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Abstract

Numerous voice, still image, audio, and video compression standards
have been developed over the last 25 years, and significant advances
in the state of the art have been achieved. However, in the more
than 50 years since Shannon’s seminal 1959 paper, no rate distortion
bounds for voice and video have been forthcoming. In this volume, we
present the first rate distortion bounds for voice and video that ac-
tually lower bound the operational rate distortion performance of the
best-performing voice and video codecs. The bounds indicate that im-
provements in rate distortion performance of approximately 50% over
the best-performing voice and video codecs are possible. Research di-
rections to improve the new bounds are discussed.

J. D. Gibson and J. Hu. Rate Distortion Bounds for Voice and Video. Foundations
and Trends R⃝ in Communications and Information Theory, vol. 10, no. 4,
pp. 379–514, 2013.
DOI: 10.1561/0100000061.



1
Introduction

Numerous voice, still image, audio, and video compression standards
have been developed over the last 25 years, and significant advances
in the state of the art have been achieved. There are several reasons
for researchers and standards bodies to consider developing new voice
or video codecs. One motivation might be a new application that has
different constraints than those imposed on prior codecs. For example,
a new application might require better quality, lower complexity, a dif-
ferent transmitted bit rate, or improved robustness to channel impair-
ments. A second motivation might be that the input source changes,
namely a different resolution for video, a requirement for 3D video, or
a different bandwidth and sampling rate for audio. A third motivation
might be that a particular codec is relatively old and that there is the
possibility of improving performance, perhaps by increasing complexity
because of advances due to Moore’s Law.

In each of these cases, it would seem natural to ask what is the
best possible performance theoretically achievable by a new codec? Or,
alternatively, given the operational rate distortion performance of a
particular codec, how close is the operational rate distortion perfor-
mance to the optimal performance theoretically achievable?

380
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To answer this question, one natural place to look in order to char-
acterize the best possible performance of any lossy source codec would
appear to be rate distortion theory. In particular, it would be of great
utility if the host of existing rate distortion theory results could be
applied to bounding the performance of practical codecs or if new rate
distortion bounds for such practical sources and their attendant per-
ceptual distortion measures could be obtained. However, no such appli-
cations of existing rate distortion theory results, nor any appropriate
new results, have been forthcoming. While there are many reasons for
this lack of progress, one main reason is that such an effort is not easy
– in fact, it is particularly difficult.

The particular challenges involved were anticipated by experts in In-
formation Theory very early. Specifically, Robert Gallager, in his classic
text on Information Theory [18], summarizes the challenges at the end
of his rate distortion theory chapter where he notes that information
theory has been more useful for channel coding than for source cod-
ing and that the reason, “. . . appears to lie in the difficulty of obtaining
reasonable probabilistic models and meaningful distortion measures for
sources of practical interest." He goes on to say, “. . . it is not clear at
all whether the theoretical approach here will ever be a useful tool in
problems such as speech digitization . . . " [18].

Finding suitable statistical models for video has been considered
a very difficult topic as well. In 1998, almost 40 years after Shan-
non’s landmark paper developing rate distortion theory [76], Ortega
and Ramchandran wrote, "‘Unfortunately, to derive bounds one needs
to first characterize the sources and this can be problematic for com-
plex sources such as video. Indeed, bounds are likely to be found only
for the simpler statistical models"’ [67].

Thus, like all rate distortion problems, the two primary challenges
are (1) finding good source models for speech and video, and (2) identi-
fying a distortion measure that is perceptually meaningful, yet compu-
tationally tractable. There have been only a few prior research efforts
in the last 25 years that have attempted to address various aspects of
this problem for either speech or video, and broad-based bounds of sig-
nificance have not been obtained. It is clear, however, that the utility
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of such bounds would be substantial.
In this volume, we present our recent results on obtaining rate dis-

tortion functions for both voice and video sources. For both sources, we
overcome past limitations on source modeling by employing composite
source models to achieve more accurate modeling of the different voice
and video source modes. Although we use composite source models for
both voice and video, the treatments of the distortion measure for the
two sources are distinctly different. For speech, we devise a mapping
technique to extend existing MSE R(D) results to the perceptually
meaningful PESQ-MOS distortion measure. For video, no such map-
pings are developed and the MSE distortion measure, or equivalently
peak SNR (PSNR), is used directly to develop our video R(D) bounds.
This is because although MSE and PSNR are widely criticized as not
having a direct interpretation in terms of reconstructed video quality,
PSNR is known to order the performance of codecs in the same class
correctly. In fact, since optimizing MSE/PSNR often produces compet-
itive performance in terms of perceptual measures, and its limitations
are well known, it is still a dominant performance measure in video
codec standardization efforts.

For future progress, as well as for the development of future prac-
tical rate distortion results, it is critical to note from the above outline
of the approaches used here that there are two key elements in play
in order to obtain the rate distortion bounds presented in this volume.
These are (1) a grasp and fundamental understanding of key rate dis-
tortion theory results, and (2) a deep understanding of the real-world
sources and their codec performance evaluation methods. Either one
alone is not sufficient. Indeed, the first author has emphasized to his
students repeatedly over the past 30 years that in order to utilize sig-
nificant theoretical results for practical problems, one must also have
an understanding of the physical problem being addressed. This com-
bination is not often present, perhaps because, as noted by Berger and
Gibson [7], rate distortion theorists and voice and video codec designers
are mostly non-intersecting sets of researchers.

We summarize the contents of this volume for each source in the
following subsections.
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1.1 Rate Distortion Functions for Speech Sources

We develop new rate distortion bounds for narrowband and wideband
speech coding based on composite source models for speech and percep-
tual PESQ-MOS/WPESQ distortion measures. It is shown that these
new rate distortion bounds do in fact lower bound the performance of
important standardized speech codecs, including, G.726, G.727, AMR-
NB, G.729, G.718, G.722, G.722.1, and AMR-WB.

Our approach is to calculate rate distortion bounds for mean
squared error (MSE) distortion measures using the classic eigenvalue
decomposition and reverse water-filling method for each of the sub-
source modes of the composite source model, and then use condi-
tional rate distortion theory to calculate the overall rate distortion
function for the composite source. While composite source models for
speech have been considered previously for obtaining R(D) functions
for speech, our method of choosing the subsources based on a knowledge
of speech signals and on successful multi-mode voice codecs, as well as
the inclusion of diverse subsources in the composite source models, are
new.

In order to develop R(D) bounds for speech in terms of a mean-
ingful distortion measure that still allows a tractable mathematical
calculation of the bounds required a new innovation as well. Mapping
functions are developed to map rate distortion curves based on MSE to
rate distortion curves subject to the perceptually meaningful distortion
measures PESQ-MOS and WPESQ. These final rate distortion curves
are then compared to the performance of the best known standardized
speech codecs based on the code-excited linear prediction paradigm.

In addition to the striking result that these new bounds do in fact
lower bound the best known narrowband and wideband standardized
speech codecs, the bounds are revealing in that performance compar-
isons show that current linear predictive codecs do a relatively good
job of coding voiced speech, but are much less effective for other sub-
sources, such as unvoiced speech, Onset, and Hangover modes. Equally
important is that the procedure used in developing our bounds can eas-
ily be reproduced by other researchers, and thus other, perhaps more
refined, rate distortion curves can be generated. For example, one could
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utilize a different composite source model with the known MSE rate
distortion theory results outlined here, and then employ our mapping
functions to determine new bounds for the utterances considered in
this paper.

1.2 Rate Distortion Functions for Video Sources

For the video source we address the difficult task of modeling the corre-
lation in pixel values by first proposing a new spatial correlation model
for two close pixels in one frame of digitized natural video sequences
that is conditional on the local texture. This new spatial correlation
model is dependent upon five parameters whose optimal values are
calculated for a specific image or specific video frames. The new spa-
tial correlation model is simple, but it performs very well, as strong
agreement is discovered between the approximate correlation coeffi-
cients and the correlation coefficients calculated by the new correlation
model, with a mean absolute error (MAE) usually smaller than 5%.

Further, we extend the correlation coefficient modeling from pix-
els within one video frame to pixels that are located in nearby video
frames. We show that for two pixels located in nearby video frames,
their spatial correlation and their temporal correlation are approxi-
mately independent. Therefore the correlation coefficient of two pixels
in two nearby video frames, denoted by ρ, can be modeled as the prod-
uct of ρs, the texture dependent spatial correlation coefficient of these
two pixels, as if they were in the same frame, and ρt, a variable to
quantify the temporal correlation between these two video frames. ρt

does not depend on the textures of the blocks the two pixels are located
in and is a function of the indices of the two frames.

With the new block-based local-texture-dependent correlation
model, we first study the marginal rate distortion functions of the differ-
ent local textures. These marginal rate distortion functions are shown
to be quite distinct from each other. Classical results in information
theory are utilized to derive the conditional rate distortion function
when the universal side information of local textures is available at
both the encoder and the decoder. We demonstrate that by involving
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this side information, the lowest rate that is theoretically achievable
in intra-frame video compression can be as much as 1 bit per pixel
lower than that without the side information; and the lowest rate that
is theoretically achievable in inter-frame video compression can be as
much as 0.7 bit per pixel lower than that without the side information.
The rate distortion bounds with local texture information taken into
account while making no assumptions on coding, are shown indeed to
be valid lower bounds with respect to the operational rate distortion
curves of both intra-frame and inter-frame coding in Advanced Video
Coding (AVC/H.264) and in the newly standardized High Efficiency
Video Coding (HEVC/H.265).

The incorporation of the new correlation model into existing opera-
tional models of practical image and video compression systems is also
promising. We demonstrate this by studying the common “blocking”
scheme used in most video compression standards [32, 33, 34, 35], which
divides a video frame into 16 × 16 macroblocks (MB) or smaller blocks
before processing. With the block based nature of the new correlation
model, we study the penalty paid in average rate when the correlation
among the neighboring MBs or blocks is disregarded completely or is
incorporated partially through predictive coding. A constrained rate
distortion bound is calculated for the scenario when the texture infor-
mation is coded losslessly and optimal predictive coding is employed.
This lower bound is shown to be reasonably tight with respect to the
operational rate distortion curves of intra-frame coding in AVC/H.264.
Furthermore, it is near linear in terms of average bit rate per pixel
versus PSNR of a video frame and can easily be utilized in future video
codec designs.

1.3 Conclusion

In this volume, we present the first rate distortion bounds for voice
and video that actually lower bound the operational rate distortion
performance of the best-performing voice and video codecs. Members
of the Panel on “New Perspectives on Information Theory” held at
the IEEE Information Theory Workshop at Paraty, Brazil, on October
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20, 2011, repeatedly expressed their concern about the gap between
lossy compression theory and practice [82]. The new rate distortion
bounds presented here, for the first time, make the gap specific for voice
and video, and as discussed later, aid in pointing the way forward to
improving the performance of practical voice and video codecs.



2
Overview of Voice and Video Coding Techniques

and Standards

The purpose of this chapter is to provide an overview of voice and
video coding techniques, especially those techniques that lay the foun-
dation for voice and video coding standards. The chapter also presents
a summary of relevant voice and video coding standards, primarily em-
phasizing the current highest performing codecs and the codecs that
motivated the model building and the selection of the fidelity crite-
ria for the rate distortion bounds presented in later chapters. There is
no intention of providing the history of voice and video coding, nor a
complete discussion of voice and video coding methods and standards.

2.1 Voice Codecs

The goal of speech coding is to represent speech in digital form with as
few bits as possible while maintaining the intelligibility and quality re-
quired for the particular application. Speech coding is fundamental to
the operation of the public switched telephone network (PSTN), video-
conferencing systems, digital cellular communications, and voice over
Internet protocol (VoIP) applications. There was almost an exponential
growth of speech coding standards in the 1990’s for a wide range of net-

387
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works and applications, including the wired Public Switched Telephone
Network (PSTN), digital cellular systems, and multimedia streaming
over the Internet [20]. Standards activities are still being pushed for-
ward aggressively today, with efforts on combined voice/audio coding,
called fullband coding as later elaborated, recently being established
or currently being pursued. Included in these standards are the USAC
codec [71], the Opus codec [83], and the Enhanced Voice Standard
(EVS) codec for Long Term Evolution (LTE) digital cellular [54].

Interestingly, new standards for speech coding have never been
driven by rate distortion bounds that show the existence of better
rate/distortion operating points. Instead, the standards activities have
been motivated by new applications with new requirements and ex-
pected demand for a service. Engineers often have a good idea that a
new, better performing voice codec can be developed because of work
performed in pursuing recently established standards, but no basic rate
distortion bounds have been obtained or relied upon that actually indi-
cate that there is a rate distortion performance gap, or how large that
gap might be.

Like many fields, improvements in codec performance have been
greatly facilitated by Moore’s Law; in fact, it is abundantly clear that
improvements in the operational rate distortion performance of voice
codecs standardized in the last decade or more have been acquired with
ever-increasing codec complexity.

With respect to Shannon theory, this increase in complexity is only
of slight concern, since the primary goal of generating useful bounds
on the rate distortion performance of voice codecs is not tied to com-
plexity at all. The question posed by Shannon is simply, what is the
best rate/distortion performance obtainable by any codec of any com-
plexity? This separation from penalties due to increasing complexity
should be valuable in searching for rate distortion performance bounds,
since the bounds are obtained off line and can use any complex model
of the speech generation process that makes sense physically and that
can be handled analytically. These new degrees of freedom have not
been fully exploited, even in the work presented herein.

We discuss voice codecs in this chapter only to the extent that
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we use the codecs to develop meaningful distortion measures or if the
codec performance is compared to the rate distortion bounds developed
in this book. We compare the rate distortion performance of the best
known voice codecs to our rate distortion bounds in Chapter 4.

As is typical in the literature, we use the terms speech coding and
voice coding interchangeably in this book. Generally, it is desired to
reproduce the voice signal, since we are interested in not only knowing
what was said, but also in having a voice quality reproduction sufficient
to identify the speaker. This goal is reflected in the choice of the fidelity
criterion or distortion measure.

2.1.1 Characteristics of Voice Signals

Speech and audio coding can be classified according to the bandwidth
occupied by the input and the reproduced source [12]. Indeed, the par-
ticular bandwidth occupied by the original speech source is closely tied
to the particular applications of interest and can also sufficiently narrow
the design requirements enough to admit simpler or higher performing
codecs than if all bandwidth are of interest. Narrowband or telephone
bandwidth speech occupies the band from 200 to 3400 Hz, or some-
times 100 to 3700 Hz, or slight variations, refers to the band associated
with classical wired telephone quality speech as well the basic digital
cellular and Voice over Internet Protocol (VoIP) services. The sampling
rate for narrowband speech is 8,000 samples/sec.

In the mid to late 1980’s, a new bandwidth of 50 Hz to 7 kHz,
called wideband speech, with a sampling rate of 16,000 samples per
second became of interest for videoconferencing applications. The im-
portance of this band deriving from the fact that videoconferences or
audio conference calls of a half hour to an hour require a long attention
span by the participants and it was discovered that listening fatigue
was greatly reduced with the wider band in comparison to narrowband
speech. This band is still of great importance today in videoconferenc-
ing, digital cellular, and VoIP applications.

High quality audio is generally taken to cover the range of 20 Hz
to 20 kHz, and this bandwidth is designated today as fullband. This
band is associated with high quality audio and the codecs designed
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for high quality music coding and playback. In recent years, quite a
few other bandwidths have attracted attention, primarily for audio
over the Internet applications, and the bandwidth of 50 Hz to 14 kHz,
designated as superwideband, has gotten considerable recent attention
in standardization activities.

The discussions in this book emphasize narrowband and wideband
speech, which encompass the vast majority of voice codecs in use today.
Rate distortion bounds for superwideband and fullband voice/audio
require extensions beyond the approaches developed in this book, al-
though now there is a roadmap in place. These directions for future
work are covered in later chapters.

Beyond occupied bandwidth, voice signals can be further classified
into the types of sounds produced or into one of several speech modes,
such as voiced, unvoiced, onset, silence, and so on [87, 86]. Such classifi-
cations can be useful for developing voice codecs and also for producing
accurate models of the voice source. We defer discussions of these clas-
sifications methods to the later speech source modeling discussions, but
they will prove crucial in what follows.

2.1.2 Performance Measures

Given a particular source, the classic tradeoff in lossy source compres-
sion is rate versus distortion–the higher the rate, the smaller the average
distortion in the reproduced signal. Of course, since a higher bit rate
implies a greater channel or network bandwidth requirement, the goal
is always to minimize the rate required to satisfy the distortion con-
straint, or alternatively, to minimize the distortion for the specified rate
constraint. For speech coding, we are interested in achieving a quality
as close to the original speech as possible within the rate, complexity,
latency, and any other constraints that might be imposed by the appli-
cation of interest. Encompassed in the term quality are intelligibility,
speaker identity, and naturalness.

There has been considerable research into objective and subjective
methods to evaluate the perceived quality of the speech produced by
voice codecs. Absolute category rating (ACR) tests are subjective tests
of speech quality and involve listeners assigning a category and rat-
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ing for each speech utterance according to the classifications, such as,
Excellent (5), Good (4), Fair (3), Poor (2), and Bad (1). The average
for each utterance over all listeners is the Mean Opinion Score (MOS)
[84]. ACR tests have been the dominant approach to evaluating codec
reconstructed voice quality for narrowband speech for half a century.

Because of the widespread use of subjective ACR tests that produce
MOS values between 1 and 5, the perceptual evaluation of speech qual-
ity (PESQ) method was developed as an objective method to provide
an assessment of speech codec performance, particularly in conversa-
tional voice communications. Objective methods remove the need for
human listeners and costly and time-consuming testing with human
subjects. The PESQ has been standardized by the ITU-T as P.862
and can be used to generate MOS values for both narrowband and
wideband speech [48]. It is a full reference method in that the original
and the coded voice signals are used as inputs, and the output is a
PESQ-MOS value on the same scale as MOS. PESQ-MOS has been
accepted as a reasonable substitute for actual listening tests since it
was standardized, although subjective tests are always preferred. The
narrowband PESQ performs well for the situations for which it has
been qualified, and the wideband PESQ (WPESQ) MOS, while ini-
tially not very accurate, has become more reliable, and relied upon, in
recent years.

These techniques are the primary focus of the current work, and de-
scriptions of other methods for determining the quality of coded speech
and audio are left to the references.

2.1.3 Speech Coding Methods

The most common approaches to speech coding today center around
three paradigms, namely, waveform-following coders, analysis-by-
synthesis methods, and subband/transform domain methods [20].
Waveform-following coders attempt to reproduce the time domain
speech waveform as accurately as possible, and for good performance,
they are among the highest rate, but by far, the least complex codecs.
Although waveform-following codecs produce bit streams with a rela-
tively high bit rate, and are certainly not state-of-the-art in terms of
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operational rate distortion performance, waveform-following coders are
relevant to standards because they appear in many VoIP and other such
packet switched backbone applications. Waveform-following coders are
also of interest to us in this book because for these codecs, mean squared
error is meaningful as a performance indicator in a way to be explained
shortly, and thus we use them to map the mean squared error distortion
values into PESQ-MOS values that are important for the analysis-by-
synthesis codecs. The basic approach is elaborated in Chapter 4.

Analysis-by-synthesis methods utilize the linear prediction model,
excitation codebooks, and a distortion measure based on a perceptu-
ally motivated spectral shaping to reproduce only those characteris-
tics of the input speech determined to be most important [60]. As a
consequence, a much lower bit rate is obtained for equivalent percep-
tual performance, but at the price of much increased algorithmic and
implementation complexity. The analysis-by-synthesis structure is the
basis for all high-performing narrowband and wideband voice codecs
today, including codecs in the Code-Excited Linear Prediction (CELP)
category. We will be comparing the operational rate distortion per-
formance of CELP-based standardized codecs to our rate distortion
bounds in what follows, after we describe the most important analysis-
by-synthesis CELP codecs.

Subband/transform based codecs are utilized primarily for wide-
band, super wideband, and fullband speech/audio, and these ap-
proaches serve as the basis for MP3 players, audio on movies, and
many audio streaming applications. Codecs for the fullband and super
wideband regime have as their goal what might be called transparent
reproduction of the source in the sense that no audible perceptual dis-
tortion is evident to most listeners, and these codecs use perceptual
distortion measures beyond those considered in the rate distortion per-
formance bounds obtained thus far and presented in this book. The
basic approach used is still viable but a different distortion mapping
must be developed to extend the bounds down to the very small dis-
tortion region. Codecs using subband/transform coding used for wide-
band speech are included in our current comparisons. Standards based
on subband/transform coding are discussed briefly in the following to
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allow the reader to have a clear context for the field and the work that
remains to be performed.

Waveform Coding

Familiar waveform-following methods are logarithmic pulse code modu-
lation (log-PCM) and adaptive differential pulse code modulation (AD-
PCM), and both have found widespread applications. Log PCM at 64
kilobits/sec (kbps) was developed in the 1960’s and officially standard-
ized in the United States as G.711 in 1972 [23, 20]. Historically, it is the
speech codec long-used in the long distance public switched telephone
network at a rate of 64 kbps since the 1960’s, and it is the most widely
employed codec for VoIP applications in the backbone network. It is
an extremely simple, sample-by-sample nonuniform memoryless quan-
tizer and it achieves what is called toll quality, which is the standard
level of performance against which all other narrowband speech coders
are judged. As such, a G.711 codec is almost always included in ACR
subjective listening tests as a benchmark [14].

There are two closely related types of log-PCM quantizer used in
the World– -law, which is used in North America and Japan, and A-
law, which is used in Europe, Africa, Australia, and South America
[23]. Both achieve toll quality speech, and in terms of the MOS value,
it is usually between 4.0 and 4.5 for log-PCM, with the exact value
depending on the particular set of listeners, language, and other test
conditions [14]. It is not a predictive coder, though, and therefore, we do
not utilize these codecs for MSE to PESQ-MOS mapping, for detailed
reasons explained later.

Adaptive Differential Pulse Code Modulation (ADPCM) usually
operates at 32 kbps or lower, and at 32 kbps, it achieves performance
comparable to log-PCM by using an adaptive linear predictor to remove
short-term redundancy in the speech signal before sample-by-sample
adaptive quantization [20, 43]. A block diagram of an ADPCM speech
encoder and decoder is shown in Figure 2.1. The most common form
of ADPCM uses what is called backward adaptation of the predictors
and quantizers to follow the waveform closely. Backward adaptation
means that the predictor and quantizer are adapted based upon past
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Figure 2.  An ADPCM Speech Encoder and Decoder Figure 2.1: ADPCM Speech Encoder and Decoder

reproduced values of the signal that are available at the decoder as well
as the encoder. No predictor or quantizer parameters are sent as side
information along with the quantized waveform values. As will be seen,
this codec appears in several standards.

