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Light dark matter in superfluid helium: Detection with
multi-excitation production

Simon Knapen, Tongyan Lin, and Kathryn M. Zurek
Theory Group, Lawrence Berkeley National Laboratory, Berkeley, California 94709, USA

and Berkeley Center for Theoretical Physics, University of California, Berkeley, California 94709, USA
(Received 6 December 2016; published 22 March 2017)

We examine in depth a recent proposal to utilize superfluid helium for direct detection of sub-MeV mass
dark matter. For sub-keV recoil energies, nuclear scattering events in liquid helium primarily deposit
energy into long-lived phonon and roton quasiparticle excitations. If the energy thresholds of the detector
can be reduced to the meV scale, then dark matter as light as ∼MeV can be reached with ordinary nuclear
recoils. If, on the other hand, two or more quasiparticle excitations are directly produced in the dark matter
interaction, the kinematics of the scattering allows sensitivity to dark matter as light as ∼keV at the same
energy resolution. We present in detail the theoretical framework for describing excitations in superfluid
helium, using it to calculate the rate for the leading dark matter scattering interaction, where an off-shell
phonon splits into two or more higher-momentum excitations. We validate our analytic results against the
measured and simulated dynamic response of superfluid helium. Finally, we apply this formalism to the
case of a kinetically mixed hidden photon in the superfluid, both with and without an external electric field
to catalyze the processes.

DOI: 10.1103/PhysRevD.95.056019

I. INTRODUCTION

Weakly interacting massive particles (WIMPs) with a
mass of Oð100Þ GeV have been one of the leading dark
matter (DM) candidates for the past few decades. However,
recent null results in direct detection and collider experiments
now provide strong motivation to extend the scope of our
models and searches as much as possible. In addition,
theoretical advances have shown that there are a variety of
models for sub-GeV darkmatter that are only now beginning
to be explored. Such dark matter may reside in a low mass
hidden sector (or “hiddenvalley”) at theMeV-GeV scale [1],
with either strongly or weakly interacting dynamics [2–5].
These particles can be invisible to production at colliders, but
give rise to large scattering cross sections in direct detection
experiments. They are moreover well motivated in asym-
metric dark matter (e.g. [6]), supersymmetric hidden sectors
[7,8], and SIMP dark matter [9], to name a few.
The theoretical progress in identifying sub-GeV dark

matter has been accompanied by effort to experimentally
probe such light dark matter [10]. Among the various ways
to detect dark matter, existing direct detection experiments
have traditionally focused on nuclear recoils from WIMPs,
with typical recoil energies of 10–100 keV. Rapid progress
in recent years has thus produced strong limits on DM-
nucleon scattering in the 10–100 GeV mass range [11–14],
tightly constraining many well-motivated models of WIMP
dark matter. To improve sensitivity to lower mass DM, a
number of these experiments have successfully developed
techniques that lower the nuclear recoil thresholds below
∼keV. This has been implemented for example in

CDMSlite [15] and CRESST [16], which are sensitive to
GeV-scale dark matter.
For a given deposited energy, sensitivity to lighter dark

matter can be obtained by scattering from electrons, rather
than nuclei. This is because in elastic scattering with the
target at rest, the deposited energy isω ¼ q2=2mT , wheremT
is the target mass and the momentum transfer q ∼ μrvX is
given by the dark matter velocity vX and the dark matter-
target reduced mass μr. The first effort in this direction
utilized an electron ionization process in XENON10, deriv-
ing a constraint on electron interaction cross sections for DM
heavier than 10 MeV [17]. For this mass, the DM possesses
the minimum kinetic energy needed to ionize an electron
from xenon, ∼12 eV. In the future, SuperCDMS may have
sensitivity to MeV-scale DM, on account of the smaller∼eV
excitation energy set by the band gap of the semiconductor
[18–20]. (SuperCDMS may also probe unexplored param-
eter space for light bosonic DM with eV-keV mass through
an absorption process [21,22].) Other small gap materials
may also make good targets for MeV-GeV mass dark matter
in scattering, most notably graphene [23], giving access to
directional information, and crystal scintillators [24].
To reach DM lighter than an MeV, new ideas are needed.

The first proposal sensitive to keV-scale DM considered
superconductors [25,26] for DM-electron scattering. A
conventional superconductor has a small ∼0.3 meV elec-
tron band gap and a large electron Fermi velocity,
vF ∼ 10−2c; these two facts combined kinematically allow
access to keV mass DM (carrying a meVof kinetic energy).
It was also shown that these targets have a remarkable
sensitivity to bosonic DM in the meV-eV mass range via
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absorption on electrons, followed by phonon emission [27].
Aside from the ∼meV electron band gap, superconductors
have another property which can allow for detection of
small energy depositions; a DM scattering that breaks a
Cooper pair will give rise to long-lived quasiparticle
excitations (which behave very much like an electron).
In a very clean superconductor, excitations created in the
bulk can then be detected in sensors at the surface of the
target. Among the experimental challenges to implement-
ing this idea, it is necessary that the energy resolution be
improved significantly, down to the meV scale.
In this paper, we turn to a new proposal to detect keV-

MeV scale DM via nuclear recoils in superfluid helium,
first discussed in Ref. [28]. Similar to the superconductor
target, the low-energy degrees of freedom in superfluid
helium are long-lived quasiparticles. These quasiparticle
excitations (called phonons, rotons and maxons) are col-
lective modes in the fluid, analogous to sound waves in the
long-wavelength limit. These modes are produced by
nuclear scattering, and have been extensively probed by
neutron scattering experiments on superfluid helium. Since
a large fraction of the deposited energy in a low-energy
nuclear scattering is converted to phonons and rotons, it
may then be possible to detect dark matter as light as an
MeV via regular nuclear recoils if experimental thresholds
can be lowered to ∼10 meV. This is because MeV mass
dark matter deposits ∼meV of energy in a nuclear recoil
process, but this energy is amplified by ∼10 meV through
the evaporation of the excitation at the surface of the
superfluid. For a discussion of experimental aspects of a
liquid helium detector, and possibilities for detecting the
phonons and rotons, see for example Refs. [29,30].
The idea of Ref. [28] was to probe lower mass DM, in the

keV-MeV range, by taking advantage of multi-excitation
production in superfluid helium.For these lowmasses,which
have correspondingly small momentum ≲keV, the DM
couples directly to the collective quasiparticle modes.
However, the kinematics prohibit the creation of a single
excitationwith energy above ameV.The underlying reason is

that the dark matter velocity is much larger than the typical
sound speed in the fluid, such that the typical energy and
momentum transfer for sub-MeV DM cannot match the
dispersion relation of a single, on-shell excitation. However,
by considering the process of emitting two or more excita-
tions, it is possible to deposit energies larger than∼meVeven
with the small momentum transfers characteristic of such
light dark matter. The final state excitations are higher-
momentum excitations and very nearly back to back. The left
panel of Fig. 1 illustrates this process.
The purpose of this paper is twofold. First, we amplify

the discussion of Ref. [28], providing many more details of
the theory utilized for computing the multi-excitation
scattering rate. We update the analytic calculation of
Ref. [28] with the measured structure factor for the
leading-order scattering rate, and again compare against
the available computations of the literature. While neutron
scattering data and detailed numerical simulations have
been studied in some parts of the multi-excitation phase
space, the fluid response for DM with mass below
∼100 keV rests partially in previously unconsidered
regimes of momentum transfer and energy deposition.
This therefore requires some theoretical understanding of
the rates. Second, we elaborate on the reach for a simplified
model of dark matter coupling to nuclei via a new mediator
and compare with existing constraints. We additionally
consider scattering and absorption via hidden photons,
where the final state is a real photon plus a fluid excitation
(see the right panel of Fig. 1). In this case, the real photon
carries away the bulk of the energy, while the fluid
excitation absorbs most of the momentum. However, since
the net electric charge of a helium atom is screened at the
wavelengths of interest, we find that the reach for this case
is not competitive with existing stellar constraints.
We introduce the basic elements of the theory for super-

fluid helium in Sec. II, beginningwith a broad introduction to
the nature of quasiparticle excitations in the superfluid. In
order to calculate the two-excitation process, we employ the
correlated basis function formalism, standard in the liquid

FIG. 1. Leading order contribution to DM scattering via quasiparticle production in superfluid helium. (left) For scattering through a
contact interaction, the off-shell intermediate excitation splits into two, nearly back-to-back on-shell excitations. (right) For scattering
through an intermediate hidden photon A0, the hidden photon splits into a real photon, which carries nearly all the energy, and a fluid
excitation, which carries nearly all the momentum.
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helium literature, and derive the three-excitation matrix
element. Appendix A provides an alternative formulation
in terms of second quantization, andAppendixB fills in extra
details of calculating the three-excitation matrix element. In
Sec. III, we turn to a comparison of numerical calculations of
the multi-excitation process, applying our results to derive
the sensitivity of a liquid helium target to light DM. The
results here focus on DM scattering via a mediator that
couples to the nucleus. In Sec. IV, we discuss scattering and
absorption processes involving a hidden photon, which
couples to liquid helium via its polarizability. We conclude
in Sec. V.

