetic variation (Kolb 
et  al.,  2016; Maguire et  al.,  2018). California's historic 2012–2016 
drought may represent an increasingly common condition as cli-
mate changes (Berg & Hall, 2015; Griffin & Anchukaitis, 2014). Such 
“hot droughts” can lead to mass tree mortality, even in relatively 
drought-tolerant species like ponderosa pine, negatively impacting 
the sustainability of conifer forests (Fettig et al., 2019). A deep un-
derstanding of the genetic basis of adaptation in ponderosa pine and 
other conifers in the western United States is critical for successful 
reforestation and conservation programs.



    |  3 of 16SHU and MORAN

In this study, we delve into the genetic basis of local adaptation 
and drought-response traits in ponderosa pine populations from 
diverse climates within the central Sierra Nevada mountains in 
California. Using a comprehensive approach, we performed a GEA 
analysis on 223 genotypes and, subsequently, conducted a GPA anal-
ysis on seedlings germinated from a selected subset of these trees. 
We also made use of gene annotation to assign biological functions 
to genes linked with or adjacent to the identified SNPs. The aims 
of the present study were to unravel the genetic underpinnings of 
climate adaptation and drought-responsiveness in ponderosa pines 
through combined GEA and GPA analyses and (2) to integrate asso-
ciation studies with gene annotation analysis to spotlight genes and 
functions of significance for adaptation. We hypothesized that cer-
tain gene functions previously identified as important for drought 
tolerance in trees (Moran et al., 2017) – such as those in the abscisic 
acid (ABA) signaling pathway used to close the stomata during stress 
– would be identified in both analyses, but that new functions would 
be identified as well.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling and DNA sequencing

In the 1970s, the Forest Service's Pacific Southwest Regional 
Genetic Resources Program planted clones of 302 wild ponderosa 
pines from diverse climate conditions in the central portion of the 
Sierra Nevada mountains in an orchard located in Chico, California. 
From this orchard, we selected 223 individual P. ponderosa geno-
types for the GEA analysis, ensuring they spanned the full climatic 
range represented in the original collection (Figure S1). The source 

locations for these genotypes (Figure 1) fell within just one of the 
several genetic subdivisions previously identified in ponderosa pine 
(Conkle & Critchfield,  1988; Potter et  al.,  2015; Williams,  2009). 
Fresh needles were collected from these individuals and placed in 
labeled tea bags over silica gel to dry them and quickly preserve the 
DNA for extraction.

DNA was extracted from the dried needles using a modified 
Qiagen plant kits protocol by adding proteinase K and quantified 
using an Eppendorf BioSpectrometer (Eppendorf, AG, Germany). 
Samples were frozen and sent to the UC Davis Genome Center for 
library construction. Four 48-plex GBS libraries consisting of 47 
DNA samples and negative control (no DNA) and one 36-plex GBS 
library composed of 35 DNA samples and negative control were pre-
pared. The pool was quantified via qPCR using the KAPA Library 
Quantification Kit (Kapa Biosystems, Wilmington, MA, USA) for 
Illumina sequencing platforms, with 0.9X bead cleanup to remove 
small fragments (<250 bp). Additional DNA purification using the 
Zymo DNA Clean & Concentrator kit (Zymo Research, Irvine, CA) 
was performed to increase the purity of the extracted DNA. The li-
braries were then sequenced (single-end read 90 or 100 bp) using an 
Illumina HiSeq 4000 (Illumina, San Diego, CA), one library per lane.

2.2  |  SNP calling and filtering

No reference genome is available for ponderosa pine (P. ponderosa), 
but one does exist for loblolly pine (P. taeda) (Neale et  al.,  2014; 
Zimin et al., 2014, 2017). Of the conifers that have been sequenced 
to date, P. taeda is the most closely related to P. ponderosa (Gernandt 
et al., 2009; Willyard et al., 2009). Furthermore, the P. taeda reference 
genome was successfully used to design probes for sequence capture 

F I G U R E  1 Source location and the admixture analysis of the 223 ponderosa pine genotypes. Left: Original geographic distribution of the 
223 ponderosa pine genotypes. Right: Proportion of each individual's genome allocated to “population 1” (green) and “population 2” (orange) 
by admixture analysis when K = 2, illustrating lack of geographical structure. Trees were subsequently treated as part of a single population.
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in P. contorta (Suren et al., 2016; Yeaman et al., 2016), a distant relative. 
Based on preliminary analyses, we selected the Stacks v.2.2 pipeline 
(Rochette & Catchen, 2017) with this reference genome (https://​treeg​
enesdb.​org/​FTP/​Genom​es/​Pita/​) for SNP calling (Shu,  2020). Each 
step in the Stacks reference pipeline was performed internally in Stacks 
algorithms except alignment with BWA v.0.7.17 (Li & Durbin, 2009) and 
the Samtools v.1.9 (Li, 2011) step used to get read position. Default set-
tings were used in Stacks, BWA, and Samtools.