Another type of ADPCM codec is embedded ADPCM, which uses
embedded quantization, with the coarse quantization being utilized in
the feedback prediction loop [20, 44]. An embedded quantizer charac-
teristic has the property that coarse quantizers have step points that
are a subset of the step points of a finer grained quantizer and the
output points that satisfy the coarse quantizer are midpoints of the
output levels of the next finer grain quantizer. The end result is that
some number of least significant bits can be discarded by the network
and the decoder can still reconstruct a good version of the signal with-
out re-encoding and without losing coding synchronization with the
encoder. For embedded ADPCM, the finer quantized error signal is
summed with a predicted value calculated using the coarser quantized
prediction error to obtain the reconstructed value.

The performance of ADPCM can be measured using mean squared
reconstruction error (MSE) or by using PESQ-MOS. MSE is not a per-
ceptual measure, but the MSE does place different ADPCM systems
in the correct order of performance. MSE or SNR for ADPCM should
not be used for direct comparison to quantization methods that do
not use prediction, since results indicate that the reconstruction noise
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in ADPCM is less objectionable audibly than for log-PCM [68]. More
directly, the MSE for ADPCM may be larger than for log-PCM, yet
ADPCM may be preferred perceptually over log-PCM with a lower
MSE. Apparently, the effect is that the reconstruction error in AD-
PCM is correlated with the input but the error in log-PCM is not. The
correlated error is less objectionable perceptually.

Analysis-by-Synthesis Methods

Analysis-by-synthesis (AbS) methods are a considerable departure from
waveform-following techniques. The most common and most success-
ful analysis-by-synthesis method in terms of widespread applications is
code-excited linear prediction (CELP). In CELP speech coders, a seg-
ment of speech (say, 5 to 10 ms) is synthesized by passing entries from
what is called a codebook into a long-term redundancy predictor, and
the resulting combined excitation is used as input to a linear predic-
tion model. The term analysis-by-synthesis derives from the fact that
this process is repeated for all possible excitations in the codebook.
For each excitation, an error signal, corresponding to the difference be-
tween the input speech and the synthesized speech, is calculated and
passed through a perceptual weighting filter. The excitation that pro-
duces the minimum perceptually weighted coding error is selected for
use at the decoder. Therefore, the best excitation out of all possible
excitations for a given segment of speech is selected by synthesizing all
possible representations at the encoder, and hence the name analysis-
by-synthesis. The predictor parameters and the excitation codeword
are sent to the receiver to decode the speech [57].

In recent years, it has become common to use an adaptive codebook
structure to model the long term memory rather than a cascaded long
term predictor. An encoder block diagram with the adaptive codebook
structure is shown on Fig. 2.2(a) and a corresponding decoder using
the adaptive codebook approach is shown in Fig. 2.2(b). The analysis-
by-synthesis procedure is computationally intensive, and it is fortunate
that algebraic codebooks, which have mostly zero values and only a
few nonzero pulses, have been discovered and work well for the fixed
codebook [59, 20].
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Figure 5.  Perceptual Weighting of the Coding Error as a Function of Frequency 
Figure 2.3: Perceptual Weighting of the Coding Error as a Function of Frequency

The perceptual weighting is key to obtaining good speech coding
performance at the targeted lower rates, and the basic idea is that the
coding error is spectrally shaped to fall below the envelope of the input
speech across the frequency band of interest. Figure 2.3 illustrates the
concept wherein the spectral envelope of a speech segment is shown,
along with the coding error spectrum without perceptual weighting
(unweighted denoted by short dashes) and the coding error spectrum
with perceptual weighting (denoted by long dashes). The perceptually
weighted coding error falls below the spectral envelope of the speech
across most of the frequency band of interest, just crossing over around
3100 Hz. The coding error is thus masked by the speech signal itself. In
contrast, the unweighted error spectrum is above the speech spectral
envelope starting at around 1.6 kHz, which produces audible coding
distortion for the same bit rate. CELP coding performs very well in
terms of PESQ-MOS at bit rates as low as 8 kbps. However, CELP
codecs do not attempt to match the time domain waveform, and as a
result, MSE in the time domain is not a reasonable indicator of CELP
codec performance. This is one of the challenges of developing rate
distortion bounds for speech that are actual lower bounds to the best
known voice codecs, which are based on CELP.
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2.1.4 Current and Developing Standards

In this section, we describe the relevant details of current and some
past standardized speech codecs for digital cellular and packet switched
VoIP for wireless access points. We begin the discussion with ITU-T
standardized codecs since some of those codecs have served as the basis
for cellular codecs, and since some of these codecs also are used for VoIP
applications. The performance of these codecs are compared to our rate
distortion bounds in later chapters of the book.

ITU-T Standards

Tables 2.1 and 2.2 list some of the narrowband and wideband/fullband
voice codecs that have been standardized by the ITU-T over the years,
including details concerning the codec technology, transmitted bit rate,
performance, complexity, and algorithmic delay. Those shown include
G.711, G.726, G.728, and G.729 for narrowband (telephone bandwidth)
speech (200 to 3400 Hz), G.722, G.722.1 [41], G.722.2 [42], and G.718
for wideband speech (50 Hz to 7 kHz) [38], and G.719 for fullband au-
dio [39]. G.711 at 64 kilobits/sec. (kbps) is the voice codec most often
used in VoIP backbone applications today. This codec is based on a
nonlinear quantization method called logarithmic pulse code modula-
tion (log-PCM), which allows low amplitude speech signal samples to
be quantized finely while the larger amplitude samples are subjected
to larger step sizes. The basic goal of this quantization approach is to
preserve the quality of low amplitude samples, which are important
to perceptual quality, and to maintain a relatively constant SNR per-
formance over the full range of input signal power. This codec is the
benchmark for narrowband toll quality voice transmission.

G.726 is a fully backward adaptive ADPCM codec that operates at
selectable rates of 16, 24, 32, and 40 kbps [43]. G.727 is an embedded
ADPCM codec with fine/coarse bits/sample quantization combinations
of 5/4,3,2, 4/4,3,2, 3/3,2, and 2/2 [44]. Each combination of fine/coarse
quantization yields a different bit rate and different performance. To ob-
tain the flexibility afforded by embedding coding, the embedded codec
suffers a loss in performance compared to non-embedded ADPCM at
the same rate.
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Table 2.1: ITU Narrowband Speech Codecs

The G.729 codec is an analysis-by-synthesis codec based on alge-
braic code excited linear prediction (ACELP), and it uses an adaptive
codebook to incorporate the long term pitch periodicity [45]. The G.729
codec structure has been very influential on subsequent voice coding
standards for VoIP and digital cellular networks.

Even though we are quite comfortable communicating using tele-
phone bandwidth speech (200 to 3400 Hz) for regular, relatively short
telephone conversations, there is considerable interest in compression
methods for wideband speech covering the range of 50 Hz to 7 kHz.
The primary reasons for the interest in this band are that wideband
speech improves intelligibility, naturalness, and speaker identifiability.
The first application of wideband speech coding was to videoconfer-
encing, and the first standard, G.722, separated the speech into two
subbands and used ADPCM to code each band. The G.722 codec is
relatively simple and produces good quality speech at 64 kbps, and
lower quality speech at the two other possible codec rates of 56 and 48
kbps [59]. G.722 at 64 kbps is often employed as a benchmark for the
performance of other wideband codecs.

G.722.2 is actually an ITU-T designation for the adaptive multirate
wideband (AMR-WB) speech coder standardized by the 3GPP [5]. This
coder operates at rates of 6.6, 8.85, 12.65, 14.25, 15,85, 18.25, 19.85,
23.05, and 23.85 kbps and is based upon an algebraic CELP (ACELP)
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Table 2.2: ITU-T Wideband Speech Codecs

analysis-by-synthesis codec. Since ACELP utilizes linear prediction, the
coder works well for speech but less well for music, which does not fit
the linear prediction model. G.722.2 achieves good speech quality at
rates greater than 12.65 kbps and performance equivalent to G.722 at
64 kbps with a rate of 23.05 kbps and higher.

G.718 is a newer wideband speech codec that has an embedded
codec structure and that operates at 8, 12, 16, 24, and 32 kbps, plus
a special alternate coding mode that is bit stream compatible with
AMR-WB [38]. G.719 is a fullband audio codec that has relatively low
complexity and low delay for a fullband audio codec. This codec is tar-
geted toward real-time communications such as in videoconferencing
systems and the high definition telepresence applications, even though
the algorithmic delay is getting somewhat high for real-time interac-
tions [39].

The operational rate distortion performance of many of these codecs
is compared to our newly obtained rate distortion bounds for narrow-
band and wideband speech in Chapter 4.

Digital Cellular Standards

The rapid deployment of digital cellular communications was facilitated
by the development of efficient, high quality voice codecs. An important
and somewhat dominant voice codec today is the Adaptive Multirate
(AMR) Codec, both narrowband (NB) and wideband (WB) versions [1,
2]. The AMR codecs are based on the CELP method, which utilizes the
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analysis-by-synthesis approach wherein fixed and adaptive codebooks
excite a linear prediction model and the best excitation is chosen by
minimizing a perceptual weighting criterion [64]. The rates for AMR-
NB are 4.75, 5.15, 5.9, 6.7, 7.4, 7.95, 10.2, or 12.2 kbits/s, and the rates
for AMR-WB are 6.6, 8.85, 12.65, 14.25, 15.85, 18.25, 19.85, 23.05, and
23.85 kbits/s. The operational rate distortion performance of the AMR-
NB and AMR-WB codecs are compared to our rate distortion bounds
in Chapter 4.

Initial studies on 4G LTE cellular utilized the AMR codecs, but a
new codec, designated as EVS, is being developed for later deployment.
That standardization process is on-going at the time of this writing.
Our rate distortion bounds are expected to lower bound the perfor-
mance of the new EVS codec for narrowband and wideband speech
sources.

VoIP Standards

For voice codecs normally implemented in VoIP solutions, we find that
at this point in time, almost all codecs are borrowed from other stan-
dards bodies. The codecs that are often available in VoIP systems are
G.711 (NB@64 kbits/s), G.722 (WB@48, 56, and 64 kbits/s), G.729
(NB@8 kbits/s), and AMR-NB/WB [64]. These codecs are all included
in the later performance comparisons in Chapter 4.

There is another codec standardization effort that has the goal of
coding narrowband voice all the way up to fullband audio and with the
constraint of low delay. The Opus Audio Codec is being designed for in-
teractive voice and audio and has three modes: (a) a linear prediction-
based mode for low bit rate coding up to 8 kHz bandwidth, (b) a
hybrid linear prediction and MDCT (Modified Discrete Cosine Trans-
form) mode for fullband speech/audio at medium bit rates, and (c) an
MDCT-only mode for very low latency coding of speech and audio.
Details of this codec can be found in [83]. Although not yet tested, it is
expected that our rate distortion bounds will apply to the Opus codecs
based on linear prediction in (a) and any narrowband and wideband
speech codecs in (c).
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2.2 Video Codecs

2.2.1 Characteristics of Video Signals

Digital videos are sequences of digital images. Each image is composed
of many PICture ELements, commonly referred to as pixels. The pix-
els in a digital image are arranged in rows and columns on the video
display. They are so close spatially that they appear to be connected
when viewed by human eyes. The number of pixels in an image frame,
denoted as the “resolution” of a digital video or a digital image, varies
from thousands to millions. For digital videos, the resolution is often
described by commonly known code names and their acronyms, such
as Video Graphics Array (VGA), or as the dimension (height and/or
width) of the image in pixels, such as 720p and 1080p; for still digital
images, the resolution is often described by the total number of pixels
(in Megapixels) of the image. In Table 2.3 we list a few common reso-
lutions of digital videos. Another parameter related to video resolution
is aspect ratio, which is defined as the ratio of the width over height
of a video frame. As seen in Table III, the aspect ratio of the digital
videos is 4 : 3 for the older and lower resolutions; and it is 16 : 9 for
the newer and higher resolutions.

Table 2.3: Resolution of typical digital videos

Video Width × Height Megapixels Aspect
Resolution in Pixels per Frame Ratio

QSIF 176 × 120 0.021

4:3

QCIF 176 × 144 0.025
QVGA 320 × 240 0.077

SIF 352 × 240 0.084
CIF 352 × 288 0.10

VGA 640 × 480 0.31
4SIF 704 ×480 0.34
4CIF 704 × 576 0.41

w360p 640 × 360 0.23

16:9w448p 768 × 448 0.34
720p 1280 × 720 0.92

1080p 1920 × 1080 2.07

Each pixel of a video frame is represented by three values, normally
in the red, green and blue (RGB) color palette. Each of the three red,
green and blue pixel values is traditionally quantized using 8 bits, and
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hence the color space is composed of 256 levels each of the red, green
and blue components. Recently, higher fidelity in the video has been
sought after and video products with 10 bits and 12 bits per color plane
have emerged in consumer markets.

The content of a video frame is often identified by the objects that
can be seen dominantly on the video frame. The objects are considered
to be on the “foreground” of the video frame while naturally the rest
of the video frame is considered to be the “background”. The content
of a sequence of video frames is then identified by the movement, or
“motion”, of the foreground objects on the relatively static background.
The composition of the foreground objects and the background is often
referred to as a video “scene”. The transition in a video from one scene
to another is often referred to as a “scene change” or a “scene cut”.
Although there is not an exact definition of the “scene” since the de-
tails on the foreground objects and on the background often change in
natural videos (unlike in some animated videos), the video “scene” is
nevertheless a convenient concept to denote the rather similar content
exhibited in a segment of video sequence.

Although video content is generated at a high data rate, there is
also a huge amount of redundancy in a video sequence, both spatially,
among nearby pixels, and temporally, among successive frames. When
it comes to compress the videos either for storage on a physical medium
such as a DVD or for communication over a network, the spatial fre-
quency transformation takes a central role, while video content model-
ing in the spatial and temporal domains take a back seat. Either entire
video frames are transformed into the frequency domain, such as in the
wavelet based compression methods including motion JPEG, or the
video frames are divided into blocks of pixels, such as 16 by 16 pixel
macroblocks (MB), and each block (after motion estimation and com-
pensation) is transformed into the frequency domain separately. The
most popular video coding standards, including MPEG-2, H.264/AVC,
and the newest standard HEVC, utilize this motion-compensated spa-
tial frequency domain transformation paradigm. This line of video cod-
ing standards is fairly successful at reducing the video data rate to less
than one percent of the video raw data rate while providing satisfac-
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tory visual quality. However, its macroblock-based, spatial frequency
domain centric nature has not facilitated the development of a video
source model suitable for characterizing videos, especially for the devel-
opment of rate distortion bounds. And the video content modeling is
left with the original challenge of dealing with the sheer volume of infor-
mation contained in a video, for example, a data rate of 180 megabytes
per second for an uncompressed high definition 1080p video.

2.2.2 Performance Measures

Before getting into the details of video coding and video coding stan-
dards, it is important to examine the criteria for measuring the effec-
tiveness of a video coding algorithm used in a video coding standard.
Unlike voice where codecs are usually designed for a specified quality at
a given compression rate, the video coding standards do not specify a
compressed video bit rate and corresponding quality. Instead, the inter-
national video coding standards [32, 33, 34, 35] provide vast flexibility
for each application to design its own encoder according to its specific
compression requirement. A video coding technique or a video coding
standard is considered more effective if for a specific original video, at a
specified compression rate, the compressed video yields a higher qual-
ity; or for a specified compressed video quality, it can achieve a higher
compression rate.

In addition to the operational rate distortion performance, the com-
putational complexity involved in compressing the video is a critical
criterion in selecting a video coding technique for a standard. However,
the purpose of reviewing practical video coding techniques and stan-
dards in this chapter is to highlight the basic video coding approaches
and the distortion measures used to characterize their operational rate
distortion performance, and thus lay the groundwork for later compar-
isons to our new rate distortion bounds. As a consequence, video codec
implementation complexity is not discussed here.

Video quality measurement is a very difficult problem. The most
commonly used objective video quality measure is the mean squared
error (MSE) of the distorted video with respect to the original or refer-
ence video, or the peak signal-to-noise ratios (PSNR). The relationship
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between these two quantities, assuming an 8-bit representation of pixel
value and hence a peak signal value of 255, is

PSNR(dB) = 10 log10
2552

MSE
. (2.2.1)

The MSE/PSNR based measures compute only the pixel-to-pixel
difference of the processed (reconstructed) video and the referenced
(original) video. They rely on the availability of the original video as the
reference video. MSE or PSNR do not explore the perceptual effects of
any distortion, and therefore, they are criticized for correlating poorly
with human perception in some scenarios.

On the other hand, the objective perceptual video quality measures
based on the lower order processing of human vision systems (HVS)
may correlate better with human perception but they are computa-
tionally very intensive [69, 88]. These objective video quality measures
can be divided into three different categories according to the availabil-
ity of the reference video. These three categories are:

• Full Reference (FR) - the reference video is available;

• Reduced Reference (RR) - the reference video is not available but
a description of the reference video is available;

• No Reference (NR) - no information about the reference video is
available.

Table 2.4 summarizes standardization status of the objective video
quality measures by these three categories.

Despite the advances in objective perceptual video quality measures
and the well known criticisms and weaknesses of MSE/PSNR measures,
MSE/PSNR remains the most popular video quality measure for eval-
uating the performance of a video coding standard or a specific codec
implementation of the standard. In fact, during the standardization
process of the newest video coding standard HEVC in the past three
years, although some subjective tests were conducted, “[b]it rate sav-
ings is more frequently measured by using simpler ‘objective metrics,’
especially with the simple peak signal-to-noise ratio (PSNR) metric”
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Table 2.4: Standardization status of objective video quality measures

Category Standards Dates Remarks

Pixel level - Full
Reference

ITU-R
BT.1683/
ITU-T J.144 for
SDTV

Jun./Mar. 2004 Includes four models:

British Telecom (UK)

Yonsei University/Radio Re-
search, Laboratory/SK Telecom
(South Korea)

Center for Telecommunications
Research and Development
(Brazil)

NTIA/ITS (USA)
ITU-T J.247
for multimedia
(VGA, CIF,
QCIF)

Aug. 2008 Includes four models:

NTT (Japan)

OPTICOM (Germany)

Psytechnics (UK)

Yonsei University (South Korea)
ITU-T J.341 for
HDTV

Jan. 2011 Includes one model:

SwissQual (Switzerland)
Pixel level - Re-
duced Reference

ITU-T J.246 Aug. 2008 Includes one model:

Yonsei University (South Korea)
Pixel level - No
Reference

N/A Attempted but
failed in 2008

[66]. Fortunately for our work, MSE is also deeply rooted in the rate
distortion theory of Gaussian random variables, as reviewed in Chap.
3. Although as shown in Table 2.4, there are standardized full reference
perceptual objective video quality measures, these measures are inher-
ently very complicated. In order for these perceptual objective video
quality measures to be sufficiently accurate to approximate human per-
ception, they typically employ transformation of video sequences into
perceptually meaningful domains and engage multiple paths and/or
layers of computation in those domains. They are highly unlikely, if
not impossible, to allow for a tractable mathematical calculation of
the rate distortion bounds. For these three reasons we use MSE as
the performance measure in both deriving the theoretical rate distor-
tion bounds for videos and in collecting the operational rate distortion
curves of the video coding standards.
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Figure 2.4: Block-based hybrid video coding with motion estimation and compen-
sation

2.2.3 Motion-Compensated Transform Coding

In this section, we highlight some of the important details for a group of
video coding techniques called “block-based hybrid video coding with
motion estimation and motion compensation."’ This basic structure is
used by a majority of video codecs in the dominant standards. Figure
2.4 illustrates key steps in this video coding approach.

As shown in Fig. 2.4, a first step in video compression is to convert
the red, green and blue (RGB) values of each pixel into one luminance
value and two chrominance values, often referred to as the YUV color
planes. The conversion from RGB to YUV separates the luminance sig-
nal, which is perceptually much more important, from the chrominance
signal, which is less important perceptually and can be represented at
a lower resolution and a lower data rate to achieve more efficient data
compression. Different codecs use different chrominance downsampling
ratios as appropriate for their applications.

After color conversion, each video frame is partitioned into arrays
of pixel blocks, for example, 16 × 16 pixel blocks that are commonly
referred to as macroblocks (MB). Each block then undergoes motion
estimation to locate a similar block in previously coded frame(s) and
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motion compensation to account for the difference in pixel values of the
current block and its reference block. The basic premise of motion es-
timation and compensation is that for many typical video sequences of
interest, consecutive video frames are quite similar, except for changes
largely induced by objects moving within the frames. Therefore, the
frames are usually processed in groups, called a group of pictures or
GOP.

One frame in the GOP (usually the first) is encoded simply as
a still image. This frame is called an intra-coded frame, or I-frame.
Other frames in the GOP are called predicted frames, or P-frames,
and bi-directionally predicted frames called B-frames. The P-frames are
predicted from the I-frame or other P-frames that come before them
in time. B-frames can be predicted from future frames, and usually,
B-frames are predicted from two directions, from an I- or P-frame that
precedes them and from an I- or P-frame that follows them in time
sequence. In this case the future frames need to be encoded before
the predicted frames and thus, the encoding order does not necessarily
match the frame order. A GOP is composed of I-, P-, and B- frames in
unlimited number of combinations and orders. For instance, one GOP
can be described as IBBPBBPBBPBB, which consists of all three types
of frames: the first frame is an I-frame; the second and third frames are
B-frames; the fourth frame is a P-frame, and so on.

When a frame is predictively coded, each block in this frame is pre-
dicted from a block of equal size in a previously coded, called reference
frame, and the difference of the positions of the two blocks is called a
motion vector. The block in the reference frame is subtracted from the
original block in the frame being predicted to form a residue (or resid-
ual or prediction error) block of pixels. The two steps in this process
are motion estimation and motion compensation, respectively. The ref-
erence block for a block in a B-frame is formed as a weighted average of
the two blocks from the two reference frames. It is possible to reference
a block that is shifted from the current block by a non-integer vector,
such as a half pixel or a quarter pixel. This is called sub-pixel precision
motion estimation and compensation. For sub-pixel motion estimation
and compensation, the reference block is formed by interpolating the
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nearby full pixel values.
Motion estimation and compensation reduces the temporal redun-

dancy across the video frames. To reduce the spatial redundancy within
a frame, the intra-coded MBs and the residue block of the inter-coded
MBs are transformed to the frequency domain through 8x8 discrete
cosine transform (DCT) or similar integer transforms. The coefficients
produced by the DCT or other type of frequency domain transform
are quantized, ordered in the block according to horizontal and verti-
cal harmonics, and then zig-zag scanned, after which entropy (lossless)
coding is applied. Uniform scalar quantization is often chosen to quan-
tize the coefficients because of its simplicity. The entropy coding nor-
mally uses variable-length coding tables, among which the run-length
coding combines a number of consecutive zero-valued quantized coef-
ficients and the value of the next non-zero quantized coefficient into a
single symbol.

The decoding process consists of performing, to the extent possible,
an inversion of each stage of the encoding process. For the stages that
cannot be exactly inverted such as quantization and DCT, a best-effort
approximation of inversion is performed.