II. THEORY OF SUPERFLUID HELIUM

A unique property of helium in the superfluid phase is
the nature of the elementary excitations. At long wave-
lengths (1=λ≲ few keV), the elementary degrees of free-
dom are no longer single-atom excitations. Instead, the
elementary excitations are acoustic phonon modes, a
collective mode which is equivalent to a density perturba-
tion at long wavelengths. The quasiparticle nature of the
phonon modes is also essential for dark matter detection.
While phonon modes are present even at temperatures
above Tc ¼ 2.17 K, the critical temperature for the super-
fluid phase transition, it is only well below Tc that the width
of the phonon mode becomes narrow. In this regime these
phonon modes are the only excitations present and they can
be thought of as nearly stable quasiparticles. Since a large
fraction of the energy deposited in a low-energy dark matter
scattering will be in the form of phonons, it is important that
these excitations be long-lived states that can propagate to
the surface of the liquid and be measured, for a ∼10 cm3

volume (or 1 kg) of liquid helium (see Refs. [31,32] for a
discussion on phonon lifetimes).
In this section, we describe the theory for superfluid

helium needed to calculate the production of multiple
excitations in the liquid. Due to the strongly interacting
nature of the liquid, the underlying microscopic theory for
superfluid helium is not completely understood. However,
somewhat phenomenological methods have been proposed
which can successfully reproduce many features of the
data. The basic idea behind these methods goes back to
Feynman in 1954 [33], and starts with a posited form for
the ground state jΨ0i, or equivalently a wave function for
an N-atom system. While determining the form of the
ground state is difficult (though it can be tested by
comparison with data), excited states are momentum
eigenstates that are written simply as the number density
operator acting on the ground state, jqi ∝ nqjΨ0i. This
starting point will then allow us to calculate the creation of
excitations of the liquid, even without complete knowledge
of the full ground state. Wewill compare this approach with
more complete calculations available in the literature. For a
thorough discussion of the various theoretical descriptions
of excitations in liquid helium, see also Refs. [34–36].

A. Bijl-Feynman relation for single excitations

Much of our knowledge of the excitations in a strongly
interacting quantum fluid (such as superfluid helium)
comes from the dynamic structure function Sðq;ωÞ, which
describes the response of the liquid to a density perturba-
tion with momentum transfer q and energy deposited ω.
For instance, Sðq;ωÞ can be directly measured in neutron
scattering by measuring the differential cross section:

d2σ
dΩdω

¼ b2n
pf

pi
Sðq;ωÞ; ð1Þ

where pi and pf are the initial and final momenta of the
scattered neutron, q ¼ pf − pi, and bn is the scattering
length of a neutron on an individual helium nucleus.
The dynamic structure function thus depends on the

matrix element for the creation of a quasiparticle
with momentum q and energy ω. Concretely, Sðq;ωÞ is
defined as

Sðq;ωÞ≡ 1

n0

X
β

jhΨβjnqjΨ0ij2δðω − ωβÞ; ð2Þ

where the final states in the scattering are denoted as jΨβi
with energy Eβ, the ground state jΨ0i has energy E0, and
ωβ ¼ Eβ − E0. Here nq is the Fourier transform of the
density operator [in real space, nðrÞ ¼ P

iδ
ð3Þðr − riÞ],

nq ≡ 1ffiffiffiffi
V

p
XN
i¼1

expðiq · riÞ; ð3Þ

and ri are the coordinates of the individual helium atoms in
the fluid. We take an arbitrary quantization volume V, with
N the number of He atoms in the volume; physical results
will only depend on the average number density n0 ¼ N=V.
To facilitate some of the later computations, we will
occasionally go to the continuum limit by replacing

P
q →

V=ð2πÞ3 R d3q and δq;q0 → ð2πÞ3=Vδð3Þðq − q0Þ.
The reason neutron scattering (or dark matter scattering)

couples to density fluctuations can be understood by
considering the potential VðrÞ seen by a neutron in the
liquid,

VðrÞ ¼ 2πbn
mn

X
i

δð3Þðr − riÞ ¼
2πbn
mn

nðrÞ; ð4Þ

assuming a hard-sphere interaction and neutron mass mn.
This is the underlying justification for Eq. (1), which we
derive in Sec. III A for the case of DM scattering. In
particular, we similarly obtain such a potential for dark
matter by coupling the DM to helium atoms, with
bn=mn → bX=mX, with bX and mX the dark matter mass
and scattering length, respectively.
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The dynamic structure function Sðq;ωÞ is thus crucial to
understand the response of superfluid helium to dark matter
scattering. While it can be obtained from neutron scattering
data at moderate momentum transfer (q≳ 0.1=Å, corre-
sponding to q ∼ 0.2 keV in units where q ¼ 2π=L), a
certain level of theoretical control is also possible. As
we will see, this theoretical control will be crucial for
extrapolating the dynamic structure function to lower
momentum transfers, which is necessary to compute the
scattering rate when the DM is lighter than ∼100 keV.
The leading order contribution to Sðq;ωÞ is given by the

probability to create a single on-shell quasiparticle excita-
tion. One of the earliest theories of the single excitation
spectrum, due to Bijl [37] and Feynman [33], applies the
variational method to understand the shape of the
dispersion curve. Concretely, the trial wave function for
a single excitation is given by

jqi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0SðqÞ

p nqjΨ0i; ð5Þ

with nq defined in Eq. (3), and where the static structure
function SðqÞ is defined by

SðqÞ≡ 1

n0
hΨ0jn−qnqjΨ0i; ð6Þ

where SðqÞ is a function only of q ¼ jqj, and its appearance
in the definition of the state ensures that hqjqi ¼ 1. The left
panel of Fig. 2 shows the experimentally measured SðqÞ in
helium, which is linear in jqj at small momentum and

approaches 1 at high momentum. In the limit of a single
excitation, which does not split to multi-excitations, SðqÞ is
related to the dynamic structure function by

Sðq;ωÞ ≈ 1

n0
jhqjnqjΨ0ij2δðω − ϵ0ðqÞÞ

¼ SðqÞδðω − ϵ0ðqÞÞ; ð7Þ

where ϵ0ðqÞ is the energy of jqi, which we will refer to as
the Bijl-Feynman energy.
Since the state in Eq. (5) is by construction orthogonal to

the ground state, the variational method dictates that its
energy ϵ0ðqÞ provides an upper bound on the true energy
eigenvalue ϵðqÞ. As we will show in the next section, the
single excitation energy is

ϵ0ðqÞ≡ hqjH − E0jqi ¼
q2

2mHeSðqÞ
≥ ϵðqÞ; ð8Þ

with H the Hamiltonian and E0 the ground-state energy.
The factor SðqÞ comes from the normalization of the states
in Eq. (5), and in the limit of a free Bose gas SðqÞ → 1. The
Bijl-Feynman theory for ϵ0ðqÞ produces the single reso-
nance curve shown in the right panel of Fig. 2, and
approaches the free-particle quadratic dispersion at high
q. For comparison, we also show the measured dispersion
curve for single-resonance excitations in Fig. 2. We see that
the Bijl-Feynman energy agrees roughly with the measured
energy at long wavelengths, where the excitations can be
identified with sound waves (phonons) with energy

FIG. 2. (left) Interpolation of the data for the static structure function SðqÞ (at T ¼ 1 K) from neutron scattering experiment [38]. In the
small q limit, SðqÞ behaves linearly according to Eq. (9). (right) We compare the measured dispersion curve for single excitations in
superfluid helium (solid black line) with the Bijl-Feynman relation for excitations, q2=ð2mHeSðqÞÞ (dashed blue line). The measured
dispersion curve [39] comprises the phonon modes at low q and the maxon and roton at high q [in particular, the modes at around
q ∼ 4 keV where ϵðqÞ reaches a local minimum is called the roton], but does not include the broad multi-excitation response centered
around the free-particle dispersion at high q. In the Bijl-Feynman theory, which does track the quadratic dispersion at high q (shown as
the dotted black line), these high q modes are treated as single-particle excitations.
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ϵ0ðqÞ ¼ csjqj, where cs ≈ 2.4 × 104 cm=s is the sound
speed. In this regime, the static structure factor is then
linear in the momentum with

SðqÞ ≈ jqj
2mHecs

: ð9Þ

However, as the curve reaches a maximum and begins to
turn over (the maxon and roton regions), the agreement no
longer persists, and is not even qualitatively correct as the
dispersion curve reaches a plateau.
The original Bijl-Feynman theory contains, however, no

multiphonon response. More generally, the dynamic struc-
ture function will contain both the single pole, with strength
ZðqÞ, and a continuum component, Sm:

Sðq;ωÞ ¼ ZðqÞδðω − ϵðqÞÞ þ Smðq;ωÞ; ð10Þ

and the static structure function now satisfies the more
general relation SðqÞ ¼ R

dωSðq;ωÞ. Any large deviation
of ZðqÞ from SðqÞ indicates that the state defined in Eq. (5)
is no longer a good approximation to the single-excitation
state, which will be the case in the roton region. The
continuum component Sm results from multi-excitation
production in the medium. These multi-excitation modes
are also important for computing the correct single reso-
nance dispersion curve through radiative corrections to the
propagator. It is the multi-excitation response Smðq;ωÞ that
we will focus on in the rest of this section.

B. Hamiltonian formulation

We now lay out the ingredients to describe phonon
interactions, focusing on the elements needed to compute
Smðq;ωÞ. We follow the correlated basis function formal-
ism, which we briefly review here. This formalism adopts
the Bijl-Feynman approach, positing that particle correla-
tions are primarily contained in the ground state wave
function. Given the exact ground state, excited states are
obtained simply with repeated applications of the density
operator. Following Ref. [40], we define a lowest-order set
of basis states using the Bijl-Feynman states:

jqi0 ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0SðqÞ

p nqjΨ0i ð11Þ

jq1;q2i0 ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0Sðq1Þ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0Sðq2Þ

p nq1nq2 jΨ0i: ð12Þ

jΨ0i is the full ground state of the interacting system.
Importantly, the states here are not orthogonal and hence
phonon number is not conserved. Instead, the propagating
excitations are superpositions of these states. We deal with
this complication in the following section.
To compute the energies and matrix elements, we require

an interaction Hamiltonian. This Hamiltonian may either be

written as the effective theory of a quantum fluid, or in
terms of the microscopic degrees of freedom. Let us first
consider the fluid Hamiltonian, which directly allows for a
second-quantized approach, see e.g. [41]. (This discussion
most closely follows Ref. [28].) Here we elevate the status
of the density fluctuation nq to independent operators
which create excitations in the fluid, and consider an
effective Hamiltonian for these fluid degrees of freedom,

H ¼
Z

d3r

�
1

2
mHev · nv þ VðnÞ

�
: ð13Þ

By expanding in the density and velocity fluctuations, the
system can be approximated to leading order as a harmonic
oscillator with Hamiltonian