After calling the SNPs, we ran SnpEff (Cingolani et al., 2012) to 
identify the location of the gene containing each SNP. We used the 
database of annotated genome and the reference genome of loblolly 
pine v.2.01 in TreeGenes (http://​treeg​enesdb.​org/​FTP/​Genom​es/​
Pita/​v2.​01/​). The location of each SNP was listed in the output file of 
SnpEff as one of six primary location categories, including intragenic 
variants, intergenic variants, upstream SNPs, downstream SNPs, 
synonymous, and missense variants in the gene coding sequence. In 
SnpEff, “intragenic” refers to SNPs in introns, while “missense” refers 
to any non-synonymous mutation in the transcribed region.

Many SNPs identified by GBS fell between genes and reg-
ulatory regions (in the intergenic regions) and likely had no direct 
effect on gene expression or function. In addition, because of the 
low amount of linkage disequilibrium in conifers (Isik et  al.,  2016; 
Namroud et  al.,  2008), any associations identified between such 
intergenic SNPs and a phenotype or environment of interest were 
likely false positives rather than reflecting linkage between the SNP 
and a causal variant. Therefore, we first filtered out the intergenic 
SNPs before running the association analysis using a Python script 
(https://​github.​com/​shume​ngjun/​​LFMM).

2.3  |  Climate data

We obtained 30-year (1921–1950) averages of climate data for 
each genotype source location from the 270 m resolution California 
Basin Characterization Model (BCM) (Flint et  al.,  2013). These 
mid-20th-century values were used instead of more recent climate 
data because they more closely resemble the conditions when the 
genotypes were establishing as seedlings. For the GEA analysis, a 
PCA was conducted on the entire climate dataset to determine key 
climatic variables. The first two principal components captured a sig-
nificant 68.2% of the total climatic variation (Figure S2). We decided 
to focus our analysis on five crucial climate variables components 
that contributed strongly to the first two principal components, 
including: mean climatic water deficit (CWD, a measure of evapo-
rative demand exceeding soil moisture); mean minimum winter 
(December–February) temperature (TMIN); mean maximum sum-
mer (June–August) temperature of summer (TMAX); mean monthly 
winter precipitation (PPTW); and mean April 1st snowpack (PCK4). 
Other climate variables considered but not included in the analysis 
were actual evapotranspiration (AET), potential evapotranspiration 
(PET), mean monthly summer precipitation (PPTS), excess water 
(EXC), recharge (RCH), runoff (RUN), snowfall (SNW), snowmelt 
(MLT), soil water storage (STR), and snow sublimation (SBL).

2.4  |  Genotype-environment association analysis

We used latent factor mixed model 2 (LFMM2) for GEA association, 
which has been shown to outperform similar approaches with sev-
eral orders-of-magnitude faster computing (Caye et al., 2019), which 
also controls for the effects of demographic processes and popula-
tion structure (Wang et al., 2017). This approach is robust to high 
amounts of missing data, such as GBS sequencing tends to produce, 
when sample sizes are >100 (Xuereb et al., 2017).

LFMM2 regression models combine fixed and latent effects with 
the following equation:

Y is a matrix of genetic information measured from p genetic mark-
ers for n individuals, and X is a matrix of d environmental variables 
measured for n individuals. The fixed effect sizes are recorded in 
the B matrix, which has dimension p × d. The E matrix represents re-
sidual errors with the same dimensions as the response matrix. The 
matrix W is a matrix of rank K, defined by K latent factors where 
model choice procedures can determine K. The K factors represent 
unobserved confounders – usually geographical structure in the 
genotypes of the samples – defined as an n × K matrix, U. V is a p × K 
matrix of loadings. The matrix U is obtained from the matrix's singu-
lar value decomposition (SVD):

We used the two approaches implemented in the LEA v.2.6.0 
R package to determine K: principal component analysis (PCA) and 
admixture analysis (Frichot et al., 2013; Frichot & François, 2015). 
First, we ran the LEA function PCA to select the number of signif-
icant PCA components by computing Tracy-Widom tests with the 
LEA function Tracy.widom (Patterson et al., 2006). Second, we ran 
the LEA function snmf for K values between 1 and 5 with 10 repeti-
tions each. The most likely K value was identified by minimizing the 
cross-validation error evaluated in the 10-fold cross-validation pro-
cedure. Upon executing the GEA using LFMM2 with the determined 
K value, we calibrated the raw p values by employing the Genomic 
Inflation Factor (GIF) to account for potential distortions caused by 
population structure or other intervening variables. We then chose 
significant associations based on p (<10−5) value. This calibration, 
combined with our threshold criteria, was pivotal in ensuring strin-
gent False Discovery Rate (FDR) control, affirming the credibility of 
our identified associations.