2.2.4 Current and Developing Standards

Video codec designs are often standardized, i.e., specified precisely in
published documents. Since the 1980’s, video compression standard-
ization has been dominated by two international organizations: the
International Telecommunications Union - Telecommunications stan-
dardization sector (ITU-T) ’s Video Coding Experts Group (VCEG)
and the International Standardization Organization (ISO) and Inter-
national Electro-technical Commission (IEC) - Joint Technical Com-
mittee (JTC) ’s Moving Picture Experts Group (MPEG). Figure 2.5
is a time table of the major image and video coding standards pub-
lished by VCEG and MPEG. The older video coding standards in this
table - H.261/2/3, MPEG-1/2/4 had been powerful engines behind the
commercial success of digital video compression. They had played piv-
otal roles in establishing the technology by providing interoperability
among products developed by different manufacturers.
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Figure 2.5: A time table of the major image and video coding standards published
by VCEG and MPEG.

The more recently established Advanced Video Coding (AVC) stan-
dard, also named ITU-T Recommendation H.264 and MPEG-4 Part 10,
offers a coding efficiency improvement by a factor of two over previ-
ous standards and its network abstraction layer (NAL) transports the
coded video data over networks in a more “network-friendly” way [89].
Because of these two features, the AVC/H.264 standard emerged as the
method of choice for the next generation video networks.

All the video coding standards listed in Fig. 2.5 follow the general
framework of block-based motion-compensated transform coding that
is discussed briefly in the previous section of this chapter. The newer
standards normally include new schemes or refinements of the schemes
that already exist in the older standards. In the following we briefly
explain the concepts of three such new schemes in AVC/H.264: intra-
frame prediction, the integer transform, and quantization with scaling.
These features, or the underlying ideas, are relevant to later chapters
of this book.

Intra-frame prediction is a new feature in AVC/H.264 which re-
moves, to a certain extent, the spatial redundancy in neighboring MBs
(16×16 blocks) or smaller 4×4 blocks. If a MB or a 4×4 block is to be
encoded in intra-mode, a prediction MB/block is first formed based on
previously encoded and reconstructed surrounding pixels. The predic-
tion block is then subtracted from the current block prior to encoding.
For the luminance samples, there are a total of nine prediction modes
for each 4×4 block and a total of four prediction modes for each 16×16
MB (modes 0 to 3 of the nine modes for 4 × 4 blocks).
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Intra-frame prediction can be better explained by reference to Fig.
2.6. In this figure, the small blocks in each of the nine big 5 × 5 blocks
represent individual pixels and the different shades of gray in the small
blocks represent the luminance values of the individual pixels. The
pixels in the 4×4 block on the bottom right corner of the 5×5 blocks are
to be encoded with intra-frame prediction. The nine pixels surrounding
the 4 × 4 blocks (four on top, four on the left and one on the top
left corner) are previously encoded and reconstructed, here assigned
different luminance values as an example. For each of the nine intra-
frame prediction modes, a predefined formula is applied to form the
prediction block P . The 4 × 4 blocks on the bottom right corner of
the nine 5 × 5 blocks in Fig. 2.6 show the prediction blocks for all
nine intra-frame prediction modes given the example surrounding pixel
values. Mode 2, DC mode is designed for a prediction block to have the
same luminance value across all pixels. The other eight modes, and
their corresponding formulas for calculating the prediction block, are
designed to capture a different direction of the gradience of the local
texture, with a 22.5 degree difference from one mode to the next.

The idea of intra-frame prediction is that one of the nine prediction
blocks is sufficiently similar to the actual 4 × 4 block to be encoded.
And hence only the difference needs to be encoded besides the intra-
frame prediction mode itself. For modes 3 and 7, the four pixels on
top right of the current 4 × 4 block (not shown in Fig. 2.6) are also
used for calculating the prediction block. Only the surrounding pixels
on the left and on the top of the current blocks are used in forming
the prediction block because the blocks are encoded from left to right
in each row of the blocks and from top row to bottom row in an image
frame.

To transform the residual MB after intra-/inter- prediction to the
frequency domain for further processing, an integer transform, instead
of an 8 × 8 DCT, is used in AVC/H.264. The integer transform can be
formulated in Eq. (2.2.2) where Ef contains the post-scaling factors.
The integer transform is applied to each 4 × 4 block X. An integer
transform can avoid the mismatch between encoder and decoder inher-
ent to the implementation of the forward DCT at the encoder and the
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Figure 2.6: The intra-prediction modes for 4 × 4 blocks in AVC/H.264

inverse DCT at the decoder.

Y =




1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

 X


1 2 1 1
1 1 −1 −2
1 −1 −1 2
1 −2 1 −1


 ⊗ Ef . (2.2.2)

The post-scaling factors contained in Ef are combined with uniform
quantization following the integer transform. A total of 52 values of
quantization step sizes (Qstep) are supported in AVC/H.264 and they
are indexed by quantization parameters (QP), as shown in Table 2.5.
Note that Qsteps and QPs are arranged in a way that an increase of 1
in QP yields an increase of Qstep by approximately 12%, which results
in an approximate bit rate reduction of 12%.

At the decoder side, the quantized 4×4 block Ŷ is post-scaled by the
components in Ei and then inverse transformed into the reconstructed
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Table 2.5: Quantization stepsizes supported in AVC/H.264

QP 0 1 2 3 4 5 6 7 8
QStep 0.625 0.6875 0.8125 0.875 1 1.125 1.25 1.375 1.625

QP 9 10 11 12 . . . 18 . . . 24 . . .
QStep 1.75 2 2.25 2.5 . . . 5 . . . 10 . . .

QP 30 . . . 36 . . . 42 . . . 48 . . . 51
QStep 20 . . . 40 . . . 80 . . . 160 . . . 224

residual block X̂, as

X̂ =


1 1 1 1/2
1 1/2 −1 −1
1 −1/2 −1 1
1 −1 1 −1/2

 {
Ŷ ⊗ Ei

} 
1 1 1 1
1 1/2 −1/2 −1
1 −1 −1 1

1/2 −1 1 −1/2

 .
(2.2.3)

It is perhaps surprising but critical to note that only the decoding
process is standardized. More specifically, it is the syntax of the bit
stream that serves as input to the decoder that is standardized. The
encoding process is typically not specified at all in a standard, and
hence developers are free to design their encoder however they want,
as long as the video can be decoded by a standard compatible decoder,
which means that the encoder need only produce a bit stream that
fits the standardized syntax. This allows flexibility and ingenuity in
encoder optimization and allows the technology to be molded to fit
a given application, thus adjusting to the cost-performance trade-offs
suited to particular requirements [63].

The newest big thing in video coding standardization is the High
Efficiency Video Coding (HEVC) standard. HEVC is the most recent
joint video coding standardization project of ITU-T Video Coding Ex-
perts Group (ITU-T Q.6/SG 16) and ISO/IEC Moving Picture Experts
Group (ISO/IEC JTC 1/SC 29/WG 11). Also referred to as H.265,
HEVC has recently been finalized and published. The goal of HEVC
is to achieve video quality comparable to H.264 High Profile at about
half of the bit rate. Current estimates suggest the computation cost of
improved coding efficiency is about two times at the decoder and four
to ten times at the encoder, compared to H.264 High Profile. HEVC
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is targeted toward higher resolutions such as 720p, 1080p, and next-
generation HDTV displays of Ultra HDTV (7680 × 4320). Many new
coding techniques are included in HEVC. Please refer to its standard
document [36] for details. One particular technique, extended coding
tree block sizes of up to 64 × 64 and a larger set of prediction modes,
will affect the comparison of the operational rate distortion bounds of
HEVC with theoretical rate distortion bounds. This will be discussed
in detail in Chapter 5.



3
The Rate Distortion Problem

In this book we devise new source models and distortion measures for
natural voice and video signals and utilize these models and distortion
measures to obtain meaningful rate distortion bounds for real sources
that bound the performance of the very best performing voice and
video codecs. In this chapter we review the theoretical underpinnings
of information theory and rate distortion theory for common source
models and distortion measures and present relevant rate distortion
theory results. We cover only those models, distortion measures, and
results needed in later chapters of the book. More general treatments
and almost all proofs are left to the references.

3.1 Rate Distortion Theory Basics

The "Rate for a Source Subject to a Fidelity Evaluation" was introduced
by Shannon in his original paper [75] in 1948. He returned to the con-
cept and dealt with it exhaustively in his 1959 paper [77], where among
many significant contributions, he defined the rate distortion function,
proved positive and negative coding theorems, derived R(D) for sev-
eral important cases, and derived the extremely useful Shannon lower

415
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bound to R(D). Meanwhile, Kolmogorov [58] and Pinsker [70] in the
Soviet Union began to develop rate distortion theory in the mid-1950’s.

In information theory, the mutual information of two random vari-
ables or processes is a quantity that measures the mutual dependence
of the two random variables or processes. For two continuous amplitude
random variables X and X̂, their mutual information is defined as

I(X; X̂) :=
∫

x

∫
x̂
p(x, x̂) log

(
p(x, x̂)
p(x)p(x̂)

)
dxdx̂. (3.1.1)

For lossy source coding problems and rate distortion theory, X̂
refers to the reconstruction of the source X, and I(X; X̂) is derived
as

I(X; X̂) =
∫

x

∫
x̂ p(x̂|x)p(x) log

(
p(x|x̂)p(x̂)
p(x)p(x̂)

)
dxdx̂ =

−
∫

x p(x) log (p(x)) dx+
∫

x̂

∫
x p(x|x̂)p(x̂) log (p(x|x̂)) dxdx̂ =

h(X) − h(X|X̂)

(3.1.2)

The last form of the equation is often useful in writing closed form
expressions for mutual information.

A mathematical characterization of the rate distortion function is
given by the following fundamental theorem of rate distortion theory [6,
10]. (Note that the mathematical characterization given in the theorem
is given physical meaning by the proof of a coding theorem, which shows
that there exists an encoder/decoder pair generated according to what
is called a test channel p(x̂|x) that achieves the rate distortion pair
(R(D), D) specified in the theorem. More specifically, the proof involves
specifying encoder and decoder functions fn and gn, respectively, to
generate a length-n code with a codebook of 2nR sequences. Then,
using a random coding argument and distortion typicality for encoding
and decoding, it can be shown that the average distortion given by

d(x, x̂) =
n∑

i=1

1
n
d(xi, x̂i), (3.1.3)

asymptotically approaches D as the code block length n gets large.
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The mathematical characterizations of rate distorion bounds in later
theorems are obtained in a similar fashion.)

Theorem 3.1. (Shannon’s third theorem) The minimum achievable rate
to represent an i.i.d. source X with a probability density function
p(x), by X̂, with a bounded distortion function d(X, X̂) such that∫

x

∫
x̂ p(x)p(x̂|x)d(x, x̂) ≤ D, is equal to

R(D) = min
p(x̂|x):

∫
x

∫
x̂

p(x)p(x̂|x)d(x,x̂)≤D
I(X; X̂), (3.1.4)

where I(X; X̂) is the mutual information between X and X̂.

Given the source density p(x), the minimization is over all admis-
sible test channels, that is, all p(x̂|x) satisfying the average distortion
constraint. The critical roles of the probabilistic source model p(x) and
the distortion measure d(x, x̂) are thus evident in the definition of R(D)
above.

The challenges in developing rate distortion functions for real
sources should now be evident since somehow the probability density
function p(x) needs to capture all of the intricacies of a real source,
and the distortion measure must indicate the subjective quality of the
reproduced source output X̂. Additionally, both the source model and
the distortion measure must yield an analytically tractable optimiza-
tion problem.

The voice and video signals in real life can be represented as con-
tinuous amplitude random processes on continuous time. In the case
of video signals, the time includes the spatial dimension as well as the
temporal dimension. In this book, we deal with digitized natural voice
and video signals, and consequently we consider voice and video signals
to be discrete in time, i.e., voice samples and video pixels, but to be
continuous amplitude. As a result, the expression for R(D) given above
fits our physical problems well.

To make further progress, however, we need to specialize both the
source probability density and the form of the distortion measure.
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3.2 Rate Distortion Results for Gaussian Sources and
Squared Error Distortion

Whether or not there exists a closed-form solution for the rate dis-
tortion function R(D) depends on the distribution of the source and
the criterion selected to measure the fidelity of reproduction between
the source and its reconstruction. One of the most tractable formula-
tions has been for Gaussian sources and the squared error difference
distortion measure. To lay the groundwork for developing our bounds,
we briefly review rate distortion functions for time-discrete Gaussian
sources subject to the squared error distortion measure.

3.2.1 Scalar Gaussian Source with Mean Squared Error

The rate distortion function of a scalar Gaussian source with squared
error distortion is as follows [6].

Theorem 3.2. The rate distortion function for a scalar Gaussian ran-
dom variable X ∼ N(0, σ2) with squared error distortion measure
d(x, x̂) = (x− x̂)2 is

R(D) = min
p(x̂|x):

∫
x

∫
x̂

p(x)p(x̂|x)d(x,x̂)dxdx̂≤D
I(X; X̂)

=
{

1
2 log σ2

D , 0 ≤ D ≤ σ2

0, D > σ2

(3.2.5)

The Shannon lower bound is particularly useful in proving this re-
sult and in displaying the probability densities that achieve the mini-
mum. To move toward real source models, we now consider a vector of
independent but not identically distributed Gaussian random variables.

3.2.2 Reverse Water-filling

The rate distortion function of a vector of independent (but not identi-
cally distributed) Gaussian sources is calculated by the reverse water-
filling theorem [10]. This theorem says that one should encode the
independent sources with equal distortion level λ, as long as λ does not
exceed the variance of the transmitted sources, and that one should not



3.2. R-D Results for Gaussian Sources and Squared Error Distortion 419

transmit at all those sources whose variance is less than the distortion
λ.

Theorem 3.3. (Reverse water-filling theorem) For a vector of indepen-
dent random variables X1, X2, ..., Xn such that Xi ∼ N(0, σ2

i ) and the
distortion measure d(x, x̂) =

∑n
i=1(xi−x̂i)2, the rate distortion function

is

R(D) = min
p(x̂|x):

∫
x

∫
x̂

p(x̂|x)p(x)d(x,x̂)dx̂dx≤D
I(X; X̂) =

n∑
i=1

1
2

log σ
2
i

Di
,

(3.2.6)
where

Di =
{
λ 0 ≤ λ ≤ σ2

i

σ2
i λ > σ2

i

, (3.2.7)

and
∑n

i=1Di = D.

Reverse water-filling is a classical result in rate distortion theory
and it plays a major role in future chapters. The following section
provides the road map for applying the reverse water-filling result for
voice and video sources.

3.2.3 Stationary Gaussian Sources with Memory

In this section, we show how to connect the usual statistics that we have
about speech or video sources, namely the autocorrelation or covari-
ance function, with a decomposition that allows us to use the reverse
water-filling theorem on parallel Gaussian sources to calculate the rate
distortion function. The following derivation of rate distortion theory
for stationary Gaussian sources apparently first appeared in [15].

Let A be an unitary matrix denoting an orthonormal linear trans-
formation from a vector of random variables X to another vector of
random variables Θ as

Θ = AX, X̂ = A−1Θ̂ = AT Θ̂. (3.2.8)

The following relations between X and Θ can be derived:
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Mean squared error:

D(X, X̂) = E[(X − X̂)T (X − X̂)]
= E[(Θ − Θ̂)TATA(Θ − Θ̂)]
=

orthonormal
E[(Θ − Θ̂)T (Θ − Θ̂)]

= D(Θ, Θ̂);

(3.2.9)

Mutual information:

I(X; X̂) =
|A|≠0

I(Θ; Θ̂) ≥
n∑

i=1
I(Θi; Θ̂i), (3.2.10)

with equality if and only if (iff) Θi’s are independent.
As shown above, both the distortion (chosen here to be the sum-

mation of squared errors) and the mutual information of a random
process X are equal to those of the unitary transform of the random
process Θ, and therefore the rate distortion function of X equals the
rate distortion function of Θ.

Now think of X as pixel values of a digital image with correlated
Gaussian elements. To utilize the Reverse-water-filling theorem dis-
cussed in the previous section, the goal is to find X’s unitary transform
Θ with independent elements. To achieve this goal, we utilize the well
known Karhunen Lòeve Transform (KLT), which is also called principal
component analysis, to decorrelate the source X as follows.

Letting the covariance function of a stationary zero-mean Gaussian
source be denoted by

ϕ(n) = E[xixi+n], (3.2.11)

and letting Φn be the n × n covariance matrix of the source, with its
entries defined in Eq. (3.2.11), then, Φn = {ϕ(|i − j|), i, j = 1, ..., n}.
Denoting {ψ

i
, i = 1, ..., n} as the normalized eigenvectors of Φn with

corresponding eigenvalues {λi, i = 1, ..., n}, so that

Φnψi
= λiψi

, (3.2.12)

then we write
Φn = ΨnΛΨT

n , (3.2.13)

where Ψn = [ψ1, ψ2, ..., ψn
].
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Since covariance matrices are symmetric, there always exists an
eigenvalue decomposition of the covariance matrix with real eigenval-
ues, and furthermore, covariance matrices are positive semi-definite,
therefore all their eigenvalues are non-negative, yielding

Θ = ΨT
nX. (3.2.14)

Thus, the rate distortion function of a stationary Gaussian source
X with covariance matrix Φn can be computed as the rate distortion
function of a stationary Gaussian source Θ, where Θ has independent
Gaussian elements, each of variance λi, which are eigenvalues of the
covariance matrix Φn. The rate distortion function of Θ is in turn
solved by the reverse-water filling theorem.

3.2.4 Rate Distortion Function for a Gaussian Autoregressive
Source

Since Shannon’s rate distortion theory requires an accurate source
model and a meaningful distortion measure, and both of these are diffi-
cult to express mathematically for real physical sources such as speech,
these requirements have limited the impact of rate distortion theory
on the lossy compression of speech. There have been some notable ad-
vances and milestones, however. Berger [6] and Gray [26], in separate
contributions in the late 60’s and early 70’s, derived the rate distortion
function for Gaussian autoregressive (AR) sources for the squared error
distortion measure. Since the linear prediction model, which is an AR
model, has played a major role in voice codec design for decades and
continues to do so, their results are highly relevant to our work. The
basic result is summarized in the following theorem [6]:

Theorem 3.4. Let {Xt} be an mth-order autoregressive source gener-
ated by an i.i.d. N(0, σ2) sequence {Zt} and the autoregression con-
stants a1, ..., am. Then the MSE rate distortion function of {Xt} is given
parametrically by

Dϑ = 1
2π

∫ π

−π
min

[
ϑ,

1
g(ω)

]
dω, (3.2.15)

and
R(Dϑ) = 1

2π

∫ π

−π
max

[
0, 1

2
log 1

ϑg(ω)

]
dω, (3.2.16)
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where

g(ω) = 1
σ2

∣∣∣∣∣1 +
m∑

k=1
ake

−jkω

∣∣∣∣∣
2

. (3.2.17)

The points on the rate distortion function are obtained as the pa-
rameter ϑ is varied from the minimum to the maximum of the power
spectral density of the source. ϑ can be associated with a value of the
average distortion, and as illustrated in Fig. 3.1, only the shape of the
power spectral density, Φ(ω), above the value of ϑ is reproduced at the
corresponding distortion level. The reverse water-filling interpretation
is clearly evident from the shaded region in the figure.

ϑ is related to the average distortion through the slope of the rate
distortion function at the point where the particular average distortion
is achieved. This idea will prove important later when we work with
composite source models.

Figure 3.1: Example source, error, and reconstruction spectral densities

The importance of this theorem is that autoregressive sources have
played a principal role in the design of leading narrowband and wide-
band voice codecs for decades. The rate distortion function in this the-
orem offers a direct connection to these codecs, although as we shall
demonstrate in the following, one single source model will not do.
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3.3 Composite Source Models

It was recognized early on that sources may have multiple modes and
could switch between modes probabilistically, and such sources were
called composite sources in the rate distortion theory literature [6]. In
particular, a composite source is defined as source with probability de-
pending on the side information Y [6, Sec. 6.1], as shown in Fig. 3.2.
The choice of subsources is according to a probabilistic switch process,
which is the side information. The power of composite sources derives
from the individual subsources being able to capture local or finer de-
pendence, while the switch process can represent changes that happen
more globally and also model discontinuities. Given an appropriate
number of carefully selected subsources and accurate switch modeling,
time-varying or spatially-varying complex real world sources can be
represented accurately.

Figure 3.2: A Composite Source Model with K Subsources

Motivated by the work of Berger and others, research efforts ex-
plored, from the theoretical side, the properties of composite sources
and also attempted to obtain expressions or bounds for the rate distor-
tion functions of composite sources. In particular, Fontana [17] studied
the stationarity, ergodicity, and mixing properties of composite sources
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with stationary transitions and then went on to examine nonstationary
composite sources. He also proved theorems characterizing the distor-
tion rate function and the entropy rate of composite sources with slowly
varying switch processes. Garde [19] turned to developing rate distor-
tion bounds based on Fontana’s work, wherein he considered symmetric
Markov switch processes. Wallace [85] considered separable composite
sources with memoryless subsources and Markov switch processes and
found techniques for calculating the entropy rate. Among other things,
Carter [8] studied the rate distortion theory of classes of composite
sources, and he used conditional rate distortion theory as his primary
tool to develop these bounds. For the class of regenerative compos-
ite sources, he derived upper and lower bounds to the rate distortion
function of the composite source, and for the notion of an interrupted
source, obtained an exact expression for the conditional rate distortion
function.

Composite sources and conditional rate distortion functions place
a key role in developing our voice and video rate distortion bounds in
later chapters. We examine conditional rate distortion theory in more
detail in the following section.

3.4 Conditional Rate Distortion Functions

The conditional rate distortion function is the rate of a source subject
to a fidelity criterion when the encoder and decoder both have access
to side information [27]. Thus, the conditional rate distortion function
describes the rate required for a composite source subject to a fidelity
criterion, where the side information is the switch process that selects
the appropriate subsource at any time. We assume that all subsources
have the same source alphabet and that all subsources are subject to
the same distortion measure. The following definition of the conditional
rate distortion function is from Gray [27].

Definition 3.1. The conditional rate distortion function of a source X
with side information Y , which serves as the subsource information, is
defined as
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RX|Y (D) = min
p(x̂|x,y):D(X,X̂|Y )≤D

I(X; X̂|Y ), (3.4.18)

where
D(X, X̂|Y ) =

∑
x,x̂,y

p(x, x̂, y)D(x, x̂|y),

I(X; X̂|Y ) =
∑
x,x̂,y

p(x, x̂, y) log p(x, x̂|y)
p(x|y)p(x̂|y)

. (3.4.19)

RX|Y (D) is the lowest rate given that both encoder and decoder
are allowed to observe perfectly the sequence Y . It can be proved [27]
that the conditional rate distortion function in Eq. (3.4.18) can also be
expressed as

RX|Y (D) = min
D′

ys:D(X,X̂|Y )=
∑

y
Dyp(y)≤D

∑
y

RX|y(Dy)p(y), (3.4.20)

and the minimum is achieved by adding up the individual, also called
marginal, rate-distortion functions at points of equal slopes of the
marginal rate distortion functions.

