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Multi-locus match probability in a finite population: a fundamental
difference between the Moran and Wright–Fisher models
Anand Bhaskar1 and Yun S. Song1,2,∗
1Computer Science Division and 2Department of Statistics, University of California, Berkeley, CA, USA

ABSTRACT

Motivation: A fundamental problem in population genetics, which
being also of importance to forensic science, is to compute
the match probability (MP) that two individuals randomly chosen
from a population have identical alleles at a collection of loci.
At present, 11–13 unlinked autosomal microsatellite loci are typed
for forensic use. In a finite population, the genealogical relationships
of individuals can create statistical non-independence of alleles at
unlinked loci. However, the so-called product rule, which is used in
courts in the USA, computes the MP for multiple unlinked loci by
assuming statistical independence, multiplying the one-locus MPs
at those loci. Analytically testing the accuracy of the product rule for
more than five loci has hitherto remained an open problem.
Results: In this article, we adopt a flexible graphical framework to
compute multi-locus MPs analytically. We consider two standard
models of random mating, namely the Wright–Fisher (WF) and Moran
models. We succeed in computing haplotypic MPs for up to 10
loci in the WF model, and up to 13 loci in the Moran model. For
a finite population and a large number of loci, we show that the
MPs predicted by the product rule are highly sensitive to mutation
rates in the range of interest, while the true MPs computed using
our graphical framework are not. Furthermore, we show that the WF
and Moran models may produce drastically different MPs for a finite
population, and that this difference grows with the number of loci
and mutation rates. Although the two models converge to the same
coalescent or diffusion limit, in which the population size approaches
infinity, we demonstrate that, when multiple loci are considered, the
rate of convergence in the Moran model is significantly slower than
that in the WF model.
Availability: A C++ implementation of the algorithms discussed in
this article is available at http://www.cs.berkeley.edu/∼yss/software.
html.
Contact: yss@eecs.berkeley.edu

1 INTRODUCTION
Correlation of genealogies at different loci can cause statistical
non-independence of alleles at those loci. It follows from the
well-established population genetics theory that recombination
breaks down this correlation and that in the case of an infinite
population, the correlation between unlinked loci (say, on different
chromosomes) becomes completely eliminated over time. In a finite
population, however, genealogical relationships between individuals
can create statistical dependence even between unlinked loci. This
subtle difference between finite and infinite populations may have
important implications for some practical questions of interest,

∗To whom correspondence should be addressed.

a well-known example being the forensic use of DNA typing.
A fundamental problem which arises in forensic science is to
compute the probability that two individuals randomly chosen
from a population have identical alleles at a collection of loci
(Balding, 2005; Evett and Weir, 1998). We refer to this probability
as multi-locus match probability (MP). In population genetics, MP
corresponds to the probability of homozygosity. At present, 13
unlinked autosomal microsatellite loci, called the Combined DNA
Index System loci (see http://www.fbi.gov/hq/lab/codis/index1.htm
for details), are typed in the USA for forensic use, while 11 loci are
used in the UK. Unlinked microsatellite data are also often used in
demographic inference (e.g. see Pritchard et al. 2000), but we do
not address that problem in this article.

The so-called product rule, which is used in courts, computes the
MP for multiple unlinked loci by assuming statistical independence,
multiplying the one-locus MPs at those loci. In light of the
above discussion regarding the existence of statistical dependence
between unlinked loci in a finite population, it remains debatable
to date whether the product rule produces reliable results. To test
the accuracy of the product rule theoretically, Laurie and Weir
(2003) provided a method to compute the equilibrium MPs in
an ideal finite population, assuming an infinite alleles model of
mutation. Their approach was to construct a system of coupled
linear recurrence equations involving MPs and then solve the system
assuming stationarity. Although this method is simple in principle,
setting up the system of recurrence equations becomes increasingly
challenging with the number of loci. Song and Slatkin (2007)
later introduced a flexible graphical method that allowed them to
generalize the analysis of Laurie and Weir to cases with more loci
and other models of mate choice such as monogamy. Using their
framework, Song and Slatkin succeeded in computing the genotypic
(i.e. two alleles per locus per individual) MP for up to three loci and
the haplotypic (i.e. one allele per locus per individual) MP for up to
five loci.

In this article, we employ the graphical framework of Song and
Slatkin (2007) and make algorithmic improvements to carry out
the MP computation for significantly more loci than what previous
works could handle. For simplicity, we focus on the haplotypic MP
computation. Hence, when we say MP in what follows, we mean
haplotypic MP. Both Laurie and Weir (2003) and Song and Slatkin
(2007) restricted their attention to the Wright–Fisher (WF) model
of random mating. In our work, we consider the Moran model in
addition to the WF model; the main difference between these two
standard models in population genetics is that generations do not
overlap in the WF model, while they do overlap in the Moran
model. We are currently able to compute MPs for up to 10 loci
in the WF model and up to 13 loci in the Moran model. Bear in
mind that this work requires overcoming several algorithmic and
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engineering challenges. For example, the 13-locus case involves
about 3.1 million coupled linear equations; both finding the system
of linear equations and solving it are challenging tasks.

Two major findings of our work are as follows. (i) In an ideal
finite population, the MPs predicted by the product rule are highly
sensitive to mutation rates, while the true MPs computed using
our graphical framework are not. For a range of mutation rates
relevant to the observed level of homozygosity at microsatellite
loci, the product rule may significantly underestimate the 13-locus
MP. However, the product rule becomes more accurate if we are
provided with the additional information that the individuals being
compared are not close relatives. (ii) Both the WF and Moran models
have been used in the population genetics community for many
years, and it has been thought that the two models should produce
very similar quantitative results as long as the population size and
time are rescaled properly when relating one model to the other.
However, our work reveals a fundamental difference between the
two models which becomes transparent only when multiple loci are
considered in a finite population. More precisely, we show that,
for a finite population, the Moran model may produce significantly
higher multi-locus MPs than that under the WF model, and that this
difference grows with the number of loci and mutation rates. We
show that, as expected, the two models produce the same MPs in
the coalescent or the diffusion limit, in which the population size
approaches infinity. We demonstrate that, when multiple loci are
considered, the rate of convergence to the diffusion limit in the
Moran model is significantly slower than that in the WF model.