2.5  |  Greenhouse experiment and phenotype 
measurements

In this study, we conducted a greenhouse experiment with both wet 
and drought treatments in order to carry out the GPA. The specific 
procedures for the greenhouse experiment and the phenotype as-
sessments are described in Wu et al.  (2023). We selected 50 seed 
sources among our 223 genotypes that still represent the same 

Y = XB
T
+W + E.

W = UV
T
.

https://treegenesdb.org/FTP/Genomes/Pita/
https://treegenesdb.org/FTP/Genomes/Pita/
http://treegenesdb.org/FTP/Genomes/Pita/v2.01/
http://treegenesdb.org/FTP/Genomes/Pita/v2.01/
https://github.com/shumengjun/LFMM
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breadth of climate conditions as the full set of trees (Figure  S3); 
greenhouse size did not allow for a larger sample of families. We 
aimed to have 10 seedlings from each maternal family in both wet 
and dry treatments, 1000 seedlings in total. As responses to dry ver-
sus wet conditions could not be measured in the genotyped adult 
individuals, we used average values for their offspring.

We recorded nine seedling traits: height growth (GR; in centi-
meters), root length (RL; in centimeters), dry shoot weight (SW; in 
grams), dry root weight (RW; in grams), the ratio of root-to-shoot 
dry mass (R2S), specific root length (SRL; in centimeters per gram), 
stomata density of adaxial side (SD_AD; in numbers per square mil-
limeter), the number of stomatal rows on the abaxial side (NR_AB; in 
number per mm2), and the number of stomatal rows on the adaxial 
side (NR_AD; in number per mm2). Forty-two maternal families had 
sufficient germination to enable these measurements across both 
wet and drought treatments.

2.6  |  Genotype–phenotype association analysis

We used the SNPs identified in the 42 mother trees for the GPA 
association analysis, focusing on the traits significantly associated 
with drought treatments. Two groups of traits' measurements were 
included in the GPA analysis. For the control treatment traits, we 
used the average trait value across all members of each family in the 
wet treatment to run GPA analysis. For the drought responsiveness, 
we deducted the average trait value for a given family in the wet 
treatment from the value for each family's offspring in the drought 
treatment. We used LFMM 2 (Caye et al., 2019) for GPA analysis, 
using trait measurements as explanatory variables, in contrast to the 
environmental variables used in the GEA analysis, with the explana-
tory variables as the traits' measurement instead of environmental 
variables in GEA analysis. Following this, we calibrated the raw p 
values from the GPA analysis using the GIF to correct for potential 
biases introduced by population structure or other confounding fac-
tors. Associations were deemed significant based on p (<10−5) value. 
This calibration approach, along with our chosen threshold, was in-
strumental in ensuring rigorous control of the FDR, thereby enhanc-
ing the reliability of our GPA analysis results.

2.7  |  Gene annotation

After identifying the significantly associated SNPs in GEA and GPA, 
we aligned the gene sequences for these regions against the nonre-
dundant protein sequences database using UniProt to identify the 
gene and protein with the implemented Blastx (2.9.0+, E < 1e−10). The 
Gene Ontology Annotation Database (Bateman et al., 2017; UniProt 
Consortium, 2015) was used to identify the potential functions of 
the genes further. If a SNP is in the intragenic region, we performed 
a search by querying the flanking sequence 400 bp from the begin-
ning position of the gene. This step was essential because, for genes 
encompassing introns, the distance between the “start” and “end” 

positions was considerable, often resulting in Blastx yielding no 
matches.

3  |  RESULTS

3.1  |  Genetic diversity and population structure

A total of 4,155,896 SNPs were identified from GBS data of the 
223 genotypes after initial filtering. With these SNPs, we ran both 
principal component analysis (PCA) and admixture analysis to deter-
mine the number of populations (K) represented by these individu-
als. Remarkably, the PCA indicated that all 223 genotypes clustered 
closely together, as depicted in Figure S4. Despite the broad geo-
graphical range of our samples, they appear to represent a single 
population. This observation is consistent with previous research, 
which posits that the ponderosa pines in the Sierra Nevada moun-
tains belong to one of the previously identified genetic subdivisions 
(Potter et  al.,  2015). Even though our samples are across a wide 
distribution, it belongs to the same population, which is also in ac-
cordance with the previous findings, which indicate the ponderosa 
pine in Sierra Nevada mountains belongs to one of the previously 
identified subdivisions. According to the admixture analysis result, 
the best K value was one (Figure S5). We also plotted the admix-
ture of each individual tree. We found that the identified “popula-
tions” when K = 2 completely overlapped geographically (Figure 1b, 
Figure S6). Thus, we concluded that the sampled genotypes belong 
to one interbreeding population and used K = 1 for the association 
analysis.