Utilizing the classical results for conditional rate distortion func-
tions in Eq. (3.4.20), the minimum is achieved at Dy’s where the
slopes ∂RX|Y =y(Dy)

∂Dy
are equal for all y and

∑
y DyP [Y = y] = D.

This conditional rate distortion function RX|Y (D) can be used to
write the following inequality involving the overall source rate distor-
tion function RX(D) [27]

RX|Y (D) ≤ RX(D) ≤ RX|Y (D) + I(X;Y ), (3.4.21)

where I(X;Y ) is the average mutual information between X and Y

and the equality in the leftmost inequality is achieved if and only if X
and Y are independent. We can bound I(X;Y ) by H(Y ), entropy of
the side information Y , which is further bounded by 1

M logK, as

I(X;Y ) ≤ H(Y ) ≤ 1
M

logK, (3.4.22)

where K is the number of subsources and M is the number of samples
representing how often the subsources change in the speech utterance.
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Since for voice, K = 5 here and M is on the order of 100 or more,
the second term on the right in Eq. (3.4.21) is negligible, and the rate
distortion for the source is very close to the conditional rate distor-
tion function in Eq. (3.4.20). Therefore, we use the conditional rate
distortion function RX|Y (D) to develop our performance bounds for
voice[56, 55].

3.5 Estimating Composite Source Model Parameters

With the prior rate distortion results and the general composite source
model in our tool set, we see that to use these tools, we need good
models for the subsources and a model for the switch process. While
we develop these ideas in detail for voice and video sources in later
chapters, we provide a high level overview of some prior approaches to
obtain the subsource models and the switch process here.

Most prior work has assumed either Gaussian memoryless sub-
sources or Gaussian autoregressive subsources and almost always a
MSE distortion measure. The switch process is often assumed to be
independent and identically distributed or deterministic but unknown.
While these are idealized assumptions made primarily for analytical
tractability reasons, it is often argued that the mixture process has a
distribution that accurately models the actual source, even when it is
not Gaussian. Plus, it is well known that the rate distortion function of
Gaussian memoryless source upper bounds the rate distortion function
of any other memoryless source with the same variance. Therefore, an
upper bound to R(D) is being obtained in the worst case.

Hence, it is the parameters of the Gaussian subsources and the
switch process probabilities, or the points where the subsource switch-
ing takes place, that must be selected. Prior work has started with a
joint maximum likelihood approach to estimate the needed parameters
and switch process information, and then various assumptions are in-
voked to simplify the calculations. In particular, the switch process is
chosen to be i.i.d., the sequence of subsources or frames are assumed
independent, and the initial conditions are assumed to have minimal
impact on the results. Some of the work has also assumed that the
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structure of the subsources is identical and only the subsource param-
eters are changing. For example, all subsources may be assumed to be
20th order autoregressive processes [56, 55].

In these instances, the maximum likelihood estimates can be sim-
plified substantially, and the source parameter estimation process often
becomes that of estimating the parameters of an Nth order autoregres-
sive process, which is identical to the methods used for the estimation
of the parameters of the linear prediction model for speech coding in-
troduced in the late 1960’s.

When the rate distortion bounds are developed in Chapters 4 and
5, the prior work is examined in more detail.



4
Rate Distortion Bounds for Voice

We now turn our attention to developing rate distortion bounds specif-
ically for voice sources. Of course, the two principal things that we have
to do are to define adequate models of voice sources and to determine
distortion measures that provide meaningful comparisons to existing
voice codecs, and both need to be analytically tractable. We model the
voice source using a composite source model, where we choose the sub-
sources based upon phonetic speech models that have been useful in
voice codec designs, and use conditional rate distortion theory for the
MSE distortion measure, as discussed in Section 4.2. To obtain a dis-
tortion measure that is analytically tractable, we could develop bounds
based upon weighted MSE distortion measures, but this approach has
its own challenges, as we elaborate later. Our chosen approach is to de-
vise a mapping function to map the MSE based rate distortion results
into rate versus PESQ-MOS distortion results. To accomplish this, con-
sider waveform-following coders, for which MSE produces a reasonable
ordering of rate versus distortion results, and for which PESQ-MOS
values can be obtained. Considerations in selecting the codecs and jus-
tification of this approach are presented in Section 4.4. Our rate distor-
tion bounds for both narrowband and wideband voice and comparisons
to known standardized voice codecs are given in Section 4.5.

428
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There has been some limited prior work on developing rate distor-
tion bounds for speech, and we begin the chapter by surveying this
work in Section 4.1.

4.1 Related Prior Work

There have been only a small number of prior research efforts in the
last 25 years that have attempted to develop rate distortion bounds for
speech. Most have used the MSE distortion measure, and a few have
been based on using subsources or on explicitly using composite source
models. We discuss these contributions in this section.

Brehm and Trottler [29] utilize the mean squared error (MSE) dis-
tortion measure and focus their efforts on modeling the speech source
for narrowband speech. They utilize spherically invariant random pro-
cess (SIRP) models that allow the inclusion of correlation in the source
probability density function (pdf) and then note that with the auto-
correlation function and the first order pdf known, then the first order
pdf and all higher order pdfs can be expressed in terms of G-functions,
which are a class of higher-transcendental functions. The first order
pdf based on the G-function is then fit to speech data from one male
speaker and shown to be a good fit to the first order histogram of the
data. They then characterize the SIRP speech model as a decomposi-
tion of Gaussian subsources with a variable standard deviation, where
the pdf of the standard deviation is expressed in terms of a G-function.
The overall rate distortion bound is obtained by averaging the rate dis-
tortion functions of the subsources at points of equal slope. The rate
distortion bounds actually calculated and presented in the paper, how-
ever, only use the initial first order pdf fit to the experimental data.
Their rate distortion bounds are only for the MSE distortion measure,
thus limiting their applicability to CELP codec performance compar-
isons.

A composite source model is a collection of subsources accessed by
a probabilistic switching process, as illustrated in Fig. 3.2. In [56, 55],
composite source models for speech are obtained by segmentation of
the speech into equal order (20th order) Gaussian autoregressive sub-



430 Rate Distortion Bounds for Voice

sources. Each subsource is parametrized by the predictor coefficients
and the residual variance which are estimated by maximum likelihood
estimation, assuming i.i.d. subsources and an i.i.d. switch process. The
rate distortion functions of composite sources are calculated using con-
ditional rate distortion functions for the MSE distortion measure. In
their experiments, they calculated lower bounds to the rate distortion
function for different numbers of subsources, and showed that a rela-
tively small number of subsources (6 in the cited paper) is needed to
have a good composite source model for speech. Only one male speaker
is considered in this work, and it is what is categorized as wideband
speech since the input band is 30 Hz to 7 kHz and the sampling rate
is 16,000 samples per second. The work also utilizes a Hamming win-
dow of length 30 msec., and since the analysis windows are only 10
msec., there is considerable overlap between adjacent windows. This
windowing is done to improve the autoregressive subsource parameter
estimation. No comparisons to standardized speech codecs are provided
since MSE is not a meaningful distortion measure for these codecs.

A cochlear model serves as the basis for a perceptual distortion mea-
sure for speech in [16], and the speech source model is merged with the
cochlear models and used to characterize the rate distortion function
for speech. With the cochlear variational distance as the distortion mea-
sure, a lower bound to the rate distortion function is calculated , and
Blahut’s algorithm is applied for the direct evaluation of the rate dis-
tortion function with the cochlear directed divergence and variational
distance. Four speech coders were compared with the rate distortion
bound generated by Blahut’s algorithm. Among the interesting results
are that the Shannon lower bound for the cochlear variational distance
distortion measure is only tight at very small distortions and that the
voice codecs evaluated required more than twice the minimum rate to
achieve the same distortion. This work emphasizes the distortion mea-
sure, and de-emphasizes the source modeling aspect. The drawback of
the approach is that the method is not easily employed by non-skilled
users to compare to their codec performance.

Gibson, Hu, and Ramadas [21] obtained rate distortion bounds for
speech coding based on composite source models and unweighted and
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weighted MSE distortion measures. The composite source models are
constructed by classifying each sentence as Voiced (V), Unvoiced (UV),
Onset (ON), Hangover (H), and Silence (S) by hand. The V, ON, and H
modes are modeled as autoregressive with different orders, and the UV
mode is modeled as uncorrelated. The marginal and conditional rate
distortion bounds for two English sequences were shown, and the op-
erational rate distortion performance of the waveform following codec,
G.727, was compared with the rate distortion bounds based on un-
weighted MSE. Since the G.727 codec does not use voice activity de-
tection to efficiently model and compress silence and since it is a rel-
atively high rate codec, it has performance well above the calculated
rate distortion bound. The particular weighted MSE considered in this
paper was based on an average weighting across the entire utterance
and hence was not able to meaningfully capture perceptual distortion.
The performance of important CELP based codecs were far above the
calculated R(D) bound for the weighted MSE measure, and therefore,
the rate distortion curves based on this weighted MSE criterion are not
useful. Further research is needed to determine if varying the weighting
for different subsource modes or much more often, say every 10 msec
or so might yield better results. These R(D) curves are presented in a
later section after composite source models are more fully elaborated
and as a step toward developing the final R(D) bounds that are valid
for all speech codecs.

4.2 Composite Source Models for Speech

It was recognized early on in rate distortion theory that sources may
have multiple modes and can switch between modes probabilistically,
and as we have seen, such sources were called composite sources in
the rate distortion theory literature [6]. Prior work on rate distortion
bounds for speech coding, as discussed in Section 4.1, have utilized
different types of composite source models to provide good models for
speech signals. We also rely on composite source models for our work,
but we construct these models in a more straightforward way than prior
authors by drawing on prior research on speech codec design. We also



432 Rate Distortion Bounds for Voice

allow a greater diversity of subsource models.
Multimodal models have played a major role in speech coding, in-

cluding the voiced/unvoiced decision for the excitation in linear predic-
tive coding (LPC) [3] and the long-term adaptive predictor in adaptive
predictive coding (APC) [4]. Further, phonetic classification of the in-
put speech into multiple modes and coding each mode differently has
lead to some outstanding voice codec designs [87, 86]. We build on
the phonetic classification methods in these successful codec designs to
surmise useful composite source models.

In particular, the work of Ramadas and Gibson [73] on speech cod-
ing has been guided by these prior contributions, and we have devel-
oped a mode classification method that breaks the input speech into
Voiced (V), Onset (ON), Hangover (H), Unvoiced (UV), and Silence
(S) modes, each of which may be coded at a different rate. We use these
modes to develop a composite source model for speech here.

For narrowband speech, we model Voiced (V) speech as a 10th order
AR Gaussian source since most narrowband speech codecs, such as
AMR-NB, use 10th order linear prediction in the codec. Onset (ON) is
modeled as a 4th order AR Gaussian source, Hangover (H) is modeled
as a 4th order AR Gaussian source, Unvoiced (UV) speech is modeled
as a memoryless Gaussian source, and Silence (S) is treated by sending
a code for comfort noise generation. In addition to the five-mode (V,
UV, H, ON, and S) composite source models, we also try two modes
(V and S) and one mode (V) as a source model for comparison.

Table 4.1 presents the autocorrelation values and mean-squared pre-
diction error for five narrowband English sentences. There is no mode
classification on each sequence in this table, so whole sequences are
treated as Voiced. This represents the case where the source is purely
autoregressive and is a good fit to the classical rate distortion approach
for Gaussian autoregressive sources in the rate distortion theory liter-
ature [6]. Table 4.2presents the autocorrelation values, mean-squared
prediction error for the two modes, and the probability of non-silence
and silence for five narrowband English sentences. The two mode clas-
sifications fit the common classifications used in early linear prediction
voice codecs.
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Table 4.1: Autocorrelation coefficients and Mean Square Prediction Error for Nar-
rowband Speech Sentences

Sequence Autocorrelation coefficients Mean Square
Prediction Error

T07 [1 0.8833 0.6985 0.5154 0.3357 0.2025 0.0326
(Female) 0.1015 0.0195 −0.0381 −0.0833 −0.1290]

(active speech level: −25.0 dBov)
(sampling rate: 8 kHz)

T08 [1 0.7975 0.4655 0.2195 0.0618 −0.0137 0.0679
(Female) −0.0250 0.0109 0.0579 0.0472 −0.0289]

(active speech level: −15.6 dBov)
(sampling rate: 8 kHz)

T13 [1 0.8018 0.5018 0.2526 0.0540 −0.0462 0.0780
(Female) −0.0942 −0.1480 −0.1946 −0.1748 −0.1293]

(active speech level: −24.8 dBov)
(sampling rate: 8 kHz)

“lathe" [1 0.8076 0.5507 0.3444 0.1470 0.0221 0.0813
(Female) −0.0521 −0.0745 −0.0878 −0.1441 −0.2321]

(active speech level: −18.1 dBov)
(sampling rate: 8 kHz)

“we were away" [1 0.8014 0.5176 0.2647 0.0432 −0.1313 0.0780
(Male) −0.2203 −0.3193 −0.3934 −0.4026 −0.3628]

(active speech level: −16.5 dBov)
(sampling rate: 8 kHz)

The five-mode composite source models for five narrowband En-
glish sentences are shown in Table 4.3. The five-mode composite source
model has seen some applications in voice codec design but it is not a
dominant paradigm. For accurate source modeling, however, it is known
that more than two subsources are necessary to capture accurately the
source behavior [55]. The selection of the subsource models is based on
experience with both speech models and on the availability of existing
rate distortion results for those source models.

There are a few things to note about the data in Tables 4.2 and 4.3.
First, the average frame energy for the UV mode and the mean-squared
prediction errors for the other modes are normalized to the average
energy over the entire sentence since the MSE of the mapping function
is normalized by the average energy. Second, the sentence, “We were
away" is only 1.05% classified as Silence. T07 is 35.81%, T08 is 33.09%,
T13 is 35.66%, and “lathe" is 36.85% classified as Silence. These Silence
segments are assumed to be transmitted using a fixed length code to
represent the length of the Silence intervals and to represent comfort
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Table 4.2: Silence or Non-silence Source Models for Narrowband Speech Sentences

Sequence Mode Autocorrelation coefficients for V Mean Square ProbabilityPrediction Error
T07 V [1 0.8833 0.6985 0.5154 0.3357 0.2025 0.0325 0.6419

(Female) 0.1014 0.0194 −0.0382 −0.0833 −0.1291]
(active speech level: −25.0 dBov) S 0.3581

(sampling rate: 8 kHz)
T08 V [1 0.7975 0.4655 0.2195 0.0618 −0.0137 0.0679 0.6691

(Female) −0.0250 0.0109 0.0579 0.0472 −0.0289]
(active speech level: −15.6 dBov) S 0.3

(sampling rate: 8 kHz)
T13 V [1 0.8018 0.5018 0.2525 0.0540 −0.0463 0.0780 0.6435

(Female) −0.0942 −0.1480 −0.1946 −0.1748 −0.1293]
(active speech level: −24.8 dBov) S 0.3565

(sampling rate: 8 kHz)
“lathe" V [1 0.8076 0.5507 0.3444 0.1470 0.0221 0.0813 0.6315

(Female) −0.0521 −0.0745 −0.0878 −0.1441 −0.2321]
(active speech level: −18.1 dBov) S 0.3685

(sampling rate: 8 kHz)
“we were away" V [1 0.8014 0.5176 0.2647 0.0432 −0.1313 0.0780 0.9895

(Male) −0.2203 −0.3193 −0.3934 −0.4026 −0.3628]
(active speech level: −16.5 dBov) S 0.0105

(sampling rate: 8 kHz)

noise inserted in the decoded stream.

AMR-WB [42] uses 16th order linear prediction at 12.8 kHz sam-
pling rates for wideband speech. Hence, we also model Voiced speech as
a 16th order AR Gaussian source at a 12.8 kHz. In order to model the
wideband speech source at 12.8 kHz sampling rate, we down-sample
the wideband speech from 16 kHz to 12.8 kHz using the decimation fil-
ter in AMR-WB for wideband speech. While Voiced speech is modeled
as 16th order AR Gaussian sources, Onset and Hangover are modeled
as 4th order AR Gaussian sources. Unvoiced speech is modeled as a
memoryless Gaussian source, and Silence is treated by sending a code
for comfort noise generation at 12.8 kHz sampling rates.

In addition to the five-mode (V, UV, H, ON, and S) composite
source models, we also try two modes (V or S) and one mode (V) as
source model. In particular, Table 4.4 presents the autocorrelation val-
ues and mean-squared prediction error for two wideband English sen-
tences and one wideband Japanese sentence. There is no mode classifi-
cation on each sequence. Whole sequences are treated as Voiced mode.
Table 4.5 presents the autocorrelation values, mean-squared prediction
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Table 4.3: Composite Source Models for Narrowband Speech Sentences

Sequence Mode Autocorrelation coefficients for V, ON, H Mean Square ProbabilityAverage frame energy for UV Prediction Error
T07 V [1 0.8850 0.6999 0.5151 0.3351 0.2014 0.0310 0.4876

(Female) 0.1003 0.0181 −0.0394 −0.0844 −0.1298]
(active speech level: −25.0 dBov) ON [1 0.8233 0.6751 0.5848 0.4221] 0.0883 0.0193

(sampling rate: 8 kHz) H [1 0.9282 0.8579 0.8067 0.7503] 0.0186 0.0138
UV 0.0159 0.0159 0.1212
S 0.3581

T08 V [1 0.7975 0.4647 0.2184 0.0608 −0.0145 0.0675 0.4654
(Female) −0.0253 0.0109 0.0580 0.0471 −0.0293]

(active speech level: −15.6 dBov) ON [1 0.9209 0.8119 0.7002 0.5630] 0.0181 0.0132
(sampling rate: 8 kHz) H [1 0.9211 0.8622 0.8105 0.7556] 0.0225 0.0074

UV 0.0142 0.0142 0.1831
S 0.3309

T13 V [1 0.8024 0.5015 0.2517 0.0528 −0.0474 0.0767 0.4393
(Male) −0.0952 −0.1489 −0.1953 −0.1757 −0.1295]

(active speech level: −24.8 dBov) ON [1 0.8588 0.7319 0.6532 0.5077] 0.0561 0.0118
(sampling rate: 8 kHz) H [1 0.9099 0.7933 0.6992 0.6416] 0.0260 0.0074

UV 0.0060 0.0060 0.1849
S 0.3566

“lathe" V [1 0.8217 0.5592 0.3435 0.1498 0.0200 0.0656 0.5265
(Female) −0.0517 −0.0732 −0.0912 −0.1471 −0.2340]

(active speech level: −18.1 dBov) ON [1 0.8495 0.5962 0.3979 0.2518] 0.0432 0.0093
(sampling rate: 8 kHz) H [1 0.2709 0.2808 0.1576 0.1182] 0.7714 0.0186

UV 0.1439 0.1439 0.0771
S 0.3685

“we were away" V [1 0.8014 0.5176 0.2647 0.0432 −0.1313 0.0780 0.9842
(Male) −0.2203 −0.3193 −0.3934 −0.4026 −0.3628]

(active speech level: −16.5 dBov) ON [1 0.8591 0.7215 0.6128 0.5183] 0.0680 0.0053
(sampling rate: 8 kHz) H 0

UV 0
S 0.0105

error for the two modes (V or S), and the probability of non-silence
(V) and silence for three wideband sentences. The five-mode compos-
ite source models for three wideband sentences are shown in Table 4.6.
The average frame energy for the UV mode and the mean-squared pre-
diction errors for the other modes are normalized to the average energy
over the entire sentence since the MSE of the mapping function is nor-
malized by the average energy. F1 has 55.23%, M3 has 24.67%, and F2
has 30.53% classified as Silence. These Silence segments are assumed
to be transmitted using a fixed length code to represent the length of
the Silence intervals and to represent comfort noise to be inserted into
the decoded stream.

Examining all of the tables of composite source models, it is evident
that each of these sentences has quite different characteristics, and this,
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Table 4.4: Autocorrelation coefficients and Mean Square Prediction Error for Wide-
band Speech Sentences

Sequence Autocorrelation coefficients Mean Square
Prediction Error

F1 [1 0.8460 0.5931 0.4187 0.3214 0.2722 0.2169 0.0257
(Female) 0.1507 0.0645 −0.0929 −0.2951 −0.4027

(active speech level: −25.968 dBov) −0.3753 −0.3034 −0.2629 −0.2833 −0.3239]
(sampling rate: 12.8 kHz)

M3 [1 0.8005 0.6683 0.4887 0.3019 0.2538 0.2127 0.0836
(Male) 0.2252 0.2262 0.2261 0.2011 0.1586

(active speech level: −29.654 dBov) 0.1282 0.1031 0.1281 0.1688 0.1595]
(sampling rate: 12.8 kHz)

F2 [1 0.9274 0.8251 0.6843 0.5071 0.3616 0.2176 0.0086
(Female) 0.1010 0.0119 −0.0655 −0.1265 −0.1897

(active speech level: −26.009 dBov) −0.2423 −0.2746 −0.3007 −0.3078 −0.2957]
(sampling rate: 12.8 kHz)

(Japanese)

Table 4.5: Silence or Non-silence Source Models for Wideband Speech Sentences

Sequence Mode Autocorrelation coefficients for V Mean Square ProbabilityPrediction Error
F1 V [1 0.8448 0.5891 0.4132 0.3156 0.2670 0.2122 0.0253 0.4761

(Female) 0.1462 0.0599 −0.0987 −0.3028 −0.4109
(active speech level: −25.968 dBov) −0.3816 −0.3084 −0.2673 −0.2879 −0.3293]

(sampling rate: 12.8 kHz) S 0.5523
M3 V [1 0.7954 0.6612 0.4775 0.2864 0.2398 0.2005 0.0861 0.7533

(Male) 0.2169 0.2215 0.2248 0.2023 0.1614
(active speech level: −29.654 dBov) 0.1333 0.1076 0.1334 0.1759 0.1662]

(sampling rate: 12.8 kHz) S 0.2467
F2 V [1 0.9275 0.8249 0.6835 0.5054 0.3592 0.2146 0.0084 0.6947

(Female) 0.0976 0.0085 −0.0688 −0.1296 −0.1926
(active speech level: −26.009 dBov) −0.2449 −0.2775 −0.3039 −0.3110 −0.2988]

(sampling rate: 12.8 kHz) S 0.3053
(Japanese)

in turn, hints at what we will see later – namely that the these sen-
tences have distinctively different rate distortion functions. Indeed, the
subsources in each sentence have different R(D) curves and their prob-
abilities of occurrence are different across sentences as well. These facts
highlight one of the weaknesses of much earlier work on R(D) bounds
for speech (and video) that used average source models, averaged over
all samples in each source and over multiple utterances, to obtain R(D)
curves. In the end, the resulting R(D) curves did not lower bound the
performance of codecs on many individual utterances. The key lesson
is an old one, and one that we have been emphasizing – to obtain valid
R(D) functions, the models must be accurate.
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Table 4.6: Composite Source Models for Wideband Speech Sentences

Sequence Mode Autocorrelation coefficients for V, ON, H Mean Square ProbabilityAverage frame energy for UV Prediction Error
F1 V [1 0.8448 0.5891 0.4132 0.3156 0.2670 0.2122 0.0253 0.4406

(Female) 0.1462 0.0599 −0.0987 −0.3028 −0.4109
(active speech level: −25.968 dBov) −0.3816 −0.3084 −0.2673 −0.2879 −0.3293]

(sampling rate: 12.8 kHz) ON [1 0.1226 −0.2917 0.2239 −0.0034] 0.5241 0.0043
H 0

UV 0.0009 0.0009 0.0028
S 0.5523

M3 V [1 0.7954 0.6612 0.4775 0.2864 0.2398 0.2004 0.0861 0.6939
(Male) 0.2169 0.2214 0.2248 0.2022 0.1613

(active speech level: −29.654 dBov) 0.1333 0.1075 0.1334 0.1759 0.1662]
(sampling rate: 12.8 kHz) ON [1 0.9564 0.9334 0.9104 0.8862] 0.0066 0.0069

H [1 0.9387 0.9028 0.8696 0.8257] 0.0129 0.0461
UV 0.0015 0.0015 0.0064
S 0.2467

F2 V [1 0.9285 0.8251 0.6841 0.5056 0.3593 0.2148 0.0079 0.6539
(Female) 0.0975 0.0087 −0.0690 −0.1296 −0.1928

(active speech level: −26.009 dBov) −0.2450 −0.2777 −0.3040 −0.3112 −0.2990]
(sampling rate: 12.8 kHz) ON [1 −0.8659 0.6094 −0.2720 −0.0584] 0.0212 0.0056

(Japanese) H [1 0.9606 0.9140 0.8444 0.7646] 0.0045 0.0281
UV 0.0610 0.0610 0.0070
S 0.3053

Using the composite models just presented, the next section begins
the development of our R(D) bounds using conditional rate distortion
theory.