H0 ¼
1

2

X
q

mHen0vq · v−q þ ϕðqÞnqn−q; ð14Þ

where ϕðqÞ≡ δ2V=δn2q can be thought of as a momentum
dependent force constant. As we show in Appendix A, this
Hamiltonian lends itself to canonical quantization of the nq,
vq variables, and Eq. (14) be can expressed in terms of
creation and annihilation operators,

H0 ¼
X
q

ϵ0ðqÞ
�
a†qaq þ

1

2

�
: ð15Þ

The single-excitation energy is simply 0hqjH0 − E0jqi0 ¼
ϵ0ðqÞ. The three-excitation interaction vertex and corrected
energy eigenvalues can then be obtained by expanding
Eq. (13) to higher order in the density and velocity
fluctuations. While this setup may be more familiar to a
particle physicist, it is less convenient for our purposes. In
particular, the ground state in the fluid is nontrivial: in a
medium, quantum fluctuations require us to consider an
active vacuum, where the asymptotic states of the strongly
interacting fluid are not well approximated by the free
states of a weakly interacting system. This effect can be
accounted for in the second-quantized quantum fluid
formalism by correcting the ground state order by order,
as we show in Appendix A, although the calculation is
somewhat cumbersome.
In practice, matrix elements are often derived more

simply in a first-quantized formulation of the microscopic
theory, which has the advantage, as we will see, that
knowledge of the ground state is not required to compute
the matrix element that we are interested in. Given the
energies and vertices computed in this approach, one can of
course construct an equivalent second-quantized, quantum
fluid Hamiltonian, which may be more convenient for
certain scattering and self-energy calculations. The first-
quantized microscopic Hamiltonian is given by
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H ¼
X
i

�
−

∇2
i

2mHe

�
þ VðfrigÞ; ð16Þ

where the sum runs over all N particles in the fluid. Writing
ψ0ðfrigÞ as the wave function corresponding to the ground
state jΨ0i, we require that Hψ0 ¼ E0ψ0 such that ψ0

is the exact ground state of the full Hamiltonian. For a

translationally invariant system, we thus find that the
ground state energy is E0 ¼ hΨ0jVðfrigÞjΨ0i.
We can show that this formulation also gives the Bijl-

Feynman energy in Eq. (8). Using h� � �i → R
d3r1 � � � rN

with integration over the coordinates of all atoms, and
acting with H − E0 on the wave function jqi0 →
nqψ0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0SðqÞ

p ¼ P
ie

iri·qψ0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NSðqÞp

,

0hqjH − E0jqi0 ¼
1

NSðqÞ
X
i;l

Z
d3r1 � � � rNψ0e−iq·ri ½H − E0�ðeiq·rlψ0Þ

¼ 1

2mHe

1

NSðqÞ
X
i;j;l

Z
d3r1 � � � rNψ0e−iq·ri ½−ψ0ð∇2

je
iq·rlÞ − 2ð∇jψ0Þð∇jeiq·rlÞ�

¼ 1

2mHe

1

NSðqÞ
X
i;j;l

Z
d3r1 � � � rNψ2

0ð∇je−iq·riÞð∇jeiq·rlÞ ¼
q2

2mHeSðqÞ
; ð17Þ

where we usedHψ0 ¼ E0ψ0 and rearranged the derivatives
with partial integration. We have also assumed ψ0

is a properly normalized, real wave function,R
d3r1���rNðψ0Þ2¼1. [Notice that the dependence on the

unknown forms of ψ0 and VðfrigÞ dropped out.] While we
have only computed the average energy for a given state, it
can furthermore be shown that jqi approaches an exact
eigenstate of H in the q → 0 limit [42].

C. Three-excitation vertex

In the previous section, we defined a single excitation
state which we regard as an approximately free quasipar-
ticle, as well as multi-excitation states which are products
of the single excitations. However, an important subtlety in
treating a nondilute, strongly interacting fluid is that the
asymptotic states do not have a well defined particle
number. In particular, the states defined so far are not
orthogonal, and we must first define an orthogonal basis of
states before considering the three-excitation vertex. In
other words, to correctly calculate the cross section, we
need to compute the matrix element for states which are
long lived compared to the time scale set by the interaction
Hamiltonian. This way the factorization principle allows us
to compute the total rate without detailed knowledge of the
ultimate fate of the external states in the matrix element.1

A set of orthogonal states can be obtained by performing
a Gram-Schmidt rotation to orthogonalize the basis.
Concretely, we start with the same single excitation state
jqi0 ¼ nqjΨ0i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0SðqÞ

p
and then define a set of orthogo-

nal states relative to jqi0 by

jqi≡ jqi0 ð18Þ

jq1;q2i≡ jq1;q2i0 −
X
q0

hq0jq1;q2i0jq0i: ð19Þ

In what follows we always drop the 0 superscript for the
single particle state, since it is by construction identical to the
corresponding state in the orthogonalized basis. We identify
this new basis of states with the orthogonal eigenstates of the
quadratic Hamiltonian for the quasiparticles, which will be
corrected by the cubic interactions derived below.
The unknown particle correlations of the strongly coupled

fluid are now conveniently packaged in the hq0jq1;q2i0
matrix element, whichwewill discuss later in this section. In
the microscopic Hamiltonian of Eq. (16), this overlap term
encodes the unknown potential term which dictates the
correlations of particles in the ground state. For the quantum
fluid effectiveHamiltonian inEq. (13), the same information
is encoded in the interactions coming from both the kinetic
term, the unknown potential and possible matching terms
encoding the unknown short distance physics. (In this sense
one may roughly think of the overlap term hq0jq1;q2i0 as a
counterterm which enforces the orthogonality of the renor-
malized states.)
To compute the three-excitation matrix element, we

again use δH ¼ H − E0 with the Hamiltonian given in
Eq. (16) and with E0 the ground state energy:

hq − k;kjδHjqi ¼ 0hq − k;kjH − E0jqi
− ϵ0ðqÞ0hq − k;kjqi: ð20Þ

In the second term, we have used the leading order energy of
the single-excitation state; this three-excitation vertex will
itself correct the single-excitation energy at higher order in
perturbation theory. The first term in Eq. (20) can be
computed directlywith the basis states in the previous section:

1This is a familiar concept in hard parton scattering in QCD,
where we can compute the leading order, total inclusive cross
section without detailed knowledge about the shower and
hadronization.
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0hq − k;kjδHjqi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n30Sðq − kÞSðkÞSðqÞ

q Z
d3r1 � � � d3rNn�q−kn�kψ0ðH − E0Þnqψ0: ð21Þ

Again, (H − E0) acts on nqψ0, and after integration by parts plus the fact that ψ0 satisfies ðH − E0Þψ0 ¼ 0, we can show that

0hq−k;kjδHjqi¼
X
j

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n30Sðq−kÞSðkÞSðqÞ

q Z
d3r1 � � �d3rN

ðψ0Þ2
2mHe

∇jðn�q−kn�kÞ∇jðnqÞ

¼
X
j

1

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0Sðq−kÞSðkÞSðqÞp Z

d3r1 � � �d3rN
ðψ0Þ2
2mHe

ð−iðq−kÞe−iðq−kÞ·rjn�k− iðkÞe−ik·rjn�q−kÞðiqeiq·rjÞ:

ð22Þ
We rewrite the terms above in terms of the static structure function,

1ffiffiffiffi
N

p
X
i

hΨ0je−iqrinqjΨ0i ¼
1ffiffiffiffiffi
n0

p hΨ0jn�qnqjΨ0i ¼ ffiffiffiffiffi
n0

p
SðqÞ: ð23Þ

Using this result, we obtain

0hq − k;kjH − E0jqi ¼
q · ðq − kÞSðkÞ þ q · kSðq − kÞ
2mHe

ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðq − kÞSðkÞSðqÞp : ð24Þ

Next, to directly compute the overlap matrix element
0hq − k;kjqi requires some working assumption for the
form of the ground state wave function. Alternatively, one
may estimate for this overlap term with a more indirect
method. The simplest ansatz which yields the correct
long-wavelength behavior and satisfies a certain set of
consistency conditions is known as the “convolution
approximation.” With this ansatz, one finds [36,40]

0hq − k;kjqi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðq − kÞSðkÞSðqÞp

ffiffiffiffi
N

p ; ð25Þ

which we derive in detail in Appendix B. It has been
shown that using this form gives good agreement with
experimental data on neutron scattering. Various
improvements to the convolution approximation have
been considered (see e.g. [43]), though for our approxi-
mate, analytic treatment we choose to keep the simplest
possibility. This has the main advantage that the for-
mulas of the final answer are very manageable. In
particular, utilizing Eq. (20), the full matrix element is
then given by

hq − k;kjδHjqi ¼ q · ðq − kÞSðkÞ þ q · kSðq − kÞ − q2SðkÞSðq − kÞ
2mHe

ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðq − kÞSðkÞSðqÞp : ð26Þ

Having obtained the three-excitation matrix element, it is now possible to systematically compute the single excitation
energy as a perturbation series in this matrix element. To leading order in Brillouin-Wigner perturbation theory [44], the
eigenstates of the Hamiltonian are

jΨqi ¼jqi þ 1

2

X
p;k

jp;ki hp;kjδHjqi
ϵðqÞ − ϵ0ðkÞ − ϵ0ðpÞ

δpþk;q ð27Þ

jΨk;qi ¼jk;qi þ 1

2

X
p

jpi hpjδHjk;qi
ϵðkÞ þ ϵðqÞ − ϵ0ðpÞ

δp;kþq: ð28Þ

Similarly, the energy of jΨqi is then given by the recursive relation

ϵðqÞ ¼hΨqjHjΨqi ¼ ϵ0ðqÞ þ
1

2

Z
d3k
ð2πÞ3

Vjhq − k;kjδHjqij2
ϵðqÞ − ϵ0ðq − kÞ − ϵ0ðkÞ

; ð29Þ
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where we took the continuum limit. To solve for the
resummed energy to lowest order, ϵðqÞ is replaced by
ϵ0ðqÞ inside the integral above. By inserting Eq. (28) in
Eq. (2), one can compute the two-excitation contribution to
the dynamic structure function to leading order,

