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An adaptable technique for comparative image assessment:

application to crosswell electromagnetic survey design for

fluid monitoring

(February 2, 2021)

Running head: Target-adaptable image assessment

ABSTRACT

Reservoir integrity stewardship accompanying carbon capture and sequestration considers

reservoir fluid extraction and re-injection as a risk-mitigating method against reservoir

overpressuring that could lead to caprock damage and ensuing CO2-leakage. Crosswell

electromagnetics offers a technically viable monitoring method with the spatial volume

coverage necessary for reservoir-encompassing pressure management. However, a certain

logistical dilemma for deep gas sequestration into saline and thus electrically conductive

aquifers is that crosswell magnetic-field measurements underperform in the imaging of more

resistive plume bodies, further exacerbated when vertical arrays intersect, as opposed to

surround, plumes. Comparative synthetic-data plume imaging of such scenarios rates the

information content of magnetic-field versus electric-field 3D crosswell layouts for reservoir

and infrastructure conditions of a representative pilot site in a coastal area in Florida. The

image quality of the resulting plume replications can be ranked numerically through a newly

proposed semblance qualifier, appraising the model goodness of fit to a given reference. In

contrast to common least-squares measures for goodness of fit, the semblance formulation

employs classifying logistic function types, thus enabling a better distinction of predefined

anomaly features.
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INTRODUCTION

The U.S. Department of Energy formed the Brine Extraction and Storage Test (BEST)

program to evaluate the technical feasibility of managing subsurface pressures associated

with industrial-scale carbon capture and sequestration (CCS) (U.S. Department of Energy,

2016; Electric Power Research Institute, 2016; Okwen et al., 2017). The program provides

field demonstration sites for testing pressure management strategies. One site is near the

Lansing Smith Generating Plant near Panama City (Florida) mapped in Figure 1 together

with existing well infrastructure. Freshwater instead of CO2 will be injected to create

subsurface pressure alterations to be managed. There are no plans to capture and store

CO2 at Plant Smith. Instead, investigative reservoir pressure management will involve

active (pumped) and passive (driven by formation pressure equilibration) brine extraction

from storage formations, concurrent with the water injection process (Birkholzer et al.,

2012; González-Nicolás et al., 2019).

With the spotlight solely on pressure control, freshwater can be used as a proxy for

injected supercritical CO2 intended to remain in liquid phase. Being in a coastal area,

the deep (around 1500 m) target reservoir is characterized by native brine; its low elec-

trical resistivity will generate a large resistivity contrast to the added freshwater. The

high fluid-induced resistivity difference in combination with the large reservoir depth and

preexisting well infrastructure call for the crosswell electromagnetic (EM) method (e.g.,

Wilt et al., 1995a; 1995b; Wilkinson 2005; Marsala et al., 2008) as the method of choice

for monitoring. Complementing sparse borehole-based pressure measurements, due to its

larger volumetric coverage, crosswell EM will aid the critical subtask of spatiotemporal

plume mapping. The method has shown potential in a variety of applications that involve
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time-lapse monitoring of subsurface changes due to fluid flow (Alumbaugh and Morrison,

1995a; Wilt and Morea, 2004; Harris and Pethick, 2011; Hu et al., 2016) as well as for

general reservoir reconnaissance (Hoversten et al., 2001, 2004; Shen et al., 2008; Wilt et al.,

2008; Zhang et al., 2017). Here, we focus on the survey design based on simulations of the

anticipated freshwater plume evolution.

Crosswell EM systems with well separations on the order of 100-300 m, as sketched

in Figure 2, typically deploy inductively coupled antennas. Specifically, the systems use

vertical magnetic dipole (VMD) transmitter coils for signal generation and induction coil

receivers for magnetic field recording. For brevity, we will refer to this setup as VMD. The

compactness of coils and the fact that casing effects can often be accounted for (e.g., Kirk-

endall et al. 1999, Cuevas and Pezzoli 2018), has given VMD systems greater attention

both in the field as well as in theoretical studies (Spies, 1992; Alumbaugh and Morrison,

1995b; Liu et al., 1995; Spies and Habashy, 1995; Alumbaugh and Newman, 1997; Zhang

et al., 1996; Zhang and Liu, 2000). However, it has been found that VMD systems face

sensitivity limitations in the presence of typical CCS targets, that is, thin resistive anoma-

lies within conductive regimes (Kong et al., 2009; Harris and Pethick, 2011; Grayver and

Streich, 2014). On the contrary, vertical electric dipole (VED) systems are better suited for

such targets (Grayver and Streich, 2014). This advantage comes at the expense of requiring

open-hole or perforated fiberglass (or PVC) casing sections, because VED source signals

inside conventional steel casing can generate measurable yet distorted fields (Kaufman and

Wightman, 1993; Cuevas, 2018). Also, in contrast to the compactness of VMD coils, electric

dipoles are less practical in-hole instruments as they may require antenna lengths on the

order of meters or tens of meters to generate adequate source moments.

Our first objective is to provide more insights into the applicability of VMD systems
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for CCS applications. To do so, we simulate 3D reservoir conditions for the BEST site,

comparing the imaging capacity of VMD and VED data types and their combination. While

we affirm findings about the better suitability of VED arrays for resistive CCS targets, a

series of 3D trial inversions with standard VMD setups shows that ample resolution power

can still exist for small resistors. However, as opposed to some oilfield scenarios with

interwell targets, as exemplified in Figure 2, instrumented injection wells are more likely to

cut through the inside of plumes, posing other challenges due to strong sensitivity variations

near sensors.

Algorithmic and computational improvements have accompanied instrumental develop-

ment in a way that 3D crosswell EM forward and inverse modeling can now routinely be used

for survey-design decision-making (Tripp and Hohmann, 1993; van der Horst et al., 1999;

Abubakar and van den Berg, 2000; Avdeev et al., 2002; Newman and Alumbaugh, 2002;

Zhdanov and Yoshioka, 2003; Kim et al., 2004; Liang et al., 2010; Grayver and Streich, 2014;

Zhang et al., 2017). Our second objective thus concerns the post-analysis of synthetic-data

crosswell imaging experiments through rating their performance without solely depending

on visual model inspection. Quantitative inverse-modeling solution rating is usually done

via least-squares types of data-goodness-of-fit calculations. However, sequences of synthetic-

data trial inversions for survey-design may yield equivalent data fits. Or, data fits may be

difficult to compare if two solutions for the same target involve different data in terms

of quantity, field types, noise assumptions, or survey geometry. Therefore, an additional

secondary appraisal method relies on model goodness of fit.

Model goodness of fit in CCS contexts translates to quantifying property changes that

unfold as subtle anomalies with respect to an initial, i.e., pre-injection, state. In this work,

we employ a recently introduced formulation (Commer, 2020) that involves categorizing
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logistic function types for calculating the model goodness of fit, as opposed to the data

goodness of fit. Utilizing hydrogeophysical a priori information about temporal property

evolution, we show that the new quantifier can capture subtle time-lapse model differences

in inversion outcomes more accurately than traditional root-mean-square (RMS) formula

types.

The philosophy behind the logistic-function concept is that in EM imaging, the priority

is often to identify the nature of an anomaly. In other words, one wants to image a resistive

or conductive anomaly, where the actual magnitude of resistivity (or conductivity) is sec-

ondary as long as certain anomaly thresholds are met. Such overshoot-forgiving threshold

criteria are more amenable to classifying appraisers than they are to purely difference-based

goodness-of-fit calculations.

In the next section, we first introduce the basic concepts of the new model-misfit for-

mulation, which is referred to as semblance for brevity. Subsequent sections will compare

the semblance against RMS qualifiers in order to appraise synthetic inversions with the

goal of assessing the value of VMD and VED crosswell layouts for the reservoir conditions

represented by the BEST site.