2 MODELS OF RANDOM MATING
We adopt the same notational convention as in Song and Slatkin
(2007). Throughout this article, we assume a neutral infinite-alleles
model; i.e. whenever an allele mutates, it mutates to a new allele that
has never been seen before. Further, we assume a single population
containing 2NWF haploid individuals in the WF model or 2NM haploid
individuals in the Moran model.

2.1 Mating schemes
The two mating schemes are detailed below.

2.1.1 The WF model The entire population of 2NWF haploid
individuals gets replaced every generation. Individuals in the next
generation are produced from those in the current generation in the
following fashion: (i) Randomly sample two individuals, each with
replacement. The same individual may be sampled twice under this
mating scheme. A new individual is produced from the two sampled
individuals as described in Section 2.2. We assume that mutations
occur at locus i with probability μi per individual per generation,
independently of other loci. (ii) Repeat the above procedure until
2NWF new individuals are created for the next generation.

2.1.2 The Moran model Exactly one individual gets replaced
every generation as follows. (i) The same as Step (i) in the WF
model. (ii) Randomly choose exactly one individual to die in the
current generation; the new individual created in the previous step
replaces this individual. All other individuals survive to the next
generation.

2.2 Generating offspring gametes by recombination
By a gamete, we mean alleles at a collection of loci; different loci
may physically reside on different chromosomes within a haploid
individual. We use xi to denote the allele at locus i in individual x.

2.2.1 Two loci Let x1x2 and y1y2 denote the gametes of the
two sampled parental individuals. Then, the inheritance pattern
of the offspring is x1x2, y1y2, x1y2 or y1x2, with probability
1
2 (1−r), 1

2 (1−r), 1
2 r or 1

2 r, respectively. The unlinked case
corresponds to r =1/2.

2.2.2 More than two loci Let x1x2 ...xL and y1y2 ···yL denote the
two sampled parental gametes with L loci. We focus on a set of loci
that are pairwise unlinked, as was done previously by other authors
(Laurie and Weir, 2003; Song and Slatkin, 2007). Hence, in the
offspring gamete z1z2 ···zL , the allele zi at locus i is equally likely
to have descended from xi or yi. The probability of any particular
inheritance pattern is 1/2L .

3 A GRAPHICAL APPROACH TO MP
COMPUTATION

Song and Slatkin (2007) introduced a graphical framework to
compute multi-locus MPs in a finite population. We employ the
same framework in this article. Below, we highlight the key ideas
underlying the approach.

3.1 High-level idea
In Section 2, we discussed random mating models that describe
how a population evolves forward in time. In our work, we adopt a
backward point of view and determine how a given MP at generation
t is related to a combination of MPs at generation t−1, thus obtaining
a system R(t,t−1) of recurrence equations. At stationarity, the
probability of a particular match relation (e.g., the probability that
two randomly chosen individuals have the same alleles at loci 1 and
4) at generation t is equal to the probability of the same match
relation at generation t−1. Therefore, at stationarity R(t,t−1)
becomes a closed system S of linear equations which we can solve.
In general, the recurrence equation for an L-locus MP at generation t
contains k-locus MPs at generation t−1 where k ≤L. Therefore, one
needs to carry out the computation in the following systematic order:
first solve the system of linear equations for 1 locus; then solve the
system for two loci, treating 1-locus MPs as known constants; then
solve the system for three loci, treating 1-locus and 2-locus MPs as
known constants; so on and so forth.

Although the above procedure is simple to describe, setting up
the system of recurrence equations becomes increasingly difficult
with the number of loci. The key idea introduced by Song and
Slatkin (2007) is to represent MPs as graphs. By performing a
set of prescribed operations on a given graph at generation t,
one can determine how it is related to a linear combination of
graphs at generation t−1, thus setting up the required system
R(t,t−1) of recurrence equations. The graphical method makes the
combinatorial structure of the problem easier to understand and it
is possible to implement the method in a fully automated computer
program, thus reducing the chance of human error.
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Fig. 1. The match graph corresponding to the probability that two randomly
chosen individuals have matching alleles at L loci. This probability is denoted
by PWF

L and PM
L in the WF and Moran models, respectively.

3.2 From MPs to match graphs
Here, we describe the graphical framework in the case of arbitrary
mutation rates μi at loci i=1,...,L. (As we will discuss in
Section 6.1, there is a simplified representation if μi are the same for
all i.) Let xi ≡yi denote the event that alleles at locus i are identical
(or match) in individuals x and y. To the probability of a particular
match relation (e.g. x1 ≡y1,x2 ≡y2 and x3 ≡z3), associate a match
graph constructed as follows:

1. Create a vertex labeled x for individual x.

2. Draw an undirected edge labeled i between vertices x and y
if and only if xi ≡yi.

3. Remove all vertex labels.

The reason for removing all vertex labels in the last step is as follows.
Any two MPs are equal under random mating if they are related
by some permutation of the labels of individuals. For example,
P(x1 ≡y1,x2 ≡z2) and P(x1 ≡y1,y2 ≡z2) are equal under random
mating. In terms of our graphical representation, such an equality
of MPs translates to the statement that two fully labeled graphs (in
which all vertices and edges are labeled) are equivalent if they are
isomorphic as edge-labeled graphs (i.e. ignoring vertex labels). An
L-locus match graph has L edges, one for each locus.

