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Since of its introduction in 1980s, laser speckle imaging has become a powerful tool in flow imaging. Its high
performance and low cost made it one of the preferable imaging methods. Initially, speckle contrast measure-
ments were the main algorithm for analyzing laser speckle images in biological flows. Speckle contrast mea-
surements, also referred as Laser Speckle Contrast Imaging (LSCI), use statistical properties of speckle patterns to
create mapped image of the blood vessels. In this communication, a new method named Laser Speckle Optical

Flow Imaging (LSOFI) is introduced. This method uses the optical flow algorithms to calculate the apparent
motion of laser speckle patterns. The differences in the apparent motion of speckle patterns are used to identify
the blood vessels from surrounding tissue. LSOFI has better spatial and temporal resolution compared to LSCI.
This higher spatial resolution enables LSOFI to be used for autonomous blood vessels detection. Furthermore,
Graphics Processing Unit (GPU) based LSOFI can be used for quasi real time imaging.

1. Introduction

Because of the importance of accurate blood flow visualization,
various techniques for flow imaging have been proposed in medical
fields such as ophthalmology, dermatology, endoscopy, and internal
medicine (Stern et al., 1979). Some of these techniques are non-invasive
and include methods such as Orthogonal Polarization Spectral (OPS)
imaging (Groner et al., 1999), side Stream Dark Field (SDF) imaging
(Goedhart et al., 2007), Laser Doppler Perfusion Imaging (LDPI)
(Wardell et al., 1993) and laser speckle methods (Basak et al., 2016),
such as Laser Speckle Contrast Imaging (LSCI). Among all these
methods, LSCI is gaining interest because of its simplicity and ease of
use.

Laser speckle effect occurs when a coherent light, such as a laser
beam, illuminates a rough diffuse surface, thereby producing random
interference effects. This effect is visualized by a granular pattern
consisting of dark and bright spots (Rigden and Gordon, 1962). When
the speckle pattern is generated on a moving object such as blood
vessels, the blood flow causes fluctuations in the speckle pattern on the
detector. In fluid mechanics, the phenomenon where an optical wave
propagating through a medium experience irradiance (intensity) fluc-
tuations, is referred to as optical turbulence. In LSCI, blood flow causes
blurriness of image pixels, which leads to scintillation of the intensity.
Here we define scintillation index as:
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where I denotes intensity of the optical wave, and < > denotes en-
sembled average or a long time average. Over the years various algo-
rithms and methods have been developed to calculate both temporal
and spatial fluctuations of speckle patterns (Draijer et al., 2009; Vaz
et al., 2016). These methods measure the blurriness of image pixels,
which is generally centered around speckle contrast defined as:
e 9 _ V<2 > — < I>?
<I> <I> (2)
Obviously, the speckle contrast, «, is the same as the square root of
the scintillation index defined in Eq. (1). When there is little or no
movement in the speckle patterns, “fully developed” patterns will cause
the speckle contrast (Eq. (2)) to be equal to unity (Goodman, 1975).
When there is movement in the object, the speckle pattern blurs, and
the standard deviation of the intensity will be smaller than the mean
intensity, thereby reducing speckle contrast. Assuming that the motion
of the scattering areas of the flow is random and these random motions
will decorrelate in time, the speckle contrast could be correlated to
blood flow velocity. The speckle contrast is furthermore related to

normalized electric field autocorrelation function g (r,7)
(Bandyopadhyay et al., 2005) as
28 pT T
= — g, ? (1 - —)d
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where f is a constant which account for different optical modes in
measurement. Here 7 is time and T is the averaging period. Typically, g
is hard to measure and therefore the intensity correlation function g»(z)
is measured instead. Functions g»(r) and g;(z) are correlated through
Siegert relation (Bandyopadhyay et al., 2005) as g»(z) = 1 + Blg1|>
Fercher and Briers (1981) assumed that f = 1 and the measured in-
tensity of speckles is integrated over time. Doing so, they came up with
the first speckle model described as

| 7, ( ( ZT))
= |—|1—exp|——
\/2T £ )

where 7. is the decorrelation time and is linked to decorrelation velocity
v, defined as
b= A