METHOD

The predominant way of assessing the performance of geophysical modeling is through misfit

calculations, commonly involving the quadratic term (e.g., Menke, 2018)

Φ =
(

p− y
)T

WTW
(

p− y
)

, (1)

where the superscript T denotes transposition. When operating in data space, the func-

tional returns the squared difference between a vector of size N of observed data y and its
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corresponding data prediction p = F (m). Data predictions involve the forward-modeling

operator F operating on a discretized earth model m with M components. Uncertainties

are given through the weighting matrix W. Weighing data misfit pi − yi (i = 1, . . . , N)

often involves a diagonal matrix W with entries of each measurement’s inverse standard

deviation 1
δi
.

If used as an objective functional in inverse modeling, the minimizer of equation 1,

which is the solution vector m, is a best-fitting model of the actual subsurface property

distribution, the latter referred to as m̃ in the following. In imaging experiments with

synthetic data, m̃ refers to the true model, also to be called reference model, thus y =

F (m̃). Note that, while opinions about this may deviate, for conciseness, we use the terms

image and imaging interchangeably for, respectively, an inverse-modeling result m and the

inversion process leading to it. We emphasize that equation 1 is written here solely as a

starting point for the following derivation of metrics that assess the resemblance between

an image m and its true state m̃. These metrics are not intended to facilitate an inversion

process.

A numerical performance rating for geophysical modeling is usually done via weighted

least-squares metrics based on equation 1, calculating the data goodness of fit. However,

sequences of synthetic-data inversions for survey design may yield model solutions with

equivalent data fits. Therefore, to aid or replace visual image inspection, we base goodness-

of-fit appraisal on discrepancies calculated between two models. Casting equation 1 into

model space, p = m and y = m̃. One can then deduce the weighted least-squares error
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terms

ε(m, m̃) =

√

√

√

√

1

M

M
∑

i=1

(mi − m̃i)2

δ2i
, (2)

εlog(m, m̃) =

√

√

√

√

1

M

M
∑

i=1

(

log(mi)− log(m̃i)
)2

δ2i
. (3)

These terms treat model discrepancies between a given true (reference) model m̃ and its

estimation (or image) m in a root-mean-square (RMS) sense. The logarithmic version

addresses the fact that earth material properties like electrical resistivity or (hydraulic)

permeability can exhibit large ranges, often over several orders of magnitude.

In model space, the terms δ2i become model parameter variances. Their assessment

involves the determination of covariances of the estimated parameters mi (i = 1, . . . ,M)

(e.g., Carrera and Neuman, 1986). However, here we will use the weights 1
δi

in an entirely

different way. Instead of calculating covariances, the δi will be made model-dependent in

order to increase the sensitivity of error contributions in equations 2 and 3 to preselected fea-

tures of interest. This adaptation is realized through casting δi into a categorizing function

δ(mi) with sigmoidal (S-shaped) function behavior. Before proceeding with this approach,

we will first illustrate how sigmoidal functions can be used as a discriminator for model

zones of interest.

Categorizing model features through sigmoidal functions

Sigmoidal functions (e.g., Newman 2016) essentially produce S-shaped curves to model a

binary dependent variable with the output f(x)=1 for passing or f(x)=0 for failing preset

criteria. Exemplified in Figure 3a for the logistic (a particular sigmoidal) function f(x) =

1
1+exc−x , such a criteria would be f(x) → 1 for x > xc (passed) or f(x) → 0 for x < xc
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(failed). The criteria can be adjusted by shifting the center xc (here xc = 0) along the x-

axis. This logistic behavior can also be realized by a simple step-like (Heaviside) function.

However, a gradual ascent from f(x) = 0 to f(x) = 1 as seen in Figure 3a allows for

intermediate values 0 < f(x) < 1, which might be useful if target criteria are partially met.

An example for a criteria defining an electrically resistive anomaly is illustrated in

Figure 2 for the three parameter cells denoted by m1, m2, and m3 and given the resistivity

values of 10 Ωm, 50 Ωm, and 100 Ωm, respectively. Using the S function in Figure 3a with

a threshold of xc = 50 Ωm would produce f(m1) ≈ 0, f(m2) = 0.5, and f(m3) ≈ 1, where

f(mi) ≥ 0.5 might be used as the cutoff for labeling an element mi as resistive.

Note that the exemplified bounding behavior of sigmoidal functions is somewhat similar

to the concept of logarithmic upper and lower parameter bounds (Commer and Newman,

2008). Hence, it can be utilized to prevent overshooting error contributions in difference-

based (RMS) types of errors as will be outlined in the following.

Fine-tuning RMS errors through sigmoidal weighting functions

Using S-shaped functions, a certain degree of adaptability to given target features can also

be realized for the RMS error types, equations 2 and 3. The idea is to use the S-function

behavior for capping error accumulations mi − m̃i in order to avoid their domination. The

capping is realized through making the weighting terms δ model-dependent. The depen-

dency δi = δ(mi) involves a property limit, which is exemplified as mlim = 1.5 in Figure 3b.

Similar to xc (Figure 3a), mlim defines the center of the ascending (or descending) branch

where the function changes from its minimum, δmin, to its maximum, δmax. In the following,

δ is referred to simply as deviation.
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The desired effect of a property-dependent deviation δi = δ(mi) is to attenuate over-

shooting discrepancies mi − m̃i when mi meets a threshold defined by mlim. Figure 3b

exemplifies the two possible conditions. Consider the goal of delineating an electrically

resistive anomaly. Its degree of resistivity above a certain threshold is assumed of minor

importance. Note that we now switch to electrical conductivity, σ = 1
" , because all imaging

results put forth below use this property. Imaging electrical conductivity mi = σi, the

function δ+(mi) → δmax for (resistive) image elements σi % σlim = 1.5 S
m . A large devi-

ation δi = δmax effectively dampens the corresponding contribution to the overall error ε

(equation 2 or 3), thus keeping the focus on those discrepancies caused by more conductive

elements σi > σlim. In other words, δ+(σi) resembles a high-pass filter with the threshold

σlim for errors caused by conductive elements, thus sensitizing ε to the delineation of a

resistive anomaly defined by σi < σlim. Similarly, imaging a conductive target defined by

σi > σlim would employ the ascending function version, δ−(mi), which acts like a low-pass

filter for misfits due to resistive elements. In practice, we implement this discriminating

function behavior through the functions

δ+(mi) = δmax −
δmax − δmin

1 + exp
(

mlim−mi
s

) , (4)

δ−(mi) = δmin +
δmax − δmin

1 + exp
(

mlim−mi
s

) , (5)

where the steepness of the transition from δmin to δmax can be controlled by the scaling

parameter s > 0. With s → 0, δ(mi) approaches a step function. Numerical examples

will demonstrate that non-uniformly weighted RMS errors using equations 4 and 5 can

quantify resemblance to the true anomaly in a more discerning way than uniformly weighted

counterparts.
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Quantifying model resemblance through sigmoidal functions

Replacing squared difference terms by sigmoidal function outputs takes the categorizing

aspect a step further, which is the basis for a recently introduced model-comparing metric

(Commer, 2020). We briefly outline the main concept here. The metric will be referred

to as semblance S. It gears toward measuring the categorical resemblance between two

models, as opposed to exactly quantifying discrepancies through difference-based metrics

like equations 2 and 3.

To categorize anomalous model zones, we employ two discriminating function types.