Shown in Figure 1 is the match graph corresponding to
P(x1 ≡y1,...,xL ≡yL), the probability that two randomly chosen
individuals have matching alleles at L loci. We use PWF

L and PM
L to

denote this L-locus MP in the WF and Moran models, respectively.
Our main objective is to compute PWF

L and PM
L . To solve for PWF

L in
equilibrium, we need to find a system of coupled linear equations
in which PWF

L appears as one of the unknown variables; as we will
see in Section 6.1, the total number of unknown variables in such a
system grows extremely fast as the number of loci increases.

3.3 Vertex split and merge operations
Given a number of individuals at generation t and a match relation
involving them, the probability of the match relation can be written
as a linear combination of MPs involving their parents. Recall
that, forward in time, a reproduction event involves choosing two
individuals (each with replacement) and creating a new offspring
gamete from the two chosen gametes via recombination and
mutation. To capture this model of reproduction, we consider the
following two kinds of operations on match graphs:

3.3.1 Vertex split to represent recombination Consider an
individual x whose alleles at k >1 loci are involved in a match
relation. In the graph corresponding to that match relation, the degree
of vertex x is k. If the alleles at the k loci trace back to two parental
gametes as a consequence of recombination (c.f. Section 2.2), then

split the vertex x into exactly two vertices v1 and v2, distributing the
set of edges that used to be incident with x to v1 and v2. In the WF
model, more than one vertex in the original graph may split, while
in the Moran model at most one vertex may split. A graph resulting
from performing a set of splits allowed in a single generation is
called a split graph.

3.3.2 Vertex merge to represent sharing a common parent Two
or more gametes at generation t may trace back to a common
parental gamete at generation t−1. This sharing of a parental
gamete translates to merging vertices in the split graph into a single
vertex. Any isolated vertex that results from merge operations can
be discarded from the resulting match graph since such a vertex is
not involved in any match relation. If a graph becomes empty from
discarding isolated vertices, the probability associated with it is 1.

By performing all possible split-and-merge operations on a given
match graph G at generation t, we obtain a set of match graphs
G′

1,...,G′
k at generation t−1. Each split-and-merge operation has

a well-defined probability associated with it, determined by the
assumed model of random mating. (See Sections 4 and 5 for details.)
These probabilities are used as coefficients in the equation that
represents G as a linear combination of G′

1,...,G′
k .

4 THE GRAPHICAL FRAMEWORK FOR THE WF
MODEL

In this section, we briefly review the graphical framework for the WF
model, which was considered in detail by Song and Slatkin (2007).
The reader should refer to that paper for a detailed explanation.

Let G be a match graph with vertex set VG. Given a vertex v∈VG,
we use d(v) to denote its degree. We focus on the case with unlinked
loci.

4.1 Probability associated with a vertex split
In a match graph G, consider a vertex v with degree d >1,
and suppose that edges incident with v are bijectively labeled
by I ={i1,i2,...,id}. Let B�B̄ denote a bipartition of I into two
disjoint subsets. There are 2d−1 inequivalent bipartitions of I . Each
bipartition has probability 1/2d−1 and corresponds to splitting v
into two vertices, such that the edges labeled by B become incident
with one vertex and the edges labeled by B̄ become incident with
the other vertex.

4.2 Probability associated with a vertex merge
Suppose that a split graph GS contains n vertices. For ease of
discussion, label the vertices by [n]={1,...,n}. In the WF model,
disjoint subsets of [n] may each merge into a single vertex. More
generally, there exists an one-to-one correspondence between the
set of all vertex merge operations on GS and the set of all partitions
of [n] into non-empty subsets, with each subset corresponding to
those vertices that merge into a single vertex. A partition of [n]
into k non-empty subsets defines a particular case of assigning
n labeled individuals to k distinct unlabeled parents, with each
parent having at least one child. Hence, the probability of a
particular set of vertex merges in GS such that k vertices remain, is
given by (2NWF)(k)/(2NWF)n, where z(k) denotes the falling factorial
z(z−1)···(z−k+1).
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4.3 Probability associated with mutation
Let {x1

i ,...,xk
i } denote a set of alleles at locus i in k individuals at

time t. In the infinite-alleles model, x1
i ≡x2

i ≡···≡xk
i only if their

parental alleles in generation t−1 all match and no mutation occurs
between generations t−1 and t in the lineages relating {x1

i ,...,xk
i }

to their parents. Hence, the probability of any match relation at
time t that requires x1

i ≡x2
i ≡···≡xk

i must contain an overall factor

of (1−μi)k when written in terms of MPs at time t−1. This fact
translates to the following statement in our graphical representation:
given a vertex v∈VG, define

δi(v) :=
{

1 if an edge labeled i is incident with v,
0 otherwise.

(1)

This is an indicator variable for whether the individual v is involved
in a match relation at locus i. In an L-locus match graph, d(v)=∑L

i=1δi(v). The total number of individuals involved in match
relations at locus i is denoted by δi(G) :=∑

v∈V (G)δi(v). When
relating G to graphs in the previous generation, we need to include
an overall factor of

∏L
i=1(1−μi)δi(G).

5 THE GRAPHICAL FRAMEWORK FOR THE
MORAN MODEL

In this section, we consider the graphical framework for the Moran
model, which was not considered in Song and Slatkin (2007). We
consider performing split-and-merge operations on a given match
graph G with vertex set VG, where |VG|=k. As before, d(v) denotes
the degree of a vertex v∈VG and δi(v) is defined as in (1).

