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Abstract

T-cell Receptors (TCRs) play a pivotal role in antigen recognition and binding, and their sequence 

similarity significantly impacts the breadth of antigen recognition. Network analysis is employed 

to explore TCR sequence similarity and investigate the architecture of the TCR repertoire. 

Network properties hence could be utilized to quantify the structure of the TCR network. 

However, the heterogeneous nature of TCR network properties poses challenges in performing 

statistical learning across subjects directly, particularly when assessing their relationship with 

disease states, clinical outcomes, or patient characteristics. To overcome this challenge, a powerful 

method is developed, TCR-NP (TCR Network properties Prioritization), that aggregates the 

raw heterogeneous network properties and conducts grouped feature selection using a pseudo-

variables-assisted penalized group Lasso model. Unlike the traditional parameter-tuning using 

cross-validation, a novel tuning strategy is introduced by incorporating permutation and pseudo-

variables to improve the selection performance. The effectiveness of the proposed method is 

demonstrated through comprehensive evaluation, including simulation studies and real data 

analysis. By comparing the performance of the different approaches, the advantages of the 

proposed methodology in capturing the underlying relationships between TCR network properties 

and clinical outcomes or patient characteristics are highlighted.
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Introduction

T-cells are one of the key components of the adaptive immune system[1]. T-cell Receptors 

(TCRs)[1,2] are a group of protein complexes on the surface of T-cells. TCRs recognize 

and bind to specific antigen peptides[3] found on abnormal cells or potentially harmful 

pathogens. Once the TCRs bind to the pathogens, the T-cells attack these cells and help 

the body fight infection, cancer, or other diseases. TCR repertoires, which are continually 

shaped throughout the lifetime of an individual in response to pathogenic exposure, 

can serve as a fingerprint of an individual's current immunological profile. The protein 

structures of TCRs determine the binding between TCRs and antigen peptides[4]. Thus, 

the similarity among TCR sequences directly influences the antigen peptide recognition 

breadth. Network analysis, where TCR clones are represented by vertices and connected 

if similar in sequences (distance is less than a particular number) by using some sequence 

similarity measures (e.g., Hamming distance, Levenshtein distance[5], etc.), was used as a 

novel perspective to study TCR clusters and their binding to antigen peptides. As the binding 

patterns will eventually impact the high-level responses, the aim is to use network structure 

as a special layer of information to investigate its potential connection to clinical outcome or 

disease status, as evidenced in existing literature[6]. For example, it was observed that lung 

cancer patients with focused TCR repertoires and complex network connections attained 

significantly longer overall survival (OS) than those with smaller clusters[7]. Therefore, 

quantitative analysis of the TCR repertoire network properties has the potential to provide a 

better understanding of the immune landscape involving T cell responses. However, network 

properties are highly heterogeneous, as they can be measured at node and cluster levels, 

and networks differ in the number of nodes and clusters. Thus, it is challenging to perform 

statistical inference or machine learning directly on the TCR network properties to study 

their relationship with clinical outcomes.

A flexible and efficient approach was proposed to prioritize TCR Network Properties 

(TCR-NP) by leveraging extracted features from the heterogeneous network properties 

to assess their relationship with the outcome of interest, while incorporating the group 

structure based on the nature of the features. As an initial investigation, we propose 

extracting simple summary statistics (e.g., min, Q1, mean, median, Q3, max) from the 

network property values since they can be easily calculated and carry the key signatures 

of a distribution. Since the extracted features are naturally grouped by network property, 

TCR-NP is constructed on the Group Lasso model[8], a classical statistical method that 

offers several advantages in feature selection and prioritization. Specifically, it promotes 

group-level selection and addresses multicollinearity issues by selecting or excluding the 

entire groups (network properties), which is particularly beneficial when dealing with highly 

correlated variables (often found within the same network property). Moreover, it can handle 

the high-dimensional data (small sample, a large number of features commonly seen in 

TCR network data) efficiently (via L1 regularization[9]), resulting in a sparse solution that 

will facilitate the subsequent interpretations. Additionally, it can be applied to different 

response types (e.g., categorial, quantitative, and time-to-event), which will fulfill the needs 

of different application scenarios.
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Instead of using the commonly used cross-validation (CV)[10] technique, it was proposed 

to utilize pseudo-variables to assist the selection in the Group Lasso model, inspired by 

Yang et al.[11]. Traditional CV tuning typically minimizes prediction errors, which are 

indirect measures of selection performance. In contrast, pseudo-variables, generated through 

permutation as artificial unrelated features, serve as 'known negatives'. The goal is to 

select features with stronger association signals than the pseudo-variables, which is a more 

direct approach to improve selection performance. Such a strategy enhances precision by 

minimizing false positives, resulting in a condensed set of strongly associated features. 