4.3 Marginal and Conditional Rate Distortion Bounds based
on MSE Distortion Measure

Given the source models in the tables, conditional rate distortion the-
ory and reverse water-filling as outlined in Chapter 3, can be used to
calculate rate distortion functions for each of the sentences for the MSE
distortion measure. The specific steps are to use the Karhunen-Loeve
decomposition outlined there for each subsource and then use reverse
water-filling on each of the resulting subsource models. Then, the sub-
source rate distortion bounds are combined at points of equal slope
applying the weighting indicated by the subsource probabilities.

The resulting marginal and conditional MSE rate distortion bounds
of the composite source models for two narrowband English sequences
are shown in Figs. 4.1 and 4.2, and results for two English wideband
sentences are shown in Figs. 4.3 and 4.4. It is interesting, but perhaps
not surprising, to see that for each sentence, the several subsources
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Figure 4.1: The MSE rate distortion bounds of narrowband sequence “A lathe is
a big tool. Grab every dish of sugar."
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Figure 4.2: The MSE rate distortion bounds of narrowband sequence “We were
away a year ago."

(modes) have different rate distortion functions; furthermore, the rate
distortion functions for the subsources differ across the four sentences,
since the model of each subsource is different for each sentence.
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Figure 4.3: The MSE rate distortion bounds of wideband sequence F1, “You must
go and do it at once. There were several small outhouses."
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Figure 4.4: The MSE rate distortion bounds of wideband sequence M3, “I don’t
know, the vampire said, and he smiled."

Another important point is that the probabilities of the different
subsources have a very profound effect. A speech sequence with con-
siderably more voiced or unvoiced segments would weight the marginal
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rate distortion functions differently and thus produce a quite different
conditional rate distortion bound even for exactly the same subsources.
This implies that the rate distortion bounds based on speech models ob-
tained by using average autocorrelation functions over many sequences
will not be very useful if the average results are interpreted as bounds
for a more restrictive subset of the source models.

In Fig. 4.2, since the sequence is 98.42% Voiced, the conditional rate
distortion function is dominated by the marginal rate distortion func-
tion of the voiced mode. In Figs. 4.1, 4.3, and 4.4, since each sequence
has at least 24% Silence, the final conditional rate distortion functions
are lower than the marginal rate distortion functions of Voiced frames.

While the observations above are significant in terms of the source
models and indicate that the composite source model approach advo-
cated here is a viable way forward, the MSE distortion measure pro-
hibits any comparisons to voice codecs for which MSE is not a rea-
sonable performance indicator. This precludes useful comparisons to
CELP based codecs, for example, which are the dominant narrowband
and wideband voice codec structures at the time of this writing. We
therefore consider a mapping approach for the average distortion as
discussed in the following subsection.

4.4 Mapping MSE to PESQ-MOS/WPESQ

The rate distortion theory results reported in Chapter 3 are built on
the assumption of the mean squared error distortion measure, which
unfortunately, is not a reliable or widely used indicator of speech codec
performance. One approach would be to use an analytically tractable
weighted MSE criterion, and such an approach with an average weight-
ing over the entire utterance was reported in Gibson, Hu, and Ramadas
[21]. Furthermore, it may be possible to change the weighting through-
out the utterance adaptively to obtain rate distortion bounds. However,
weighting functions for the squared error distortion measure that have
a strong connection to the perceptual quality achieved by state-of-the-
art voice codecs are not known at this time.

Alternatively, it is well known that PESQ-MOS and WPESQ are
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standardized objective methods for narrowband and wideband speech
quality assessment, and both are widely used in categorizing the percep-
tual performance of standardized speech codecs. Hence, if PESQ-MOS
and WPESQ could be used as the distortion measure in the R(D) cal-
culations, more valid curves should be obtained. Therefore, in order to
extend the utility of the prior theoretical rate distortion theory results
using the MSE distortion measure, we developed a procedure for map-
ping MSE into PESQ-MOS or WPESQ, as is respectively appropriate
for the bandwidth of interest.

The basic approach to generating the mapping functions is to first
note that MSE is a reasonable performance indicator for waveform
coders in that MSE correctly orders the perceptual performance of
these waveform codecs, although the difference in MSE might not be a
good indicator of the exact perceptual quality difference. Since PESQ-
MOS can be obtained for these same codecs as well, we have codec
performance for both distortion measures, and calculating an appro-
priate mapping function would appear possible. However, developing
such a mapping is not straightforward and a number of constraints
need to be imposed to make the mapping meaningful.

In particular, the mapping of MSE to PESQ-MOS must be per-
formed with several key points in mind. First, the mapping must be
done for a codec for which MSE is a valid performance indicator and to
which PESQ-MOS can be applied. Second, the codec must be a predic-
tive coder since it is well known that MSE for predictive coders and for
non-predictive coding have different correspondences with subjective
performance. Third, the existing theoretical R(D) results assume that
the source model parameters are known exactly at the decoder, and
therefore do not include bit rate, and the associated distortion, for rep-
resentation of the source model parameters. Therefore the codec used
for the mapping should not transmit side information for the param-
eters either; however, the effect of the unknown source parameters on
bit rate and average distortion must be incorporated in some fashion.
In order to meet this constraint, we chose backward adaptive waveform
coders to generate the MSE/PESQ-MOS pairs for the mapping. Fourth,
the codecs used for the mapping must have a range of bit rates suffi-
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cient to generate the mapping over the bit rates of interest. Fifth, the
mapping function must be convex ∪ in order to maintain the relative
order of the MSE values and PESQ-MOS values. Sixth, the mapping
must be matched to each individual utterance to be evaluated.

Another critical consideration is the active speech level of the test
sequence. For the PESQ, we need to avoid peak clipping (mentioned in
P.862.3), and therefore, the active speech level should not be too high.
Further, if the energy of the speech utterance is too low, the MSE will
blow up. The active speech level of test sequences we use is between
−15 dBov and −30 dBov and thus satisfy both requirements.

In light of these key constraints, for narrowband speech, we focus
on the particular class of predictive waveform coders represented by
the G.726 and G.727 standards. It is known that MSE orders the per-
formance of these codecs accurately, while PESQ-MOS values can be
obtained for these codecs in order to get a meaningful perceptual per-
formance indicator. For wideband MSE to WPESQ mapping, ADPCM
speech coders for wideband speech are needed. The standard, G.722,
is a wideband speech coder based on ADPCM and for which MSE
(SNR) has been used as a performance indicator in the past, however,
there are only three coding rates. As a result, there are not enough
rate/distortion points to develop a good mapping. Therefore, we de-
veloped our own ADPCM coder for wideband speech based on G.722
and G.727 to generate the mapping function for wideband speech. The
details of the wideband ADPCM coder are described in Section 4.4.2.
We first describe the PESQ-MOS and WPESQ standards since they
are widely employed for speech codec performance evaluation. This in-
formation also plays a role in the development of the mapping function.

4.4.1 PESQ-MOS/WPESQ

Perceptual evaluation of speech quality (PESQ) [48] is an objective, full
reference method for end-to-end speech quality assessment of narrow-
band speech codecs. Full reference means that the original utterance
to be coded is available, and the distance between the original and
degraded speech signal, called the PESQ score, is calculated based on
the PESQ perceptual model. The PESQ score is then mapped to a
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MOS-like scale by a monotonic function. The MOS-like PESQ (PESQ-
MOS) is a single number in the range of −0.5 and 4.5, although for
most cases the output range will be between 1.0 and 4.5, which is the
normal range of MOS values found in an Absolute Category Rating
(ACR) experiment with human listeners.

Even though PESQ-MOS is not the same as MOS, and it has
known limitations, it is a standardized objective measure for evalu-
ating the perceptual performance of speech codecs that is widely used
and quoted. WPESQ is an extension to PESQ for wideband telephone
networks and speech codecs.

The wideband extension is mapped from the raw scores provided
by the P.862 model. The details of WPESQ are described in the ITU-T
P.862.2 Recommendation [50].

4.4.2 ADPCM Speech Coders

ADPCM coders are waveform coders, that is, they attempt to follow the
time-domain waveform. As a result, MSE is an indicator of how well the
codec is reproducing the input speech signal. MSE (SNR) is also useful
in establishing the relative ordering of the performance of ADPCM
speech coders [53]. In addition, the PESQ-MOS/WPESQ of ADPCM
coders can be generated, thus providing a perceptual distortion value
that corresponds with the MSE achieved by the codec at the given rate
for the selected input utterance.

Even though both MSE and PESQ-MOS of other waveform coders,
such as linear PCM and log-PCM, can be computed as well, we focus
on backward adaptive ADPCM coders which use backward adaptive
prediction, since we are interested in applying the resulting mapping
functions to a broader class of predictive coders, such as CELP codecs.
Another reason it is important to use the ADPCM codecs is that prior
work has shown that the SNR or MSE of this class of predictive coders
corresponds to a better perceptual preference than the equivalent SNR
for a nonpredictive codec such as PCM. This phenomenon appears to
be due to the quantization error being correlated with the speech signal,
and thus the higher energy error is less objectionable perceptually.
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G.726/G.727 Narrowband ADPCM Speech Coders

G.726 [43, 37] and G.727 [37, 44] are standardized narrowband ADPCM
speech coders. Both use backward adaptive prediction and backward
adaptive quantization, so that the coded residual error signal is all
that is needed to reconstruct the speech. Both of these codecs have
four selectable transmitted bit rates of 40, 32, 24, and 16 kbps.

Since G.727 is an embedded coder, it has enhancement and core
bits, and the transmitted bit rate can be reduced up to the number
of bits per sample indicated by the core bits. It is important to know
the full transmitted bit rate as well as the minimum rate, so G.727 is
often referred to by using (x, y) pairs, where x refers to the total of
both enhancement and core bits, which sets the transmitted bit rate,
and y refers to the number of core bits used in the predictor coefficient
adaptation loop.

The full rate can be pruned to y bits/sample, so ITU-T G.727
Recommendation [44] provides coding rates of 40 kbps for the 3 combi-
nations (5, 4),(5, 3), and (5, 2), 32 kbps for 3 combinations (4, 4), (4, 3),
and (4, 2), 24 kbps for 2 combinations (3, 3) and (3, 2), and 16 kbps
for one combination (2, 2), resulting in 9 pairs of coding rates. There-
fore, with the 4 coding rates for non-embedded G.726 and the 9 coding
rates for G.727, we have 13 MSE and PESQ pairs to generate a map-
ping function for each narrowband sentence.

The development of the mapping function is presented after the
wideband codecs used for generating the wideband mapping are dis-
cussed.

Wideband ADPCM Speech Coders

G.722 [40] is a well-established, standardized wideband ADPCM speech
coder for which both MSE values and WPESQ scores can be obtained.
However, G.722 has only three bit rates and so there are only three
MSE/WPESQ pairs that can be generated by G.722. Moreover, the
average WPESQ of the lowest bit-rate, 48 kbps, of G.722 is greater
than 3.0, and the average WPESQ of the highest bit-rate of G.722,
64 kbps, is about 4.0. Thus, based on such a small amount of data
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whose range is much smaller than the mapping range, we cannot get
a reasonable range of MOS values and therefore getting a good curve
fitting result is not possible.

To obtain additional rate/distortion pairs, we created a new wide-
band ADPCM speech coder based on G.722 and G.727. The frequency
band of the wideband signal is split into two sub-bands (higher and
lower) by using the quadrature mirror filters from G.722. The upper
sub-band still uses the coding method used in the upper sub-band of
G.722. For the lower sub-band, we use G.726 and G.727 as the lower
sub-band ADPCM coders. Since there are 9 coding rates for G.727 as
discussed in 4.4.2 and 4 for G.726, we have 13 MSE and WPESQ pairs
to generate a mapping function for each wideband sentence.

In this way, we generate a mapping function for each wideband
sentence. In addition, the range of WPESQ generated is from 1.8–3.9,
which is much wider than using G.722 only.

4.4.3 Mapping Function

In this section, we outline the specific process used to generate the
mapping functions for narrowband and wideband speech sources. This
mapping function is then applied to map the theoretical rate distor-
tion curves for the MSE distortion measure to rate distortion perfor-
mance curves versus a PESQ/WPESQ-MOS distortion measure. For
each speech sentence (sequence), we calculate the MSE of each coded se-
quence and normalize the MSE by the average energy of the original se-
quence. The PESQ-MOS/WPESQ of each coded sequence is evaluated
by the software provided by ITU-T Recommendation P.862/P.862.2
[48, 50].

As mentioned in Section 4.4.2, there are 13 pairs of MSE and PESQ
that we use for curve fitting for each narrowband sequence, and 13
MSE/WPESQ pairs for each wideband sequence. Since MSE is increas-
ing and PESQ/WPESQ is decreasing as the bit rate is reduced, two
candidate mapping functions are considered; namely, the inverse func-
tion z = a

w + b, and the exponential function z = ae−bw + c, where w
is MSE and z is PESQ-MOS/WPESQ.

We chose the exponential function to perform the curve fitting since
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it provides a better fit across all rates and distortion pairs. The range
of PESQ-MOS/WPESQ is between −0.5 and 4.5 [48], so we set the
PESQ-MOS/WPESQ to 4.5 when MSE is 0, and we forced f(0) = 4.5.
Therefore, the explicit mapping function is modeled as

z = f(w) = ae−bw + 4.5 − a, (4.4.1)

where a and b are estimated by the least squares fit of the MSE and
PESQ/WPESQ pairs of the ADPCM waveform codecs.

Several clean English sequences are used to illustrate the results of
designing the mapping functions for both narrowband and wideband
sequences. There is a different mapping function for each sentence,
since it is well known that speech codec performance in terms of both
MSE and particularly PESQ-MOS/WPESQ are highly source depen-
dent. The active speech level of each sequence is computed based on
ITU-T P.56 [37, 46]. ITU-T Recommendation P.830 [47] mentions that
the nominal value for mean active speech level is −26 dBov, and that
the active speech level should be observed during recording. In addi-
tion, ITU-T Recommendation P.862.3 [51] recommends that the active
speech level of reference speech files and degraded signals should be
stored around −30 dBov to avoid clipping. Therefore, we only used
sequences with active speech level greater than −30 dBov, and we rec-
ommend that our approach to developing mapping functions not be
used on low energy sequences. The active speech level of each sequence
is also listed in Table 4.3 for narrowband speech and in Table 4.6 for
wideband speech.

The mapping functions of the five narrowband sequences are shown
in Figures 4.5 through 4.9, while the mapping functions of the three
wideband sequences are shown in Figures 4.10–4.12. The results show
that the exponential function provides a good fit to the MSE-and-
WPESQ pairs.

Later, after rate distortion functions for both narrowband and wide-
band speech have been presented, we discuss how varying the fit of the
mapping to the points can be used to study the tightness of the bounds.
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Figure 4.5: The mapping function of narrowband speech T07
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Figure 4.6: The mapping function of narrowband speech T08

4.5 New Theoretical Rate Distortion Bounds for Speech

The rate distortion bounds using MSE as distortion measures are calcu-
lated by the classical eigenvalue decomposition [10] and reverse water-
filling approach described in Section 3.2.2 on each subsource of the
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Figure 4.7: The mapping function of narrowband speech T13
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Figure 4.8: The mapping function of narrowband speech "A lathe is a big tool"

composite source models presented in Section 4.2. Then the rate dis-
tortion bounds based on MSE are mapped to PESQ-MOS/WPESQ
values by the mapping function generated by the ADPCM waveform
codecs as described in Section 4.4. Rate distortion bounds are gen-
erated for the three different source models for each narrowband and



4.5. New Theoretical Rate Distortion Bounds for Speech 449

0 0.01 0.02 0.03 0.04

2.5

3

3.5

4

4.5

MSE

P
E

S
Q

"we were away"

 

 

G.726
G.727 2 core bits
G.727 3 core bits
G.727 4 core bits
2.4636exp(−33.4026x)+2.0364

Figure 4.9: The mapping function of narrowband speech "We were away a year
ago"
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Figure 4.10: The mapping function of wideband speech F1

wideband voice utterance presented in the composite source model sec-
tion. These are indicated on the plots as: (1) A single voiced model for
all frames, labeled as "R(D) over all frames (1 mode)"; (2) A two sub-
source model with one for speech and one for silence, labeled as "R(D)
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Figure 4.11: The mapping function of wideband speech M3
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Figure 4.12: The mapping function of wideband speech F2

over all frames (V or S)"; and (3) A five subsource model with sub-
sources corresponding to voiced, unvoiced, onset, hangover, and silence
subsources, labeled "R(D) over all frames (5 modes)". The mapping is
performed to obtain theoretical rate distortion curves for rate versus
PESQ and WPESQ MOS distortion, which can be compared to the
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operational rate distortion curves for the speech codecs.
The operational rate distortion performance of six different narrow-

band speech codecs are compared with the conditional rate distortion
bounds based on PESQ in Section 4.5.1, while four wideband speech
codecs are compared with the conditional rate distortion bounds based
on WPESQ in Section 4.5.2. The results show that our new rate distor-
tion bounds based on perceptual PESQ-MOS/WPESQ distortion mea-
sure are indeed lower bounds to the performance of the standardized
speech codecs, G.726 (with and without CNG), G.727 (with and with-
out CNG), AMR-NB, G.728 (with and without CNG), G.729, G.718,
G.722, G.722.1, and AMR-WB. Detailed discussions of the results fol-
low in those sections.

4.5.1 Rate Distortion Bounds and Operational Rate Distortion
Performance for Narrowband Speech

The rate distortion bounds based on PESQ-MOS are compared with
CELP codecs such as AMR-NB [1], G.729 [45], and G.718 [38], and
ADPCM coders, G.726 and G.727, in Figures 4.13–4.17. For AMR-NB,
8 different bit-rates, 12.2, 10.2, 7.95, 7.4, 6.7, 5.9, 5.15, and 4.75 kbps,
are used, and source controlled rate operation is enabled. For G.729,
3 different bit-rates, 6.4, 8, and 11.8 kbps, are used, and DTX/CNG
is enabled. For G.718, 2 different bit-rates, 8 and 12 kbps, are used,
and DTX/CNG is enabled as well. For G.726 and G.727, 4 bit-rates,
16, 24, 32, and 40 kbps are compared, along with these same rates
for speech but with DTX/CNG from AMR at 12.2 kbps implemented.
Since G.727 is an embedded speech codec, codecs with 2 core bits are
used in our experiments. G.728 operates at 16 kbps and that rate along
with G.728 combined with DTX/CNG from AMR at 12.2 kbps are also
used for comparisons. The PESQs of all speech codecs are computed
by ITU-T P.862 [48].

Examining the three theoretical R(D) curves corresponding to the
three source models, we see that the R(D) bound for the single mode,
all-voiced model is clearly higher than the other two for all utterances,
except for the nearly all voiced utterance, "We were away a year ago"
where it is only slightly so. As the models include more subsources, their
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Figure 4.13: The rate distortion bounds and the operational rate distortion per-
formance of narrowband speech T07 using PESQ as the distortion measure. The
MSE rate distortion bound is mapped to PESQ as the distortion measure by using
the mapping function.

corresponding R(D) bounds move lower. So, a better model yields a
more precise lower bound. While this is not surprising, it is instructive
in that it illustrates the futility in attempting to lower bound the per-
formance for a given source with a bound computed on a single source
model averaged over several subsources. If the averaging were over all
five utterances in the figures, the performance curves could not reason-
ably be expected to lower bound the performance of codecs for any one
of the utterances. It is clearly evident that composite source models
are important to get reasonable rate distortion bounds.

From Figs. 4.13–4.17, we see that the performance of all narrowband
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Figure 4.14: The rate distortion bounds and the operational rate distortion per-
formance of narrowband speech T08 using PESQ as the distortion measure. The
MSE rate distortion bound is mapped to PESQ as the distortion measure by using
the mapping function.

codecs is lower bounded by the rate distortion curves for the source
models with 5 and 2 subsources, but the curve with the single source
model is actually beaten by the G.718 codec at 8 kbps. Additionally,
the 5 source composite source model yields the lowest bound of all
three.

As expected, CELP codecs such as AMR-NB, G.729, and G.718 are
much closer to the rate distortion bounds than the ADPCM coders.
Since G.727 is an embedded ADPCM coder, the performance of G.727
with 2 core bits is worse than that of G.726. In addition, the operational
rate distortion performance of G.726 and G.727 is far above the rate
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Figure 4.15: The rate distortion bounds and the operational rate distortion per-
formance of narrowband speech T13 using PESQ as the distortion measure. The
MSE rate distortion bound is mapped to PESQ as the distortion measure by using
the mapping function.

distortion bound since they do not detect silence and code it separately,
and they are fully waveform following codecs as opposed to source
modeling codecs, the latter of which have the potential for lower rates
at the risk of lower quality. The operational rate distortion performance
curves of AMR-NB, G.729, and G.718 are quite close. Since they have
Voice Activity Detection (VAD) and encode silence by comfort noise
generation, the average bit-rate of these codecs is between 1 bit/sample
and 1.5 bit/sample for a PESQ-MOS near 4.0 or better.