Smðq;ωÞ ¼
SðqÞ
2

Z
d3k
ð2πÞ3

Vjhq − k;kjδHjqij2
ðϵ0ðqÞ − ωÞ2

× δðω − ϵ0ðkÞ − ϵ0ðq − kÞÞ: ð30Þ

This is shown diagrammatically in Fig. 3. Whenever we use
this approximation, we use the Bijl-Feynman dispersion
relation and the measured form of SðqÞ, both shown in
Fig. 2. While this form is enough to obtain a rough estimate
of the scattering rate, it clearly has the incorrect structure as
it only uses the lowest-order energies.
This deficiency is addressed in many detailed calcula-

tions of Sðq;ωÞ found in the literature [39,45,46], using
different approximations for the three-excitation vertex and
in defining the multi-excitation states. We note that the
approach presented here is not entirely unique in giving
reasonable agreement with the data. Recently, a fully self-
consistent calculation which resums the corrections due to
the three-phonon vertex and gives good agreement with
experimental data has been presented by Campbell,
Krotscheck and Lichtenegger in Ref. [39] (hereafter,
CKL15). Rather than model the effect of the interactions
with a heuristic ansatz for the overlap term, they explicitly
include the leading term from the potential in Eq. (16).
Operationally, they obtain Sðq;ωÞ by recursively solving
for the self-energy Σðq;ωÞ, which satisfies

Σðq;ωÞ¼ ϵ0ðqÞþ
1

2

Z
d3k
ð2πÞ3

×
Vjhq−k;kjδHjqij2

ω−Σðq−k;ω−ϵ0ðkÞÞ−Σðk;ω− ϵ0ðq−kÞÞ :

ð31Þ

Using this self-energy, the renormalized energies ϵðqÞ then
match the observed single-excitation energies, and the
dynamic structure factor is given by the optical theorem,

Sðq;ωÞ ¼ −
1

π

SðkÞImΣðq;ωÞ
ðω − ϵ0ðqÞÞ2 þ ðImΣðq;ωÞÞ2 : ð32Þ

The result for Sðq;ωÞ is shown in Fig. 4, which includes
both the single and multi-excitation response. We empha-
size that the method of Ref. [39] includes multi-excitation
production beyond just the leading order two-excitation
production, with the limitation that the multi-excitation
production still relies on the three-excitation vertex (in
general, higher-point vertices are present). A detailed
comparison of this theoretical calculation with inelastic
neutron scattering data can be found in Ref. [47].
Accounting for neutrons that scatter multiple times in
the liquid, the data is in reasonably good agreement with
theory for the multi-excitation component.

FIG. 3. Expansion of the dynamic response function in terms of diagrams, where the dashed lines indicate the excitations as defined in
Eq. (19). The two-excitation diagram is the leading contribution to Sðq;ωÞ for q, ω away from the dispersion relation.

FIG. 4. Self-consistent calculation of the dynamic structure
function Sðq;ωÞ, obtained from Ref. [39] (CKL15). For a given
q, the onset of the response at a minimum ω clearly shows the
one-excitation component of Sðq;ωÞ. The response at larger ω
corresponds to the multi-excitation component, where the struc-
tures at 2 meV and above arise from multi-excitations of rotons/
maxons. In the experimental data these structures are less
prominent, which is expected once additional interactions are
included (see Figs. 21 and 22 and discussion in Ref. [39].)
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As we will discuss in the following section, the results
shown in Fig. 4 are in broad agreement with the lowest
order calculation of Smðq;ωÞ using Eq. (30), although there
are significant differences in detailed structure. Where
available, we will therefore use the numerical results of
CKL15 to compute DM scattering, and use the lowest order
results only as a guide to extending CKL15 to low
momentum transfer.

III. REACH FOR DARK MATTER SCATTERING

We now turn to DM detection with an idealized liquid
helium detector, applying our knowledge of the dynamic
structure function derived in the previous section. A possible
concept for this detector has been shown in [30]: the basic
idea is that a scattering event creates quasiparticle excitations,
which can propagate to the surface of the liquid.At the liquid-
gas interface, the quasiparticle has a high probability to eject
a free helium atom via quantum evaporation, followed by
calorimetric detection of the helium atom. Furthermore, the
evaporation process may give a natural amplification tech-
nique (with amplification factors of ∼10), and in principle
could be applied for single quasiparticle energies as low
as ω ¼ 0.6 meV.
In this section we use the various results for the dynamic

structure function Sðq;ωÞ to obtain the rate for DM
scattering. We discuss the derivation of the rate given in
[28] in greater detail, considering the expanded calculation
of Sðq;ωÞ. As a benchmark, we will consider a back-
ground-free kg-year exposure. For multi-excitation final
states, we take a minimum energy of ω ¼ 1.2 meV and
energies up to 8.6 meV. This upper value on ω coincides
with the upper cutoff of the numerical results we take from
CKL15; furthermore, this energy range constitutes the bulk
of the response, and the rate falls off rapidly at higher ω.
The results of this section are applicable to models of

dark matter interacting coherently with helium atoms via a
new mediator, where we consider both the heavy mediator
and light mediator limits. In contrast, in the long wave-
length limit the helium atom does not have a net charge for
a mediator such as a hidden photon. We will discuss signals
related to the hidden photon in Sec. IV.

A. Preliminaries

The total DM scattering rate per unit target mass is
given by

dR
dω

¼ 1

ρHe

ρX
mX

Z
d3vfðvÞ

Z
piþpf

jpi−pf j
dq

dΓ
dωdq

; ð33Þ

where dΓ
dωdq is the differential scattering rate per incomingDM

particle. We denote the initial momentum of the DM pi and
the final momentum pf, with

pf ¼ mX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 −

2ω

mX

s
; pi ¼ mXjvj: ð34Þ

For the velocity distribution for the dark matter, we assume
the standard halo model Maxwellian distribution, boosted to
the Earth’s frame:

fðvÞ¼ 1

Nðv0;vescÞ
exp

�
−
ðvþveÞ2

v20

�
Θðvesc− jvþvejÞ;

ð35Þ

Nðv0;vescÞ¼ π3=2v30

�
erf

�
vesc
v0

�
−2

vesc
v0

exp

�
−
�
vesc
v0

�
2
��

;

ð36Þ

where v0 ¼ 220 km=s, the escape velocity vesc ¼
500 km=s, and we take the average Earth’s velocity to be
ve ¼ 240 km=s. The normalization factor Nðv0; vescÞ
accounts for the hard cutoff in the distribution at vesc. For
the local dark matter density, we take ρX ¼ 0.3 GeV=cm3.
(Note that this velocity distribution differs somewhat from
that used in Ref. [28], with more weight at higher initial
velocities. This leads to a factor of few larger scattering rate.)
Analogous to the case for neutron scattering Eq. (4), DM

in superfluid helium sees the potential

VðrÞ ¼ 2πbX
mX

X
i

δð3Þðr − riÞ ¼
2πbX
mX

nðrÞ; ð37Þ

where bX is the DM-helium scattering length. This pre-
scription works both for a light mediator and for a contact
operator, where in the former case bX is momentum
dependent. We can then compute the scattering rate with
Fermi’s golden rule,

Γ¼2π

�
2πbX
mX

�
2
Z

d3pf

ð2πÞ3
X
β

jhΨβjnqjΨ0ij2δðEi−Ef−ωβÞ:

ð38Þ

With a suitable change of variables, the differential rate
is then

dΓ
dqdω

¼ 1

2
n0

σXðqÞ
mX

q
pi

Sðq;ωÞ; ð39Þ

where we used the definition of Sðq;ωÞ in Eq. (2). [The
derivation of the neutron scattering rate in Eq. (1) is
completely analogous.] The DM-nucleus scattering cross
section σXðqÞ ¼ 4πbXðqÞ2, where bXðqÞ is the DM scat-
tering length. Assuming the DM-nucleus interaction is
mediated by a new force carrier ϕ, we can express this as
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σXðqÞ≡
8><
>:

σp
ðfpZþfnðA−ZÞÞ2

f2p
; mϕ ≫ q ðmassive mediatorÞ

σpq4ref
q4

ðfpZþfnðA−ZÞÞ2
f2p

; mϕ ≪ q ðmassless mediatorÞ;
ð40Þ

where we consider the massive and massless mediator
limits, and σp is the DM-proton cross section at a reference
momentum transfer qref ≡mXv0. In what follows we take
fn ¼ fp. The expression for DM scattering rate is then

dR
dω

¼ ρX
2mHem2

X

Z
d3vfðvÞ

Z
piþpf

jpi−pf j
dq

q
pi

σXðqÞSðq;ωÞ:

ð41Þ

B. Scattering rate and reach

Since a full, self-consistent calculation of Sðq;ωÞ has
been made available in CKL15, we would like to use these
results. However, for scattering of light dark matter, the
kinematic regime is somewhat different from that of
neutron scattering measurements (q≳ keV) and existing
simulation data (q≳ 100 eV). In particular, for dark matter
in the keV to MeV range, we expect typical momentum
transfer and energy deposits given by

eV≲ jqj≲ keV and meV≲ ω≲ eV: ð42Þ

This is partially outside the regime that was considered in
CKL15 and is shown in Fig. 4, which includes q ≈
100 eV–4 keV and ω < 8.6 meV. The reason for the
kinematic mismatch between dark matter and the data is
the relatively large velocity of the dark matter compared to

the speed of sound in helium, which pushes the interaction
away from the linear dispersion phonon regime.
For the time being, we must therefore rely on a

theoretically sensible extrapolation to compute the rate
for lighter DM. The numerical data in particular shows a q4

scaling in the low q region, which we can exploit to
extrapolate to lower momenta. This q4 power law can be
understood analytically using our approximate expression
for Sðq;ωÞ in Eq. (30). In the long-wavelength limit
(q ≲ keV) and at deposited energies ω≳ 0.6 meV, we
can take the q ≪ k, jq − kj where k and q − k are the
momenta of the final state phonons. The matrix element in
Eq. (26) then simplifies to

hq − k;kjδHjqi ≈ 1

2mHe

ffiffiffiffi
N

p q2ffiffiffiffiffiffiffiffiffiffi
SðqÞp ð1 − SðkÞÞ: ð43Þ

Inserting this in Eq. (30) gives

Sðq;ωÞ ≈ 1

16π2
q4

n0m2
Heω

2

X
i

~k2
i ð1 − Sð ~kiÞÞ2; ð44Þ

where the ~ki are the solutions to ϵ0ðkiÞ ¼ ω=2. We show
the q-dependence of the numerical data from CKL15 in
Fig. 5, along with the extrapolation to lower q with the q4

power law. For comparison, we also show our own
numerical calculations of the leading order Sðq;ωÞ using
Eq. (30), where we took the Bijl-Feynman dispersion