¢ 27T,

(%)

where A is the laser wavelength. Eq. (4) is one of the early attempts to
correlate the speckle decorrelation time to speckle contrast x. The
speckle contrast, k, can be used to create a mapped image. In this image
values of speckle contrast, k, are different for the blood flow and sur-
rounding tissue. This difference enables identifying the blood vessels in
the image. Eq. (4) has been evolving over the years. The developments
have been in various methods for measurement of x and decorrelation
time 7. (Basak et al., 2012; Draijer et al., 2009). The newer methodol-
ogies take into account various aspects of laser speckle patterns such as
the presence of static layer on top of the blood vessels (Parthasarathy
et al., 2008). Theoretical efforts were established to quantify the impact
of speckle size and sampling windows on the statistics of laser speckle
(Duncan et al., 2008b; Kirkpatrick et al., 2008). Moreover, studies have
been done to improve laser speckle imaging algorithms. These im-
provements enable real-time blood flow visualization (Ansari et al.,
2016a, 2016b, 2017; Humeau-Heurtier et al., 2015; Liu et al., 2008;
Tom et al., 2008).

Since the normalized electric field autocorrelation function g;(z) is
related to the mean square displacement < |Ar?| > of the speckle pat-
terns (Parthasarathy et al., 2008); it can be assumed that in the blood
vessels, < |Ar?| > is caused by the flow. Therefore, instead of using
statistical behavior of laser speckle patterns, a physics based model of
the blood flow can be deployed for flow visualization. In the most
general form, Cauchy momentum equation can be used to describe the
blood flow. However, since in many physiological conditions blood is
assumed to be a Newtonian fluid (Zamir, 2016a), The Navier-Stokes
equation can be used to describe the motion of the flow. The blood flow
is considered pulsatile viscous flow. Assuming vessels as rigid tubes,
simplified Navier-Stokes can be solved in different forms (Womersley,
1955; Zamir, 2016b) including:

1.3
Jo (nzWﬁ-L)
_ R _einwt

o (n%.W.i%)

i-P,

N
u(r,t) = Real{ )
" ®)
where u(r, t)is the radial component of the flow, W = Re,/pw/u is non-
dimensional frequency parameter also known as the Womersley
number. The angular frequency is represented by w. Viscosity and
density of the fluid is represented by u and p. The radius of the vessel is
R, the pressure gradient magnitude is P;. Bessel function of first kind
and order zero is shown as Jy, and i represents the imaginary unit.
However, the blood vessels are not rigid and the Navier-Stokes
equation can be solved for pulsatile flow in an elastic tube to give
(Morgan and Kiely, 1954; Womersley, 1955; Zamir, 2016b):

JO(W-ig-%)
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pew

u(x,r,t) = Real 1 - Ge L)
(7

Here c is the wave speed and G is a group parameter function of
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Poisson's ratio, Young's modulus, diameter of tube and wall thickness of
the tube. Although in some physiological conditions the assumption of
Newtonian fluid is not valid; the blood flow is still governed by the
Cauchy momentum equation.

In fluid mechanics, optical methods of flow visualization such as
Particle Image Velocimetry, Laser Speckle Velocimetry and Background
Oriented Schlieren are used to obtain better understanding of the flow
field. These methodologies are based on comparing two snapshots of
the flow field in different times. For example, in laser speckle veloci-
metry, two snapshots of the speckle patterns are taken, rather than
using a single blurred image, and the displacement vectors of the
speckle pattern between the two frames are calculated. Finding dis-
placement vectors from a pair of images is commonly referred as optical
flow estimation which could be defined as the apparent motion of 2D
projection of images between time steps. Cross-correlation methods are
the most common methods used in computing displacement between a
pair of images. In cross-correlation the whole image is divided into
small windows for analysis over which the velocity can be assumed to
be constant. Cross-correlation is a conventional method that is used in
various applications including particle image velocimetry and laser
speckle velocimetry (Dabiri, 2006). However, cross-correlation algo-
rithms cause the analysis of speckle patterns to become much more
complicated compared to speckle contrast techniques, in which speckle
contrast is measured over a single image. Moreover, cross-correlation
methods reduce the spatial resolution of the image as well. Because of
these disadvantages, speckle contrast imaging has been more popular.
With the recent developments in the computer vision especially in fields
of optical flow estimation over the past two decades, more advanced
and more accurate method has been developed. Atcheson et al. (2009)
compared optical flow algorithms with cross-correlation algorithm
using a synthetic dataset of noise backgrounds. They found that optical
flow algorithms significantly increase the resolution of displacement
calculations.