The first defines an anomaly in terms of its property range. Consequently, for a given

image m, the i-th contribution to the count of anomalous cells

Na = Na(m, m̃) =
M
∑

i=1

fi(mi, a, b) · fi(m̃i, a, b) (6)

is non-zero only if (1) the preset criteria a ≤ mi ≤ b for an anomalous property range

[a, b] is met (fi(mi, a, b) = 1), and (2), it coincides with the reference, so fi(m̃i, a, b) = 1

for a ≤ m̃i ≤ b. We refer to this categorizing function fi = fab
i as boundary condition.

The function fab
i essentially has a square-like filter effect, which can be construed by con-

catenated ascending and descending branches of S functions or step functions (Commer,

2020).

The second anomaly-characterizing criteria describes relative (here, time-lapse) property

changes that occur with respect to a given background model, m0. Equation 6 is thus

augmented to

Na(m, m̃) =
M
∑

i=1

fab
i (mi, a, b) · f

ab
i (m̃i, a, b) · f

∆
i (mi,∆

lim) · f∆
i (m̃i,∆

lim). (7)

The function product f∆
i (mi,∆lim) · f∆

i (m̃i,∆lim) enforces a spatially coinciding (between
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m and m̃) relative condition described by the threshold ±∆lim. The criteria for f∆
i = 1 is

met if a time-lapse change ∆ =
mi−m0

i

m0
i

relative to m0
i passes a limit set by ±∆lim. Note

that throughout this work, both fab and f∆ are truly binary classifiers, that is, fi = 0 or

fi = 1 only. In other words, their S-shaped function branches as shown in Figure 3 become

step functions.

Finally, the accumulation term for target-matching cell counts, equation 7, can be cast

into the ratio

S =
Na(m, m̃)

Na(m̃)
=

∑M
i=1 f

ab
i (mi, a, b) · fab

i (m̃i, a, b) · f∆
i (mi,∆lim) · f∆

i (m̃i,∆lim)
∑M

i=1 f
ab
i (m̃i, a, b) · f∆

i (m̃i,∆lim)
· 100. (8)

Values of S range from 0 % to 100 %, signifying the, respectively, lowest and highest

semblance of an image m to the reference m̃. In principal, one can augment equation 8

by other classifiers fi. Or, equation 8 can only involve fab
i , so that Na(m, m̃) is given by

equation 6.

Sigmoidal function types as objective functionals

Misfit formulas based on logistic functions, like the semblance S or the low-pass-filtering

RMS weights, equations 4 and 5, can theoretically be weaved into minimizable objective

functionals in order to constrain (joint) inverse modeling. However, we want to reiterate

that in this work all misfit formulas are solely used for image post-processing, that is, they

do not facilitate in any way the actual inverse modeling. Our trial inversions minimize

an objective functional consisting only of a data misfit term similar to equation 1 and a

regularizer imposing model-smoothness constraints. The underlying minimization algorithm

uses a finite-difference (FD) forward modeling operator in conjunction with a standard non-

linear-conjugate-gradient (NLCG) method (Commer and Newman, 2008).
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ERROR-METRIC COMPARISON: 3D IMAGING OF CROSSWELL

VMD DATA

Given the sensitivity differences that VMD and VED systems exhibit for resistive targets

(Harris and Pethick, 2011; Grayver and Streich, 2014), an important question arising for

CCS-specific survey design is whether the standard VMD system is adequate for delineating

a resistive freshwater plume within the relatively conductive brine-saturated environment.

Since deep CCS applications may involve similar resistivity contrasts, we dedicate the fol-

lowing series of 3D synthetic crosswell inversion studies to this question. Concurrent mo-

tivations are (1) to benchmark the proposed semblance measure against both unweighted

and weighted RMS error types, and (2), to demonstrate how the new error terms based on

sigmoidal functions may improve the quantitative image comparison to a known reference.

Sensitivity differences: Conductive versus resistive anomaly

We first tie in with the crosswell EM inversion studies of Alumbaugh and Morrison (1995b),

because their findings about model resolution are relevant for the BEST survey design. The

authors employed a 2D iterative Born imaging scheme within a cylindrically symmetric

modeling context and explored, among many other aspects, what role the source frequency

plays in model resolution. While higher frequencies lead to higher resolution, a limit is given

by an increased signal attenuation, in addition to potential instrumental limits. Modifying

one of their magnetic crosswell inversion setups for conductive targets, which is presented

in figure 2 of Alumbaugh and Morrison (1995b), the anomalous target is now given by two

3D bodies of size 20 m × 20 m × 20 m as shown in Figure 4 (true geometry indicated by

black contour lines). The 3D model space comprises a total of 29,172 FD cells as unknowns.
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We pick the source frequency of 31 kHz, because at this frequency the vertical resolution

becomes sufficient to separate the anomalous bodies, which are centered between two wells

with 100 m separation. With magnetic coils spaced vertically at 10 m, both the transmitter

(left well) and the receiver (right well) traverses have 21 activation points, resulting in 441

complex vertical magnetic field data points. Synthetic data generation follows the standard

procedure of adding normally distributive random Gaussian noise to both real and imaginary

components of the magnetic fields (measured in A/m). Noise magnitudes are based upon

one percent of the data amplitude. For this study, we estimate an additional noise floor of

10−10 A/m from specifications of the instrument to be employed in the BEST survey, which

depends largely on transmitter moment (Wilt et al., 1995a).

The two vertical sections in Figures 4a and 4b confirm that this VMD setup provides

sufficient target reproduction, despite the relatively low target-to-background contrast of

σa=0.02 S
m to σ0=0.01 S

m . Approaching the conditions at the BEST survey site, we repeat

the same imaging test for a more resistive target, now with a target-to-background contrast

of σa=0.005 S
m to σ0=0.01 S

m . The more blurred images in Figures 4c and 4d indicate the

anticipated sensitivity loss.

Judging imaging performance in a quantitative way, Table 1 compares RMS imaging

errors, equations 2 and 3, against the semblance alternative S. For a more straightforward

comparison, all RMS (ε) errors are given as percentage decreases with respect to the in-

version’s starting model guess, the latter always using the background σ0. Further, both

uniformly weighted (ε, εlog) and non-uniformly weighted (εδ , ε
log
δ ) RMS errors are listed for

comparison.

For the conductive target (Inversion 1, Figures 4a and 4b), the S-parameters a and b are
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chosen such that the boundary condition holds as soon as a target cell conductivity results

in σa > σ0. Our choice of the relative condition states that a minimum conductivity increase

of ∆lim=20%, with respect to σ0=0.01 S
m , qualifies as sufficiently anomalous. Similarly, for

the resistive target (Inversion 2, Figures 4c and 4d), the boundary condition is met for all

cells which are estimated as σa < σ0, and the relative condition is met if σa has decreased

by at least 20%. The parameters employed for the weighted RMS qualifiers attempt to

mimick a similar threshold as given by ∆lim = ±20%; therefore σlim=0.012 for Inversion

1 and σlim=0.008 for Inversion 2, which is a 20% deviation from the starting model value,

σ0.

Table 1 agrees with the visual perception that all error values appear to clearly distin-

guish between the higher-quality image of the conductive target (Inversion 1, Figures 4a and

4b) and the poorer image of the resistor (Inversion 2, Figures 4c and 4d). Compared to the

unweighted RMS misfits, both weighted RMS %-improvements εδ and ε
log
δ and semblance

percentages better highlight the image-quality discrepancies between both inversions.