FIG. 5. The numerical results from CKL15 are compared with our leading order calculation of Sðq;ωÞ at two representative values of
ω. The dashed line shows the extrapolation with the q4 power law, which is a good fit at low q and agrees with the scaling we find in the
leading order calculations.
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relation and measured form of SðqÞ, each shown in Fig. 2.
(While the Bijl-Feynman dispersion relation is strictly
speaking not correct for high momenta, we use it to
roughly estimate the contribution from the response above
2 meV, as seen in Fig. 4.) In both cases, we see the low-q
behavior is very well described by a q4 power law.
To indicate the relative importance of this extrapolation

for dark matter scattering, we show the q values that are
most relevant for the DM scattering rate in Fig. 6, compared
to the momenta covered by the CKL15 results. What is
shown in the average q, weighted by the relevant factors in
Eq. (41), or more explicitly

hqi≡
Z

piþpf

jpi−pf j
dqq2σXðqÞSðq;ωÞ

�Z
piþpf

jpi−pf j
dqqσXðqÞSðq;ωÞ

ð45Þ

using the Sðq;ωÞ extrapolated below q ¼ 100 eV with the
q4 power law. Thus theDMrate computed here relies heavily
on the q4 extrapolation for DM masses below 50–100 keV,
and a dedicated simulation along the lines of CKL15 will
eventually be needed in this part of parameter space.
Figures 7 and 8 show the spectrum for scattering via a

massive and massless mediator, respectively. In both cases,

FIG. 6. We show typical values for the total momentum transfer q ¼ jqj as a function of dark matter mass mX , considering both a
massive mediator (left) and massless mediator (right). We use Sðq;ωÞ extrapolated as q4 to plot hqi as well as the variance for q
(indicated by the shaded region). The energy deposited is fixed at ω ¼ 3 meV, and we consider two values of the initial DM velocity.
The range of q covered in the CKL15 results (Ref. [39]) is indicated by the light gray lines; as can be seen, these numerical results start to
be insufficient for DM masses below ∼50 keV, and we must rely entirely on the q4 extrapolation of the CKL results for masses below
∼30 keV.

FIG. 7. (left) The DM scattering rate via a massive mediator is computed using the Sðq;ωÞ obtained from CKL15. (right) Here we used
the leading order result in Eq. (30), with the Bijl-Feynman dispersion for single excitations. There are significant differences in the
structure of the spectrum between the two methods, due to the incorrect energies given by the Bijl-Feynman dispersion. However, we
find the total integrated rate is similar to within a factor of 2.
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we compare the result using Sðq;ωÞ from CKL15 and that
using Eq. (30). When computing Sðq;ωÞ from Eq. (30), we
use the Bijl-Feynman dispersion for excitations, along with
the measured SðqÞ; since this method gives roton/maxon
energies which are too high compared to the measured
ϵðqÞ, the structure here is shifted to higher ω. These
differences illustrate the importance of obtaining the correct
energies (and widths) of the rotons and maxons, since the
rate is clearly dominated by pair production of these
excitations.
The projected best-case sensitivity for DM scattering is

shown in Fig. 9, for 1 kg-year exposure and assuming zero
background events. The results for both computations of
Sðq;ωÞ are similar once the rate is integrated over the
energy range ω ∈ ½1.2; 8.6� meV, despite the significant
differences in the spectrum. In the same plots, we show the
reach if only regular nuclear recoils can be observed down
to ∼3 meV (gray line). [Below ∼3 meV, we know that the
only modes available are quasiparticle (phonon or roton/
maxon) modes—see Fig. 2.] In our estimates, we assumed
a 30% signal efficiency to account for possible losses due to
absorption of quasiparticles by the container walls, or from
rotons failing to induce evaporation when reaching the
surface of the liquid [48,49]. We did not include possible
backgrounds from scattering of solar neutrinos (see for
example Ref. [26]) and coherent photon scattering [50],
which are small for these exposures.
Note our results are consistent with the reach computed in

Ref. [28], where the results utilizing the CKL15 Sðq;ωÞ
match exactly (up to thedifferent velocity distributions used).
Reference [28] also calculated themulti-excitation rate in the
leading order approximation, but using a different form of
SðkÞ ¼ k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

Hec
2
s þ k2

p
. This assumption made it trac-

table to obtain an analytic result for the rate, but does not
include the peaked spectrum from the rotons that we see in
Figs. 7 and 8. However, accounting for a missing symmetry

factor of 1=2 in the analytic results of Ref. [28] and the
different velocity distributions, the reach is similar.
In Fig. 9, we also show contours in σp for various model-

dependent coupling and mass parameters. In particular, the
cross section for DM scattering off a single proton or
nucleon can be written in the massive and massless
mediator limits as

σp¼

8><
>:

4αXg2nμ2nX
m4

ϕ
; mϕ ≫ qref ðmassive mediatorÞ

4αXg2nμ2nX
q4ref

; mϕ ≪ qref ðmassless mediatorÞ;
ð46Þ

for fixed momentum transfer qref ¼ mXv0. Here we have
written the mediator coupling to the DM and nucleons as gX
and gn, respectively. [To relate results with the form of the
scattering potential given in Eq. (37), we take bX=mX →
AðgngXÞ=m2

ϕ with A ¼ 4, in the limit of mX ≪ mHe.]
Setting aside the cosmological production mechanism for

the DM, there are a number of model-dependent existing
constraints on light dark matter, in particular for the case of a
light mediator. The DM-mediator coupling gX is bounded
fromDM self-interactions, which can affect DMhalo shapes
and small-scale structure. The momentum-transfer weighted
self-interaction cross section is given by [51]

σT ≈

8><
>:

4πα2Xm
2
X

m4
ϕ

; mϕ ≫ mXv ðmassive mediatorÞ
16πα2X
m2

Xv
4 ln

mXv2

2mϕαX
; mϕ ≪ mXv ðmassless mediatorÞ;

ð47Þ

where v is the velocity of the DM and in the above we have
assumed 2mϕαX=ðmXv2Þ ≪ 1, always valid here. A com-
parison of observed structure with simulations that incorpo-
rate DM self-interactions leads to upper bounds in the
ballpark of σT=mX ≲ 0.1–10 cm2=g, depending on the

FIG. 8. Same as Fig. 7, but for DM scattering via a massless mediator.
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system. In particular, observations of dwarf galaxies (with
v ∼ few × 10−4) allow cross sections as high as σT=mX ≈
10 cm2=g [52,53] and comparison with shapes of elliptical
galaxies (with v ∼ 10−3) gives an upper bound of about
σT=mX ≲ 0.1 cm2=g [54]. However, we emphasize these
bounds canvarybyup to anorder ofmagnitude depending on
the detailed modeling of structure formation. Furthermore,
existing simulations have focused on hard-sphere scattering,
and the boundsmay bemodified significantly in themassless
mediator case, where the scattering is dominantly in the
forward direction, leading to less isotropization than the

hard-sphere scattering case for a given interaction cross
section. Nevertheless, we can use these results to obtain an
approximate bound on the DM coupling. Taking σT=mX <
10 cm2=g and setting v ¼ 3 × 10−4, we find

αX≲

8>>>>>><
>>>>>>:

2×10−3
�

mϕ

MeV

	
2

ffiffiffiffiffiffiffi
MeV
mX

q
; mϕ≫mXv

ðmassivemediatorÞ
2×10−11

�
mX
MeV

	
3=2

; mϕ≪mXv

ðmasslessmediatorÞ;

ð48Þ

where in the light mediator limit we took ln mXv2

2mϕαX
∼ 30. Note

also that we have assumedmϕ ≫ αXmX, such that quantum
mechanical resonance effects can be neglected [51].
A new mediator which couples to nucleons is also

strongly constrained, for instance by measurements of
neutron-nucleus scattering or from stellar cooling con-
straints. For massive mediators at the MeV scale or heavier,
neutron-lead scattering experiments set a constraint of [55]

gn ≲ 2 × 10−5
�

mϕ

MeV

�
2

: ð49Þ

Combining this with the self-interaction constraint in
Eq. (48) gives for mϕ ¼ MeV an upper limit of
σp ≲ 10−33 cm2ðmX=MeVÞ3=2, which is well above the
cross sections considered here. For reference, we show
the cross section for several parameter choices satisfying
the self-interaction and neutron-lead scattering constraints
in the top panel of Fig. 9.
For the light mediator case, there are also strong

constraints from energy loss in helium burning stars, which
require gn ≲ 4 × 10−11 for mediator mass mϕ ≲ 10 keV
[56]. Combined with the self-interaction constraint given in
Eq. (48), this would put a strong upper bound on the
allowed σp. However, in both cases the limits are model
dependent and may be uncertain. With this caveat, in Fig. 9,
we show σp for couplings that are roughly consistent with
stellar cooling and self-interactions, where for αX we
include the strongmX-dependence of the bound in Eq. (48).
Additionally, we expect that for the cross sections shown

here, the effect of DM stopping in the earth can be
neglected (see e.g. Ref. [57] for a recent detailed analysis
of this effect). Assuming an average density of 5.5g=cm3

with a chemical composition of Fe (32%), Si (30%), O
(15%), Mg (14%) and S (3%), we estimate the mean-free
path for DM scattering in the earth to be roughly 9000 km
for σp ∼ 10−35 cm2. The mean-free path is therefore larger
than the radius of the earth for all cross sections we
consider. Moreover, given that every scattering event would
only result in a relatively small energy loss, dark matter
stopping in the earth can be safely neglected for the cross
sections of interest.