5.1 Coefficients in the recurrence equation
Below we describe the probabilities associated with vertex split-
and-merge operations in the case of completely unlinked loci. In
the Moran model, exactly one individual in the entire population
is a newborn. This condition puts tight restrictions on the allowed
split-and-merge operations. In particular, at most one vertex may
undergo a split. In what follows, we list the allowed split-and-merge
operations. For ease of notation, define, for v∈VG,

m(v) :=
L∏

i=1

(1−μi)
δi(v).

5.1.1 No vertex splits In this case, at most two vertices may be
involved in a merge. All possible cases are as follows.

• 0 merge: G→G. The associated probability is

p00 := 2NM −k

2NM

+ (2NM −k+1)

(2NM)2

∑
v∈VG

m(v)

2d(v)−1
. (2)

• 1 merge: G→G′, with |VG|=k and |VG′ |=k−1. Let u and v
denote the vertices that merge. The following probability is for
that particular merge operation:

p01(u,v) := 1

(2NM)2

[
m(u)

2d(u)−1
+ m(v)

2d(v)−1

]
. (3)

5.1.2 Exactly one vertex splits Let v∈VG with d(v)>1 be the
vertex that splits, and let x,y denote the new vertices created by the
split operation. The following probabilities are for a particular split

operation at v (i.e. a particular non-trivial bipartition of the edges
incident with v).

• 0 merge: G→G′, with |VG|=k and |VG′ |=k+1. The
associated probability is

p10(v) := (2NM −k+1)(2NM −k)

(2NM)3
· m(v)

2d(v)−1
. (4)

• 1 merge:
◦ G→G. Here, x and y merge with each other. The associated

probability is

p11a(v) := 2NM −k+1

(2NM)3
· m(v)

2d(v)−1
. (5)

◦ G→G′, with |VG|=k and |VG′ |=k. Exactly one of x and y
merges with a vertex in VG \{v}. The following probability
is for a particular merge operation:

p11b(v) := 2NM −k+1

(2NM)3
· m(v)

2d(v)−1
. (6)

• 2 merges: G→G′, with |VG|=k and |VG′ |=k−1. Here, x and y
each merge with a vertex in VG \{v}. The following probability
is for a particular set of merge operations for x and y:

p12(v) := 1

(2NM)3
· m(v)

2d(v)−1
. (7)

5.2 Consistency check
The recurrence equation for a particular match graph G(t) has the
following form:

G(t)=
∑

j

cj(μ,NM)Gj(t−1), (8)

where the summation is over those match graphs that can be
obtained by performing vertex split-and-merge operations on G(t),
and cj(μ,NM) are constants that depend on μ= (μ1,...,μL) and NM.
For μi =0 for all i=1,...,L, then all MPs are identically equal
to 1, thus implying

∑
j cj(0,NM)=1. We will now verify that the

coefficients shown in (2)–(7) satisfy this consistency condition. First,
define S :={v∈VG |d(v)>1}, which denotes the set of all vertices
that can undergo splits, and let k =|VG|. Then, for μi =0,∀i, the
right-hand side of (8) becomes

p00 +
∑

{u,v}⊂VG:u =v.

p01(u,v)+
∑
v∈S

{(
2d(v)−1 −1

)

×
[
p10(v)+p11a(v)+2(k−1)p11b(v)+(k−1)2p12(v)

]}
,

where the factor [2d(v)−1 −1] corresponds to the total number of
non-trivial bipartitions of the labeled edges incident with v. It is
straightforward to show that this expression is exactly equal to 1.
Hence, the probabilities in Section 5.1 are consistent.

6 SIMPLIFICATION AND EXAMPLES
Although split-and-merge operations allowed in the WF and Moran
models are different, exactly the same set of inequivalent match
graphs are involved in the systems of recurrence equations in the
two models. In the general case, the major computational obstacle
is that there are too many match graphs to consider. However, in
the special case in which all loci have the same mutation rate, the
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Table 1. The number α(k) [respectively, β(k)] of inequivalent loopless
multigraphs with k labeled (respectively, unlabeled) edges and non-isolated
vertices

k α(k) β(k)

1 1 1
2 3 3
3 16 8
4 139 23
5 1 750 66
6 29 388 212
7 624 889 686
8 16 255 738 2 389
9 504 717 929 8 682
10 18 353 177 160 33 160
11 769 917 601 384 132 277
12 36 803 030 137 203 550 835
13 1 984 024 379 014 193 2 384 411

computation simplifies dramatically, allowing us to compute MPs
for 10 or more loci. Below we describe this simplification in detail
and give a couple of examples to illustrate setting up recurrence
equations.

6.1 Graph enumeration
In the case of haplotypic MPs, there is a one-to-one correspondence
between the set of inequivalent match graphs with k edges and
the set of inequivalent loopless multigraphs with k edges and non-
isolated vertices. (Recall that a multigraph is a graph in which there
may be more than one edge joining any pair of vertices.) Using
this bijection, we can determine exactly how many inequivalent
match graphs we need to consider. The number α(k) of inequivalent
loopless multigraphs with k distinctly labeled edges is shown in
Table 1 for k =1,...,13 (Labelle, 2000). Such edge-labeled graphs
are what we need to consider if mutation rates μi are all distinct
at different loci, and the total number of inequivalent match graphs
involved in the L-locus MP computation is given by

A(L) :=
L∑

k=1

(
L

k

)
α(k).

Clearly, enumerating all such match graphs to compute the
13-locus MP is not tractable. However, if μi =μ, for all i=1,...,13,
then we do not need to distinguish loci, thus allowing us to
remove edge labels. This property considerably reduces the total
number of inequivalent graphs we need to consider, simplifying the
computation significantly. Shown in Table 1 is the number β(k) of
inequivalent loopless multigraphs with k unlabeled edges (Harary
and Palmer, 1973). Note that β(k) grows much slower than does
α(k) as k increases. If all mutation rates are equal, the number of
inequivalent match graphs that we need to consider for the L-locus
MP computation reduces to

B(L) :=
L∑

k=1

β(k). (9)

In what follows, we assume that μi are the same across all loci; i.e.
we set μi =μ for all i=1,...,L.