We restate that the choice for the S-parameters, a, b, and ∆lim, remains completely at

the discretion of the user and will be dictated by specific a priori information about the

target. The same holds for the parameters (function type and σlim) of the weighted RMS

metric. For the case of Figure 4 (Inversions 1 and 2), where the anomalies contrast by a

factor of two, we deemed the threshold of ±∆lim = ±20% and the corresponding boundaries

for σlim as appropriate. The clear correlation between the difference in visually perceived

image quality and the significant drop in S (from 82% to 48%) indicates a reasonable S-

parameter choice for both inversions. Similarly pronounced reductions for both εδ and ε
log
δ

echo this for their parameter choice.
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Resolution differences: Resistors in a highly conductive regime

Alumbaugh and Morrison (1995b) presented a way of estimating the degree of spatial

resolution for any combination of source frequency f , background conductivity σ0, and

transmitter-receiver separation tx-rx (Figure 2). The estimate is given by the ratio tx−rx
δ ,

where δ is the skin depth approximation, δ ≈ 503
√

1
σ0f

(in m). For the source frequency of

f=31 kHz used above, one obtains tx−rx
δ ≈ 3.5 m, which can also be expressed alternatively

in terms of the number of wavelengths, λf = 2πδ, that fit into the distance tx-rx, amount-

ing to tx−rx
λf

≈0.56. Maintaining a similar ratio for the BEST site, where the background

averages σ0 ≈ 2 S
m in the reservoir layer, translates to a frequency f ≈ 150 Hz.

Figure 5 summarizes the inversion outcome when using the source frequencies 500 Hz

(Figures 5a and 5b) and 100 Hz (Figures 5c and 5d); for tx−rx
δ , one obtains estimates of 6.3

( tx−rx
λf

≈1) and 2.8 ( tx−rx
λf

≈0.45), respectively. Given these ratios, a degree of resolution

similar to the cases in Figure 4 is expected, which is confirmed by the clearly delineated

anomalies in Figure 5 as well as by the high semblance measures of S≈87% (for f=500 Hz)

and S≈75% (for f=100 Hz). Note that by setting the parameter b=σ0=2 S
m , the boundary

condition becomes similarly lenient as before. Owing to the higher target-to-background

contrast of σa=2 S
m to σ0=0.02 S

m , we tightened the relative condition accordingly to ∆lim=-

30%. All ε-errors are consistent with the trend indicated by S, that is, the slightly lower

resolution at f=100 Hz (Figures 5c and 5d) results in a poorer anomaly replication (Table 1,

compare %-error improvement between Inversions 3 and 4).

The imaging experiments presented thus far demonstrate that despite the weaker re-

solving power of the vertical magnetic fields, compared to electric fields, in the presence

of resistive anomalies, a 3D interwell anomaly can nevertheless be resolved using adequate
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source frequencies.

Influence of target location: borehole-intersecting anomalies

The final inversion of this kind addresses the question how the target location may influence

an inversion outcome. Economic constraints in CCS activities may dictate the instrumen-

tation of injection wells, as opposed to drilling separate dedicated observation wells. This in

turn will cause either source or receiver borehole arrays to traverse a plume body, as is also

expected for the BEST survey. Such a scenario is modeled in Figures 6a–6d, showing the

cross sections of the actual anomalies which are cylindrically shaped and centered around

the transmitter well. Further adapting actual conditions of the BEST site, the receiver well

is at a distance of 264 m from the injection well. To limit signal attenuation, we choose

the source frequency of f=100 Hz, resulting in the images of Figures 6e–6h. The inver-

sion achieves a vertical distinction of the anomalies and a fair match of the extent along

the well plane (x-axis) (compare Figure 6a versus 6e). However, the horizontal disk size

remains grossly underestimated (Figures 6b–6d versus 6f–6h), indicating that the VMD

source placement inside the plume body lessens the sensitivity to these bodies, compared

to interwell targets. Sensitivity maps shown below for the BEST site’s actual configuration

will provide further evidence for this issue. The low inversion performance manifests clearly

in the low semblance value of S=10.6 (Table 1, Inversion 5) as well as in the marginal error

improvement of the RMS-quantifiers.

We conclude this series of VMD imaging experiments with two takeaways. First, for each

metric, the independent model inter-comparisons in Figures 4–6 span a percentage range

given by the minimum and maximum errors in Table 1. Recall that all percentages are
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error improvements with respect to the starting model. Hence, each metric’s range reflects

some general degree of sensitivity. The S-metric yields the largest range (10.6 – 82.1%),

whereas ε (equation 2) exhibits the smallest range (5.6 – 30.9%), suggesting a generally

more discerning ability of S.

Second, while of a rather academic nature, the imaging experiments point out the po-

tential challenge that crosswell applications face when a resistive plume is centered at in-

strumented wells, rather than being located between wells. The following series of imaging

trials specific to the BEST site will further investigate this issue.

CROSSWELL EM INVERSIONS FOR THE BEST SURVEY DESIGN

The BEST program’s field demonstration site targets the deep (around 1500 m) Lower

Tuscaloosa Massive Sand formation (e.g., Pair, 2017). Characterized by permeabilities up

to 500 mD (milliDarcy), this formation is ideal for CO2 storage. The target reservoir resides

underneath confining layers. As indicated by the porosity log in Figure 7, relatively thin

units within the injection interval are expected to facilitate generation of laterally extensive

and thus easily detectable plumes of differential pressure and tracer content. Moreover, as

also indicated by the resistivity log, one can expect a strong electrical conductivity contrast

between the injected fluid and the ambient Tuscaloosa brine, the latter having 166,000

mg/L TDS (total dissolved solids of NaCl) on average (Electric Power Research Institute,

2016).

For hydrogeophysical site aspects, we refer to Appendix A which provides a brief de-

scription of the reservoir flow simulator employed. Also described is the petrophysical

transformation procedure used for the generation of the models of electrical conductivity.
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These models represent the electrical resistivity distribution at different plume stages. Fig-

ure 8 exemplifies a plume scenario after 18 months of injection together with the layered

permeability model.

Crosswell survey configuration

For an areal map of the field site, see Figure 1. Existing infrastructure includes an injection

well (TIW-2), a monitoring and extraction well (TEMW-A), and a repurposed monitoring

and passive relief well (TIW-1). The well’s rough location with respect to the anticipated

plume extent became visible in Figure 8. The extraction well (TEMW-A) is steel-cased

over the entire length, whereas both TIW-2 and TIW-1 will contain fiberglass sections over

the region of interest. All three wells are perforated (screened) at the reservoir level to

provide hydraulic contact. The fiberglass well sections will have the advantage of enabling

an experimental VED deployment in addition to the conventional VMD array. Perforations

create a galvanic contact and thus electric-field transmission between wellbore fluid and

formation.

With well distances on the order of a few hundred meters, our VMD system that works

via EM induction of currents into the formation has a general frequency operating range

between 5 Hz and 1 kHz. Sufficient data quality for wells as far apart as 1 km could be

achieved in this frequency range, also with one of the wells cased with standard carbon steel

(Marsala et al., 2008, 2015). However, due to signal attenuation of the steel casing as well

as nonlinear hysteretic effects, a steel well can only host the receiver, while the transmitter

well must be either open or cased with a non-conductive liner such as fiberglass or PVC.

Investigative forward modeling for the estimation of field-attenuation due to conductive
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formation let us choose the frequencies of 60 Hz for VMD and 5 Hz for VED sources.

Given the screening layout in combination with these frequencies, we neglect the potential

influence of the casing materials on EM signal propagation in our numerical simulations. It

is noteworthy though that in the frequency domain one can approximate the casing effect by

means of a source signature correction with a complex factor (Wu and Habashy, 1994; Liu

et al., 2008). Our presented studies do not employ such a correction. Further, regarding the

specific VED layout, field planning that investigates signal differences between perforated

and open wells is ongoing yet indicates rather minor differences in signal strengths; thus,

VED layouts are also assumed to reside in open sections.