FIG. 9. Projected reach at 90% C.L. (2.4 events) for DM
scattering through multi-excitation production in superfluid
helium for a 1 kg-year exposure, for the massive mediator
(top) and massless mediator (bottom) cases defined in
Eq. (40). The dashed (solid) blue line shows the result using
the leading order (CKL15) result for Sðq;ωÞ. We assume a 30%
signal efficiency, zero background, and experimental sensitivity
down to ω ∼meV. The reach is derived from the integrated rate
with ω ∈ ½1.2–8.6� meV, where the multi-excitation scattering
rate is largest. The reach from ordinary nuclear recoils is also
shown, assuming sensitivity to the energy range ω ∈
½3–100� meV (for smaller ω, ordinary nuclear recoils are not
possible). The dotted lines show σp for sample mediator masses
and couplings, chosen to roughly satisfy self-interaction, neutron
scattering, and stellar bounds (see text).
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IV. HIDDEN PHOTON PROCESSES

A hidden photon is a well-motivated ingredient of many
dark matter models, either as a component of the dark
matter itself (e.g. [58–60]) or as a mediator for DM
interactions. (For a recent review, see Ref. [10].) The
hidden photon A0 couples to standard model fields through
the kinetic mixing operator,

L ⊃
κ

2
FμνF0

μν; ð50Þ

where κ is the kinetic mixing parameter and Fμν (F0
μν) is the

photon (hidden photon) field strength. For a massive
hidden photon, this mixing leads to a coupling of the
hidden photon with the regular electromagnetic current,
κeA0

μJ
μ
EM, after performing a field redefinition Aμ → Aμþ

κA0
μ. Here, we consider two scenarios: in the first case, a

fermionic DM candidate with keV-MeV mass scatters via
the hidden photon mediator. Since our expressions only
depend on κ × gA0 , with gA0 the DM coupling to the hidden
photon, for simplicity we set gA0 ¼ 1 and quote our results
only in terms of κ. In addition, we will calculate absorption
of sub-eV mass hidden photons in helium, assuming that
the hidden photons constitute the dark matter.
Since the electric charge of the helium atom is screened

at long wavelengths (or small momentum transfers
q≲ 1 keV), the analysis of the previous section no longer
applies. Instead, a hidden photon (or photon) couples to the
medium by inducing a dipole moment, where the strength
of the dipole is determined by the atomic polarizability α.
Note also that this implies there is a negligible difference
between the in-medium kinetic mixing and the vacuum
kinetic mixing, in contrast to other low-threshold targets
like superconductors where in-medium effects substantially
affect the rate [26].
Our treatment of this coupling via the polarizability will

closely follow Ref. [61], which considered photon scatter-
ing in liquid helium. First, we obtain the photon coupling
with the medium. To leading order, the target medium is
treated as a linear dielectric, with an atomic polarizability
α ≈ 2 × 10−25 cm3 (see e.g. [61]) for helium. The polari-
zation of the medium is given by

PðrÞ ¼ αnðrÞEðrÞ; ð51Þ

where n is the number density at helium atoms and E
is the total electric field in the medium. The interaction
Hamiltonian of the polarization with a radiation field Eγ is
then

HI ¼ −
1

2

Z
d3rPðrÞ ·EγðrÞ: ð52Þ

If the polarization is solely induced by the incident
radiation field, then EðrÞ ≈EγðrÞ. From the coupling to

the number density nðrÞ, this interaction allows for photon
scattering by creation of excitations in the liquid. When just
a single excitation is emitted, this process is known as
Brillouin scattering.2 Since the sound speed is much
smaller than the speed of light, here the phonon excitation
only carries a small fraction of the energy, such that the
frequency shift in the outgoing photon is minimal.
To obtain the coupling for the hidden photon field, we

perform the field redefinition Aμ → Aμ þ κA0
μ, which gives

HI ¼ − κα

Z
d3rnðrÞEðrÞ ·E0ðrÞ ð53Þ

and E0ðrÞ is the hidden photon field. From this, we see that
the hidden photon couples to a photon and the density field.
A DM scattering (or absorption) would thus give rise to
both an observable photon and quasiparticle excitation, as
shown in the left panel of Fig. 10. The physical interpre-
tation is as follows: an incoming hidden photon must first
induce a polarization in the medium, which subsequently
relaxes back to the ground state by emitting a photon and a
phonon. We calculate the rate for these processes in
Sec. IVA.
Additionally, the polarization vector P may be present

already if the experimental setup includes a strong
external electric field applied in the liquid. In particular,
in neutron EDM experiments, superfluid helium is used
for storage of the cold neutrons, and a strong electric field is
applied to study the neutron spin precession. Recently, a
stable electric field as high as 100 kV=cm has been
demonstrated [63]. The interaction Hamiltonian in this
case is

HI ¼ −
κα

2

Z
d3rnðrÞE0 ·E0ðrÞ; ð54Þ

where the external field E0 allows for conversion of the
hidden photon into a density perturbation. In this case, there
is no final state photon produced, but the kinematics of light
DM scattering requires us to consider the multi-excitation
final state, analogous to the discussion in previous sections.
This process is shown in the right panel of Fig. 10, and we
calculate the corresponding rates in Sec. IV B.

A. Scattering and absorption without
an external E-field

We first consider DM scattering in the absence of any
external E fields. The process is shown in Fig. 10, which

2Another possibility is Raman scattering, where in addition to
the final state photon, two back-to-back, high momentum
phonons are being emitted. However, the rate for Raman
scattering is proportional to α2 and is generally 3 to 4 orders
of magnitude weaker than Brillouin scattering. We neglect it here,
but refer to Ref. [62] for a review of both Brillouin and Raman
scattering in superfluid helium.
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also defines our conventions for the kinematic variables.
For nonrelativistic DM, a typical scattering is character-
ized by a small deposited energy, but a relatively sizable
momentum transfer (q ∼ 103 × ω). Since the speed of
sound in the superfluid is much smaller than the speed
of light, nearly all the deposited energy will be carried
away by the photon, while the phonon will absorb the
momentum:

ω1 ≈ ω; k2 ≈ q and ω2 ≈ 0: ð55Þ

To calculate the matrix element, we quantize the electric
field of the photon in an arbitrary volume V by

EðrÞ ¼ iffiffiffiffiffiffi
2V

p
X
k1;λ

ffiffiffiffiffiffi
ω1

p ½ϵðk1; λÞak1;λe
ik1·r

− ϵ�ðk1; λÞa†k1;λ
e−ik1·r�; ð56Þ

where ϵðk1; λÞ is the polarization vector and ak1;λ (a
†
k1;λ

) the
annihilation (creation) operators. Since the DM is non-
relativistic, it can be viewed as sourcing a Coulomb
potential for the hidden photon with

E0ðrÞ ¼ − ∇Φ0ðrÞ ð57Þ

Φ0ðrÞ ¼
Z

d3r0
∶Xðr0Þ†Xðr0Þ∶
4πjr − r0j e−jr−r0jmA0 ; ð58Þ

where the : indicates normal ordering and X is the dark
matter operator. After Fourier transforming, the hidden
photon field can then be written as

E0ðrÞ ¼ − i
1

V

X
q;s

qeiq·r
NXðq; sÞ − NX̄ðq; sÞ

q2 þm2
A0

; ð59Þ

where mA0 is the hidden photon mass and we set the DM
charge with respect to the hidden photon equal to one.
NXðq; sÞ and NX̄ðq; sÞ are the number operators for dark
matter and anti–dark matter respectively, where s denotes
the spin. Finally, we take the density field nðrÞ from
Eq. (3). In all of the above expressions the momenta q, k1

and k2 are summed over, and their naming conventions are
arbitrary. However, to make the notation as transparent as
possible, we chose to label them according to the external
state in Fig. 10 they will eventually contract with.
Using Eq. (53), one can obtain the relevant term in the

interaction Hamiltonian,

HI ¼−
ακ

V

X
k1 ;k2 ;q

s;λ

ffiffiffiffiffiffi
ω1

2

r
q ·ϵ�ðk1;λÞ
q2þmA02

a†k1;λ
n−k2

NXðq;sÞδq;k1þk2
:

ð60Þ

The polarization-averaged squared matrix element is then
given by

jhpijHIjpf;k1;k2ij2

¼ α2κ2

2V2
ω1

q2

ðq2 þmA02Þ2 jhΨ0jn−k2
jk2ij2δq;k1þk2

ð61Þ

¼ α2κ2n0
2V2

ω1

q2

ðq2 þmA02Þ2 Sðk2Þδq;k1þk2
; ð62Þ

where we used Eqs. (5) and (6) in the last step.
The scattering rate is given by Fermi’s golden rule,

Γ ¼ 2π
X

k1;k2;pf

jhpijHIjpf;k1;k2ij2δðEi − ω1 − ω2 − EfÞ

ð63Þ

with Ei;f the initial and final state energy of the dark matter.
In the continuum limit, the rate can then be written as

FIG. 10. Processes for dark matter scattering via a hidden photon mediator; the diagrams for absorption of hidden photons are identical
to these but without the external fields pi and pf . (left) In the absence of an external E-field, the DM scattering creates a photon and
quasiparticle excitation (dashed line) in the final state. The coupling of the hidden photon is given in Eq. (53). (right) In the presence of
an external electric field E0, the intermediate hidden photon is converted to an off-shell excitation, which subsequently splits into two or
more on-shell excitations. See Eq. (54).
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Γ ¼ 1