Fig. 2. 1-Locus recurrence equations for the WF model.

Fig. 3. 1-Locus recurrence equations for the Moran model.

Given a system of recurrence equations for edge-labeled graphs,
a system for edge-unlabeled graphs can be obtained by summing
over the coefficients of edge-labeled graphs that are equivalent as
edge-unlabeled graphs.

6.2 The 1-locus recurrence equations
In the WF model, the recurrence equation for the 1-locus MP PWF

1 is
shown in Figure 2, which can be solved to yield

PWF
1 = (1−μ)2

2NWF −(1−μ)2(2NWF −1)
. (10)

In the Moran model, the 1-locus MP PM
1 satisfies the recurrence

equation shown in Figure 3, which implies

PM
1 = (1−μ)

2NM −(1−μ)(2NM −1)
. (11)

6.3 The 2-locus recurrence equations
Shown in Figure 4 is a system of recurrence equations for 2-locus
MPs in the Moran model. It corresponds to the case with an arbitrary
recombination rate r (c.f. Section 2.2) and mutation rates μi =μ for
i=1,2. Before solving this system of three coupled equations, the
1-locus MP PM

1 should be computed first as described in Section 6.2.
The system contains three unknowns and three coupled equations;
PM

2 (c.f. Fig. 1) is one of the three unknowns. The 2-locus system
corresponding to the WF model is also simple to write down, but
we do not show it here because of space constraint. We refer the
interested reader to Figure 10 of Song and Slatkin (2007).

7 IMPLEMENTATION DETAILS
Computing the MPs for more than five loci requires overcoming
several algorithmic and engineering challenges. Described below are
our solutions to some of these challenges. The reader only interested
in results may skip to Section 8.

7.1 Algorithm for computing MPs
To compute PWF

L in the WF model or PM
L in the Moran model, a

breadth-first search (BFS) is performed starting with the L-locus
match graph shown in Figure 1. Given a match graph to explore, we
perform all possible split-and-merge operations on that graph, and
all newly encountered match graphs (i.e. inequivalent to the ones
seen so far) get put in the BFS queue for subsequent exploration.
When the BFS terminates, we would have constructed a directed,
edge-weighted BFS graph defined as follows: (i) To each match
graph, assign a vertex. (ii) Draw a directed edge from vertex Gi to
vertex Gj if the match graph Gj can be obtained from the match

i191



[10:11 15/5/2009 Bioinformatics-btp227.tex] Page: i192 i187–i195

A.Bhaskar and Y.S.Song

Fig. 4. The system of recurrence equations for 2-locus MPs in the Moran model with an arbitrary recombination rate r and μi =μ for i=1,2.

graph Gi by performing vertex split-and-merge operations allowed
in a single generation. We say that Gj is a neighbor of Gi. (iii) Assign
the associated split–merge probability to each edge.

To avoid confusion with match graphs, we will call the above
BFS graph a supergraph. This supergraph encodes a system
of linear equations. A match graph with outdegree ≥1 in the
supergraph can be written as linear combination of its neighbors,
with the corresponding edge weights taken as coefficients in the
linear combination. Since performing split-and-merge operations
on a given match graph never increases the number of edges,
the supergraph produced by the BFS has L strongly connected
components (SCC) C1,...,CL , with Ck containing all k-locus match
graphs (each of which has exactly k edges). Hence, the linear system
for the entire supergraph is naturally decomposed into L linear
systems, one for each SCC, and they can be solved sequentially
from C1 to CL .

7.2 Graph isomorphism testing
During the BFS, when split-and-merge operations are performed
on a particular match graph, it is possible to encounter a neighbor
match graph which is isomorphic to one of the match graphs that has
already been generated before. To avoid putting redundant match
graphs into the BFS queue and to set up the system of linear
equations with the correct coefficients, we therefore need an efficient
way to test graph isomorphism. There is no known polynomial-
time algorithm for testing graph isomorphism for arbitrary graphs,
but several heuristics have been suggested that work well for most
graphs. In our work, we use the nauty package (McKay, 2007)
to generate a canonical permutation of the vertex labels of each
graph. The canonical permutation ensures that if two graphs are
isomorphic, their adjacency matrices will be identical after applying
their respective canonical permutations. We hash the adjacency
matrix of the canonically permuted graph and use this hash along
with the adjacency matrix to store the graphs and test isomorphism.

Match graphs in our framework are multigraphs, but nauty only
deals with simple graphs (i.e. graphs with at most one edge between
every pair of vertices). However, nauty supports the notion of

colors for partitioning vertices, which is respected by the canonical
permutation of vertex labels. We take advantage of this feature to
create a new colored simple graph from a match graph as follows:
if vertices u and v have k >1 edges between them, we create a new
vertex w with color k and create edges {u,w} and {v,w}. The original
vertices of the match graph maintain a color of 1. The canonical
permutation can then be applied to this new graph for testing graph
isomorphism as described before.

7.3 Order-2 truncation
In the BFS, performing all possible split-and-merge operations on a
given match graph G may produce many neighbors, but a significant
fraction of them might come with negligibly small edge weights
(i.e. split-and-merge probabilities). To simplify the computation,
we ignore all neighbors of G with edge weights of order 1/Nm

where m>2 and N is either NWF or NM, depending on the model.
By ‘ignoring’ neighbors, we mean removing edges from G to those
neighbors in the supergraph. This approximation scheme is called
order-2 truncation. Song and Slatkin (2007) showed that it produces
very accurate answers and we have independently verified this fact
using our new implementation. In the WF (respectively, Moran)
model computation, we used order-2 truncation for all match graphs
corresponding to ≥2 loci (respectively, 9 loci).