3.2  |  Environmental associations at individual loci

After filtering out the intergenic SNPs that might result in false 
positives, we were left with 927,740 (22.3%) SNPs in or near genes. 
These were then used for the association analyses. After the running 
of LFMM2 (p < 10−5) for GEA, we found 1374 significant associations 
with the five selected environmental variables (Table 1). PCK4 (April 
1st snowpack) had the most associations, with TMIN (minimum win-
ter temperature) having the following highest number. Few SNPs 
were associated with more than one climatic variable, with the high-
est degree of overlap between PCK4 and TMIN (64 SNPs) and be-
tween CWD and TMIN (17 SNPs) (Figure 2).

For PCK4 and TMIN, there were roughly similar numbers of asso-
ciated SNPs in upstream and downstream regions versus the gene it-
self, with 14% of associated SNPs being missense (non-synonymous) 
mutations (Table 1). SNPs associated with CWD were also roughly 
evenly split between flanking regions and the main gene sequence, 
but only 3% were missense mutations. A higher proportion of SNPs 
associated with TMAX (maximum summer temperature) were within 
the gene (68%), with 22% being missense mutations, while PPTW 
(winter precipitation) showed the opposite pattern, with 69% of 
SNPs being in the flanking regions.
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3.3  |  Phenotypic associations at individual loci

Although 50 maternal families were initially selected for the green-
house experiment, only 42 had sufficient germination for meas-
urements to be included in analyses. Six out of the eight measured 
phenotypic traits were significantly different in the drought treat-
ment versus the wet treatment. GR and SW decreased, while RL, 
R2S, SD_AD, and NR_AB increased. We therefore focused on these 
traits for the following GPA analysis, including both the average 
measurement of control treatment family and drought responsive-
ness for each trait. Heritabilities of trait responses to drought ranged 
from 0.15 to 0.65, and are discussed further in Wu et al. (2023), with 
variation in shoot growth in response to drought having the highest 
heritability.

More SNPs were associated with the trait drought responses 
(1149) than with the control traits (796). While control R2S had the 
most associations and SW the least (Table 2), the opposite was the 
case for drought responsiveness (Table 3). The number of SNPs as-
sociated with more than one trait was low in both GPA analyses. The 

highest degree of overlap was in control traits of RL and R2S (12 
SNPs) and of R2S and NR_AB (nine SNPs) (Figure  3). The propor-
tion of associated upstream SNPs was similar across control traits 
(32%–43%), but proportions of other categories varied widely, with 
the proportion of missense SNPs ranging from 8% to 25% (Table 2). 
For drought response, the distribution of SNPs in all categories dif-
fered, with the proportion of upstream being 19%–34% and the 
proportion of missense being 7%–16% for traits other than R2S 
(Table 3). R2S was only associated with six SNPs, five upstream and 
one downstream.

3.4  |  Gene annotation for the significantly 
associated SNPs

Of the 1374 SNPs associated with environmental gradients, func-
tions could be assigned for 788 (54%), while the rest had no matches 
in available gene ontology databases. We found that 283 SNPs with 
identifiable functions belonged to protein types that may be directly 
related to drought tolerance or other environmental responses 
(Figure  4). We categorized these genes into five main functional 
groups: (a) the ubiquitination pathway, (b) seed, pollen, and ovule 
formation, (c) cell wall formation, (d) stress responses, and (e) cell 
division and growth. Other associated SNPs with known functions 
were in or near transcription factors and genes with expression-
regulating functions.

Many of the SNPs associated with TMAX, TMIN, CWD, and 
PCK4 were in or near genes in the protein ubiquitination pathway 
or the jasmonic acid synthesis response pathways (Figure 4), both of 
which are involved in responses to biotic or abiotic stress (Creelman 
& Mullet, 1995; Lyzenga & Stone, 2012; Stone, 2014). CWD and PCK4 
were also associated with SNPs in or near genes involved in seed dor-
mancy, cell wall organization, and the abscisic acid (ABA) signaling 
pathway, which have been previously linked to drought responses in 
trees (Moran et al., 2017). Genes involved in reproduction, including 
pollen and ovule formation, were associated with TMAX, TMIN, and 
PCK4. Genes involved in vascular tissue formation, growth regulation, 
and stress responses were associated with TMAX and PCK4. Genes in-
volved in stomatal regulation and pathogen responses were associated 
with TMIN and PCK4. Further biotic and abiotic stress response genes 
were associated with PCK4, as were genes involved in nutrient trans-
port, photosynthesis, respiration, sugar synthesis, and light responses.