It is revealing to compare the performance of the standardized
codecs to the rate distortion bounds across the five utterances shown.
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Figure 4.16: The rate distortion bounds and the operational rate distortion per-
formance of narrowband speech “A lathe is a big tool" using PESQ as the distortion
measure. The MSE rate distortion bound is mapped to PESQ as the distortion
measure by using the mapping function.

The performance of the codecs, AMR-NB, G.729, G.718, and G.728,
for the utterance “We were away a year ago" are all significantly closer
to the rate distortion bound than for the other sequences. This is be-
cause “We were away a year ago" is a fully voiced sequence, and the
composite source model is dominated by the voiced mode, which is
modeled as a 10th order AR Gaussian source. Therefore, it is evident
that the AMR-NB, G.729, and G.718 voice codecs, all based on the
CELP predictive coding paradigm are quite efficient at coding voiced
speech. However, other speech modes are perhaps less well-modeled
by these codecs, and hence, less efficiently coded, as implied by the
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Figure 4.17: The rate distortion bounds and the operational rate distortion per-
formance of narrowband speech “We were away a year ago" using PESQ as the
distortion measure. The MSE rate distortion bound is mapped to PESQ as the
distortion measure by using the mapping function.

gap between the operational performance of these codecs and the rate
distortion bounds in the figures.

For the utterances other than “We were away a year ago", com-
parisons of the best voice codec operational performance to the lower
R(D) bounds reveal that there is no less than approximately 0.5 dB
improvement possible for PESQ values between 3.5 and 4.0 with im-
proved codec designs. Since the best of these codecs operate at or near
0.5 bit/sample already, this observation implies that there is a rela-
tively large percentage increase in performance available. It is often
said about information theoretic rate distortion bounds that, while the
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best possible performance may be indicated, the bounds provide no
guidance to how to achieve these bounds. While such comments may
be true at first blush, hints at good approaches may be available in
the proofs of the bounds, a prominent example of which is that ran-
dom coding arguments rather naturally imply training mode vector
quantizer designs.

However, in the current situation, the way forward to better codec
designs may be available more explicitly. At the outset, it is clear that
the CELP based codecs are very effective at modeling voiced speech
with their linear prediction model as indicated by the R(D) bounds
in Fig. 4.17. However, the standardized codecs do not perform as well
for the other utterances considered and this is where the opportunity
lies. To begin, for these other utterances, one can compare the relative
frequency of the subsources for the several utterances and the accuracy
of each of the subsource models, and then consider the speech sounds
present in each of the utterances. It is possible that better modeling of
particular subsources, such as Onset and Hangover, is necessary. It may
also be necessary to add more subsources to the codec designs. A good
place to look to pursue both of these latter efforts is in some prior low
rate multimode codec designs to see how they code the various modes
and how effectively they use other speech modes.

These latter steps, better modeling of subsources and adding more
subsources, can also be used to refine the R(D) bounds themselves.
There are some limitations on codec designs and designers, however,
that are not present when one is developing models to calculate rate
distortion bounds. Limits on complexity may deter codec designers
from pursuing more exotic source models, plus the addition of more
codec modes may add to the transmitted bit rate. As a result, separate
studies of model building, that is, designing composite source models
for speech are needed.

4.5.2 Rate Distortion Bounds and Operational Rate Distortion
Performance for Wideband Speech

The mapped rate distortion bounds with the WPESQ distortion mea-
sure using different numbers of subsources are compared with CELP
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Figure 4.18: The rate distortion bounds and the operational rate distortion perfor-
mance of wideband speech F1 using WPESQ as the distortion measure. The MSE
rate distortion bound is mapped to WPESQ as the distortion measure by using the
mapping function (13 pairs).

codecs such as AMR-WB [42], and G.718 [38], G.722.1 [41], and AD-
PCM coder, G.722 in Figures 4.18–4.20. For AMR-WB, 9 different bit
rates, 23.85, 23.05, 19.85, 18.25, 15.85, 14.25, 12.65, 8.85, and 6.60 kbps,
are used, and source controlled rate operation is enabled. For G.718, 5
different bit rates, 8, 12, 16, 24, and 32 kbps, are used, and DTX/CNG
is enabled. For G.722, 3 different bit rates, 64, 56, and 48 kbps, are
used. There is no DTX/CNG for G.722. The WPESQs of all speech
codecs are computed by the ITU-T P.862 [49] wideband version.

In Figures 4.18–4.20, the mapped rate distortion bounds with the
WPESQ distortion measure using different numbers of subsources are
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G.718
AMR−WB
G.722.1
G.722
R(D) over all frames (1 mode)
R(D) over all frames (V or S)
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Figure 4.19: The rate distortion bounds and the operational rate distortion perfor-
mance of wideband speech M3 using WPESQ as the distortion measure. The MSE
rate distortion bound is mapped to WPESQ as the distortion measure by using the
mapping function (13 pairs).

calculated based on the composite source models shown in Tables 4.4–
4.6. These figures show that when the number of subsources increases,
the rate distortion bounds get lower, which is similar to the narrow-
band results. In addition, the performance of all the codecs are bounded
by the mapped rate distortion curves which are calculated using five-
subsource model. In Figure 4.18, the performance of G.718 is not lower
bounded by the curve calculated by one subsource model, but it is lower
bounded by five-subsource model curve. This is because the sequence
is coded with DTX/CNG, and the source model based on a single sub-
source does not capture the full complexity of the speech source.
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Figure 4.20: The rate distortion bounds and the operational rate distortion perfor-
mance of wideband speech F2 using WPESQ as the distortion measure. The MSE
rate distortion bound is mapped to WPESQ as the distortion measure by using the
mapping function (13 pairs).

From Figures 4.18–4.19, as expected, the CELP codecs, AMR-WB and
G.718, are much closer to the rate distortion bounds than G.722 and
G.722.1. Since AMR-WB and G.718 have Voice Activity Detection
(VAD) and encode silence by comfort noise generation, the operational
rate distortion curves for AMR-WB and G.718 are quite close to the
R(D) bound and also quite close to each other. The operational rate
distortion performances of G.722 and G.722.1 are far above the rate
distortion bound since they do not detect silence and code it sepa-
rately. For 4.20, which is Japanese, the AMR-WB and G.718 codecs
perform quite differently, with the G.718 codec substantially outper-
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forming AMR-WB. Interestingly, the G.718 codec performs relatively
close to the rate distortion curve at a PESQ of about 3.4, but tracks
away from the R(D) bound rather dramatically at small distortions.
The difference in performance for the G.718 and AMR-WB codecs and
fact that G.718 performs less well for small distortions are both oppor-
tunities to study these two codec designs for this particular Japanese
utterance to determine if the codec designs can be improved. The exist-
ing R(D) bounds imply that an improvement of at least 0.5 bit/sample
in codec performance is possible at a WPESQ-MOS of 4.0 or smaller
distortions.

4.5.3 Modifications to the MSE Mapping Function and Other Dis-
tortion Measures

The MSE to PESQ/WPESQ/MOS mappings are far from arbitrary
and are carefully designed based on several key principles as outlined
in Section 4.4. Experiments have been performed that explore the sen-
sitivity of the final rate distortion bounds to variations in the mapping
function. Some explicit results for wideband speech sources are given
in Gibson and Li [22], which we discuss here. In the cited paper, all
rates available in embedded codecs are used to generate MSE versus
WPESQ/MOS values upon which to base the mapping function. There
is some scatter in the points caused primarily by embedded coding of
the higher subband. Two mapping functions are designed based on all
original data points and on a subset of the data points after outliers are
removed. The points labeled as outliers were determined by listening
to the reconstructed speech and determining that the WPESQ/MOS
values being obtained were overly optimistic and not representative of
the quality as judged by human listeners. (The reader should note that
for wideband utterances, it is often difficult to obtain a good objec-
tive measure of reconstructed speech quality in the higher frequencies
since there is less energy in the higher band and thus conditions for the
validity of the WPESQ/MOS tests may not be satistfied fully.)

The mapping with the outliers included mapped higher MSE dis-
tortion values into higher values of WPESQ/MOS, which pushes the
resulting R(D) bound lower, and therefore, when compared to the op-
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erational rate distortion performance of actual voice codecs, the bound
is less tight; that is, the bound is more optimistic about possible per-
formance gains achievable by new codec designs. With the outliers re-
moved, did not weight the points that mapped the larger MSE values
to better WPESQ/MOS scores, and as a result, the R(D) bound pro-
duced is tighter.

Generally, in x-y mappings of MSE to WPESQ/MOS, shifting the
mapping upward, lowers, or shifts to the left, the final R(D) func-
tion and shifting the mapping downward, raises the R(D) curve, or
effectively shifts it to the right. Of course, this conclusion holds for
narrowband as well as wideband speech sources. Based on extensive
studies, in no cases that we have seen do justifiable variations in the
mapping function cause the resulting R(D) bounds to no longer lower
bound the best performing codecs. For the tightest bounds we have
found, such as in Fig. 4.17, which has the corresponding mapping func-
tion in Fig. 4.9, moving the mapping down to overlay the lower data
points, will increase the tightness of the, already tight, bound, while
moving the mapping up to overlay the upper data points will open up
a slight gap between the R(D) function and the operational rate dis-
tortion performance of the codecs. Just as in theoretical results, it is
always important to investigate how tight the bounds are and take the
tightness into account when evaluating codecs.

Perhaps a more natural approach to obtaining a distortion measure
for our rate distortion bounds would be to use a weighted MSE fidelity
criterion. Indeed, from the prior discussion in Chap. 2, the reader may
recall that the CELP codecs do in fact use a weighting based on the
spectrum calculated from the linear prediction coefficients every frame,
which suggests that the same weighting function should be a strong
candidate to serve as the basis for a good fidelity criterion. There are
several pitfalls to this approach. First, while the weighting functions are
absolutely essential to the success of these analysis-by-synthesis codecs,
the weighting often does not achieve the full promise of shaping the
coding error such that it always lies below the input source spectrum
across the input band of frequencies. Second, this weighting is accepted
in codec design but it is not accepted as a valid measure of perceptual
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performance for any voice codecs, as MOS and PESQ/MOS are.
As an initial step, however, prior work as in [21] has explored this

research direction. Unfortunately, the bounds obtained in Gibson, et al
[21], were not very encouraging in terms of the hope of producing tight
R(D) bounds. In that work, the weighting was calculated as an average
over the entire utterance, and as a consequence, the weighting in any
particular segment or frame was not particularly accurate. One alter-
native would be to recalculate the weighting for each frame of speech,
thus producing a more local distortion measure and then averaging the
distortion values. Many details of this approach have yet to be inves-
tigated. However, as pointed out in the prior paragraph, even if this
approach generates what appear to be more reasonable R(D) curves,
voice codecs and the voice coding community have not accepted this
weighting approach as being reflective of perceptual performance.

4.6 Conclusions

The results show that our new rate distortion bounds do lower bound
the PESQ-MOS and WPESQ performance of the best known standard-
ized narrowband and wideband speech codecs. While there is room to
improve the bounds by better mode selection and better modeling of
the modes, these are the first true bounds on the rate distortion per-
formance of standardized speech codecs to date, and they offer deep
insights into how the existing codecs can be improved. Exploration of
R(D) bounds based on the approach presented in this chapter should
yield valuable insights into research directions to improve voice codecs
in the future, and these bounds are a valuable tool in determining
whether additional codec design effort might be rewarded. The cur-
rent R(D) bounds imply that a reduction in rate of 0.5 bit/sample, or
approximately 50% is possible.



5
Rate Distortion Bounds for Video

In this chapter we first propose a new correlation model for a digitized
natural video that has a local texture dependent spatial component
and a temporal component. We then derive theoretical rate distortion
bounds that are solely based on the statistical model of the video source
with distortion measured in MSE. In the last section of this chapter,
we study a constrained rate distortion bound where the constraint is
imposed on the channel transition probability by the incorporation of
blocking and prediction across neighboring blocks, two common coding
steps performed in current video coding standards AVC/H.264 and
HEVC.

5.1 Related Prior Work

5.1.1 Statistical Models of Images and Videos

The research on statistically modeling the pixel values within one im-
age goes back to the 1970s when two correlation functions were studied.
Both assume a Gaussian distribution of zero mean and a constant vari-
ance for the pixel values.

The first correlation model is

ρ(∆i,∆j) = e(−α|∆i|−β|∆j|), (5.1.1)

with ∆i and ∆j denoting offsets in horizontal and vertical coordinates
of any two pixels in a digital image. The parameters α and β control the
correlation in the horizontal and vertical directions, respectively, and

464
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their values can be chosen for different images [30]. The separability
in spatial coordinates of this correlation model facilitates the analysis
of the two-dimensional rate distortion behavior of images using the
one-dimensional Karhunen Lòeve transform (KLT).

The second correlation model is an isotropic function

ρ(∆i,∆j) = e−α
√

∆i2+∆j2
, (5.1.2)

again with ∆i and ∆j denoting offsets in horizontal and vertical coordi-
nates of any two pixels in a digital image. This model implies that the
correlation between two pixels within an image depends only on the
Euclidean distance between them [52]. The major advantage of this
model is that it has a closed-form two-dimensional Fourier transform
and therefore leads to a closed-form rate function and a closed-form
distortion function on a common parameter.

These two correlation models for natural images are simple yet ef-
fective in providing insights into image coding and analysis. However
image and video coding schemes have advanced significantly and sta-
tistical image and video models that are relevant to these more so-
phisticated methods are needed. Let us start with a close look at the
approximate correlation coefficients among the pixel values of some real
videos.

Let X(i, j) denote the pixel value at the ith row and the jth col-
umn of a digitized image, and let M and N denote the numbers of
rows and columns in the image. The approximate correlation coeffi-
cient ρ̂(∆i,∆j) of this image can be expressed as

ρ̂(∆i,∆j) =

∑
[X(i,j)X(i+∆i,j+∆j)]√∑

[X2(i,j)]
∑

[X2(i+∆i,j+∆j)]

(M − ∆i)(N − ∆j)
, (5.1.3)

for 0 ≤ ∆i ≤ M − 1, 0 ≤ ∆j ≤ N − 1. The summations in Eq. (5.1.3)
are taken over all pixels whose coordinates satisfy 0 ≤ i ≤ M − 1 − ∆i,
0 ≤ j ≤ N − 1 − ∆j. Fig. 5.1 plots the approximate correlation co-
efficients ρ̂(∆i,∆j) of two digitized natural images, selected from two
digitized natural video sequences, paris.cif and football.cif, respectively.
We can see in Fig. 5.1 that when ∆i and ∆j are larger than 50, which is
still much smaller than the image size we encounter in present applica-
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tions, for example 352 × 288 in this figure, the approximate correlation
coefficients ρ̂(∆i,∆j) are rather random and neither of the two cor-
relation functions can model this behavior. Correspondingly, the rate
distortion analysis of natural images based on these two correlation
functions will be inaccurate. This is confirmed later in this chapter as
the rate distortion bounds calculated based on these two correlation
functions are shown actually to be much higher than the operational
rate distortion curves of the current video coding schemes.

For the same reason, more recent rate distortion theory work for
videos, such as [24, 25, 81] that adopt these two spatial correlation
models, is limited in scope. For example, in [24, 25], distortion-rate
performance is analyzed by deriving the power spectral density of the
prediction error with respect to the probability density function of the
displacement error. This is shown, however, to be incapable of describ-
ing, with sufficient accuracy, the measured distortion-rate performance
of a typical video encoder [79].

5.1.2 Statistical Models of Practical Video Compression Systems

Researchers working on video compression have developed statistical
models of images in the transformed domain. The most popular among
them treats the discrete cosine transform (DCT) coefficients in the
predicted frames of a video sequence as uncorrelated Laplacian ran-
dom variables [72, 78]. If the absolute magnitude distortion measure
d(x, x̂) = |x − x̂| is used, there is a closed form rate distortion func-
tion for the memoryless Laplacian source that can be expanded into a
Taylor series and approximated by R(D) ∼= aD−1 + bD−2.

This quadratic operational rate distortion function is the founda-
tion of the rate control schemes [9, 61, 74] that are adopted by the
international video coding standards, such as ISO MPEG-2/4 [32, 33]
and ITU-T H.263 [34]. In these rate control schemes, the distortion D

in the quadratic operational rate distortion function is approximated
by q, the average of the quantization scales used in the video frame.
The quantization scales, which are indexed by the quantization param-
eters (QPs), are hence chosen optimally based on the quadratic rate
distortion function R(q) ∼= aq−1 + bq−2, number of bits left to con-
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(a) paris.cif

(b) football.cif

Figure 5.1: The approximate correlation coefficient ρ̂(∆i, ∆j) of two digitized nat-
ural images
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sume and the approximate coding complexity. The bits spent coding
the other syntax elements, considered to be mainly the motion vec-
tors, are monitored and predicted through simple linear or nonlinear
functions.

The memoryless Laplacian model for DCT coefficients becomes less
appropriate, even for practical video compression system design pur-
poses, since the emergence of new coding standards such as AVC/H.264.
The new schemes and refinements in AVC/H.264 [89] reduce the appli-
cability of the memoryless Laplacian model of the DCT coefficients for
at least two reasons. First, with all the options offered in the codecs
and the very small processed block sizes, the majority of the bandwidth
is likely to be allocated to transmit the coding parameters and the mo-
tion vectors of each block rather than the DCT coefficients, especially
in the low to medium bit rate applications. Since the Laplacian model
only treats the DCT coefficients, it becomes insufficient to represent the
information in the video source. Second and more importantly, these
coding options and parameters are to be chosen, in an optimal way
if possible, before the DCT or DCT-like transforms can be applied to
the residue block. This is considered as a rate distortion optimization
problem and the most popular solution to this problem is to conduct
the optimization with a fixed quantization parameter. However, from
the perspective of rate control, the quantization parameter is to be op-
timally chosen based on the residue data after the rate distortion opti-
mization is performed. Therefore there is a “chicken and egg” dilemma
artificially caused by modeling the statistics in the transformed domain
that has prevented a global optimum from being obtained, even for a
specific codec [65, 62, 13].

Two other schemes following in the same vein [65, 62] try to tackle
this dilemma by either engaging a “two pass scheme” or defining a
“basic unit”. This is an ongoing research direction and for more recent
activities please refer to [13]. Another recent work on rate distortion
modeling for H.264 [90] treats the residue blocks after intra/inter pre-
diction in the spatial domain as Laplacian random vectors with separa-
ble correlation coefficients that depend only on one a priori parameter.
The statistics in the spatial domain are then used to calculate rate
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distortion models in the transformed domain. Even though this work
also studies the statistics in the spatial domain of videos, it relies on
a very simple model of the residue block, and therefore does not ad-
dress the interdependence between the rate control and rate distortion
optimization.

In summary, a new statistical correlation model for digitized natural
videos is much needed in both theory and application. This correlation
model should be independent of any coding schemes, rather than mod-
eling the processed values, such as the DCT coefficients, in a coding
scheme, so that the theoretical rate distortion bounds can be derived to
predict the fundamental limit on the number of bits (per pixel) needed
to represent a video at a given distortion level. This correlation model
should also be more sophisticated than the old correlation models in
Eqs. (5.1.1) and (5.1.2) so that the derived theoretical rate distortion
bounds are valid. It will be a plus if this correlation model has a simple
form with parameters that can be calculated for a specific video, which
makes the incorporation of the correlation model into a practical video
codec design and evaluation possible. In the next section we propose
such a correlation model.

5.2 A New Block-Based Conditional Correlation Model for
Video

In this section we propose a new correlation model for a digitized nat-
ural video. We assume that all pixel values within one natural video
form a three dimensional Gaussian random vector with memory, and
each pixel value is of zero mean and the same variance σ2. We first
propose a new correlation model for a digitized natural image or an
image frame in a digitized natural video, and then extend the spatial
correlation model to the temporal dimension to pixels located in nearby
frames of a video sequence.

5.2.1 The Conditional Correlation Model in the Spatial Domain

From the discussion in Section 5.1.1, we know that to study the cor-
relation between two pixel values within one natural image, these two
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pixels should be located close to each other compared to the size of
the image. Also for a sophisticated correlation model, the correlation
between two pixel values should not only depend on the spatial off-
sets between these two pixels but also on the other pixels surrounding
them. When developing the composite source models for speech, we
took some cues from successful multimode voice codec designs. Simi-
larly, this can be done for video sources as well. In particular, a coding
technique, called “intra-frame prediction”, in the video coding stan-
dard AVC/H.264, gave us hints on how to deal with the two afore-
mentioned requirements. Intra-frame prediction is explained briefly in
Section 2.2.4.

To quantify the effect of the surrounding pixels on the correlation
between pixels of interest, we utilize the concept of local texture, which
is simplified as local orientation, i.e., the axis along which the lumi-
nance values of all pixels in a local neighborhood have the minimum
variance. The local texture is similar to the intra-prediction modes in
AVC/H.264, but with a generalized block size and an arbitrary num-
ber of total textures. To calculate the local texture of a block, we
also employ the pixels on the top and to the left of this block as sur-
rounding pixels. However, since we are deriving a source model, we use
the original values of these surrounding pixels rather than the previ-
ously encoded and reconstructed values used in intra-frame prediction
of AVC/H.264.

The block can have any rectangular shape as long as its size is small
compared to the size of the image. The local textures need not to be
restricted to those defined in AVC/H.264. For example, in Fig. 5.2,
the numbered arrows represent a few local textures that are defined
as intra-prediction modes in AVC/H.264 and the unnumbered arrows
represent a few local textures that are not defined as intra-prediction
modes in AVC/H.264. Once the block size and the available local tex-
tures are fixed, the local texture of the current block is chosen as the one
that minimizes the mean absolute error (MAE) between the original
block and the prediction block constructed based on the surrounding
pixels and the available local textures. It is important to point out that
even though we choose a very simple and computationally inexpensive
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way to calculate the local texture, there are other, more sophisticated
schemes of doing so, as described in [80], for example, which should
produce even better results in rate distortion modeling.

Figure 5.2: The numbered arrows represent a few local textures that are defined
as intra-prediction modes in AVC/H.264 and the unnumbered arrows represent a
few local textures that are not defined as intra-prediction modes in AVC/H.264

The local texture reveals which one, out of the different available
local textures, is the most similar to the texture of the current block.
It is reasonable to conjecture that the difference in local texture also
affects the correlation between two close pixels within one video frame.
To confirm this we first calculate the approximate correlation coefficient
between one block of size M ×N whose left top pixel is on ith row and
jth column of a video frame, and another nearby block of the same size,
shifted by ∆i vertically and ∆j horizontally, according to the following
formula

ρ̂s(i, j,∆i,∆j) = 1
MN

∑
[X(i, j)X(i+ ∆i, j + ∆j)]√∑

[X2(i, j)]
∑

[X2(i+ ∆i, j + ∆j)]
, (5.2.4)

for −I ≤ ∆i ≤ I, −J ≤ ∆j ≤ J . This formula is similar to Eq. (5.1.3),
except that 1) M × N is not the size of a whole image, but the size
of a block, usually much smaller than the image size; 2) the ranges
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for ∆i and ∆j are different and need not be smaller than M and N .
ρ̂s(i, j,∆i,∆j) is first calculated for each M × N block in an image
frame, then they are averaged among the blocks that have the same
local texture. We denote this average approximate correlation coeffi-
cient for each local texture as ρ̂s(∆i,∆j|y) where y denotes the local
texture. In other words, ρ̂s(∆i,∆j|y) is the average of ρ̂s(i, j,∆i,∆j)
over all values of i and j in the video frame for which the block that
starts at ith row and jth column is of local texture y.