7.4 Solving the linear system
In the WF model, the number of edges in the supergraph grows
quadratically with the number of vertices in the supergraph. For
L=13, the supergraph contains ∼3.1×106 vertices and at least
2×1012 edges, even if the above-mentioned order-2 truncation is
used. Storing the associated edge weights in 8 B double-precision
data types is intractable, and therefore we pursued the WF model
only up to 10 loci. This is less of a problem in the Moran model, in
which the supergraph has fewer edges than that in the WF model.
However, the linear system for 13 loci in the Moran model still
has ∼3.1×106 coupled equations in just as many variables, and
the standard Gaussian elimination with a cubic running time is not
tractable. Instead, we use the iterative Successive Over-Relaxation
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Table 2. Comparison of L-locus MPs for the case with Ne =10000 and μi =μ for all loci i=1,...,L

L πWF
L PWF

L PM
L πWF

L PWF
L PM

L πWF
L PWF

L PM
L

μ=1×10−4 μ=2×10−4 μ=3×10−4

1 2.00×10−1 2.00×10−1 2.00×10−1 1.11×10−1 1.11×10−1 1.11×10−1 7.69×10−2 7.69×10−2 7.69×10−2

2 4.00×10−2 4.00×10−2 4.00×10−2 1.23×10−2 1.24×10−2 1.24×10−2 5.91×10−3 5.93×10−3 5.94×10−3

3 8.00×10−3 8.01×10−3 8.01×10−3 1.37×10−3 1.38×10−3 1.38×10−3 4.55×10−4 4.60×10−4 4.66×10−4

4 1.60×10−3 1.60×10−3 1.61×10−3 1.52×10−4 1.55×10−4 1.59×10−4 3.50×10−5 3.68×10−5 4.03×10−5

5 3.20×10−4 3.22×10−4 3.25×10−4 1.69×10−5 1.78×10−5 2.01×10−5 2.69×10−6 3.26×10−6 5.29×10−6

6 6.40×10−5 6.48×10−5 6.68×10−5 1.88×10−6 2.16×10−6 3.51×10−6 2.07×10−7 3.80×10−7 1.52×10−6

7 1.28×10−5 1.31×10−5 1.44×10−5 2.09×10−7 3.02×10−7 1.08×10−6 1.59×10−8 6.86×10−8 7.00×10−7

8 2.56×10−6 2.69×10−6 3.48×10−6 2.32×10−8 5.41×10−8 4.94×10−7 1.22×10−9 1.74×10−8 3.63×10−7

9 5.11×10−7 5.65×10−7 1.05×10−6 2.57×10−9 1.28×10−8 2.60×10−7 9.39×10−11 5.08×10−9 1.93×10−7

10 1.02×10−7 1.24×10−7 4.16×10−7 2.86×10−10 3.72×10−9 1.42×10−7 7.22×10−12 1.55×10−9 1.03×10−7

11 2.05×10−8 2.06×10−7 3.18×10−11 7.84×10−8 5.55×10−13 5.54×10−8

12 4.09×10−9 1.15×10−7 3.53×10−12 4.35×10−8 4.27×10−14 2.98×10−8

13 8.18×10−10 6.69×10−8 3.92×10−13 2.41×10−8 3.28×10−15 1.60×10−8

μ=5×10−4 μ=1×10−3 μ=5×10−3

1 4.76×10−2 4.76×10−2 4.76×10−2 2.44×10−2 2.44×10−2 2.44×10−2 4.94×10−3 4.94×10−3 4.95×10−3

2 2.26×10−3 2.28×10−3 2.29×10−3 5.93×10−4 6.09×10−4 6.17×10−4 2.44×10−5 4.05×10−5 4.88×10−5

3 1.08×10−4 1.13×10−4 1.18×10−4 1.44×10−5 1.87×10−5 2.39×10−5 1.20×10−7 3.54×10−6 8.53×10−6

4 5.13×10−6 6.53×10−6 9.74×10−6 3.52×10−7 1.42×10−6 4.41×10−6 5.95×10−10 8.13×10−7 3.59×10−6

5 2.44×10−7 6.33×10−7 2.43×10−6 8.57×10−9 2.88×10−7 1.92×10−6 2.94×10−12 2.01×10−7 1.67×10−6

6 1.16×10−8 1.21×10−7 1.10×10−6 2.09×10−10 7.45×10−8 9.38×10−7 1.45×10−14 5.06×10−8 8.08×10−7

7 5.52×10−10 3.17×10−8 5.57×10−7 5.08×10−12 1.99×10−8 4.70×10−7 7.16×10−17 1.27×10−8 3.98×10−7

8 2.63×10−11 8.94×10−9 2.88×10−7 1.24×10−13 5.36×10−9 2.39×10−7 3.54×10−19 3.23×10−9 1.98×10−7

9 1.25×10−12 2.56×10−9 1.49×10−7 3.01×10−15 1.45×10−9 1.21×10−7 1.75×10−21 8.26×10−10 9.82×10−8

10 5.95×10−14 7.42×10−10 7.79×10−8 7.34×10−17 3.98×10−10 6.19×10−8 8.62×10−24 2.15×10−10 4.91×10−8

11 2.83×10−15 4.08×10−8 1.79×10−18 3.17×10−8 4.26×10−26 2.45×10−8

12 1.35×10−16 2.13×10−8 4.35×10−20 1.62×10−8 2.10×10−28 1.23×10−8

13 6.41×10−18 1.12×10−8 1.06×10−21 8.32×10−9 1.04×10−30 6.16×10−9

For the mutation rates shown above, the product rule MPs under the WF and Moran models are very close, so we only show the former πWF
L .

method to solve the linear systems up to a relative error of 10−9 for
each variable.