Location of SNP PCK4 TMIN CWD TMAX PPTW

Upstream 335 (29%) 33 (23%) 11 (16%) 12 (24%) 16 (36%)

Intragenic (intron) 336 (29%) 34 (23%) 24 (36%) 18 (36%) 7 (16%)

Synonymous 92 (8%) 22 (15%) 6 (9%) 5 (10%) 2 (4%)

Missense 157 (14%) 20 (14%) 2 (3%) 11 (22%) 5 (11%)

Downstream 229 (20%) 36 (25%) 24 (36%) 3 (6%) 15 (33%)

Other 2 (0.1%) 0 0 1 (2%) 0

Total 1151 145 67 50 45

TA B L E  1 Number of environmentally 
associated SNPs located in different 
regions.

F I G U R E  2 Venn diagram comparing overlap in environmentally 
associated SNPs. The number of overlapping SNPs that are 
associated with four climatic variables between April 1st snowpack 
(PCK4), monthly winter precipitation (PPTW), climatic water deficit 
(CWD), and minimum winter temperature (TMIN).
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Of the 796 SNPs associated with seedling control (wet treatment) 
trait values and 1149 SNPs associated with trait drought responsive-
ness, 43% and 51% could be assigned functions by gene ontology. 
Many of the same functional categories of genes associated with 
the environment were also related to measured phenotypes. This 
includes ubiquitination, seed development, cell wall organization, 
stress response, cell division (Figures 4–6), and transcription factors. 
However, there was no overlap in specific SNPs identified in control 
and drought responsiveness traits.

The control treatment levels of the two stomatal traits (NR_AB 
and SD_AD) were associated with genes involved in ubiquitination, 
cell wall organization or modification, growth and development, 
and ABA response. Control R2S was associated with genes in-
volved in biotic & abiotic stress responses, cell wall organization or 

modification, cell division or differentiation, lateral root formation, 
and ubiquitination. Control height growth had no associated SNPs, 
and root length was only associated with one SNP located in a gene 
involved in ubiquitination (Figure 5). However, drought responsive-
ness of height growth, shoot weight, and root length was associated 
with all five functional categories (Figure  6). Drought responsive-
ness of the two stomatal traits was associated with genes involved 
in stress responses, cell wall formation/organization, cell division/
differentiation, and root formation.

Besides the five main functional groups of genes with SNPs 
associated with climatic, phenotypic, and drought response vari-
ables, several other functional groups were identified in the GEA 
and GPA annotation results. For example, 111 (14%) of the en-
vironmentally associated SNPs, 53 (6%) of SNPs associated with 

Location of SNP R2S NR_AB RL GR SD_AD SW

Upstream 166 (35%) 90 (32%) 12 (43%) 6 (40%) 4 (33%) 3 (33%)

Intragenic (intron) 106 (23%) 79 (28%) 5 (18%) 2 (13%) 3 (25%) 1 (11%)

Synonymous 40 (8%) 18 (6%) 1 (3%) 0 (0%) 2 (17%) 1 (11%)

Missense 61 (13%) 21 (8%) 3 (11%) 3 (20%) 3 (25%) 2 (22%)

Downstream 100 (21%) 72 (26%) 7 (25%) 4 (27%) 0 (0%) 1 (11%)

Other 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (11%)

Total 473 280 28 15 12 9

TA B L E  2 Number of SNPs associated 
with traits in control conditions.

Location of SNP ΔR2S ΔNR_AB ΔRL ΔGR ΔSD_AD ΔSW

Upstream 5 (83%) 43 (28%) 84 (22%) 48 (33%) 11 (19%) 138 (34%)

Intragenic (intron) 0 (0%) 41 (26%) 115 (30%) 41 (27%) 33 (58%) 113 (28%)

Synonymous 0 (0%) 10 (6%) 29 (8%) 11 (7%) 1 (2%) 43 (10%)

Missense 0 (0%) 15 (10%) 60 (16%) 15 (10%) 4 (7%) 46 (11%)

Downstream 1 (17%) 45 (29%) 85 (23%) 35 (23%) 8 (14%) 69 (17%)

Other 0 (0%) 2 (1%) 3 (1%) 0 (0%) 0 (0%) 0 (0%)

Total 6 156 376 150 57 409

TA B L E  3 Number of SNPs associated 
with drought responsiveness of traits.

F I G U R E  3 Venn diagram comparing overlap in phenotypically associated SNPs. Left: Overlap in SNPs significantly associated with 
control root length (RL), root-to-shoot ratio (R2S), and abaxial stomatal rows (NR_AB). SNPs associated with control height growth (15), 
adaxial stomatal density (12), and shoot weight (9) did not overlap with other categories. Right: Overlap in SNPs significantly associated 
with drought responsiveness of shoot weight (ΔSW); root length (ΔRL); and the number of stomatal rows on abaxial side (ΔNR_AB). SNPs 
associated with drought responsiveness of height growth (150), adaxial stomatal density (57), and R2S (6) did not overlap with any other 
categories.
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control traits, and 121 (12%) of the SNPs associated with trait 
drought responses were in genes relating to ATP binding or pro-
tein kinases. It was also fairly common for associated SNPs to be 
in genes associated with RNA/DNA binding, metal ion binding, 
translation, and protein transport.