Moreover, acting as a filter, pseudo-variables contribute to a more robust model, capable of 

handling variations and maintaining performance in noisy datasets.

In this paper, extensive simulation studies under different scenarios were conducted to 

demonstrate the efficacy of TCR-NP. Performance measures, including F-1 score, False 

Discovery Rate (FDR), sensitivity, and stability were calculated for each of the four 

following methods: permutation-assisted Group Lasso (P-Group Lasso), cross-validation 

tunned Lasso (CV-Lasso), cross-validation tunned Group Lasso (CV-Group Lasso), and 

permutation-assisted Lasso (P-Lasso). The proposed methods were also applied to a lung 

cancer TCR data for illustration.

Materials and methods

Network analysis and network properties

A matrix of pairwise distance of amino acid sequences was calculated for each sample based 

on Levenshtein distance[5]. Then, a TCR network can be generated by connecting the amino 

acid sequences (nodes) with a distance less than or equal to 1 (allowing a maximum of 1 

amino acid difference among sequences). A cluster of a network represents a group of clones 

that are similar in sequence, and here, clusters are only considered with at least two clones 

(nodes). Based on the network generated, several quantitative properties, such as the number 

of clusters, diameter, assortativity, etc, are calculated (Table 1). Network analysis was 

performed using the R package NAIR[12]. As mentioned earlier, within each TCR repertoire 

for each sample, there are different numbers of clusters, each corresponding to its properties. 

Therefore, for each property, the property dimension varies amongst samples. To tackle 

those issues, descriptive summary statistics for all the TCR repertoire network properties 

were derived and considered them as network property features (Fig. 1, top) for each patient. 

These summary statistics contain minimum, 1st quartile Q1 , median, mean, 3rd quartile Q3 , 

and maximum values. This approach helps obtain the TCR network property features for 

each patient (Table 2). Those results are independent of the number of collected TCRs for 

each patient and the number of clusters for each network, making the input structure the 

same across patients and suitable for making statistical inferences at the patients' level.

Group Lasso model

Assume a total of G network properties are considered, where the g-th property generated vg

network property features by using summary statistics of the network property, g = 1, …, G. 

Define xi = xi, 1
T , ⋯, xi, G

T T  as the network property features generated from i-th patienťs TCR 
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repertoires, where the xi, g ∈ Rvg represents the features from g-th property, with ∑g = 1

G vg = P , 

i = 1, …, n. Let y = y1, …, yn  be a binary response of interest, i.e., yi ∈ 0, 1 , i = 1, …, n. The 

binary response could be disease status, response to treatment, prolonged survival, etc. We 

assume the relationship between the response variable and network property features follows 

a logistic regression model:

Pr yi = 1 xi = exp ηβ xi
1 + exp ηβ xi

where,

ηβ xi = β0 + β1
Txi, 1 + ⋯ + βG

Txi, G

The above equation represents a linear combination of network property features. 

β = β0, β1
T, ⋯, βG

T T  is the logistic regression coefficient where βg ∈ Rvg is the coefficient vector 

for vg network features generated by g-th property, g = 1, …, G. The goal is to identify 

the network properties that are associated with the response variable, i.e., identify the 

property feature groups with βg ≠ 0. The Group Lasso method (Fig. 1, bottom right) is 

well-fitted to the problem due to the group structure among variables and the need for 

shrinkage. It can efficiently shrink the coefficients of less important groups to exactly zero 

for high-dimensional data, while the group with nonzero coefficients could stand out and are 

considered the most important properties associated with the response variable. The solution 

of the logistic group Lasso model corresponds to an optimization problem by minimizing the 

objective function:

Lλ β = − ∑
i = 1

n
yiηβ xi − log 1 + exp ηβ xi + λ ∑

g = 1

G
s vg βg 2

where, s vg  is the penalty for gth set and by default is set to vg for group Lasso model 

(i.e., the larger penalty for the larger set), βg 2 represents the L2 norm of the vector βg, and 

λ ≥ 0 is a tuning parameter controlling the amount of shrinkage. A large λ promotes heavier 

shrinkage, i.e., more coefficient vectors βg shrink to zero. In the extreme case, when λ = 0, 

the solution of the optimization problem is the same as the logistic regression coefficient, 

while λ = ∞ gives β1
T, ⋯, βG

T = 0, i.e., shrinking all coefficients vectors to zero. For a given λ
an estimate of β λ  can be obtained by solving the optimization.