In this communication, a fluid mechanic approach is taken to vi-
sualize blood flow. Thus, different physical behavior of the blood flow,
such as the pulsatile behavior as shown in Egs. (6) and (7), is used to
visualize the blood flow. This was achieved by calculating apparent
displacement of laser speckle patterns. As discussed earlier, when cal-
culating displacement between a pair of images, optical flow algorithms
have better resolution. Hence, optical flow algorithms were deployed to
calculate the apparent displacement of image pixels. The differences in
optical displacement were used to map the blood vessels. This metho-
dology, hereafter referred to as the Laser Speckle Optical Flow Imaging
(LSOFI), is similar to the laser speckle velocimetry and background
oriented Schlieren. In the next section the optical flow algorithms are
reviewed in sufficient details followed by the section on the image ac-
quisition. Sample results are given in Section 4 followed by conclusions
in Section 5.

2. Optical flow algorithms

The early concept of optical flow algorithms arises from James J.
Gibson's (1966) work on visual stimulus provided to animals. Having
two images I(x,y,ty;) and I(x,y,t;) optical flow is defined as the 2D
vector field describing the apparent motion of each pixel. The apparent
motion computation is based on the assumption of brightness con-
servation, which states that the pixel intensity of the same physical
point is identical in both images,

I(x,y,t) =1(x+ &x,y + 8y, t + 6t) (8)

As previously mentioned, when the speckle pattern is generated
blood vessels, the flow causes fluctuations, which cause the intensity of
the corresponding pixel in the image to change. Based on the assump-
tion of brightness conservation (Eq. (8)), the change of such intensities
in a pair of images leads to an apparent motion of pixels. Conservation
of brightness principal could be restated such as if a pixel in the picture
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frame is selected and the pixel is followed between the pair of images,
the intensity of the pixel does not change. The material derivative can
be used to describe the brightness conservation, caused by the flow, as:

DI _or & oI dy oI _dl oI o1
+ = —+ = . —=—4u—+v.—=0
Dt ot

St ax ot dy ot ox dy 9

Eq. (9) states that the apparent motion of pixel is dependent on both
spatial and temporal gradient of pixel intensities. For each pixel in Eq.
(9), there are two unknowns u and v. Therefore, solving Eq. (9) requires
additional constraints, which are discussed next.

2.1. Horn-Schunck method

In order to solve Eq. (9), Horn and Schunck (1980) introduced an-
other set of constraint known as the smoothness constraint. Based on
Horn-Schunck's approach, for slow movements, the displacement is
considered smooth when the square of the gradient of velocities is
minimum. Their methodology is based on the idea to minimize:

DI\ ) )
S (E) + a(IV8xP + IVSyR)dxdy

Q (10)

where Q represent the image domain and a is a factor which weights in
the smoothness constraint. After basic transformations, it is shown that
minimization of Eq. (10) is equivalent to minimization of

S (%)2 +a((V. U + IV x UR)dxdy

Q an

where U = usi + vej is the velocity vector. Minimization of divergence
of velocity (V. U) corresponds to the fact that the flow is incompressible,
and minimization of V X U signifies that the vorticity, corresponding to
the blood flow field between a pair of images, is minimized.

2.2. Lucas-Kanade method

Lucas-Kanade method assumes that the motion between the two
frames is slow and the displacement is constant in each small blocks of
the image. Therefore, Eq. (9) can be assumed to hold for all pixel of a
window (Lucas and Kanade, 1981). Using the weighted least-square fit
and assuming a window function, W, to emphasize the constraint at the
center of each window, the Lucas-Kanade method has the following
form of solution for velocity components u and v:

o1 )
G

sz( oI ) ZWz
ox
—EWZ 6—1)
ot

w2 ( oI )( ar )
ox J\ dy
The Farnebidck (2003) method does not solve Eq. (9). Instead it
approximates a neighborhood of both frames at a time t; and t, using a
polynomial function. For the case of quadratic polynomial, the intensity
can be written as:

-
12)

2.3. Farneback method

I, (x) = xTAx + bl x + ¢; (13)

New signal can be constructed using a global displacement (d) as

Lx-d=x-dAx-d)+bl(x—d) +c
= xTA;x + (b1 — 2Ad)"x + dTA;d — b{d + ¢, a4
I, (x) = xTAyx + by x + ¢ (15)

Since I, (x — d) = I,,(x), equating the coefficient in the quadratic
polynomial yields to by =b; — 2A;d. From by =b; — 2A;d the
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transition value d could be solved if A, is non-singular. In principle, Egs.
(14) and (15) can be equated at every pixel and the solution may be
obtained iteratively. Farneback (2003) noted that the pointwise solu-
tion is too noisy. Instead, the displacement may be assumed to be slow-
varying and satisfies a neighborhood of values of x. The Farneback al-
gorithm, combines the polynomial approximation with multi scale re-
solution to produce optical flow results for each pixel of the image.