3.5  |  Overlapping annotated genes in 
GEA and GPA

While, as noted in the section above, there was no overlap in the 
exact SNPs identified by GEA and GPA analyses, a few of the as-
sociated SNPs were found to be in the same genes. There were 
14 genes identified in both the GPA for control traits and the GEA 
(Table  4). One of these was a ubiquitin-binding gene. Peptidyl-
prolyl cis-trans isomerase, involved in protein folding, was known 
to be heat-induced in wheat (Kurek et  al.,  1999). Two genes were 
involved in glycerophospholipid synthesis or metabolism, suggest-
ing some role related to cell membranes. Aspartyl proteases, like 
the one linked to winter precipitation and the number of stomatal 
rows, have been linked to the wood formation and to plant growth 
and development more generally (Cao et al., 2019). Butanoate–CoA 
ligases were often involved in the secondary compound synthesis 

(Beuerle & Pichersky, 2002) and so could be involved in defenses 
against biotic antagonists or other stress responses. There were 15 
genes identified in both the GPA for trait drought responsiveness 
and the GEA (Table 5). Most share the same functions as those in 
Table 4. Moreover, two overlapping genes were directly related to 
the stress response. Gene wsc1 was involved in cell wall biosynthe-
sis under conditions of stress (Maddi et al., 2012; Zu et al., 2001). 
Gene PAT14 was involved in leaf senescence in response to stresses 
(Lai et al., 2015; Zeng et al., 2018). However, several of the overlap-
ping genes in each table had unknown functions, and most of these 
did not match any sequence in the database.

4  |  DISCUSSION

In the GEA analysis, over half of the SNPs were associated with 
April 1st snowpack (PCK4). In this Mediterranean climate region, 
almost all of the annual precipitation occurs during the winter, 
and the melting of winter snow accumulation at high elevations 
feeds spring and summer streamflow (Serreze et al., 1999). Lack 
of snow can limit seedling establishment (Andrus et al., 2018). A 
“blanket” of snow can also insulate seedlings from extremely cold 
temperatures, but may also delay the start of their growing season 

F I G U R E  4 Five types of annotated SNP functions associated with different climatic variables. The number of non-synonymous variants 
and other variants that are associated with the five climatic variables: Climatic water deficit (CWD); Minimum winter temperature (TMIN); 
Maximum summer temperature (TMAX); April 1st snowpack (PCK4); and Monthly winter precipitation (PPTW). Missense (non-synonymous) 
SNPs are shown in gray, and other types of SNP are in orange.



    |  9 of 16SHU and MORAN

(Ettinger & HilleRisLambers, 2013; Renard et al., 2016). Consistent 
with this latter possibility, one of the associated SNPs was in a 
gene involved in light responses. Winter minimum temperature 
(TMIN), which has frequently been found to limit growth in tree-
ring studies (Harvey et al., 2020), shows the next highest number 
of associations. The number of SNPs associated with more than 
one climatic variable was low (Figure 2), which may indicate that 
we successfully selected semi-independent climatic variables that 
require different genetic adaptations. The highest overlap was be-
tween PCK4 and TMIN (64 SNPs) and between CWD and TMIN 
(17 SNPs). The former SNP set may be related to adaptation to cold 
and snow depth, while the latter SNP set may be related to how 
quickly the site warms up in spring, drying out the soil. A similar 
GEA we conducted for the co-occurring species Pinus lambertiana 
also identified April snowpack as a key environmental variable that 
may have shaped local adaptation, and found low overlap in loci 
associated with different climate variables (Moran et al., 2023).

In the GPA analysis, most SNPs associated with control phe-
notypic traits were linked with root-to-shoot ratio (R2S) and the 
number of abaxial stomatal rows (NR_AB). In contrast, most SNPs 
associated with phenotypic responses to drought were linked with 
shoot weight (SW), root length (RL), and R2S. Drought-stressed 
ponderosa pine seedlings allocated more to their root system, with 

longer root length, higher root-to-shoot dry mass ratio, less dry 
shoot mass, and less height growth. Other studies in pines have 
found similar patterns (Cregg & Zhang, 2001; Irvine et al., 1998; 
Seiler & Johnson,  1988; Taeger et  al.,  2015). This may indicate 
investment in greater water harvesting capacity at the cost of 
the overall low growth of aboveground structures – though low 
shoot growth can have the benefit of further reducing transpi-
rational water loss (Moran et al., 2017). We found that dry treat-
ment root-to-shoot ratio was positively associated with survival 
in that treatment (Wu et al., 2023). Many of the SNPs associated 
with phenotypic drought responses were in genes associated with 
cell division & differentiation and with root growth, both of which 
make sense in light of the observed changes in allocation to root 
versus shoot growth. The number of SNPs associated with more 
than one trait was low in both GPA analyses. The highest degree of 
overlap was in drought responsiveness of RL and R2S and of R2S 
and NR_AB (Figure 6).