2

1

ð2πÞ5 α
2κ2n0

Z
d3pfd3k1d3k2ω1

q2

ðq2 þmA02Þ2
× Sðk2Þδðω − ω1 − ω2Þδð3Þðq − k1 − k2Þ: ð64Þ

If we trade pf for q, eliminate the k2 integral with the
momentum δ-function and take ω2 ≈ 0, the integral above
can be written in terms of two angles and two magnitudes,

Γ¼ n0α2κ2
1

2ð2πÞ3
Z

dqdωdcosθdcosψ
q4ω3

ðq2þm2
A0 Þ2

×S

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þω2−2qωcosψ

q �
δ

�
−q2þ2qp1 cosθ

2mX
−ω

�
;

ð65Þ

where we used the photon dispersion relation to trade
k1 ¼ ω1 ≈ ω. Since the final state momentum is
k2 ≈ q ∼mXv, for DM masses below an MeV, the momen-
tum transfer is in the linear regime for Sðk2Þ and we can
take Sðk2Þ ≈ jk2j=2mHecs in our calculation. We can then
evaluate the integrals over the angles and q to obtain the
differential rate, which is

dΓ
dω

¼ n0α2κ2ω3mX

8π3csmHepi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i − 2mXω

q
ð66Þ

in the mA0 ≪ q limit. The total integrated rate is

ΓðvÞ ≈ 1

1260π3
n0α2κ2m5

Xv
8

mHecs
: ð67Þ

The total rate is then

R ¼ 1

ρHe

ρX
mX

Z
d3vfðvÞΓðvÞ ð68Þ

≈9.2 × 1014 × κ2 ×
�

mX

MeV

�
4

=kg=year ð69Þ

with fðvÞ the dark matter velocity distribution in Eq. (35).
Given that current stellar constraints on hidden photons
already require κ ×mA0 ≲ 3 × 10−12 eV [64,65] (for the
case of Stueckelberg breaking of the hidden force), the
reach in κ is not particularly promising.
Next, we consider the scenario where the hidden photon

itself is the dark matter, taking mA0 to be sub-eV. (For
heavier mA0 in the eV-keV range, semiconductor targets are
a more promising target [21,22].) In this case, the hidden
photon can be absorbed by the superfluid, such that
ω ¼ mA0 , which again results in the emission of a phonon
and a real photon with energy ω1 ≈ ω. The computation is
analogous to the one outlined above, with the exception
that for the hidden photon we must use the expansion
analogous to Eq. (56). Again using Eq. (53), the relevant
term in the Hamiltonian is then

HI ¼ ακ
1

2
ffiffiffiffi
V

p
X

k1;k2;q

ffiffiffiffiffiffiffiffiffi
ω1ω

p
a†k1;λ

n−k2
a0q;λ0ϵ

0ðq; λ0Þ

· ϵ�ðk1; λÞδq;k1þk2
; ð70Þ

where a0λ;q and ϵ0ðq; λÞ are respectively the hidden photon
destruction operator and polarization vector. The momen-
tum transfer in this case is given by mA0v, such that we can
again take the linear regime for the structure factor,
Sðk2Þ ≈ jk2j=2mHecs. This approximation is always justi-
fied for absorption, since q ≪ ω≲ eV. The absorption rate
can then be obtained with a similar computation to one
described above, with

Γ ¼ 1

12π

n0α2κ2m5
A0

mHecs
; ð71Þ

which is independent of the hidden photon velocity. The
total observable rate is

R ¼ 1

ρHe

ρX
mA0

Γ ð72Þ

≈ 7.8 × 1016 × κ2 ×

�
mA0

eV

�
4

=kg=year: ð73Þ

This rate is only competitive with current stellar constraints
on the mixing parameter κ if mA0 ∼ 1 keV. However with
an energy deposition as large as 1 keV, other experiments,
such as semiconductor targets [21,22], are likely to be more
sensitive.

B. Scattering and absorption with an external E-field

If an external background electric field E0 is turned on,
then the medium already has a polarization P0 ¼ αnðrÞE0

and the interaction Hamiltonian is given by Eq. (54). The
presence of the external field allows a hidden photon to be
converted to a density perturbation, as shown in the right
panel of Fig. 10. As for the case of hard sphere scattering
considered in Sec. III, energy and momentum conservation
does not allow for a single phonon excitation and the
leading process necessarily involves multiple excitations.
For DM scattering, we follow the same treatment of the

hidden photon as in the previous section, and we obtain the
quantized interaction Hamiltonian,

HI ¼
ακ

2

iffiffiffiffi
V

p
X
q;q0;s

E0 · q
q2 þmA02

n−q0NXðq; sÞδq;q0 ð74Þ

which we can directly match onto Eq. (4) by defining an
effective dark matter scattering length,

2πbX
mX

¼ 1

2
κ

αE0 · q
q2 þmA02

: ð75Þ
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With σX ¼ 4πb2X, we can now directly use all the results
from Sec. III. Interestingly, the rate depends on the
direction of the background electric field E0, which in
principle induces a daily modulation in the scattering rate.
To obtain an upper bound on the rate, we take the field to be
parallel with the momentum transfer, after which we obtain

dΓ
dqdω

¼ 1

8π
n0mXκ

2α2
q
pi

jE0j2q2
ðq2 þmA02Þ2 Sðq;ωÞ: ð76Þ

For an electric field of E0 ¼ 100 kV=cm, we find that the
upper bound on the potential reach for mA0 ≪ q is

κ ∼ 2 × 10−9 ×

�
MeV
mX

�
3=2

ð77Þ

for a kg-year of liquid helium. This value of κ is only
competitive with stellar constraints for mA0 ≲ 10−3 eV.
For the case of hidden photon absorption, the

Hamiltonian is

HI ¼
ακ

2
ffiffiffi
2

p
X
q

ffiffiffiffi
ω

p
a0q;λn−qϵ0ðq; λÞ · E0: ð78Þ

Next we can compute the polarization averaged, squared
matrix element and sum over all multi-excitation final states
of the superfluid

X
β

jhqjHIjΨβij2¼
1

24
jE0j2α2κ2ω

X
β

jhΨ0jn−qjΨβij2: ð79Þ

Considering multi-excitation production,

Γ ¼ π

12
jE0j2α2κ2ω

X
β

jhΨ0jn−qjΨβij2δðωβ − ωÞ ð80Þ

¼ π

12
n0jE0j2α2κ2ωSðq;ωÞ: ð81Þ

For hidden photon absorption, the kinematics dictates q ∼
10−3 × ωwithω≲ eV. For such small momentum transfers
and comparatively large energies, we expect a strong
suppression of the dynamic structure factor Sðq;ωÞ due
in part to the q4 dependence discussed in Sec. III, as this
regime is very far away from the dispersion relations of the
quasiparticle states we seek to scatter off. In particular,
from Fig. 4, we can already see that Sðq;ωÞ ∼ 10−4 eV−1

even for q ¼ 0.1 keV and ω ≈ 0.01 eV. For reference, the
rate for this value is

R ∼ 1.3 × 1019 × κ2 ×

�
Sðq;ωÞ

10−4 eV−1

�
=kg=year: ð82Þ

for a 100 kV=cm electric field. Even without a reliable
extrapolation to q ≪ ω, we can therefore estimate that the

rate must be very small for κ values that satisfy current
stellar constraints.

V. CONCLUSIONS

We have considered multi-excitation production in
superfluid helium from dark matter scattering and absorp-
tion, showing that superfluid helium may be sensitive to
DM in the keV toMeVmass range, with DM-nucleon cross
sections between 10−36 and 10−44 cm2. This extends the
reach of superfluid helium beyond ordinary nuclear recoils,
which can reach dark matter as light as ∼MeV for the same
∼meV energy threshold.
We provided an explicit calculation for the multi-exci-

tation process, focusing on the leading two-excitation
contribution to the dynamic structure function Smðq;ωÞ.
This theoretical understanding is necessary, as the existing
neutron scattering data on multi-excitation production
samples only a limited region in phase space for the
response of the fluid. We calculated Smðq;ωÞ in a leading
order approximation, which does not account for important
self-interactions that modify the roton/maxon contributions
and lead to substantial differences in the spectrum.
Nevertheless, we have compared this method to the
resummed numerical results in Ref. [39] (CKL15), which
focused on momentum transfers q≳ 100 eV, finding that
the reach for DM scattering is similar in the two cases. In
the future, a more complete calculation of the low
momentum regime, complemented with accurate measure-
ments in neutron scattering experiments, is highly desir-
able. We further calculated the rate of hidden photon
absorption and hidden photon mediated dark matter scat-
tering, both with and without an external electric field
applied on the fluid. For these processes, we find that the
reach is not competitive with existing stellar constraints.
Dark matter detection by multi-excitation production in

superfluid helium illustrates a more general idea: by
harnessing a coupling to modes other than ordinary nuclear
recoils, new regimes in dark matter mass may be reached
with the same technology. While we have focused on
superfluid helium as a promising target, this idea warrants
exploration in other types of materials.
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APPENDIX A: SECOND QUANTIZATION
OF THE FLUID HAMILTONIAN

In this Appendix, we provide more details on the second
quantization of the fluid Hamiltonian in Eq. (13), and give
the details to derive Eq. (15). Our discussion of the
formalism closely follows [41].
At distances longer than the interatomic spacing, the

fluid can be described by a density field nðr; tÞ and a
(dimensionless) velocity field vðr; tÞ, which can be decom-
posed as

nðr; tÞ ¼ n0 þ V−1=2
X
q

eiq·rnqðtÞ; ðA1Þ

vðr; tÞ ¼ V−1=2
X
q

eiq·rvqðtÞ ðA2Þ

with V the arbitrary quantization volume. These perturba-
tions must satisfy the continuity equation; for a classical
field, the continuity equation in momentum space can be
written as

vq ¼ iq _nq
n0q2

: ðA3Þ

With V the potential energy in the fluid, the Hamiltonian of
the system is

H ¼
Z

d3r
1

2
mHev · nv þ VðnÞ: ðA4Þ

By expanding in the density fluctuations, the system can be
approximated as a quantum harmonic oscillator with
Hamiltonian