7.5 Precomputing the supergraph structure
The algorithm described above computes the MPs for a particular
mutation rate μ. This computation takes about 24 h on a 2.8 GHz
Opteron PC for the 13-locus MP computation in the Moran model.
Instead of repeating this expensive computation for different μ, we
run the BFS procedure once and store the supergraph structure on
disk without actually computing the edge weights (i.e. probabilities
associated with split-and-merge operations). To compute the MPs
for a specific μ, another program reads the supergraph from
disk, calculates the probabilities associated with each edge of the
supergraph using the specified μ and population size, and solves the
linear system to determine the MPs. For the 13-locus computation in
the Moran model, this program takes only about 3.5 h, of which 2 h
are spent on reading the supergraph and match graphs into memory,
and calculating edge weights in the supergraph.

8 RESULTS
In this section, we summarize our main results. To model a haploid
population with effective population size 2Ne, we need to use
NWF =Ne in the WF model and NM =2Ne in the Moran model

(see Ewens 2004 p. 121 for explanation). In what follows,
we consider a finite population with Ne =10 000, which is
an approximate long-term effective population size of humans
estimated from various genetic data (Harding et al., 1997;
Harpending et al., 1998). Hence, we use NWF =10 000 in the WF
model and NM =20 000 in the Moran model.

8.1 Accuracy of the product rule
We use πWF

L to denote the L-locus MP in the WF model obtained
using the product rule; note that πWF

L = (PWF
1 )L . Table 2 shows πWF

L ,
PWF

L and PM
L for six different values of μ. We do not show the product

rule MPs in the Moran model, since they are very close to πWF
L for the

mutation rates shown in the table. The L-locus product rule MP πWF
L

shown in the table agrees very well with Ewens’ (1972) sampling
formula (ESF): 1/(1+θ )L , where θ =4Neμ.

As Table 2 illustrates, for a give mutation rate μ, the product rule
becomes less accurate as the number of loci increases. Furthermore,
for a large number L of loci, a slight change in μ causes the product
rule MP to decrease by a large amount; for L=13, it decreases by
a factor of about 250 000 if μ changes from 1×10−4 to 3×10−4.
However, PWF

L and PM
L are far less sensitive to a change in μ; in

particular, PM
13 changes only by a factor of about 4 if μ changes

from 1×10−4 to 3×10−4.
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Fig. 5. The ratio of PM
L to PWF

L for Ne =10000 and various values of μ.

Table 3. MPs for Ne =109 and μ=10−8, which correspond to θ =40

L 1/(1+θ )L PWF
L PM

L

1 2.44×10−2 2.44×10−2 2.44×10−2

2 5.95×10−4 5.95×10−4 5.95×10−4

3 1.45×10−5 1.45×10−5 1.45×10−5

4 3.54×10−7 3.54×10−7 3.54×10−7

5 8.63×10−9 8.63×10−9 8.65×10−9

6 2.11×10−10 2.11×10−10 2.20×10−10

7 5.13×10−12 5.34×10−12 9.86×10−12

8 1.25×10−13 1.79×10−13 2.52×10−12

9 3.05×10−15 1.75×10−14 1.22×10−12

Since the accuracy of the product rule is highly sensitive to
mutation rates, one important question is, ‘What range of mutation
rates in the infinite alleles model is relevant to microsatellite
loci?’ The observed homozygosity at the CODIS microsatellite loci
typically ranges between 0.1 and 0.3, with the average over all
13 loci being about 0.2 (Budowle et al., 2001). Under the infinite
alleles model with Ne =10000, ESF implies that homozygosity=0.2
corresponds to μ=10−4. For this value of μ, Table 2 shows that
the product rule is reasonably accurate, especially for L≤10 and
for the WF model. But, for μ=2×10−4, which corresponds to
homozygosity = 0.11, the product rule produces considerably less
accurate MPs.

8.2 WF versus Moran
Table 2 reveals a striking difference between the WF and Moran
models. The two models agree very well in the single locus case
(i.e. L=1). However, for large values of L, PM

L in the Moran model
can be orders of magnitude higher than PWF

L in the WF model. As
Figure 5 shows, for a given mutation rate μ, the ratio PM

L/PWF
L

increases rapidly with the number L of loci. For a given L, the
ratio PM

L/PWF
L increases with μ.

As μ→0 and NWF →∞ while θ =4Neμ=4NWFμ is held fixed,
one can analytically show that PWF

1 in (10) approaches 1/(1+θ ),
which agrees with the ESF mentioned in the previous section.
Likewise, as μ→0 and NM →∞ while θ =4Neμ=2NMμ is held
fixed, PM

1 in (11) approaches 1/(1+θ ). Therefore, as expected PWF
1

and PM
1 converge to the same value in the diffusion limit. For L>1,

we used our software to check numerically that both PWF
L and PM

L
converge to 1/(1+θ )L in the diffusion limit. However, for large
values of L, the rate of convergence for the Moran model seems

much slower than that for the WF model. Table 3 illustrates this
point. For Ne =109 and μ=10−8, which correspond to θ =40, PWF

L
for L≥6 are much closer to 1/(1+θ )L than are PM

L .

8.3 The 2-locus case with a variable recombination rate
In the case of two loci, we can symbolically solve the coupled
equations in Figure 4 to obtain an analytic formula for PM

2 for the
Moran model. Likewise, we can symbolically solve the coupled
equations in Figure 10 of Song and Slatkin (2007) to obtain an
analytic formula for PWF

2 for the WF model. The value r∗ of r ∈[0, 1
2 ]

for which the ratio PM
2 /PWF

2 is maximized depends on Ne and μ.