Non-synonymous (AKA missense) variants that may directly 
affect phenotype by changing protein form and function included 
195 of the climate-associated, 93 of the control environment phe-
notype-associated, and 140 of the phenotype drought-response-as-
sociated SNPs (Tables 1–3). Intragenic or synonymous variants are 
assumed to be neutral with respect to fitness but might be in linkage 

F I G U R E  5 Five types of annotated SNP functions associated with different traits in control conditions. The number of non-synonymous 
variants and other variants that are associated with four traits in control conditions: root length (RL), number of stomatal rows on abaxial 
surface (NR_AB), stomatal density on adaxial surface (SD_AD), and the ratio of root-to-shoot dry mass (R2S). No SNPs in these categories 
were associated with height growth or shoot weight. Missense (non-synonymous) SNPs are shown in gray, and other types of SNP are in 
orange.
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disequilibrium with a nearby causal variant. While linkage disequilib-
rium is usually low in conifers (Neale & Savolainen, 2004), the GBS 
sequence fragments were relatively short (90–100 bp or less) and 

were trimmed further before SNP calling, so a linked non-synony-
mous variant could have been missed. We also found quite a few 
upstream and downstream SNPs in both GEA and GPA analyses that 

F I G U R E  6 Five types of annotated SNP functions associated with drought responsiveness of different traits. The number of non-
synonymous variants and other variants that are associated with drought responsiveness of five traits: changes in height growth (GR), root 
length (RL), dry shoot weight (SW), number of stomatal rows on abaxial surface (NR_AB), and stomatal density on adaxial surface (SD_AD). 
No SNPs in these categories were associated with the ratio of root-to-shoot dry mass (R2S). Missense (non-synonymous) SNPs are shown in 
gray, and other types of SNP are in orange.

TA B L E  4 Overlapping genes in GEA and the GPA for traits in control conditions.

Climate variable Phenotypic variable Gene name Gene function

PCK4 NR_AB MARPO_0050s0076 Ubiquitin binding

PCK4 NR_AB Unknown Unknown

PCK4 NR_AB Gotri_016876 Unknown

PCK4 NR_AB Peptidyl-prolyl cis-trans isomerase Protein folding, may be heat induced

PCK4 NR_AB HAD-superfamily subfamily IIA hydrolase Glycerophospholipid biosynthesis

PCK4 & TMIN NR_AB Unknown Unknown

PCK4 NR_AB & R2S Pyridoxal kinase ATP/ADP conversion

PCK4 R2S RNA pseudouridine synthase 4, mitochondrial Synthesis of modified U in RNA (binding, stability)

PCK4 R2S Unknown Unknown

PCK4 R2S Glycerophosphodiester phosphodiesterase Glycerophospholipid metabolism

PCK4 R2S MAP3K epsilon protein kinase 1 Control of cell division/expansion

PPTW NR_AB Aspartyl protease Protein breakdown, often involved in plant 
growth & development

PPTW R2S Eukaryotic translation initiation factor 5B-like Translation initiation

TMAX R2S Butanoate–CoA ligase Secondary compound metabolism



    |  11 of 16SHU and MORAN

might directly affect gene expression or be linked to a protein-alter-
ing variant.