A novel approach for group feature selection

Selecting the right tuning parameter λ is crucial for improving the performance and 

robustness of a model. Shrinkage techniques like Lasso and Group Lasso typically use 

K-fold cross-validation to identify the optimal value of the tuning parameter λ from a range 

of different λ values. In this method, the dataset is divided into K equal folds. For each 

candidate λ value, the model is trained using K − 1 folds and validated on the remaining 

fold. This process is repeated for each λ value and the optimal λ is chosen based on 
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minimizing the average loss, such as mean square error for Gaussian response or deviance 

for a binary response, across all validation folds. However, the average loss that guides the 

selection, is not a direct measure of the selection performance. In the past decade, pseudo-

variables have been used to improve the performance of variable selection[13,14]. Inspired by 

Yang et al.[11], where pseudo-variables were utilized to assist the variable selection in the 

Lasso model and applied to genome-wide association studies, the pseudo-variable assisted 

tuning procedure was developed on the proposed Group Lasso model (Fig. 1, bottom left) to 

identify the important network properties associated with the clinical outcome.

First, the G groups of pseudo-features are introduced xi
π = xi, G + 1

T , ⋯, xi, 2G
T T , which is 

generated by a permutation π (i.e. randomly shuffling the rows of the original matrix). 

Hence the augmented features xi
A include both the original grouped variables xi and the 

pseudo-grouped variables xi
π.

xi
A = xi, 1

T , ⋯, xi, G
T , xi, G + 1

T , ⋯, xi, 2G
T T .

The updated logistic regression model becomes:

Pr yi = 1 xi
A = exp ηβA xi

A

1 + exp ηβA xi
A

where,

ηβA xi
A = β0 + β1

Txi, 1 + ⋯ + β2G
T xi, 2G

represents a linear combination of augmented features. The logistic Group Lasso estimator 

β λ
A
 for this augmented design matrix is derived by minimizing the below objective function.

Lλ βA = − ∑
i = 1

n
yiηβA xi

A − log 1 + exp ηβA xi
A + λ ∑

g = 1

2G
s vg βg 2

Since the pseudo-variables are generated by permutations, their group sizes are the same 

as the original ones, i.e. vG + g = vg, g = 1, …, G. In the above equation, the tuning parameter 

λ ≥ 0 controls the amount of penalization (i.e., how many groups have non-zero coefficient 

vectors). More explicitly, 2G groups have non-zero coefficient vectors when λ = 0. As λ
increase, more groups are excluded (i.e., coefficient vectors are shrunk to zeros) from the 

model until every group is excluded when λ is large enough, following the fashion that more 

important ones stay in the model longer when λ increases. Therefore, the magnitude of λ
reflects the importance of the variable: if a group still has a nonzero coefficient when λ is 

relatively large, this group is considered more important, compared to the ones that have 

been shrunk to zeros. Along with this idea, we define an importance metric for the g-th 

variable group.
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W g = sup λ:β g
A λ ≠ 0 ; g = 1, ⋯, 2G

The group-variable selection procedure given below assumes that true active grouped 

variables are more likely to stay in the model than the pseudo-grouped variables (known 

noises) when the penalty λ increases. Define Cπ = max G + 1 ⩽ g ⩽ 2G W g  for the permutation 

copy π, i.e., the largest importance score among the pseudo groups. This can serve as a 

benchmark to separate the true active group variables from the pseudo group variables. 

We want to select the true groups that are more important than the strongest signal among 

the pseudo groups. Specifically, the selection of groups under a particular permutation π is 

defined as:

Sπ = g:W g > Cπ, g = 1, ⋯, G .

The selection process involves iteratively creating K different permutation copies (e.g. 

K = 50) to evaluate the frequency of selection for each of the G groups across these K
permutations. A group will be selected if its selection frequencies out of the K permutations 

are greater than a threshold τ.