The well screening suggests two sets of transmitter-receiver array configurations. The

first crosswell array deploys three galvanically coupled VED transmitters of length 10 m.

These cover a 30 m long perforated section of the fiberglass-cased injection well (TIW-2).

Their depths z=1490 m, z=1500 m, and z=1510 m traverse the injection interval. Signals

are transmitted at 5 Hz frequency and received in well TIW-1. An array of 21 VED receivers

that are spaced at 10 m covers a fiberglass section ranging from 1400 m to 1600 m in TIW-1,

which is screened and thus open to the aquifer. This configuration, referred to as VED, is

annotated as ETx(TIW-2) – ERx(TIW-1) in the site map (Figure 1) and comprises NE=63

complex vertical electric-field data points. Since TEMW-A is fully steel-cased, it will be

excluded from the VED set.

The second configuration is a VMD array with three transmitter-receiver well pairs, with

the first given by HTx(TIW-2) – HRx(TEMW-A), the second by HTx(TIW-1) – HRx(TIW-

2), and lastly HTx(TIW-1) – HRx(TEMW-A). Each well involves 21 dipoles over the depth

range 1400 m to 1600 m, adding 441 complex vertical magnetic-field data points to a total of

NH=1323. Generally, (VMD) signal attenuation due to conventional steel casing becomes
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significant for frequencies above a few tens of Hertz (Gao et al., 2008). Trial forward

modeling revealed that the VMD source frequency of 60 Hz offers a compromise between

our transmitter system’s maximum power output and the (ideally high) induction level

that can be reached in the conductive formation. Synthetic-data noise assumptions are the

same as described above, with noise floor estimates of 10−10 A/m for the magnetic data.

The VED system is currently being developed in-house; specifications suggest a value of

10−10 V/m for the electric fields.

The challenges that crosswell monitoring faces at the BEST survey site are twofold.

First, the conductive regime causes a more rapid field attenuation, which limits the maximal

achievable signal frequency, further impacting resolution as demonstrated above. Second, a

relatively large ratio tx−rx
ls

between well distance (tx-rx ) and the vertical screen length ls, the

latter given by the traverse length of an instrumented borehole, can curb interwell sensitivity.

In the context of ERT crosswell imaging, LaBrecque et al. (1996) recommend ratios below

one. Referring to the inverse ratio ls
tx−rx as aperture, Alumbaugh and Morrison (1995b) also

observed decreasing image resolution for apertures with ls <tx-rx, here for a VMD crosswell

pair with 10 kHz transmitter frequency. An ideal ratio is tx−rx
ls

≈0.5 (LaBrecque et al.,

1996), which is fulfilled by the inversion tests of Figures 4 and 5.

Actual well distances at the BEST site are 264 m for the distance TIW-2 – TIW-1, 446 m

for TIW-2 – TEMW-A, and 322 m for TIW-1 – TEMW-A (Figure 1). For our maximum

screen length of ls=200 m, one then obtains ratios of tx−rx
ls

=1.3, 2.2, and 1.6, respectively,

indicating a generally less favorable geometry.
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Estimating VMD and VED sensitivity

To obtain a more informative spatial sensitivity picture of the electric and magnetic crosswell

configurations, we use a simple perturbation approach. Figure 9 presents maps of the term

Drel =

∑i=N
i=1 |d0i − di|
∑i=N

i=1 |d0i |
, (9)

where d0i and di denote unperturbed and perturbed data, respectively. Field amplitude

(Figure 9b and 9e) and phase (Figure 9c and 9f) predictions are calculated for the true

model, m̃. Perturbed data di results from augmenting each cell parameter m̃i by 4%. Here,

m̃ is given by the plume model after 365 days of freshwater injection, because our survey-

design objective assumes the plume target to be known. The plume is centered at the

injector TIW-2, to be displayed in detail in imaging presentations below.

Equation 9 is a simple measure of summed data differences relative to the sum of unper-

turbed data, thus permitting a direct comparison between anomalous electric and magnetic

field differences. Another approach would involve evaluation of the Jacobian, where sensi-

tivity coefficients
d0i−di
∆m̃i

from different field types would need to be made comparable to each

other through appropriate scaling. Nonetheless, owing to the purpose of a crude sensitivity

estimation, we refer to the term in equation 9 as sensitivity.

A first central observation in Figure 9 concerns the spatial distribution of areas where

Drel peaks. For the VMD component (Figures 9a–9c), maximal sensitivity occurs in the

vicinity of TIW-1, upholding the observation that sensors that spatially coincide with the re-

sistive plume center exhibit a loss of spatial sensitivity. Recall that this was also highlighted

by the very localized anomaly reproduction in the horizontal image sections of Figures 6f–

6h. Here, a sensitivity gap appears at TIW-2 where the resistive plume is centered. For the

VED component (Figures 9d–9f), areas of heightened sensitivity coincide with the employed
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well pair ETx(TIW-2) – ERx(TIW-1), as is expected for this field type.

A second observation concerns the sensitivity difference in magnitude between the two

field types. As annotated in each sensitivity map, both the sensitivity maximum as well as its

average are roughly an order of magnitude smaller for the magnetic field amplitude (compare

Figures 9b and 9e). Phase sensitivities are generally small, with maximal differences between

unperturbed and perturbed fields below one degree for the VMD setup (Figure 9c), and

insignificant for the VED setup (Figure 9f).

Despite the greater volume coverage of the VMD configuration, this preliminary sensitiv-

ity information indicates an inferior recovery rate for this kind of off-centered and resistive

target in a very conductive regime. The following site-specific imaging experiments will

provide more evidence.

Inverting VMD and VED crosswell data

Initiating the inversion for the freshwater plume assumes the actual layered background as

derived from the resistivity log of Figure 7 down to a depth of 1350 m, which is the top

boundary of our inversion domain. Below, the conductivity is assumed constant at σ0=3 S
m ,

which is an approximate average of the log over the vertical inversion domain. We termi-

nated all inversions after 300 NLCG inversion iterations where the data misfit reduction

became marginal. In order to match the fine scale of the flow simulation mesh, forward

modeling for synthetic crosswell data generation involves a FD mesh with a horizontal mesh

node distance of 5 m and a vertical distance of 2.5 m within the imaging volume. Given that

the Lower Tuscaloosa reservoir properties such as permeability and porosity vary mostly

along the vertical axis, our inversion mesh keeps the vertical spacing of 2.5 m, while using
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a coarser spacing of 50 m along both horizontal axes. We found that this approach can

alleviate the non-uniqueness problem of overparameterized inverse solutions to some degree.

In the present case, the total number of model parameters would be M=1,653,750 if one

would invert on the forward-modeling mesh, while the coarser imaging mesh decreases the

problem size to M=200,000. Moreover, separation of forward- and inverse-modeling meshes

makes synthetic-data inversions somewhat more realistic since real-world inhomogeneities

near instruments are often likely to require a finer scale than allowable by numerical FD-

meshing constraints. At last, note that yet another set of FD meshes is employed for the

actual numerical solution of Maxwell’s equations. Their mesh node distance varies with

the source frequency as detailed in the description of our imaging method (Commer and

Newman, 2008).

The first two inversions invert the VMD (data from two crosswell pairs, Figure 9a) and

VED field setup (one crosswell pair, Figure 9d) separately, with the final outcomes shown

in Figures 10b and 10c, respectively. As already indicated by the preceding inversion tests

and sensitivity estimates, the resistive target remains poorly resolved by the magnetic field,

whereas the VED setup leads to a much clearer picture. Nevertheless, some ability to

illuminate the maximum horizontal plume dimension can be attributed to the VMD data.