While we found no overlaps in specific SNPs between our GEA 
and GPA, we did identify several SNP-containing genes that were 
the same across the analyses (Tables 4 and 5). Most of these genes 
have been linked to stress responses in other studies. For example, 
gene wsc1 is involved in cell wall biosynthesis and gene PAT14 
is involved in leaf senescence, both in response to stress (Lai 
et al., 2015; Maddi et al., 2012; Zeng et al., 2018; Zu et al., 2001). 
Moreover, there was substantial overlap in functional categories 
found to be directly related to drought tolerance or other environ-
mental responses in previous studies (Figures 3–5). The prevalence 
of genetic associations related to abscisic acid (ABA)-signaling 
pathways and ubiquitination in GEA and GPA analyses is consis-
tent with prior observations (Moran et al., 2017) and with results 
of the P. lambertiana analysis (Moran et al., 2023). Increasing ABA 
concentrations are used as a signal to keep stomata closed during 
dry conditions, reducing water loss (Brodribb et al., 2014). In addi-
tion, ABA signaling can also affect shoot growth and water uptake 
(Buckley,  2005; Hamanishi & Campbell,  2011). Ubiquitination is 
involved in drought responses in model species by playing a role 
in ABA-mediated dehydration stress responses (Kim et al., 2012; 
Ryu et al., 2010) or through the downregulation of plasma mem-
brane aquaporin levels (Lee et  al.,  2009). Notably, aquaporin 
genes, which are crucial for adjusting stomatal conductance under 
water stress, have been identified in both poplar studies (Secchi 
& Zwieniecki,  2014) and GEA studies focused on oaks from dry 
environments (Temunović et al., 2020). Such findings underscore 
the significance of ubiquitin-mediated processes in the drought 
responses of a wide range of tree species. However, our under-
standing of the role of ubiquitin in conifer drought response is 
still somewhat limited. A study in black spruce (Picea mariana) 
identified 16 candidate genes correlated with precipitation, 

including the genes in the ubiquitin protein handling pathway 
(Prunier et  al.,  2011). The association between ubiquitin protein 
and roots and stomatal density may indicate previously unidenti-
fied roles in drought response.

Moreover, genes associated with seeds and seed dormancy can 
also be directly involved in drought tolerance; for instance, dehy-
drins can protect proteins from desiccation in both seeds and other 
plant tissues (Moran et  al.,  2017). However, reproduction-related 
genes might also show associations with environmental gradients if 
they are involved in reproductive timing. Genes involved in xylem 
& phloem differentiation or cell wall formation could shape the hy-
draulic safety of water-transporting cells, which can be quite plastic 
in pines (Lauder et  al.,  2019). Other than these functions directly 
related to drought tolerance or different environmental responses, 
the other overlapping functions among GEA and GPA analyses are 
involved in gene expression (RNA or DNA binding, transcription 
factors, helicase activity, ribosome components, methylation) or 
ATP binding (motifs found in membrane transporters, microtubule 
subunits, enzymes, and other cell components that require energy). 
Our findings suggest the efficiency of combining GEA and GPA anal-
yses with GBS to uncover potentially important adaptive genetic 
variation.

In conclusion, by investigating adaptive genetic variation in 
ponderosa pine with GEA and GPA association analysis, our study 
found thousands of genomic variants associated with response 
to climate and physiological traits. Some of these have previously 
identified functions associated with drought responses, but for 
others, the gene function – or how that function is relevant for en-
vironmental responses – is still unknown. Molecular tools based on 
the associated genetic markers could be developed to assist breed-
ers and land managers speed up selection for drought tolerance or 
selecting appropriate seed sources for a changing climate. In ad-
dition, our results should open new opportunities for functional 

TA B L E  5 Overlapping genes in GEA and the GPA for trait drought responsiveness.

Climate variable Phenotype variable Gene name Gene function

PCK4 ΔGR CSUI_002384 ATP binding

PCK4 ΔGR LOC109003013 DNA binding; regulation of translation

PCK4 ΔGR EXO84A Exocytosis

PCK4 ΔNR_AB EUGRSUZ_B03992 Oxidoreductase activity

TMAX ΔNR_AB L195_g029008 Nucleic acid binding

PCK4 ΔRL T459_09847 RNA binding

PCK4 ΔRL AMTR_s00007p00201600 Ubiquitin binding

CWD ΔRL NALOC109013111 RNA binding; regulation of translation

PCK4 ΔRL MARPO_0181s0009 Eoxyribonucleotide catabolic process

PCK4 ΔRL PAT14 Leaf senescence

PCK4 ΔSD_AD & ΔSW Unknown Unknown

PCK4 ΔSW LOC109001250 Peptidyl-prolyl cis-trans isomerase activity

PCK4 ΔSW wsc1 Regulation of cell wall organization or biogenesis

PCK4 ΔSW CCAM_LOCUS30844 Unknown

CWD ΔSW Unknown Unknown
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studies to determine the molecular roles of the genes underlying 
these associated genetic makers in influencing trees' adaptation.

The two environmental variables with the most genetic associa-
tions – snowpack and winter temperatures – are among those that 
have already undergone significant shifts in recent decades, with 
further substantial shifts being projected due to anthropogenic cli-
mate change (Fyfe et al., 2017; Rapacciuolo et al., 2014). This sug-
gests that tree populations in the Western US will be under rapidly 
shifting selective pressures, making exploring the potential of ge-
nomic selection for seed selection of pressing concern. We found 
considerable heritable variation in drought-responsive traits (Wu 
et al., 2023), suggesting adaptive potential exists if the change is not 
too rapid. We are also following up on this study by testing the abil-
ity of the SNP associations detected here to predict performance in 
post-fire restoration plantings.
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