Lung cancer data

The TCR repertoire sequencing data of 65 patients enrolled in the Phase I trial 

NCT01693562, 14 September, 2012) of durvalumab was included for this analysis. Patients 

with OS ≥ 20.3 months are categorized into the longer overall survival group and patients 

with OS < 20.3 months are categorized into the shorter overall survival group, where the 

median overall survival was 20.3 months. The bulk TCR beta chain sequencing was done 

for each blood sample (two samples per patient including baseline and post-treatment) by 

the Invitrogen Qubit dsDNA HS assay (Thermo Fisher Scientific). The median number of 

unique clonotypes was 4,994 (ranging from 403 to 17,876). The clinical characteristics of 

the patients and sequencing information are as reported in the study by Naidus et al.[7].

Simulation strategy

To demonstrate the performance of the proposed method on TCR data, an efficient 

simulation approach is proposed to generate TCR network properties based on real data 

(Supplementary Figure S1). Firstly, the values of the network properties were computed 

based on the observed data. The correlation structure of the properties was also estimated 

using the observed data. Secondly, the empirical distributions for cluster size were 

approximated (using log-normal distribution with estimated parameters). Thirdly, based 

on the estimated distributions and correlation structure the artificial data was simulated 

to mimic the real data. This process was repeated to generate network properties for a 

sample of n patients. Finally, the summary statistics were extracted for each of the 11 

properties and aggregated these summary statistics to generate 70 network features as listed 

in Table 2. Besides the 70 network features, additional variables were simulated using 

Uniform(0,1) distribution to mimic appliable variables from other sources, resulting in a 

total of P  features.
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To simulate the response variable, it is assumed there are four non-observed causal variables 

Z1, Z2, Z3, Z4 , corresponding to four different network properties, where each causal 

variable is a linear combination of percentiles from the distribution of the corresponding 

property (Supplementary Fig. S2). The four causal properties generate 25 observed network 

property features (shown in bold font in Table 2), which are considered as (indirect) causal 

variables in the simulation studies. The rest of the P-25 network features are then considered 

as non-casual variables. The aim is to evaluate how well the proposed method could 

determine those 25 causal variables. The response variable is generated using the logistic 

regression model:

Pr yi = 1 = exp ηα Zi
1 + exp ηα Zi

where, ηα Zi  is a function of the four causal variables, which can be either a linear or 

nonlinear function. Then yi is generated via a random sample from Bernoulli distribution 

with Pr yi = 1  for i = 1, …, n. The simulation is repeated N = 100 times under each of the 

12 different scenarios (Table 3) with various sample size n, various dimension parameter P , 

balanced or unbalanced response, and a linear or nonlinear relationship in ηα Zi .

Performance evaluation criteria

Performance measures, including sensitivity, False Discovery Rate (FDR), F-1 score, and 

stability, are used to evaluate the various feature selection models. Sensitivity is defined 

as the proportion of correctly identifying causal variables among the total 25 causal 

variables in a single iteration and higher sensitivity is preferred. FDR is defined as 

the frequency of false-positive findings among all variables selected and a lower value 

is preferred. F-1 score is the harmonic mean of the sensitivity and precision (1-FDR), 

i.e. 2 × Precision×Sensitivity / Precision+Sensitivity . It is a balanced measure between 

sensitivity and precision of the model and a higher value is preferred. The average 

sensitivity, FDR, and F-1 among the N = 100 simulation replicates were calculated and 

reported. To estimate the stability of a variable selection model, all pairwise combinations 

of the N = 100 selected variable lists from all iterations are considered. For each pair, the 

stability of the two lists of selected variables is determined using the Jaccard's index given as 

J Ai, Aj = Ai ∩ Aj
Ai ∪ Aj

, where Ai, Aj(i ≠ j; i, j ∈ 1, 2, …, N  are the list of variables selected in the 

i-th and jth iteration respectively, ⋅  denotes the cardinality of the set. Jaccard's index takes 

values between 0 and 1, where a zero value indicates the two lists do not overlap, and a one 

Jaccard index means the two lists contain exactly the same variables (i.e., very stable). The 

average of all pairs is used as the stability value for that method.

Results

Real data analysis results

TCR repertoire network analysis was conducted for each of 65 lung cancer patients[7]. 