Ample resolving power along the well plane became evident through reproduction of both

horizontal and vertical anomaly extent in the test case with borehole-intersecting targets

(Figure 6). Hence, we surmise that the three well planes of the VMD setup also provide

this kind of imaging ability, benefitting the (VMD+VED) joint inversion (Figure 10d).

Particularly for the upper plume disk (around z=1,492 m), the joint inversion leads to a

clearer reproduction of both geometry and resistivity magnitude.

Comparing the semblance percentages of the three inversion results, listed in Table 2
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(column S), further supports the visually discerned image improvement resulting from the

joint inversion. Here, the semblance term’s criteria for detecting anomalously resistive cells

are given by the parameters [a, b]=[0, 1.11] (in S
m), and ∆lim=-12% for a conductivity de-

crease deemed sufficiently anomalous. Starting at the obvious value S=0 for the whole-space

initial model guess, S reflects a progressively better model reproduction, with S=13% for

the VMD-data (Inversion 1), S=27.6% for VED (Inversion 2), and S=61% when combining

both sets (Inversion 3).

For a fair comparison to S, we calculate the errors ε and εlog over the whole inversion

domain, and over a subset. The latter comprises all cells i of the actual model m̃ which

meet the boundary condition, so m̃i ∈ [a, b]. Corresponding percentages (error decreases

with respect to the initial model guess) are under the columns εab and εlogab in Table 2. The

intent is to rule out error contributions not belonging to the anomaly.

The ε-type measures are consistent in signaling an insignificant model replication for

all three inversions (1-3 in Table 2). Particularly for the VED and joint inversion, the

single-digit percentage improvements with respect to the homogenous starting model defy

the visually perceived image quality in Figures 10c and 10d. Several factors contribute to

this discrepancy. First, all images are rather smooth, which is expected as the employed

EM frequencies are too low to resolve the vertically fine pancake-structure of the anomaly.

Further, the VMD inversion widely underestimates the resistive plume. In contrast, the

VED image overestimates the central plume region (at z=1497.5 m), but underestimates

most of its periphery. Combining VMD and VED data appears to yield the best match,

however with some artifacts similar to the VMD image (compare Figures 10b and 10d).

The corresponding semblance percentages in Table 2 echo these qualitative observations.
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VMD and VED RMS errors as image quality criteria

The semblance metric’s benefit is to provide a potentially more discerning model-goodness-

of-fit criteria when potentially ambiguous data fits hinder the ranking of comparative syn-

thetic imaging. Demonstrating RMS-error ambiguity, Figure 11 selectively plots amplitude

and phase data for the VMD (Figures 11a and 11b) and VED (Figures 11c and 11d) com-

ponent. The VMD data subset pertains to the well pair HTx(TIW-1) – HRx(TIW-2), with

one chosen transmitter at zTx=1550 m (red symbol in subfigure of Figure 11a), whereas the

VED subset pertains to ETx(TIW-2) – ERx(TIW-1) (zTx=1490 m). Corresponding RMS

initial and final fitting errors are listed in Table 3 for standalone VMD and VED (Inversion

No. 1 and 2) and joint (No. 3) inversions (columns denoted by ”Initial1” and ”Final1”). Us-

ing equation 2 for the reported RMS values, note that the model vectors m and m̃ become

data vectors for predictions and (synthetic) observations, respectively.

Both Figure 11 and Table 3 essentially point out that an error comparison based on data

fits between standalone and joint inversion would remain ambiguous due to similar fits. For

example, the joint inversion improves the final fit of the VED data portion only marginally

(80.3%) over the standalone VED-data inversion (79.6%). The same holds for the errors

calculated for the complete set (named VMD+VED in Table 3). One might wonder why

these synthetic-data inversions do not lead to better fits in Figure 11. A perfect fit is ruled

out by the aforementioned meshing discrepancy of 5 m versus 50 m for the horizontal node

distance pertaining to the forward- and inverse-modeling meshes, respectively.

In view of the relatively high image quality obtained solely from the VED array, we will

finish by appraising images of a hypothetical case, where only acquisition of the VED set

would be possible.
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Inverting VED data for different plume stages

Our inversion scheme employs a logarithmic conductivity parameter transformation with

lower and upper conductivity parameter bounds (Commer and Newman, 2008), which can

be made spatially variable. The final experiments employ such variable bounds in order to

optimize the imaging capacity of the VED data through counteracting resistivity overshoots.

Such overshoots, as observed for Inversion 2 (Figure 10c), can be spurred by too open

bounds, which in this case were constant so that every imaging grid cell could vary over the

same range, [7.5× 10−3, 3.1] S
m .

We let the plume geometry guide the spatially variable lower bounds. We first estimated

a maximum plume extension based on extremal (hydraulic) permeability assumptions. The

resulting maximal plume spreading was then approximated by a simple ellipsoid with the

semiaxes (dx,dy,dz )=(500,500,120) m. Figures 12a and b show the actual plume simulated

after 365 days of injection and the corresponding selection of lower bounds, respectively.

With a minimum of 0.01 S
m at the injection point (at TIW-2, z=1502.5 m), the lower bounds

increase linearly outwards. Outside of the predefined ellipsoid, they remain constant at

2.9 S
m . The linear function is chosen such that for each cell parameter, the lower bounds

always remain below their corresponding cell values m̃i, as exemplified by the plume-cutting

profile along y=0 (Figure 12c). This is to maintain an ample leeway for the inversion. Upper

parameter bounds remain spatially constant at 3.1 S
m .

The assumptions underlying the variable lower parameter bounds are twofold. First,

away from the injection point, there occurs more mixing of the brine’s solutes with the

spreading freshwater, leading to less resistive outer rings, which can also be seen in the

horizontal sections of Figure 10a. Second, outside of the ellipsoidal volume of maximal
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plume extension, no freshwater intrusion is expected. Hence, the permitted parameter

changes in this region concern only adjustment of the background, which is realized by the

tighter interval of [2.9,3.1] S
m .

Our final two inversions with this problem-specific parameter design have the goal of

assessing whether a minimal crosswell setup as given by the VED component can discern

between different plume stages. Figure 13 compares the actual plume with the corresponding

image for the injection times 180 days (Figures 13a and 13b) and 365 days (Figures 13c and

13d). Qualitatively, the inversions track the plume’s growth, although the full horizontal

extent remains underestimated.

Lastly, we assess image qualities through the error measures in Table 2 (Inversions 4

and 5). While RMS error types remain rather imperceptive towards plume mapping, the

significant semblance values of 38.1% and 46.4% support the qualitative observation that

the VED layout offers some plume-tracking capacity. Compared to Inversion 2 (Figure 10c,

S=27.6%), which used constant bounds, the higher S-value of Inversion 5 (Figure 13d,

S=46.4%) numerically ascertains the improvements owing to the variable parameter bounds.

The improvement can be attributed to a better suppression of the resistivity overshoots.

DISCUSSION

An ample variety of different survey geometries and models, in terms of their backgrounds

and anomalous targets, is covered by the ten synthetic inversion demonstrations. All result-

ing images exhibit a good agreement between visually perceived quality and corresponding

errors calculated using the new semblance measure S. This is a strong indicator that the

semblance formulation might serve as a robust image evaluation tool. An automated ap-
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praiser for model goodness of fit may be particularly useful for ranking a large number of

images with comparable data fits. Moreover, a solely visual 3D check of many images may

not always be easily done in the presence of complex or subtle anomaly structures.