In Figs. 5.3(a) and 5.3(b), we plot ρ̂s(∆i,∆j|y) (shown in the fig-
ures as the loose surfaces, i.e., the mesh surfaces that look lighter with
fewer data points) for the first frames from paris.cif and football.cif, re-
spectively. The dense surfaces, i.e., the mesh surfaces that look darker
with more data points, are the correlation coefficients calculated using
the proposed conditional correlation model, which is discussed later in
this section. The block size is M = N = 4. The available nine local
textures are chosen to be those plotted in Fig. 2.6. We set ∆i and ∆j
to be very small, ranging from -7 to 7, to concentrate on the depen-
dence of the statistics on local texture in an image frame. Figure 5.3
shows that the average approximate correlation coefficient ρ̂s(∆i,∆j|y)
is very different for blocks with different local textures. If we average
ρ̂s(∆i,∆j|y) across all the blocks in the picture, we should get what is
shown in Fig. 5.1 in the corresponding region of ∆i and ∆j, but the
important information about the local texture is lost. Not surprisingly
ρ̂s(∆i,∆j|y) demonstrates certain shapes that agree with the orien-
tation of the local textures. It is also interesting that although the
average approximate correlation coefficients of the same local texture
in both images demonstrate similar shapes, their actual values are quite
different.

Motivated by these observations, in the following we present the
formal definition of the new correlation coefficient model for a digi-
tized natural image or an image frame in a digitized natural video that
is dependent on the local texture. To distinguish from the approximate
average correlation coefficients ρ̂s(∆i,∆j|y) calculated from pixel val-
ues of video frames, that is what we have discussed so far, we use
ρs(∆i,∆j|y) to denote the proposed correlation coefficient model.
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(a) paris.cif

(b) football.cif

Figure 5.3: The loose surfaces (the mesh surfaces that look lighter with less data
points) are ρ̂s(∆i, ∆j|y), the approximate correlation coefficients of two pixel values
in the first frame from paris.cif and football.cif respectively, averaged among the
blocks that have the same local texture; the dense surfaces (the mesh surfaces that
look darker with more data points) are ρs(∆i, ∆j|y), the correlation coefficients
calculated using the proposed conditional correlation model, along with the optimal
set of parameters
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Definition 5.1. The correlation coefficient of two pixel values with spa-
tial offsets ∆i and ∆j within a digitized natural image or an image
frame in a digitized natural video is defined as

ρs(∆i,∆j|Y1 = y1, Y2 = y2) = ρs(∆i,∆j|y1) + ρs(∆i,∆j|y2)
2

, (5.2.5)

where

ρs(∆i,∆j|y) = a(y) + b(y)e−|α(y)∆i+β(y)∆j|γ(y)
. (5.2.6)

Y1 and Y2 are the local textures of the blocks the two pixels are located
in. They are random variables of integer values between 0 and |Y | − 1,
where |Y | denotes the total number of local textures. The parameters
a, b, α, β and γ are functions of the local texture Y . Furthermore we
restrict that b(y) ≥ 0 and a(y) + b(y) ≤ 1.

This definition satisfies ρs(∆i,∆j|Y1 = y1, Y2 = y2) =
ρs(−∆i,−∆j|Y1 = y1, Y2 = y2). To satisfy the other restrictions for
a function to be a correlation function: ρs(∆i,∆j|Y1 = y1, Y2 = y2) ∈
[−1, 1] and ρs(0, 0|Y1 = y1, Y2 = y2) = 1, we need a(y) + b(y) = 1 and
a(y) ≥ −1. In order for the correlation model to approximate as closely
as possible the average correlation coefficients in a video, we loosen the
requirement a(y) + b(y) = 1 to b(y) ≥ 0 and a(y) + b(y) ≤ 1. The
blocks the two pixels are located in are of the same rectangular shape.
The size of the rectangular blocks can potentially affect the accuracy of
the correlation coefficient model, which will be discussed later in this
section.

This new correlation model discriminates different local textures.
As the spatial offsets between the two pixels, ∆i and ∆j, increase,
ρs(∆i,∆j|Y1 = y1, Y2 = y2) decreases at a different speed depending
on the five parameters a, b, α, β and γ, which will be shown to be
quite different for different local textures. For each local texture, we
choose the combination of the five parameters that jointly minimizes
the MAE between the approximate correlation coefficients, averaged
among all the blocks in a video frame that have the same local texture,
i.e., ρ̂s(∆i,∆j|y), and the correlation coefficients calculated using the
new model, ρs(∆i,∆j|y).
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These optimal parameters for one frame from paris.cif and foot-
ball.cif respectively and their corresponding MAEs are presented in
Table 5.1. The local textures are calculated for each one of the 4 by 4
blocks; the available nine local textures are chosen to be those plotted
in Fig. 2.6; ∆i and ∆j range from −7 to 7. We can see from this table
that the parameters associated with the new model are quite distinct
for different local textures while the MAE is always less than 0.05. The
values of all five parameters are also different for the two videos. In Fig.
5.3 we plot ρs(∆i,∆j|y) of all the local textures for the same images
from paris.cif and football.cif using these optimal parameters as the
dense surfaces, i.e., the mesh surface with more data points. We can
see that the new spatial correlation model does, in fact, capture the
dependence of the correlation on the local texture and fits the average
approximate correlation coefficients ρ̂s(∆i,∆j|y) very well.

The parameters a, b, α, β and γ should have different optimal values
when the block size used to calculate the local texture is different.
Generally speaking, when the available local textures are fixed, the
larger the block size, the less the actual average correlation coefficients
should agree with the shape designated by the local texture. What also
matters are the ranges of spatial offsets ∆i and ∆j over which the
MAE between ρ̂s(∆i,∆j|y) and ρs(∆i,∆j|y) is calculated. The larger
the range of spatial offsets, the more average correlation coefficients the
model needs to approximate which will normally yield a larger MAE.
These two aspects are shown in Fig. 5.4 for four different videos. As we
can see in Fig. 5.4 the average MAE over all local textures increases,
when the block size and/or the ranges of ∆i and ∆j increase. Therefore,
when we employ the proposed correlation model and its corresponding
optimal parameters in applications such as rate distortion analysis, we
need to choose the block size and spatial offsets that yield a small MAE,
chosen here to be 0.05.

The new spatial correlation model with its optimal parameters a,
b, α, β and γ is expected to capture the characteristics of the content
of the frames of a video scene. Therefore, the change of the optimal
parameters a, b, α, β and γ from one frame to another in a video
clip with the same scene needs to be investigated. To study this de-
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Table 5.1: The optimal parameters for one frame in paris.cif and football.cif and
their corresponding mean absolute errors (MAE’s)

paris.cif
a b γ α β MAE

texture #0 0.3 0.6 0.7 0.0 0.6 0.022
texture #1 0.3 0.6 0.9 -0.2 0.0 0.024
texture #2 0.6 0.3 0.9 0.0 -0.1 0.035
texture #3 0.6 0.3 0.9 -0.2 -0.1 0.043
texture #4 0.6 0.3 0.7 0.1 -0.2 0.034
texture #5 0.6 0.3 0.7 0.2 -0.6 0.028
texture #6 0.6 0.4 0.5 -1.3 0.4 0.026
texture #7 0.6 0.4 0.5 0.4 1.1 0.030
texture #8 0.6 0.4 0.6 0.4 0.1 0.046

football.cif
a b γ α β MAE

texture #0 0.2 0.6 0.8 0.0 -0.1 0.045
texture #1 0.8 0.2 0.3 -1.0 0.1 0.017
texture #2 0.6 0.3 0.8 0.0 -0.2 0.043
texture #3 0.5 0.5 0.5 0.4 0.5 0.048
texture #4 0.3 0.6 0.7 -0.1 0.1 0.040
texture #5 0.4 0.5 0.9 0.1 -0.3 0.034
texture #6 0.6 0.4 0.5 -0.2 0.1 0.031
texture #7 0.4 0.6 0.5 -0.3 -0.7 0.044
texture #8 0.7 0.3 0.6 0.4 0.1 0.029
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Figure 5.4: The average MAE’s over all local textures, for different block sizes and
spatial offsets of four videos

pendence, instead of calculating the optimal parameters of each local
texture for each frame in a video clip and studying their variations, we
use the optimal parameters calculated based on the average correlation
coefficients of the first frame, and then study the average MAE over
all local textures between the model-calculated correlation coefficients
using these parameters and the average correlation coefficients of the
following frames in the video clip.

In Fig. 5.5 we plot such MAE’s for 90 frames of four CIF videos.
We can see that for paris and news, both of which have low motion,
the MAE’s throughout the whole video sequences are almost the same
as that of the first frame. This is not true for football, however, whose
MAE’s quickly reach beyond 0.1 at frame # 21 and jump to 0.3 at
frame # 35. This behavior becomes less surprising when we look at a
few of the video frames in this clip as presented in Fig. 5.6. With the
high motion in the football video, the frames in this video do not have
the same scene any more. For example, frame # 35 looks completely
different than the first frame. Therefore, the optimal parameters gen-
erated based on one frame can be used in the other frames of the same
scene. Different optimal parameters need to be calculated for differ-
ent scenes, however, even though the frames might reside in the same
video.
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Figure 5.5: The average MAE over all local textures, between the model-calculated
correlation coefficients using the optimal parameters of the first frame in a video clip,
and the average correlation coefficients of the following frames in the video clip

(a) frame #1 (b) frame #21

(c) frame #35 (d) frame #89

Figure 5.6: Four frames in video clip football.cif
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5.2.2 Correlation Among Pixels Located in Nearby Frames

In this section we extend the correlation coefficient modeling from pix-
els within one video frame to pixels that are located in nearby video
frames. Similar to the approach we take in deriving the spatial cor-
relation model, we first study the approximate correlation coefficient
between one block of size M × N in frame k1 of a video, and an-
other block of the same size, shifted by ∆i vertically and ∆j hori-
zontally, in frame k2 of the same video. Equation (5.2.4) is used to
calculate the approximate correlation coefficient of each pair of blocks,
which is then averaged over all blocks with the same local texture.
We denote this extended average approximate correlation coefficient as
ρ̂s(∆i,∆j, k1, k2|y). In Fig. 5.7 we plot ρ̂s(∆i,∆j, k1 = 1, k2 = 16|y),
with y being one of 9 local textures for video silent.cif. As shown in
this figure, even though silent.cif is a video of a medium level of mo-
tion, the pixels in the first frame and the pixels in the sixteenth frame
have quite high correlation; and furthermore, the approximate corre-
lation coefficients between these pixels show certain shapes that are
similar to those modeled by the spatial correlation coefficient model
we proposed in our previous work.

To isolate the temporal correlation between two frames from the
overall correlation, and to apply the spatial correlation coefficient model
we already investigated, we first divide, element by element, the over-
all approximate correlation coefficients ρ̂(∆i,∆j, k1 = 1, k2 = 16|y), by
the spatial approximate correlation coefficients ρ̂s(∆i,∆j|y) of the first
frame, i.e., ρ̂(∆i,∆j, k1 = k2 = 1|y). The results for paris.cif are plotted
in Fig. 5.8. As shown in this figure (note that the scales in this figure
are different than those in Figs. 5.3 and 5.7), although the fractions are
not exactly constant across all the values of ∆i and ∆j, their variations
are much smaller than the variations of the overall approximate corre-
lation coefficients and the spatial approximate correlation coefficients.
As a result, we calculate the temporal approximate correlation coef-
ficients, denoted by ρ̂t(k1, k2|y), as the fractions of ρ̂(∆i,∆j, k1, k2|y)
over ρ̂(∆i,∆j, k1 = k2|y), averaged over all values of ∆i and ∆j.

Now let us take a closer look at the temporal approximate correla-
tion coefficients ρ̂t(k1, k2|y) for all frames k1’s, k2’s and local textures
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Figure 5.7: ρ̂(∆i, ∆j, k1 = 1, k2 = 16|y), the overall approximate correlation co-
efficients of two blocks, each in the 1st and 16th frames of silent.cif, respectively,
averaged among the blocks that have the same local texture

y’s of interest. If we investigate the correlation among 16 frames of a
video and there are 9 different local textures, for example, we need to
calculate and store a 16 × 16 × 9 matrix in order to specify the tem-
poral correlation among all pixels within these 16 video frames. One
attempt to reduce the dimension of this matrix is to take the averages
of ρ̂t(k1, k2|y) over all local textures y, the result of which is plotted in
Fig. 5.9 for paris.cif. Looking at this plot, we notice that when k2 > k1,
ρ̂t(k1, k2) is almost a constant for all values of k1 and k2 with the same
shift ∆k := k2 − k1. We therefore further take the average of ρ̂t(k1, k2)
over all values of k1 and k2 with the same temporal shift ∆k, which
results in the curve plotted in Fig. 5.10. As seen from this plot, ρ̂t(∆k)
descends as ∆k increases from ∆k ≥ 0 and it is not quite symmet-
ric with respect to ∆k = 0. The asymmetry in this plot is the result
of dividing the overall correlation by the spatial correlation of different
frames when isolating temporal correlation from the overall correlation.
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Figure 5.8: ρ̂(∆i,∆j,k1=1,k2=16|y)
ρ̂(∆i,∆j,k1=k2=1|y) , the element by element fraction of the overall ap-

proximate correlation coefficient over the spatial approximate correlation coefficient
of the first frame, of the video paris.cif

Another attempt to reduce the dimension of ρ̂t(k1, k2|y) is to take
its average over all values of k1 and k2 with the same shift ∆k for
each local texture y. These results are left to the references [31], but in
the next section, we show that for paris.cif, the rate distortion bounds
when either ρ̂t(∆k|y) or ρ̂t(∆k) is used are nearly identical except for
small distortions. Therefore, for simplicity, we use ρ̂t(∆k), the average
of ρ̂t(k1, k2|y) over all k1 and k2 with the same shift ∆k = k2 − k1
and over all local texture y’s, to specify approximately the temporal
correlation coefficient between two video frames with index difference
∆k.

We conclude this section with the following definition of the overall
correlation coefficient model of natural videos that is dependent on the
local texture.
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Figure 5.9: ρ̂t(k1, k2), the average of ρ̂t(k1, k2|y) over all texture y’s

Figure 5.10: ρ̂t(∆k), the average of ρ̂t(k1, k2|y) over all k1 and k2 with the same
shift ∆k = k2 − k1 and all local texture y’s, for paris.cif. This average is used to
specify approximately the temporal correlation coefficient between two video frames
with index difference ∆k
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Definition 5.2. The correlation coefficient of two pixel values within
a digitized video, with spatial offsets ∆i and ∆j, and temporal offset
∆k, is defined as

ρ(∆i,∆j,∆k|Y1 = y1, Y2 = y2)
= ρs(∆i,∆j|Y1 = y1, Y2 = y2)ρt(∆k) (5.2.7)

where ρs(∆i,∆j|Y1 = y1, Y2 = y2) is the spatial correlation coefficient
as defined in Definition 5.1 and ρt(∆k) can be calculated by averag-
ing the approximate temporal correlation coefficients ρ̂t(∆k|y), over all
local texture y’s.

In the following section, we study the rate distortion bounds of dig-
itized natural videos which depend not only on the correlation model,
but also on the pixel variance. Therefore we discuss briefly here the
change in pixel variance from one frame to another in a video clip as
plotted in Fig. 5.11. The results in Fig. 5.11 agree with those in Fig.
5.5 very well: for videos paris.cif and news.cif which have low motion
and therefore can be considered as having only one scene in the entire
clips, the change in pixel variance throughout the video clip is almost
negligible; for videos with higher motion and frequent scene changes,
such as bus.cif and football.cif, a new pixel value variance should be
calculated based on the frames in each scene of the video.

5.3 New Theoretical Rate Distortion Bounds of Natural
Videos

In this section, we study the theoretical rate distortion bounds of videos
based on the correlation coefficient model as defined in Definition 5.2.
We compare these bounds to the intra-frame and inter-frame coding
of AVC/H.264 and the High Efficiency Video Coding (HEVC) video
coding standards.

To facilitate the comparison with the operational rate distortion
functions, we construct the video source in frame k by two parts: Xk

as an M by N block (row scanned to form a vector of length M ×N)
and Sk as the surrounding 2M+N+1 pixels (2M on the top, N to the
left and the one on the left top corner as shown in Fig. 5.12, forming a
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Figure 5.11: Pixel value variance of 90 frames in four video clips

vector of length 2M +N + 1). When we investigate the rate distortion
bounds of a few frames k1, k2, . . . , kl, the video source across all these
frames is defined as a long vector V , where

V = [XT
k1 , S

T
k1 , X

T
k2 , S

T
k2 , . . . , X

T
kl
, ST

kl
]T . (5.3.8)

We assume that V is a Gaussian random vector with memory, and all
entries of V have zero mean and the same variance σ2. The value of σ is
different for different video scenes however, as we discussed at the end
of the previous section. The conditional correlation coefficient between
each two entries of V can be calculated using Definition 5.2 and the
spatial offsets ∆i and ∆j, and temporal offset ∆k between these two
entries.

We use Y to denote the information of local textures formulated
from a collection of natural videos and Y is considered as universal
side information available to both the encoder and the decoder. We
only employ the first order statistics of Y , P [Y = y], i.e., the frequency
of occurrence of each local texture in the natural videos. In simulations,
when available, P [Y = y] is calculated as the average over a number
of natural video sequences commonly used as examples in video coding
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Figure 5.12: The construction of an M × N block and its surrounding 2M + N + 1
pixels

studies.
In the following we first investigate briefly the rate distortion bound

of V without the universal side information Y , the case normally stud-
ied in prior rate distortion work for video; we then focus on the case
when Y is taken into account in the rate distortion analysis, where the
interesting new bounds lie.

5.3.1 Formulation of Rate Distortion Bound without Local Texture
as Side Information

The rate distortion bound for the MSE distortion measure without
taking into account the texture as side information is a straightforward
rate distortion problem of a (single mode) source with memory (no
conditioning on textures), which has been studied extensively. It can
be expressed as

Rno texture(D) = min
p(v̂|v):d(V̂ ,V )≤D

I(V ; V̂ ), (5.3.9)

which is the minimum mutual information between the source V and
the reconstruction V̂ , subject to a mean square distortion measure
d(v̂, v) = 1

|v| |v̂ − v|T |v̂ − v|. To facilitate the comparison with the case
when side information Y is taken into account, we calculate the corre-



486 Rate Distortion Bounds for Video

lation matrix as

E
[
V V T

]
=

|Y |−1∑
y=0

σ2ρ (V |y)P [Y = y], (5.3.10)

i.e., by taking the average of the texture dependent correlation coeffi-
cients ρ (V |y) over all local textures. With V being a random vector,
ρ (V |y) is a correlation coefficient matrix. Each entry of this matrix
represents the conditional correlation coefficient between two corre-
sponding entries of V , which can be calculated using Definition 5.2
and the spatial offsets ∆i and ∆j, and temporal offset ∆k between the
two entries of V .

To calculate Rno texture(D), we first de-correlate the entries of the
video source V by taking an eigenvalue decomposition of the correlation
matrix E

[
V V T

]
. Reverse water-filling [11] is then utilized to calculate

the rate distortion bound of V , whose entries are independent Gaussian
random variables after de-correlation. The details of this calculation for
a generic Gaussian source model are in Section 3.2.

5.3.2 Formulation of Rate Distortion Bound with Local Texture as
Side Information

The rate distortion bound with the local texture as side information
is a conditional rate distortion problem of a source with memory. It is
defined in Sec. 3.4 as [6, Sec. 6.1]

RV |Y (D) = min
p(v̂|v,y):E[d(V ,V̂ |Y )]≤D

I(V ; V̂ |Y ), (5.3.11)

where
d(V , V̂ |Y ) =

∑
v,v̂,y p(v, v̂, y)d(v, v̂|y), (5.3.12)

and

I(V ; V̂ |Y ) =
∑

v,v̂,y p(v, v̂, y) log p(v, v̂|y)
p(v|y)p(v̂|y)

. (5.3.13)

It can be shown [28] that the conditional rate distortion function
in Eq. (5.3.11) can also be expressed as

RV |Y (D) = min
Dy :

∑
y

Dyp(y)≤D

∑
y

RV |y(Dy)p(y), (5.3.14)
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and the minimum is achieved by adding up RV |y(Dy), the individual,
also called marginal, rate-distortion functions, at points of equal slopes
of the marginal rate distortion functions, i.e., when ∂RV |y(Dy)

∂Dy
are equal

for all y and
∑

y Dyp(y) = D. These marginal rate distortion bounds
can also be calculated using the classic results on the rate distortion
bound of a Gaussian vector source with memory and a mean square er-
ror criterion as reviewed in Section 3.2, but now the correlation matrix
of the source is dependent on local texture y for each subsource.

5.3.3 Rate Distortion Bounds for One Video Frame

Because the proposed correlation model discriminates all the different
local textures, we can calculate the marginal rate distortion functions
for each local texture, RV |Y =y(Dy), as plotted in Fig. 5.13 for one
frame in paris.cif and football.cif, respectively. The local textures are
calculated for each one of the 4 by 4 blocks, the available nine local
textures are chosen to be those plotted in Fig. 2.6, and the spatial
offsets ∆i and ∆j are set to range from -7 to 7. The two plots in Figs.
5.13(a) and 5.13(b) show that the rate distortion curves of the blocks
with different local textures are very different. Without the conditional
correlation coefficient model proposed in this book, this difference could
not be calculated explicitly.

The relative order of the nine local textures in terms of the average
rate per pixel depends not only on the texture but also on the param-
eters associated with the correlation coefficient model for each local
texture. For example, texture # 1, which is horizontal prediction, by
intuition should consume less rate compared to other more complicated
textures (# 3 through #8), which is the case for paris.cif. However for
football.cif, texture # 1 consumes higher rate for some of the more
complicated textures. This can be explained by looking at Fig. 5.3.
In Fig. 5.3(b) both the approximate correlation coefficients and the
model-calculated correlation coefficients of texture #1 are above 0.8,
which is very high compared to those of the other textures. This means
that the marginal rate distortion functions depend not only on the local
texture, but also on the characteristics of a specific video. The latter
dependence is captured by the five parameters a,b,α,β,γ in the new
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(a) paris.cif

(b) football.cif

Figure 5.13: Marginal rate distortion functions for different local textures,
RV |Y =y(Dy), for a frame in paris.cif and football.cif, respectively
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correlation model.
In Fig. 5.14 we plot RV |Y (D) and Rno texture(D) as dashed and

solid lines, respectively, for two videos and three different blocksizes.
The rate distortion curves of paris.cif are generally higher than those of
football.cif due to the higher pixel variance in paris.cif. For both videos,
the larger the blocksizes, the lower the rate distortion curves. This is
reasonable because when correlation among a larger set of pixels is
explored, the average rate per pixel should be lower. The difference be-
tween each pair of curves (solid line - without side information; dashed
line - with side information, the same markers for the same blocksize)
in Figs. 5.14(a) and 5.14(b), however, does not have a monotonic re-
lationship with the block size at any distortion level. For example, at
distortion 50, for paris.cif, this difference for blocksize 8×8 is lower than
those of the other two blocksizes; but for football.cif, this difference for
blocksize 8 × 8 is higher than those of the other two blocksizes.