3. Image acquisition

In order to produce dataset for analysis of LSOFI, Laser speckle
patterns were applied to the cranial bone of the mouse. The animal
preparation and experimental setup have been explained in detail by
Davoodzadeh et al. (2018). The images were obtained by a 12-bit
CMOS camera with a rolling shutter (Thorlabs DCC1545). The camera
system was attached to a microscope with 10 X magnification with
focus plane of 0.3 mm below the surface. Laser speckle patterns were
generated using a continuous wave laser of 632.8 nm wavelength
coupled with beam expanders and diffusers. The resulting image had
1024 x 1280 pixel resolution acquired with a frame rate of 14.5 Hz. For
the purpose of this study, images with the exposure time of 12.5 ms
were used. The result of applying LSOFI to the sample dataset is pre-
sented next.

4. Results and discussions

First, the spatial resolution of LSOFI was compared to LSCI methods.
This section is followed by evaluating effect of sampling time and
temporal resolution on LSOFI and LSCI. Thereafter, various filters were
applied to the resulting dataset to increase the temporal and spatial
resolution and help to identify the blood flow. At last, quantitative
values calculated for LSOFI are presented.

4.1. Qualitative visualization of blood flow using optical flow algorithms

To present the visualization results, a new variable M is introduced

as:
1 pT
=7k
where u(t) and v(t) are horizontal and vertical motions calculated for
each pixel in pair of frames and T is averaging time over series of image
frames. The frames are averaged primarily to increase the signal to
noise ratio.

Fig. 1 is visualization of M when calculated using Horn-Schunck,
Lucas-Kanade and Farneback optical flow algorithms. Fig. 1 also shows
the results of applying LSCI to the image datasets. Laser Speckle Ima-
ging method (LSI) (Cheng et al., 2003) and Spatially Derived Contrast
Using Temporal Frame Averaging (sLASCA) (Le et al., 2007) were de-
ployed to the dataset to calculate the Laser speckle contrast x. LSI
method determines x over T number of frames (LSI image in Fig. 1 uses
T = 190 frames). sSLASCA method determines k by averaging T number
of Laser Speckle Contrast Analysis (LASCA) images (David Briers and
Webster, 1996). In LASCA, « is measured in 1 image over a pixel
window (sLASCA image in Fig. 1 uses T = 190 frames and window size
of 5 X 5).

Fig. 1, clearly demonstrates that at the same temporal resolution,
Horn-Schunck, Lucas-Kanade, and Farneback optical flow algorithms
have higher resolution than LSCI methods. Thus, optical flow algo-
rithms make it easier to identify and visualize the blood vessels. In the
LSCI methods, sLASCA has very low spatial resolution compared to the
LSI method. Therefore LSI method is compared to optical flow algo-
rithm for this work. Among the optical flow algorithms, Horn-Schunck
is more sensitive to smaller displacements. This results in more noise as
compared to the Farneback algorithm, which is sensitive to all scales of
motion.

u(t)? + v(t)?de ae)
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RAW Image

LSl SLASCA

Horn-Schunck OF

As shown in Eq. (16), to increase the signal to noise ratio of the
resulting images, T number of frames were selected and averaged.
When using LSI imaging method, T is the number of frames used for
calculation of k. When using sLASCA, T is the number of frames used for
averaging the results.

To investigate the effect of averaging over the dataset, the number
of frames was reduced to 20 images which corresponds to 1.37s.
Because of higher spatial resolution, Farneback's algorithm was chosen
as the representative of the optical flow algorithms, and LSI method was
chosen to represent LSCI methods. The results of applying Farneback
algorithm and LSI algorithm over 20 raw images are shown in Fig. 2.