Using the semblance metric without visual cross check will require further amendments

in order to handle excessive imaging artifacts. Consider for example the resistive interwell

anomaly in Figure 2 and an extreme image, albeit improbable, where every cell parameter

assumed mi ≥ 50 Ωm. With semblance parameters [a, b] = [50,∞] Ωm defining the resistor,

one would have fi(mi, a, b) = 1 for all i (i = 1, . . . ,M). The image semblance would amount

to S=100 %, because of fi(mi, a, b) · fi(m̃i, a, b) = 1 (equation 6) for target cells and zero

otherwise (due to fi(m̃i, a, b) = 0).

The example illustrates an indifference of the semblance metric to such artifacts, whereas

RMS error types would show an effect. Paying this price for better target sensitivity may

occur for other non-difference types of metrics. Another such metric is often used for

structural model inter-comparison in joint imaging and uses the cross-gradient concept

(Gallardo and Meju, 2003). Similar to the above example, a region outside the target zone

that is homogenous in the reference model m̃ but exhibits artifacts in form of property

gradients in an image m would also produce vanishing and thus indifferent cross-gradient

contributions, ∇m̃×∇m = 0.

In our case, a possible remedy would change the indifference of fi(m̃i, a, b) = 0 in the

presence of non-target imaging artifacts to a penalizing behavior fi(mi, a, b)·fi(m̃i, a, b) < 0.

Such penalty terms could then offset positive contributions so that a very small S or even

S ≤ 0 becomes an indicator for excessive artifacts.

Our imaging studies did not produce strong artifacts. This perhaps more common case
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reveals that RMS-based errors are more susceptible to spurious error contributions owing to

smooth images. Similarly, overestimated as well as underestimated target properties, even

if anomalous trends are predicted correctly, can obscure an overall upgrade of one image

over another. Here we proposed a method for alleviating the latter issue by means of proxy

deviations, which effectively dampen RMS error contributions from image elements which

correct but overshooting trends. While partially successful, image smoothness remains

problematic for all difference-based metrics.

CONCLUSIONS

Our EM inversion experiments for the BEST pilot site indicate that a plume-tracking capa-

bility can be achieved with crosswell arrays that involve a reasonably low logistical effort.

Given the resistivity and geometry of the target, both sensitivity estimations and trial in-

versions suggest that the VMD component will be inferior to the VED setup. Nevertheless,

joining both data sets has shown merit by matching the actual plume extension closer.

Regarding survey-planning considerations, the imaging results suggest to strive for max-

imizing the data’s information content by gathering both the VMD and VED data in the

field. However, if unforeseen economical constraints or instrumental failures would impede

an exhaustive data collection, the imaging quality achieved by the standalone VED inver-

sions indicates that time-lapse plume-mapping information can still be achieved. While

casing-material effects were neglected, it is self-understanding that a more refined survey

planning will need to include such effects. Other effects to consider are linked to anisotropic

intrinsic permeability in the reservoir zone, causing potential electrical anisotropy.

A number of future CCS sites will likely be situated over subsurface reservoirs where
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CO2-injection produces an electrical resistor within a conductive (brine-saturated) regime.

Owing to their superior sensitivity for such targets, we recommend to prioritize VED sys-

tems in the survey design. Notwithstanding, using only one data type makes inversion

results more vulnerable to its shortcomings, here manifesting as resistivity overshoots com-

bined with underestimated plume disk sizes in the VED images. Estimating conductivity

parameter boundaries based on the modeling of extremal flow conditions, we were able to

alleviate this issue to some degree. The boundary constraints effectively couple some of

the underlying physics of the fluid injection to the geophysical inversion. Although being a

simplistic approach, for survey design with a fluid-monitoring objective it may be preferable

over an otherwise decoupled inversion.
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APPENDIX A

RESERVOIR FLOW MODEL

We employ a numerical flow simulator which solves combinations of the coupled continuity

equation, advection-diffusion equation, and Darcy equation. It has been applied in ear-

lier CCS contexts (Agartan et al., 2017; Siirila-Woodburn et al., 2017). Properties of the

fluid mixture (compressibility, density, and viscosity) are computed as a function of salt

mass fraction, pressure and temperature, using the correlations developed by Phillips et

al. (1981) and Spivey et al. (2004). These correlations cover a wide range of salinity (up

to 5.7 mole/kg), temperatures (0◦ to 275◦ C), and pressures (up to 200 MPa) and thus are

suitable for the depth range of the Tuscaloosa formation. Static depth-dependent tempera-

ture variation is accounted for, while we neglect dynamic heat flow. The coupled non-linear

partial differential equations are discretized by the finite-volume method and solved through

the Newton-Raphson method. At each Newton-Raphson iteration, the linearized system of

equations is solved by a preconditioned restarted Generalized-Minimum-Residual algorithm.

The simulated injection scenario considers a constant rate of 1090 m3

day (≈200 gal
min) of

low-salinity water characterized by 1,000 to 1,200 mg/L TDS. The target reservoir is given

by isolated sandstone layers of the Lower Tuscaloosa Massive Sand formation, where actual

injection will occurs between 1,487 to 1,536 m (4,880 and 5,038 feet), as indicated in the

geological section of Figure 7. In this zone, permeability ranges from 0.5 mD to over

1,000 mD and porosity ranges from 10% to over 50%. Simulating an injection that lasts

18 months results in a plume model as shown by Figure 8. Freshwater is characterized by
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low salinity (blue), in contrast to the saline native brine (red). Also shown is the vertical

permeability profile for the reservoir zone.

Petrophysical flow model transformation

The reservoir flow model encompasses the Lower Tuscaloosa and Lower Cretaceous sedi-

ments at the site (Figure 7). Reservoir properties that have the most influence on electrical

rock properties are (fractional) porosity Φ, solute concentration C of the connate water,

and temperature T . The Tuscaloosa sandstones in the area of interest are friable, weakly

cemented sandstones, suggesting that bulk ionic migration through the pores of the rock is

the main contributor to the rock’s electrical resistivity. Consequently, electrical conduction

along the surface of the grains of the rock is negligible, so the law of Archie (1942) in the

simple form

& = &fF ; F = 0.62Φ−2.15 (A-1)

is applicable. Fluid electrical resistivity (in Ωm) is quantified by &f . The specific relation

for the formation factor F is based on empirically derived measurements on Gulf-Coast

sandstones (Winsauer et al., 2017). Poroelastic deformation is neglected, that is, porosity

is assumed constant during the fluid-injection process. Hence, the main driving reservoir

property that controls the changing EM geophysical footprint during injection is &f =

&f (C, T ).

Reservoir modeling delivers a 3D distribution of solute concentration (Figure 8). Fresh-

water injection causes a gradual dilution of the reservoir’s brine, where salinity is mea-

sured as the fractional concentration C of NaCl. Using tabulated C, T, &f (C, T ) data of

NaCl solutions (Schlumberger, 2009), where we assume a constant reservoir temperature of
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T = 35◦ C, together with porosity logs (Figure 7), we obtain the distribution of & via the

Winsauer model (equation A-1). Our EM modeling implementation inverts for electrical

conductivity, σ = 1
" . Hence, all shown images and misfit calculations involve models of σ.
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Figure 1: Site map of the BEST site near Lansing Smith Generating Plant (Southport, near

Panama City, Florida) with injection (TIW-2) and monitoring/extraction wells (TIW-1 and

TEMW-A).
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Figure 2: Schematic of a crosswell EM system.
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Figure 3: (a) Example for a logistic function, which belongs to the class of sigmoidal

functions. (b) Example for a logistic function which makes the weighting (1δ ) of RMS

error contributions model dependent. Equations 4 and 5 produce the descending (δ+) and

ascending (δ−) curves. The steepness is controlled by the scaling factor s > 0 (here s = 0.1),

which has units of the model property m.
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Figure 4: Synthetic 3D crosswell inversion experiment modeled after the 2D VMD configura-

tion of Alumbaugh and Morrison (1995b). Final images obtained after 156 NLCG inversion

iterations are shown for a conductive anomaly (a and b) and for a resistive anomaly (c and

d).
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Figure 5: Synthetic 3D crosswell inversion experiment modeled after the 2D VMD con-

figuration of Alumbaugh and Morrison (1995b). Background and anomalous conductivity

approximate conditions at the BEST site. Final images obtained after 156 NLCG inversion

iterations are shown for the source frequency 500 Hz (a and b) and for the source frequency

100 Hz (c and d).
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Figure 6: Synthetic 3D VMD crosswell inversion experiment implementing survey condi-

tions at the BEST site. Two cylindrically shaped resistors (true model shown by a-d) are

symmetric about the injection well (at x=0), which coincides with the transmitter array.