Figure 2a and b illustrate the network for two representative patients. The number of TCR 

clusters in each patient ranged from 15 to 883 per patient with a median of 271. Eleven 
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network properties for each TCR cluster were evaluated (Table 1) and 70 network property 
features derived (Supplementary Table S2) by obtaining summary statistics of each network 

property for each patient (Fig. 1 & Table 2). The summary statistics consist of descriptive 

information like minimum, 1st quartile, median, mean, 3rd quartile, and maximum values 

and the proportion of NA if it exists. The existence of NA values is due to not being 

able to evaluate for a particular cluster structure. For example, assortativity, transitivity, 

central Eigen, and central closeness are all NA when there are two nodes in one cluster 

(Supplementary Fig. S1). All extracted features are then standardized, following common 

practice. CV-Lasso, P-Lasso, CV-Group Lasso, and P-Group Lasso models were then 

applied with the corresponding parameters listed in Supplementary Table S1. The significant 

network property features identified by the P-Lasso model were a subset of those from 

the CV-Lasso model, aligning with the known tendency of permutation-assisted tuning to 

reduce false positives (Table 4). The consistency between P-Group Lasso and CV-Group 

Lasso results, including identical prediction outcomes (AUCs), strengthen findings (Fig. 2c). 

Both models selected all features from the most significant network properties, resulting 

in a higher AUC (0.87) than CV-Lasso and P-Lasso (Fig. 2c). Furthermore, composite 

scores were calculated using the linear combination of the model coefficients times the 

corresponding selected features in the logistic regression model. The weighted composite 

scores were compared between longer and shorter survival (overall survival greater than or 

less than the median overall survival, respectively) by two-sample t-test. It was found that 

the differences in scores between longer and shorter survival groups (overall survival above 

or below median) were more significant in the CV-Group Lasso and the P-Group Lasso 

(p-value < 0.0001) compared to CV-Lasso and P-Lasso (Fig. 2d).

Simulation study results

An extensive simulation study was conducted to assess the performance of the four models, 

using the parameters outlined in Supplementary Table S1. The simulation scenarios are 

detailed in Table 3, with additional parameters provided in Supplementary Fig. S2. The 

observations indicate that Group Lasso models consistently exhibit higher sensitivity in 

identifying causal variables compared to Lasso models, with CV slightly outperforming 

permutation-assisted parameter tuning regardless of the Lasso or Group Lasso approach 

(Fig. 3a). Notably, permutation-assisted parameter tuning demonstrates superior FDR results 

for both Lasso and Group Lasso models (Fig. 3b). Specifically, the P-Group Lasso model 

shows improved performance across F1 scores (Fig. 3c) and stability (Fig. 3d) in all 

scenarios compared to CV-Group Lasso, with a notably lower FDR. Conversely, P-Lasso 

and CV-Lasso models exhibit poorer performance across all metrics compared to P-Group 

Lasso and CV-Group Lasso, except for FDR, where results vary by scenario. Interestingly, 

P-Lasso and P-Group Lasso models demonstrate the ability to extract causal features without 

any false positives in certain scenarios, aligning with the lower false positive rates associated 

with permutation-assisted tuning. Furthermore, increased model stability was observed with 

P-Lasso and P-Group Lasso, a critical feature in biomedical settings. While CV-Lasso and 

P-Lasso models extract top network property features regardless of underlying grouping 

structures, CV-Group Lasso and P-Group Lasso models consistently identify top network 

properties across all grouped variables. Overall, the models exhibit robustness across various 
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simulation scenarios, including sample size, number of features, balance of outcome interest, 

and linear vs nonlinear relationships among causal variables.

Conclusions and discussion

This paper introduces a novel approach to prioritize the heterogenous TCR network 

properties that are associated with a binary response of interest to identify TCR network 

properties as the prognostic features or predictive markers in high-throughput TCR 

sequencing data of clinical samples. The heterogeneous network properties are first 

aggregated to the homogeneous network features. The present method utilizes a group Lasso 

model, integrating a group structure to facilitate efficient model fitting and generalization 

to various response types such as time-to-event, multi-class categorial, and quantitative 

responses. Additionally, pseudo-values are introduced as known negatives to further enhance 

selection performance by reducing the false discovery rate and increase the stability 

of selection. When comparing the proposed P-Group Lasso model result to the two-

sample comparison results (Supplementary Table S2), some consistency with the identified 

properties are observed (e.g., Diameter Length, Eigen Centrality, Central Eigen) using the 

proposed method. Moreover, the proposed method selected less properties than t-test (4 

vs 6) which might indicate its advantages in reducing the false positives, as was observed 

in simulation studies. This approach has the potential to develop markers from network 

topological structures to predict the responses.