Fig. 2 shows that for smaller averaging, Farneback optical flow

Microvascular Research 122 (2019) 52-59

Fig. 1. First row is a snapshot of the raw image
obtained. The second row is the result of map-
ping « using LSI and sLASCA algorithms. The
third row demonstrates the mapped value of "M’
using Horn-Schunck, Lucas Kanade and
Farneback optical flow algorithms. It can be
seen that SLASCA has very low spatial resolution
compared to LSI method. This could be the ar-
tifacts of using a rolling shutter camera. The
LSOFI algorithms produce higher resolution
images compared to LSCI imaging methods.

Farneback OF

algorithm has higher resolution compared to LSIL. In other words, Far-
neback optical flow algorithm requires a smaller number of images to
produce a reasonable flow visualization as compared to the LSI method.
This specification is very helpful towards quasi-real time visualization
of blood vessels. Comparing Farneback's results from Figs. 1 and 2, that
the results show that as the averaging time increases, the amount of
noise in the image decreases; which leads to clearer blood vessel vi-
sualization. Fig. 3 demonstrates the effect of averaging time on the
output of the Farneback's optical flow algorithm.

It can be seen from Fig. 3 that when the number of image pairs used
for temporal averaging increases, the resolution of the output image
increases. One of the optical flow algorithms advantages over LSI is that

Farneback OF

Fig. 2. Image processing results of applying LSI and Farneback optical flow algorithm over 20 frames of raw-images. It can be seen that Farneback optical flow

algorithm requires less images to produce a meaningful result.
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the optical flow analysis will output resulting image gradually as
images are captured. LSI, which uses the temporal properties of speckle
patterns, require all the inputs at once to produce the resulting image.

4.2. Post data processing

4.2.1. Noise reduction of the images

As shown in the previous section, optical flow algorithms, have
higher resolution compared to Laser Speckle Contrast Imaging algo-
rithms (LSCI). Moreover, it has been shown that as the number of data
samples increases, the resulting image will have less noise and therefore
higher resolution. However, it is not always practical to increase the
number of data points to reduce the image noise. Hence noise reduction
algorithms and filters could be applied to enhance the resolution. Fig. 4
demonstrates the effects of the Gaussian filter and median filter to the
outcomes of the optical flow algorithms. Fig. 4 illustrates the result of
applying filters and image noise reduction algorithms. For each of the
optical flow algorithms, 10 images were used. Applying filters reduces
the need for longer averaging time. It can be seen that when applying a
filter, Horn-Schunck algorithm produces a higher spatial resolution
image. Even though the Farneback's algorithm produces higher spatial
resolution image without a filter.

4.2.2. Image segmentation and identification of blood vessels

Optical flow's high spatial resolution results make it possible to
identify and segment the blood vessels in the image. Via image seg-
mentation algorithms. In computer vision, Image segmentation is used
to partition a digital image into different regions. By partitioning digital
images into different regions, the overall analysis becomes less com-
putationally expensive. Frangi et al.'s (1998) “multiscale vessel en-
hancement filter,” is one of the standard image segmentation algorithms,
used to identify the blood vessels in a digital image. To identify the
blood vessels, Frangi's filter was applied to the results of the optical
flow algorithms. The results are shown in Fig. 5.

Fig. 5 demonstrates that the combination of Frangi and Gaussian
filtering lead to better identification of blood vessels. The intensity of
the image correlates to the amount of vesselness calculated using the
Frangi filter. This can later be implemented for automatic blood vessel
detection using LSOFIL.
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Fig. 3. Image processing results using
Farneback's optical flow algorithm with
different averaging times. The number
on the top left corner represents the
number of pair of images used to process
the image. As the number of data frames
increases, the resolution of resulting
image increases as well. It can be seen
that for higher spatial resolution image,
more images are required.

4.3. Quantitative analysis of laser speckle optical flow imaging

The previous sections demonstrated Laser Speckle Optical Flow
imaging advantages over LSCI methods qualitatively. It also has been
shown that the better resolution of LSOFI can help in developing an
autonomous blood vessel detection system. However, like many LSCI
methods, the correlation of quantitative value of each representing
pixel with the blood velocity profile is uncertain. The quantitative
unitless value of «x is often assumed to have a correlation with the
decorrelation time as explained in Egs. (2)-(5). However, this as-
sumption has numerous issues that prevent LSCI method for becoming a
quantitative measurement methodology (Duncan et al., 2008a).