The receiver array is at a distance of 264 m. Final images (e–h) obtained after 156 NLCG

inversion iterations involve the source frequency 100 Hz.
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Figure 7: Major geological units at the BEST injection site. The considered injection zone

is the Lower Tuscaloosa Massive Sand (1487 m to 1536 m). Also shown are resistivity and

porosity profiles measured at well TIW-2.
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Figure 8: Flow simulation of an 18-months long freshwater injection into the well TIW-2,

where freshwater is electrically resistive with respect to the native (highly saline) brine.

Salinity varies as dimensionless NaCl mass fraction. The upper horizontal surface sketches

the survey area (as shown by Figure 1) and the vertical layered plane sketches the underlying

one-dimensional permeability model. Pressure management tasks consider a hypothetical

fault as potential hazard. Note that the upper plume region (above z=1500 m) at TIW-2

remains electrically conductive due to a thin impermeable layer.
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Figure 9: Horizontal sensitivity maps for the VMD and VED crosswell configurations em-

ployed at the BEST site. (a) VMD setup with two transmitter-receiver arrays; the first
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Figure 10: Synthetic crosswell EM inversions for the BEST site’s freshwater plume model.

(a) True plume model after 365 days of injection at the BEST site. (b) Inversion of VMD

data (layout shown in Figure 9a). (c) Inversion of VED data (layout shown in Figure 9c).

(d) Joint inversion of VMD and VED components.
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Figure 11: Data fits exemplified for a selected VMD (a and b) and VED (c and d) subset.

Fitted data are complex and are post-converted to amplitudes and phases.
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Figure 12: Variable lower parameter bounds over the inversion domain of the BEST

study. (a) True plume model after 365 days of injection. (b) Ellipsoidal volume with

lower parameter bounds that increase linearly away from the center. Semiaxes are

(dx,dy,dz )=(500,500,120) m. (c) Profile along the line y=0 m which traverses the plume

center and exemplifies the variable lower bounds (solid lines) in comparison with the actual

conductivities (gray dashed). Also shown is the level for the constant lower bound (dotted

line) used for the first trial VED data inversion (image in Figure 10c).
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Figure 13: Inversion of VED component for the BEST site’s freshwater plume model at

t=180 days and t=365 days. (a) Actual plume at 180 days. (b) Inversion for plume at

180 days. (c) Actual plume at 365 days. (d) Inversion for plume at 365 days. Both

inversions employ variable lower parameter bounds (as illustrated in Figure 12).
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Inversion No. 1 2 3 4 5

Figure No. 4a and 4b 4c and 4d 5a and 4b 5c and 5d 6e – 6h

Source
frequency 31 kHz 31 kHz 500 Hz 100 Hz 100 Hz

Background

σ0 ( S
m) 0.01 0.01 2 2 2

Anomaly

σa ( S
m) 0.02 0.005 0.02 0.02 0.02

ε (%) 30.89 19.49 46.69 37.19 5.65

εlog (%) 32.86 20.71 27.68 17.78 3.10

δ± δ− δ+ δ+ δ+ δ+

σlim ( S
m) 0.012 0.008 1.0 1.0 1.0

εδ (%) 67.08 25.09 56.28 45.08 6.54

εlogδ (%) 63.71 28.17 51.43 39.50 4.57

[a,b] ( S
m) [0.01,10] [0,0.01] [0,2] [0,2] [0,2]

∆lim (%) 20 -20 -30 -30 -30

S (%) 82.14 47.86 87.14 75.36 10.61

Table 1: Image-reproduction quantifiers calculated from a series of five inversions of VMD

data. Each inversion’s two-body target anomaly is characterized by the true model’s back-

ground (σ0) and the anomalous conductivity (σa). Figure numbers refer to the resulting

images, so each table column represents a separate inversion realization, without relating to

other inversions. Within each column, three types of errors are (1) the difference measures ε

and εlog, equations 2 and 3, (2) their weighted counterparts εδ and εlogδ , with weights given

by equations 4 and 5 (using δmin = 1, δmax = 10, s = 10−4), and (3) the semblance measure

S, equation 8. All RMS (ε) errors are calculated from the inversion’s initial (starting) and

final model, where only the corresponding relative %-change is shown. The parameters δ±

(type of weighting function) and σlim pertain to εδ and εlogδ . Further given are the semblance

parameters [a, b] and ∆lim.
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Inversion
No.

Fig.
No.

Data
type

Injection
period (d) ε (%) εlog (%) εδ (%) εlogδ (%) εab (%) εlogab (%) S (%)

1 10b VMD 365 3.21 3.27 4.66 5.75 5.21 4.72 13.00

2 10c VED 365 0.63 1.00 0.87 1.57 0.94 1.55 27.60

3 10d VMD+VED 365 2.23 2.70 3.24 4.24 3.64 4.14 61.00

4 13b VED 180 1.33 1.87 1.82 2.68 1.88 2.64 38.10

5 13d VED 365 1.31 1.84 1.80 2.64 2.06 2.73 46.40

Table 2: Model misfit quantifiers calculated from a series of trial inversions for a freshwa-

ter plume simulated for the conditions at the BEST site. Inverted are crosswell data as

simulated from the VMD and VED configurations in Figures 9a and 9c. All inversions use

a homogeneous full-space (σ=3 S
m) as initial model guess. Errors are given as a percent-

age decrease with respect to the initial model. RMS measures are ε, εlog (equations 2–3),

their weighted versions (εδ , ε
log
δ , where σlim=2.64), and the semblance S, equation 8. RMS

terms εab and εlogab only comprise image grid elements i where the corresponding reference

m̃i ∈ [a, b]. Semblance parameters are [a,b]=[0,1.11] (in S
m), and ∆lim=-12 % for all in-

stances.
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Data type
Complex

data points
Inversion

No. Initial1 Final1
improve-
ment (%)1 Initialt Finalt

improve-
ment (%)t

VMD 1323 1 3.35 0.63 81.1 3.64 1.61 55.7

VMD 1323 3 (joint) 3.35 0.87 74.1 3.64 1.68 54.0

VED 63 2 28.50 6.35 77.7 22.55 4.60 79.6

VED 63 3 (joint) 28.50 5.59 80.4 22.55 4.45 80.3

VMD+
VED 1386 1+2 - - - 5.98 1.85 69.0

VMD+
VED 1386 3 (joint) - - - 5.98 1.89 68.4

Table 3: Data RMS misfit errors pertaining to Inversion No. 1 (VMD), 2 (VED), and 3

(joint) (refer to Table 2). Initial and final RMS errors use equation 2, where superscript ”1”

refers to the selected example subset of Figure 11, and superscript ”t” refers to the total

VMD and VED data sets. RMS errors are based on a real-and-imaginary field representa-

tion (as opposed to amplitudes and phases). The VMD data set comprises 1323 complex

magnetic-field data points, whereas the VED set has 63 electric fields; VMD+VED is the

merged set.
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