In Fig. 5.16 we plot the two rate distortion bounds RV |Y (D)
and Rno texture(D) as dashed and solid lines, respectively, as well
as the operational rate distortion functions of intra-frame coding in
AVC/H.264 and in HEVC, for the first frame of paris.cif. The dash
dotted line in this figure plots a rate distortion bound calculated based
on the new texture dependent correlation model for the scenario where
optimal predictive coding is engaged. It will be discussed in detail in
the next section.

In AVC/H.264, for both intra-frame and inter-frame coding, we
choose the main profile with context-adaptive binary arithmetic coding
(CABAC), which is designed to generate the lowest bit rate among all
profiles. Rate distortion optimized mode decision and a full hierarchy
of flexible block sizes from MBs to 4 × 4 blocks are used to maximize
the compression gain. In HEVC, for both intra-frame and inter-frame
coding, we choose CABAC and allow prediction unit sizes from 64×64
to 8 × 8 and transform block sizes from 32 × 32 to 4 × 4 . We also
allow the encoder to use two-level hierarchical B frames. For the rate
distortion bounds, we choose the block size 16x16 and the spatial offsets
as from −16 to 16.

The rate distortion bound without local texture information, plot-
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(a) paris.cif

(b) football.cif

Figure 5.14: Comparison of the theoretical rate distortion bounds for two videos
and three different blocksizes: solid lines – Rno texture(D) (Eq. (5.3.9)); dashed
lines – RV |Y (D) (Eq. ((5.3.11))
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ted as a black solid line, is higher than the actual operational rate dis-
tortion curves of H.264/AVC and HEVC. However, the rate distortion
bounds with local texture information taken into account while mak-
ing no assumptions in coding, plotted as a red dashed line, is indeed a
lower bound with respect to the operational rate distortion curves of
AVC/H.264 and HEVC.

In order to have a better idea of the region of interest for the aver-
age distortion levels, we plot in Fig. 5.15 the correspondence between
peak signal to noise ratio (PSNR) and the average distortion when the
maximum pixel value is 255. Comparing the two rate distortion bounds
RV |Y (D) and Rno texture(D) in Fig. 5.16 also shows that engaging the
first-order statistics of the universal side information Y saves at least
1 bit per pixel at low distortion levels (distortion less than 25, PSNR
higher than 35 dB), which corresponds to a reduction of about 100
Kbits per frame for the CIF videos and 1.5 Mbps if the videos only
have intra-coded frames and are played at a medium frame rate of 15
frames per second. This difference decreases as the average distortion
increases but remains between a quarter of a bit and half a bit per pixel
at high distortion level (distortion at 150, PSNR at about 26 dB), cor-
responding to about 375 Kbps to 700 Kbps in bit rate difference. A
50% or higher bit rate reduction from the operational rate distortion
curve of HEVC intra-frame coding to the new theoretical rate distor-
tion bound can be achieved across the wide range of average distortion
shown in this figure.

5.3.4 Rate Distortion Bounds for a Sequence of Video Frames

Now for multiple video frames, we calculate Rno texture(D) and the
conditional rate distortion bounds RV |Y (D) with the temporal cor-
relation coefficient ρt as defined in Eq. (5.3.11) and with correlation
coefficients exactly those specified in Definition 5.2.

As before, our approach is to first decorrelate the entries of the
video source V by taking an eigenvalue decomposition of the correlation
matrix, and then reverse water-filling [11] is utilized to calculate the
rate distortion bound of V , whose entries are independent Gaussian
random variables after decorrelation. The details of this calculation for
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Figure 5.15: The correspondence between peak signal to noise ration (PSNR) in
dB and the average distortion when the maximum pixel value is 255

Figure 5.16: Comparison of the rate distortion bounds and the operational rate
distortion curves of paris.cif intra-coded in AVC/H.264 and in HEVC
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a generic Gaussian source model are in Section 3.2.
In Figs. 5.17 and 5.18 we plot the conditional rate distortion bound

as well as Rno texture(D) in Eq. (5.3.9) for paris.cif and the operational
rate distortion curves for paris.cif, inter-frame coded in AVC/H.264. As
shown in Figs. 5.17 and 5.18 , the rate distortion bound without local
texture information, plotted as solid lines, are higher than, or inter-
sect with, the actual operational rate distortion curve of AVC/H.264.
The rate distortion bounds with local texture information taken into
account while making no assumptions in coding, using one ρt for all
textures, plotted as dotted lines, is indeed a lower bound with respect
to the operational rate distortion curves of AVC/H.264. In Section 5.2.2
we propose to use ρ̂t(∆k), the average of ρ̂t(k1, k2|y) over all k1 and
k2 with the same shift ∆k = k2 − k1 and over all local texture y’s,
to specify approximately the temporal correlation coefficient between
two video frames with index difference ∆k. In Figs. 5.17 and 5.18 it is
shown that the rate distortion bounds when either ρ̂(∆k|y) or ρ̂(∆k)
is used are indeed close in values.

Figure 5.19 is similar to Fig. 5.18(b) with the operational rate dis-
tortion function of HEVC also included. As can be seen from Fig. 5.19,
the theoretical rate distortion bound without the texture information
is not a valid lower bound to the operational rate distortion function
of HEVC inter-frame coding with a group of pictures size of 5.

Comparing Rno texture(D) (solid lines) and the conditional rate
distortion bound (dotted lines) in Fig. 5.17(a) shows that by engaging
the first-order statistics of the universal side information Y saves 0.5
bit per pixel at low distortion levels (distortion less than 25, PSNR
higher than 35 dB), which corresponds to a reduction of about 50
Kbits per frame for the CIF videos and 750 Kbps if the videos have
a group of picture size equal to 2 and are played at a medium frame
rate of 15 frames per second. This difference decreases as the average
distortion increases but remains 0.1 bit per pixel at high distortion level
(distortion at 150, PSNR at about 26 dB), corresponding to about 150
Kbps in bit rate difference. Similar to intra-frame coding, a 50% or
higher bit rate reduction from the operational rate distortion curve of
HEVC inter-frame coding to the new theoretical rate distortion bound
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(a) Frames 1 and 2

(b) Frames 1, 2 and 3

Figure 5.17: Theoretical rate distortion bounds and the rate distortion curves of
inter-frame coding in AVC/H.264 - part 1 of 2
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(a) Frames 1, 2, 3 and 4

(b) Frames 1, 2, 3, 4 and 5

Figure 5.18: Theoretical rate distortion bounds and the rate distortion curves of
inter-frame coding in AVC/H.264 - part 2 of 2
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Figure 5.19: Comparison of the rate distortion bounds and the operational rate
distortion curves of paris.cif inter-coded in AVC/H.264 and in HEVC

can be achieved across the wide range of average distortion shown in
Fig. 5.19.

Another interesting observation of Figs. 5.17 and 5.18 is that as
more video frames are coded, the actual operational rate distortion
curves of inter-frame coding in AVC/H.264 become closer and closer to
the theoretical rate distortion bound when no texture information is
considered. This is because in AVC/H.264, only the intra-coded frames
(i.e., only the 1st frame in our simulation) take advantage of the local
texture information through intra-frame prediction, while the inter-
coded frames are blind to the local texture information. Therefore,
when more frames are inter-coded, the bit rate saving achieved by intra-
frame prediction in the 1st frame is averaged over a larger number of
coded frames. This suggests a possible coding efficiency improvement
in video codec design by involving texture information even for inter-
coded frames.
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5.4 Constrained Rate Distortion Bounds for Blocking and
Intra-frame Prediction

Breaking an image frame into 16 × 16 pixel MBs and processing one
MB at a time, commonly known as the “blocking” scheme, has been
employed in the most popular image coding standards such as JPEG
and almost all video coding standards such as MPEG-2/4 and the
H.26x series [32, 33, 34, 35]. In AVC/H.264, intra-frame prediction is
utilized to reduce the spatial redundancy in the intra-coded frames,
as discussed in Section 2.2.4. With the new block-based local-texture-
dependent correlation model, an explicit study of the rate distortion
behavior of these key schemes, such as blocking and intra-prediction, is
feasible. In this last section of this chapter, we derive a constrained rate
distortion bound where the constraint is imposed on the test channel
transition probability by the incorporation of blocking and prediction
across neighboring blocks, two common coding steps performed in cur-
rent video coding standards AVC/H.264 and HEVC.

The basic setup can be summarized in the block diagram in Fig.
5.20. X denotes the M by N block currently being processed. The
surrounding 2M +N + 1 pixels (2M on the top, N to the left and the
one on the left top corner), denoted by S, are used to form a prediction
block for each one of the available local textures, as

Z = X − P
(A)
d S, (5.4.15)

where P
(A)
d is a M × N by 2M + N + 1 matrix, different for each

local texture. A is the local texture chosen for the current block which
yields the smallest prediction error. Z and A are further coded and
transmitted to the decoder, where the predicted value is added in to
obtain

X̂ = Ẑ + P
(Â)
d Ŝ. (5.4.16)

In the block diagram in Fig. 5.20, Y denotes the information of local
textures formulated from a collection of natural images and is consid-
ered as universal side information available to both the encoder and
the decoder. The number of available local textures is denoted by |Y |.

With the block based nature of the new correlation model, we
study the penalty paid in average rate when the correlation among the
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Prediction Intermediate
processing

Inverse
prediction

X

Y Y

X̂
S Ŝ

Z,A Ẑ, Â

Figure 5.20: Coding of one M by N block X and the surrounding 2M + N + 1
pixels S

neighboring MBs or blocks is disregarded completely (blocking, Sec-
tion 5.4.1) or is incorporated partially through the predictive coding
(blocking and intra-frame prediction, Section 5.4.2).

Two different distortion constraints are considered in this section,
denoted by “avgD” and “sepD” respectively (|S| denotes the length of
S and |X| denotes the length of X):

Average distortion constraint (avgD):

1
|S| + |X|

{
E[||S − Ŝ||2] + E[||X − X̂||2]

}
≤ D. (5.4.17)

Separate distortion constraint (sepD):

1
|S|

E[||S − Ŝ||2] ≤ D and 1
|X|

E[||X − X̂||2] ≤ D. (5.4.18)

The average distortion constraint is used dominantly in image and
video compression, while recent research in perceptual quality measure-
ment of videos has suggested the importance of the separate distortion
constraint on maintaining perceptual video quality, because the varia-
tion in video quality from frame to frame or from one region to another
in the same frame induces an unpleasant viewing experience of the hu-
man users.

In the previous two sections the lowest rate that can be achieved
by coding X and S together is studied; therefore, we only use the
average distortion constraint “avgD”. In this section we use the separate
distortion measure, “sepD” since in video coding each MB is processed
sequentially and only local distortion is considered. The rate distortion
bounds calculated using “sepD” should be slightly higher than those
when “avgD” is used.
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5.4.1 Constrained Rate Distortion Bound for Blocking

Since in this subsection we are interested in the penalty paid in average
rate when the correlation among the neighboring MBs or blocks are
disregarded completely, S andX are coded separately with the separate
distortion constraint “sepD” in Eq. (5.4.18). The total rate can be
calculated as

RS,Xseparately−withoutY (D) = RX(D)|X|+RS(D)|S|
|S|+|X| , (5.4.19)

which is the average of the rate distortion functions of X and S. We
plot RS,X separately−withoutY (D) as dotted lines in Figs. 5.21, 5.22, and
5.23 for two videos and three different block sizes. Not surprisingly for
both videos and all three block sizes, coding S and X separately costs
more bits than coding them jointly. The difference in bit rate decreases
as the block size increases, since for smaller block sizes information on
stronger correlation across the blocks is disregarded. With the new cor-
relation coefficient model and the corresponding rate distortion curves,
we can calculate explicitly the bit rate increase caused by blocking.
For example, this penalty is one sixth bit per pixel in this plot at all
distortion levels in Fig. 5.21(a), which is quite significant.

5.4.2 Constrained Rate Distortion Bound for Blocking and Optimal
Intra-frame Prediction

In the following we focus on the scenario when the video frames are
processed block by block sequentially but the correlation among the
blocks is utilized through predictive coding. We restrict ourselves to
the separate distortion measure “sepD” in Eq. (5.4.18) and therefore S
is coded with no consideration of X, after which Z and A are calculated
by using intra-prediction in Eq. (5.4.15). The rate distortion function
for this scenario is

RS,Z,A separately−withoutY (D) =
(

min
p(ŝ|s): E[||S−Ŝ||2]

|S| ≤D
I(S; Ŝ)

+ min
p(ẑ,â|z,a,s,ŝ): E[||X−X̂||2]

|X| ≤D
I(Z,A; Ẑ, Â)

)
/(|S| + |X|)

(5.4.20)
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(a) paris, block size 4 × 4

(b) football, block size 4 × 4

Figure 5.21: Comparison of rate distortion bounds of Section 5.4 for two
videos and three blocksizes (part 1 of 3): solid lines – RS,X jointly−withoutY (D)
in Eq. (5.3.9); dashed lines – RS,X jointly−withY (D) in Eq. (5.3.11); dot-
ted lines – RS,X separately−withoutY (D) in Eq. (5.4.19) ; dash dot lines –
RS,Z,A separately−sep−upperbound(D) in Eq. (5.4.26)
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(a) paris, block size 8 × 8

(b) football, block size 8 × 8

Figure 5.22: Comparison of rate distortion bounds of Section 5.4 for two
videos and three blocksizes (part 2 of 3): solid lines – RS,X jointly−withoutY (D)
in Eq. (5.3.9); dashed lines – RS,X jointly−withY (D) in Eq. (5.3.11); dot-
ted lines – RS,X separately−withoutY (D) in Eq. (5.4.19) ; dash dot lines –
RS,Z,A separately−sep−upperbound(D) in Eq. (5.4.26)
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(a) paris, block size 16x16

(b) football, block size 16x16

Figure 5.23: Comparison of rate distortion bounds of Section 5.4 for two
videos and three blocksizes (part 3 of 3): solid lines – RS,X jointly−withoutY (D)
in Eq. (5.3.9); dashed lines – RS,X jointly−withY (D) in Eq. (5.3.11); dot-
ted lines – RS,X separately−withoutY (D) in Eq. (5.4.19) ; dash dot lines –
RS,Z,A separately−sep−upperbound(D) in Eq. (5.4.26)
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If we restrict that A = Â, i.e., we code the local texture A losslessly,
the second part in Eq. (5.4.20) becomes

minp(ẑ,â|z,a,s,ŝ): 1
|X| E[||X−X̂||2]≤D I(Z,A; Ẑ, Â) =

minp(ẑ|z,a,s,ŝ): 1
|X| E[||X−X̂||2]≤D I(Z; Ẑ|A) +H(A),

(5.4.21)

which forms an upper bound for all the scenarios when A is coded
either losslessly or subject to a fidelity criterion. Also when A = Â, we
have

E[||X − X̂||2] =
∑

a Pr(a)E[||(Z + P
(a)
d S) − (Ẑ + P

(a)
d Ŝ)||2|a]

=
∑

a Pr(a)
∫

s

∫
ŝ

∫
z

∫
ẑ
p(z, ẑ, s, ŝ|a)(ẑ − z)T (ẑ − z)+

(ŝ− s)TP
(a)T
d P

(a)
d (ŝ− s) + 2(ŝ− s)TP

(a)T
d (ẑ − z)dsdŝdzdẑ.

(5.4.22)

In order to investigate the lowest rate when predictive cod-
ing is employed, we use the optimal linear predictor P

(a)
opt =

E[XST |a](E[SST |a])−1 assuming that E(SST |a) is non-singular. Since
the source is assumed to be zero-mean Gaussian, the optimal linear pre-
dictor is also the optimal conditional mean predictor. The optimality
is in the sense of minimizing MSE of X. When the optimal linear pre-
dictor P (A)

opt is used, the cross-product term in Eq. (5.4.22) disappears.
Let

D′
S =

∑
a

Pr(a)
∫

s

∫
ŝ
p(s, ŝ|a)(ŝ− s)TP

(a)T
opt P

(a)
opt (ŝ− s)dsdŝ. (5.4.23)

Eq. (5.4.22) becomes

E[||X − X̂||2] = |Z|DZ +D′
S . (5.4.24)

Since S is optimally coded without consideration of X as in the first
part of Eq. (5.4.20), D′

S is fixed as well. The constraint on the distortion
of Z becomes

DZ ≤ (|X|D −D′
S)/|Z|. (5.4.25)

An upper bound for Eq. (5.4.20) is thus

RS,Z,A separately−upperbound(D) = 1
|S|+|X|(

|S|RS(D) + |Z|RZ|A(
|X|D−D′

S

|Z| ) +H(A)
) (5.4.26)
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The conditional rate distortion function RZ|A(DZ) in Eq. (5.4.26)
is again calculated based on the “equal slope” theorem of the marginal
rate distortion functions RZ|A=a(Da) [28]. In this case since the actual
local texture A is coded without any loss, the exact statistics of A are
available at both the encoder and the decoder; therefore, whether the
universal side information Y is available or not becomes insignificant.
The only complexity in computation is caused because E(SST |a) is
usually singular when the direction of the local texture is DC, horizon-
tal, vertical, or too close to horizontal/vertical. In these cases we use
the pseudo-inverse matrix of E(SST |a) in the calculation.

The bit rate decrease from the dotted lines (coding S and X sep-
arately, Eq. (5.4.19)) to the dash-dotted lines (the upper bound of
coding S, Z and A separately with optimal prediction, Eq. (5.4.26)) is
truly phenomenal in all the plots in Figs. 5.21, 5.22, and 5.23 at low
distortion levels, corresponding to about 1 bit per pixel for paris and
between half a bit to 1 bit per pixel for for football at distortion 25
(corresponding to PSNR 35 dB). This bit rate saving decreases as the
distortion increases, and interestingly, it vanishes for football at certain
distortions. This is because spending bits coding the local texture A
losslessly becomes unjustifiable at high distortion levels. This is espe-
cially true when the bit rate is low and the processing block size is
small. We can see that in Fig. 5.21(b) the dash-dotted line and the
dotted line intersect at a distortion of about 180, corresponding to an
average rate of 0.4 bits per pixel. The average bit rate spent on cod-
ing the local texture A losslessly is simply the entropy of A, divided
by the number of pixels per block, which is 16 in Fig. 5.21(b) since
4 × 4 blocks are investigated. This average rate is about 0.2 bits per
pixel, or 50% of the total average rate. This is to say that for this par-
ticular video football.cif, processed in 4 × 4 blocks, 0.4 bits per pixel
is the threshold in average rate that depicts when incorporating the
correlation among the neighboring blocks through optimal intra-frame
predictive coding and coding the local texture A losslessly, becomes
worse than discarding the correlation among the neighboring blocks.
This crossover average rate is different for different videos and different
processing blocksizes, as can be seen in Figs. 5.21, 5.22, and 5.23 . It
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can be calculated along with the rate distortion bounds we derive in
this chapter and be utilized in real video codecs.

Among all the rate distortion functions we investigate in this chap-
ter, engaging prediction and coding S, Z and A separately with the
separate distortion constraint, as in Section 5.4.2, is the most similar
to intra-fame coding in state-of-the-art codecs such as AVC/H.264. The
upper bound RS,Z,A separately−upperbound(D) in Eq. (5.4.26) is achieved
when the local texture A is losslessly coded and optimal prediction is
employed. Since in AVC/H.264, for intra-coded frames, the intra-modes
are always coded losslessly, RS,Z,A separately−upperbound(D) should be a
lower bound for the operational rate distortion function of intra-frame
coding in AVC/H.264. If we remove all the assumptions on coding,
the rate distortion bound of a video frame is RV |Y (D) in Eq. (5.3.11).
It is the theoretical rate distortion bound that is solely based on the
proposed correlation model of the video source and takes advantage
of the universal side information on the local texture. RV |Y (D) should
always be lower than RS,Z,A separately−upperbound(D) according to the
data processing theorem [11].

In Fig. 5.16 we plot RS,Z,A separately−upperbound(D), the rate distor-
tion bound calculated based on the new texture dependent correlation
model for the scenario where optimal predictive coding is engaged to
code S, Z and A separately with separate distortion constraint, as a
dash dotted line. As shown in this figure, RS,Z,A separately−upperbound(D)
is a reasonably tight lower bound to the operationally rate distortion
curve of AVC/H.264, especially at medium to high distortion levels.

In Fig. 5.24(a) we also plot the lower bound
RS,Z,A separately−upperbound(D) (Eq. (5.4.26)) and the operational
rate distortion function using AVC/H.264 for two other videos. We
can see that although the lower bounds are calculated based on
only five parameters generated from each video, they do agree with
the operational rate distortion curves of the corresponding video
reasonably well. If we further plot these lower bounds as average rate
per pixel versus PSNR of a video frame as in Fig. 5.24(b), the lower
bounds appear to be nearly, linear which shows promises in codec
design.
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(a) average rate vs. average distortion

(b) average rate vs. PSNR

Figure 5.24: The lower bounds calculated based on the new correlation coefficient
model and its corresponding optimal parameters for three videos, compared to the
operational rate distortion curves of these videos coded in AVC/H.264
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5.5 Conclusion

In this chapter we revisit the classic problem of developing a correla-
tion model for natural videos and studying their theoretical rate distor-
tion bounds. We propose the correlation coefficient of two pixels in two
nearby video frames as the product of the spatial correlation coefficient
of these two pixels, as if they were in the same frame, and a variable to
quantify the temporal correlation between these two video frames. The
spatial correlation model for pixels within one video frame is a condi-
tional correlation model. The conditioning is on local texture and the
optimal parameters can be calculated for a specific video with a mean
absolute error (MAE) usually smaller than 5%. We use this conditional
correlation model to calculate the conditional rate distortion function
when universal side information on local texture is available at both
the encoder and the decoder. This rate distortion bound with local tex-
ture information taken into account while making no assumptions on
coding, is shown indeed to be a valid lower bound, and the only valid
theoretical rate distortion bound to our best knowledge, with respect
to the operational rate distortion curves of both intra-frame and inter-
frame coding in AVC/H.264 and in HEVC/H.265. A 50% or higher bit
rate reduction from the operational rate distortion curve of HEVC to
the new theoretical rate distortion bound can potentially be achieved
across the whole range of average distortion typically encountered in
video coding.
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