In contrast to the LSCI methods, the hypothesis of the LSOFI, in-
troduced in this paper, is physically based on the Cauchy momentum
equation. Fig. 6 presents the apparent displacement,M, for different
calculation methods. The first column shows the 2D mapped displace-
ment of the apparent motion. The second column represents the ap-
parent motion calculated at the solid line shown in the first column. The
third column represents the apparent motion calculated at the dashed
line shown in the first column. The vertical dotted line in the second
and third column shows the approximate boundary of the vessel at the
location of calculation. For the second and third column, the values of
averaged displacement over 190 frames were calculated along with
averaged displacement over 10 frames filtered using Gaussian and
median filters. Each row represents the optical flow algorithm used for
calculation. It can be interpreted from Fig. 6 that when Gaussian and
median filters are applied to the LSOFI results of 10 frames of images
(T =10 in Eq. (16)) have the same spatial resolution as when 190
frames of LSOFI results are averaged (T = 190 in Eq. (16)) with no
filters. In simpler words, Gaussian and median filter reduce the need for
additional frames. Fig. 6 shows that although the magnitudes calculated
by the optical flow algorithms differ, the different LSOFI algorithm
produce almost the same profiles.

5. Conclusions

Laser speckle contrast imaging is known as a convenient method for
visualizing flow in vessels. Common LSCI methods mapped the values
of speckle contrast “k” to produce a resulting image. In this work, a new
approach of laser speckle imaging, dubbed Laser Speckle Optical Flow
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Gaussian filter

Fig. 4. Result of applying a Gaussian and median filter on the optical flow result of 10 pair of images. The row indicates the optical flow algorithm used, and the
columns indicate the filter applied. It can be seen that applying Gaussian and median filters to the raw results of Horn-Schunck and Lucas-Kanade optical flow

algorithms lead to images with higher resolution.

Imaging (LSOFI) was introduced. In contrast with LSCI methods which
use the statistical properties of speckle patterns for flow visualization,
LSOFI maps the values of the apparent displacement of laser speckle
patterns. Strictly speaking, the noise caused by the blood flow is gov-
erned by Cauchy momentum equation and in some cases Navier-Stokes
equation. This is in contrast with the noise displacement in the

Lucas-Kanade OF
with Gaussian filter
& Frangi filter

y

Horn-Schunck OF
with Median Filter
& Frangi filter

with Gaussian filter

surrounding tissue which has different governing equation. LSOFI
captures the speckle displacement caused by different physical behavior
and creates a mapped image. It has been shown that LSOFI has ad-
vantages over LSCI methods both in temporal and spatial resolution. In
other words, LSOFI can be used to produce higher resolution images
compared with LSCI method using less frames. Moreover, the

Fig. 5. Results of applying a Frangi filter to
the output of optical flow algorithms. The
intensity of each pixel shows the vesselness
calculated by Frangi filter. It can be seen for
a small number of frames; the Horn-
Schunck algorithm visualizes the blood vein
better than other optical flow algorithms.
However, the results of Farneback optical
flow have less noise.

Farneback OF

& Frangi filter
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Fig. 6. Quantitative analysis of displacement values. The first column presents 2D mapped values of M. Second and third column represent the calculated apparent
motion,M, at the solid and dashed lines marked in the first column, respectively. The vertical dotted line in the second and third column shows the approximate
boundary of the vessel at the location of the solid and dashed lines. For the second and third column, the value of averaged displacement is calculated over 190
frames (T = 190 in Eq. (16)) along with averaged displacement calculated over 10 frames (T = 10 in Eq. (16)) using Gaussian and median filters. Each row represents

the optical flow algorithm used for calculating speckle displacement.

architecture of the LSOFI is optimal for Graphics Processing Unit (GPU)
computing platforms such as Nvidia's CUDA platform (Marzat et al.,
2009). Since the GPU computation increases the speed of LSOFI, the
GPU enabled LSOFI could be deployed to the embedded systems such as
Nvidia's JETSON to create a fast and fully functional quasi-real time
blood flow imaging system.

Like LSCI methods, the substantial challenge remains if LSOFI could
be used as a quantitative tool for assessing blood flow in vessels.
Although the LSOFI results have the same order of magnitude as some
reported values for blood flow in mouse's brain vessels, further ex-
periments using precise velocity measurements like LDF is required to
validate LSOFI as a quantitative tool for flowmetry. Nonetheless, LSOFI
could be used as a valid qualitative tool for blood flow visualization.
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