For example, with Ne fixed at 10000, r∗ ≈0.129 for μ=5×10−4,
r∗ ≈0.224 for μ=1×10−3 and r∗ = 1

2 for μ=5×10−3.

8.4 Excluding siblings
To estimate the contribution of close relatives to MPs, we want to
compute MPs conditioned on the event that the two individuals being
compared are neither full-sibs nor half-sibs in the WF model. This
computation can be carried out as follows. Suppose that the two
individuals are sampled from generation t. Then, we compute the
equilibrium MPs as before and use them as MPs at generation t−1.
To compute MPs at generation t conditioned on the two individuals
being non-sibs, we set up a system of restricted recurrence equations,
obtained by restricting vertex merge operations to avoid generating
sibling relationships. In the Moran model, it is not clear how the
analogs of full-sibs and half-sibs should be defined, so the Moran
model is omitted from this discussion.

Shown in Table 4 are πWF
L and PWF

L conditioned on the event that
the two individuals being compared are non-sibs. Comparing that
table with Table 2, we see that the product rule becomes much more
accurate if we are provided with the additional information that the
individuals being compared are not close relatives.

9 DISCUSSION
For a finite population, we have shown that the accuracy of multi-
locus MPs predicted by the product rule is highly sensitive to
mutation rates in the range of interest. For Ne =10000 and μ=10−4,
the product rule provides a reasonable approximation to the true MP,
but slightly increasing the mutation rate (say, to μ=2×10−4) can
change this conclusion dramatically. There is no doubt that the true
13-locus MP at the CODIS loci is a very small number, but it is
important to find out how small it is, as the following recent work
illustrates: Song et al. (2009) considered a hypothetical series of
criminal cases in which a suspect is identified based only on ‘cold
hit’, i.e. the DNA profile of a crime-scene sample is found to match
a known profile in a DNA database. They showed that the average
probability that a ‘cold hit’ in a DNA database search results in an
erroneous attribution is approximately equal to twice the number of
individuals in the population not in the database times the average
MP. Hence, since the population size is very large, an increase
by several orders of magnitude in the MP may change the above
probability of erroneous attribution from being negligibly small to
being non-negligible.

The reader should bear in mind that the results described here
pertain to a simplified, ideal finite population. The models we
consider ignore several important aspects of human genetics. In
particular, monogamy is ignored for simplicity, while Song and
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Table 4. MPs between non-siblings in the WF model with Ne =10 000

L Non-sib πWF
L Non-sib PWF

L Non-sib πWF
L Non-sib PWF

L Non-sib πWF
L Non-sib PWF

L Non-sib πWF
L Non-sib PWF

L

μ=1×10−4 μ=5×10−4 μ=1×10−3 μ=5×10−3

1 2.00×10−1 2.00×10−1 4.75×10−2 4.75×10−2 2.43×10−2 2.43×10−2 4.89×10−3 4.89×10−3

2 4.00×10−2 4.00×10−2 2.26×10−3 2.26×10−3 5.91×10−4 5.95×10−4 2.39×10−5 2.78×10−5

3 7.99×10−3 7.99×10−3 1.07×10−4 1.08×10−4 1.44×10−5 1.48×10−5 1.17×10−7 3.67×10−7

4 1.60×10−3 1.60×10−3 5.11×10−6 5.20×10−6 3.49×10−7 3.93×10−7 5.71×10−10 1.62×10−8

5 3.19×10−4 3.20×10−4 2.43×10−7 2.54×10−7 8.48×10−9 1.22×10−8 2.79×10−12 1.01×10−9

6 6.39×10−5 6.39×10−5 1.15×10−8 1.28×10−8 2.06×10−10 5.19×10−10 1.36×10−14 6.68×10−11

7 1.28×10−5 1.28×10−5 5.48×10−10 6.81×10−10 5.01×10−12 3.15×10−11 6.67×10−17 4.48×10−12

8 2.55×10−6 2.56×10−6 2.61×10−11 4.02×10−11 1.22×10−13 2.39×10−12 3.26×10−19 3.06×10−13

9 5.10×10−7 5.12×10−7 1.24×10−12 2.76×10−12 2.96×10−15 2.00×10−13 1.59×10−21 2.16×10−14

10 1.02×10−7 1.03×10−7 5.89×10−14 2.23×10−13 7.19×10−17 1.74×10−14 7.79×10−24 1.61×10−15

Slatkin (2007) showed that monogamy increases the probabilities
of matches at unlinked loci and that the effect of monogamy
increases with the number of loci. Other relevant features that should
be explored include diploidy and population structure. Another
limitation of our study, which also applies to that of Laurie and Weir
(2003) and Song and Slatkin (2007), is that we assume an infinite
alleles model of mutation; as such, we do not allow for independent
origins of the same allele, as can happen with microsatellite loci. In
the infinite alleles model, identity in allelic state implies identity by
descent. Our work studies the effect of shared genealogies in a finite
population on the joint probability of identity by descent. Regarding
this question, our work applies to other mutation models as well.

As an important by-product of our work on MP computation, we
have revealed a fundamental difference between the WF and Moran
models, which are two standard models widely used in population
genetics. We have shown that the difference in MPs in the two
models increases with the number of loci. It will be interesting to
provide a genealogical interpretation of this finding. We speculate
that the times to the most recent common ancestors at unlinked loci
are more correlated in the Moran model than in the WF model.
Given the results discussed in this article, it is tempting to suspect
that other quantities, such as linkage disequilibrium, of interest to
population geneticists may be fundamentally different in the two
models, especially when many loci are considered. Consequently, it
seems pertinent to think about which random mating model is more
appropriate for humans.
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