While the proposed method was specifically applied to TCR network analysis, its versatility 

extends to a wide range of genetic and medical research data, including genomic, 

transcriptomic, epigenomic, and proteomic data, with or without a natural group structure. 

If the features come with a natural group structure (e.g. pathway, multiple class categorical 

features), the present method can help to prioritize the group associated with the response. 

If the features don’t have a natural group structure, one can also be defined by letting 

highly correlated variables form a group. By prioritizing relevant groups associated with 

the response, the present method enhances interpretability, computational efficiency, and 

reliability of downstream analyses. It can filter out irrelevant noise variables, prevent 

overfitting, and facilitate the discovery of meaningful biological insights. Moreover, the 

present approach can be generalized to various outcome types, including continuous and 

time-to-event outcomes, beyond the binary setting assumed in this paper.

However, there are two major limitations. Firstly, within each repertoire for each patient, 

there are numerous clones and hundreds of clusters, each with its node or cluster-level 

properties. Therefore, there are thousands of values per property per patient. Currently, 

this complexity is addressed by using summary statistics (such as mean, median, or 

maximum), which may not adequately represent the data variation. Other distribution 

features (e.g. percentiles) could also be derived and fed into the proposed method similarly. 

Secondly, Lasso or Group Lasso are both based on linear models. Though regularization and 

permutation-assisted tuning were introduced, the performance might be compromised when 

the true relationship deviates from linear. Future work could involve feature engineering on 

network properties and extending the linear regression model to a nonlinear one to overcome 

this limitation.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Proposed pipeline. Top: Derivation of the network properties to network property features; 

Bottom left: Cross-Validation (CV) tuning and permutation-assisted tuning; Bottom right: 

Summary of the feature selection models (Lasso and Group Lasso).
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Fig. 2. 
The results for the lung cancer dataset. (a) and (b) Networks for two representative patients. 

Within each network figure, each node represents TCR and nodes are connected if their 

distance is less than or equal to 1. (c) ROC curves for each of the approaches. (d) Boxplots 

of the composite scores.

Banerjee et al. Page 12

Stat Innov. Author manuscript; available in PMC 2025 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Performance evaluation based on simulation. (a) Sensitivity. (b) FDR. (c) F-1. (d) Stability. 

In each panel, x-axis stands for different simulation scenario listed in Table 3 and color-

coded for different approaches.
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Table 2.

TCR network properties and derived network property features.

Network properties Network property features

Node count Min, Q1, Median, Mean, Q3, Max

*Count pre infusion Min, Q1, Median, Mean, Q3, Max

Count dose 2 Min, Q1, Median, Mean, Q3, Max

*Diameter length Min, Q1, Median, Mean, Q3, Max

Assortativity prob(NA), Min, Q1, Median, Mean, Q3, Max

Transitivity prob(NA), Min, Q1, Median, Mean, Q3, Max

Density Min, Q1, Median, Mean, Q3, Max

Degree centrality Min, Q1, Median, Mean, Q3, Max

Closeness centrality prob(NA), Min, Q1, Median, Mean, Q3, Max

*Eigenvector centrality Min, Q1, Median, Mean, Q3, Max

*Central Eigen prob(NA), Min, Q1, Median, Mean, Q3, Max

*
Properties/property features in bold font are considered as the causal properties/features in simulation studies.
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Table 4.

Results from real data analysis. The table lists the network properties and corresponding network property 

features selected by each approach.

Network properties CV-Lasso* P-Lasso CV-Group Lasso** P-Group Lasso**

Count pre infusion Max Max All All

Count dose2 – – All All

Node count – – All –

Diameter length Max Max – –

Assortativity – – – –

Transitivity – – – –

Density – – – –

Degree centrality – – – –

Closeness centrality – – – –

Eigenvector centrality Max Max All All

Central Eigen Max – – –

*
The network property features extracted using CV-Lasso model are used as the causal variables for simulation study.

**
The value 'All' represents the entire set of descriptive summary statistics derived from the TCR network property.
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