H0 ¼
1

2

X
q

mHen0vq · v−q þ ϕðqÞnqn−q ðA5Þ

¼ 1

2

X
q

mHe

n0q2
_nq _n−q þ ϕðqÞnqn−q; ðA6Þ

where ϕðqÞ≡ δ2V=δn2q can be thought of as a momentum
dependent force constant. The frequencies associated with
the excitations are thus given by

ϵ20ðqÞ ¼
n0q2ϕðqÞ

mHe
: ðA7Þ

This system can be quantized with the standard methods:
We first compute the conjugate momentum to the density
perturbation nq,

πq ¼ δH0

δ _nq
¼ mHe _n−q

n0q2
; ðA8Þ

which inserted in Eq. (A6) gives

H0 ¼
1

2

X
q

n0q2

mHe
πqπ−q þ ϕðqÞnqn−q: ðA9Þ

We then enforce the canonical quantization condition
½nq0 ; πq� ¼ iδq;q0 and decompose nq and πq as

nq ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0q2

2mHeϵ0ðqÞ

s
ða−q − a†qÞ; ðA10Þ

π−q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mHeϵ0ðqÞ
2n0q2

s
ða−q þ a†qÞ; ðA11Þ

where the aq are the usual ladder operators, which satisfy
½aq; a†q0 � ¼ δq;q0 . This finally reduces the Hamiltonian to the
familiar form,

H0 ¼
X
q

ϵ0ðqÞ
�
a†qaq þ

1

2

�
: ðA12Þ

With Eq. (A10) we can also explicitly recover the Bijl-
Feynman result shown in Eq. (8):

SðqÞ ¼ 1

n0
hΨ0jn−qnqjΨ0i ¼

q2

2mHeϵ0ðqÞ
: ðA13Þ

Equivalently, we can compute

hqjH0 − E0jqi ¼ hqj
X
k

�
1

2mHe

k2

4n0SðkÞ2
nkn−k

þ ϵ0ðkÞ
4n0SðkÞ

nkn−k

�
jqi ðA14Þ

¼ 1

2

�
q2

2mHeSðqÞ
þ ϵ0ðqÞ

�
¼ ϵ0ðqÞ; ðA15Þ

where we used Eqs. (A10) and (A11) to rewrite the
Hamiltonian in Eq. (A9), while dropping terms that are
annihilated by the external states. For later usage, we also
rewrite Eqs. (A10) and (A11) as

nq ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0SðqÞ

p
ða−q − a†qÞ; ðA16Þ

vq ¼ iq
2mHe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n0SðqÞ

s
ða−q þ a†qÞ: ðA17Þ
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To compute three excitation matrix element one must
include the first nontrivial term in the expansion of
Eq. (A4), which is

H1 ¼
mHe

2V1=2

X
q;k

vqnk−qv−k; ðA18Þ

where we neglect a possible cubic contribution from VðnÞ.
In second quantized form this can be written as

H1 ¼ −
i
8

C

mHeV1=2 n0
X
q0;k0l0

q0 · l0Sðk0Þða−q0 þ a†q0 Þ

× ða−k0 − a†k0 Þða−l0 þ a†l0 Þδk0þq0þl0;0 ðA19Þ

with C≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n30SðqÞSðkÞSðq − kÞ

q
. As discussed in

Sec. II B, the vacuum of the free Hamiltonian in
Eq. (A5) is not a good approximation of the true vacuum.
The true vacuum can however be approximated to leading
order in perturbation theory by

jΨ0i ≈ j0i þ 1

H0 − E0

H1j0i þ � � � ; ðA20Þ

where j0i is the vacuum of the free Hamiltonian.
The orthogonalized, excited states are defined as in

Eqs. (11), (12) and (19). The matrix element of interest
is then

hqjδHjk;q−ki¼ hqjH0−E0jk;q−ki0
−ϵ0ðqÞhqjk;q−ki0þhqjH1jk;q−ki;

ðA21Þ

where we neglected corrections of order OðH1Þ. Using
(A20), the first term can then be written as

hqjH0 − E0jk;q − ki0

¼ C

�
h0jH1

1

H0 − E0

n−qðH0 − E0Þnknq−kj0i ðA22Þ

þh0jn−qðH0 − E0Þnknq−k
1

H0 − E0

H1j0i
�

ðA23Þ

¼ C½rh0jH1n−qnknq−kj0i þ ð1 − rÞh0jn−qnknq−kH1j0i�
ðA24Þ

with

r≡ ωk þ ωk−q

ωq þ ωk þ ωk−q
; ðA25Þ

where the ωk etc. are the eigenvalues of H0 corresponding
to the state nkj0i. Assuming that none of the external
momenta are equal to one another, we find

h0jH1n−qnknq−kj0i¼
i
C
h0jH1a

†
−qa

†
ka

†
q−kj0i

¼ n0
4mHeV1=2 ½q ·kSðq−kÞ

þq · ðq−kÞSðkÞ
−k · ðq−kÞSðqÞ�: ðA26Þ

We moreover have

h0jn−qnknq−kH1j0i ¼ h0jn−qnknq−kH1j0i† ðA27Þ

¼ h0jH1nk−qn−knqj0i ðA28Þ

¼ h0jH1n−qnknq−kj0i; ðA29Þ

where in the last line we used that all n commute and that
the theory is parity invariant. Putting all of this together, we
then have

hqjðH0 − E0Þjk;q − ki0

¼ n0C

4mHeV1=2 ½q · kSðq − kÞ þ q · ðq − kÞSðkÞ

− k · ðq − kÞSðqÞ�:

Similarly, we can compute hqjH1jk;q − ki. In this case the
relevant term in the Hamiltonian is

H1 ¼ −
in0C

8mHeV1=2

X
q0;k0;l0

½2q0 · l0Sðk0Þ − k0 · l0Sðq0Þ�

× a†q0a−k0a−l0δq0þk0þl0;0 þ � � � : ðA30Þ

To leading order in H1, this matrix element is then

hqjH1jk;q − ki ¼ Ch0jn−qH1nknq−kj0i ðA31Þ

¼ − ih0jaqH1a
†
ka

†
q−kj0i ðA32Þ

¼ n0C

4mHeV1=2 ½q · kSðq − kÞ þ q · ðq − kÞSðkÞ

þ k · ðq − kÞSðqÞ�: ðA33Þ

The final result is

hqjðH0 þH1 − E0Þjk;q − ki0

¼ q · kSðq − kÞ þ q · ðq − kÞSðkÞ
2mHe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NSðkÞSðqÞSðq − kÞp ; ðA34Þ

which matches the result in Eq. (24), which was performed
in the microscopic formalism.
One may also attempt to compute the overlap term

hqjk;q − ki0 is this quantum fluid formalism. This
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however gives an answer which differs from the convolu-
tion approximation, as computed in Appendix B. This is
unsurprising, since the fluid Hamiltonian is merely a low
energy effective theory, which in itself does not capture the
full UV dynamics. Ideally, one would address this by
computing the relevant matching terms from directly coarse
graining the microscopic physics. In the absence of such
microscopic understanding, we estimate the overlap term
with the heuristic ansatz provided by the convolution
approximation.

APPENDIX B: DERIVATION OF THE
OVERLAP TERM

In this Appendix we provide a derivation for the
overlap term in Eq. (25). As discussed in Sec. II C, the
0hk − q;kjqi overlap term encodes aspects of the dynam-
ics of the strongly coupled fluid, and is not known from first
principles. It is however possible to constrain it with a
number of consistency conditions and subsequently derive
a closed form expression by choosing an ansatz for the
remaining unknown part. The ansatz we work with here is
known as the convolution approximation, and our deriva-
tion closely follows the discussion in Ref. [40].
In integral form, the overlap term can be written as

0hq − k;kjqi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n30Sðq − kÞSðqÞSðkÞ

q
×
Z

d3r1 � � � d3rNψ0n�q−kn
�
knqψ0: ðB1Þ

Using Eq. (3), we can rewrite the density operators as
follows:

n�q−kn
�
knq ¼ V−3=2

X
m;n;p

eik·ðrm−rnÞþiq·ðrp−rmÞ ðB2Þ

¼ V−3=2
�
N þ

X
m;n
m≠n

eik·ðrm−rnÞ þ
X
m;p
m≠p

eiq·ðrp−rmÞ ðB3Þ

þ
X
p;n
p≠n

eiðq−kÞ·ðrp−rnÞ þ
X
m;n;p
m≠n≠p

eik·ðrm−rnÞþiq·ðrp−rmÞ
�

ðB4Þ

→ V−3=2
�
−2Nþ





X
n

eik·rn




2þ





X
n

eiq·rn




2

þ




X

n

eiðq−kÞ·rn




2 þ N3eiq·r12þik·r23

�
ðB5Þ

with rij ≡ ri − rj. In the last term we collected equivalent
terms under the integral. We hereby used that ψ0 is assumed
to be invariant under permutations of the ri and we
took N ≈ N − 1 ≈ N − 2. If substituted in Eq. (B1), this
results in

0hq − k;kjqi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NSðq − kÞSðqÞSðkÞp

×

�
−2þ SðqÞ þ SðkÞ þ Sðq − kÞ

þ 1

N

Z
d3r1d3r2d3r3eiq·r12þik·r23

× p3ðr1; r2; r3Þ
�

ðB6Þ

with

p3ðr1; r2; r3Þ≡ NðN − 1ÞðN − 2Þ
Z

d3r4 � � � d3rNψ2
0:

ðB7Þ

The function pðr1; r2; r3Þ is usually referred to as the three-
particle distribution function. Similarly, we can define the
two-particle distribution function,

p2ðr1; r2Þ≡ NðN − 1Þ
Z

d3r3 � � � d3rNψ2
0: ðB8Þ

The Fourier transform of the two-particle distribution
function is closely related to the static structure function,
in particular

SðqÞ ¼ 1

n0

Z
ψ2
0n

�
qnqd3r1 � � � d3rN ðB9Þ

¼ 1þ 1

N

Z
p2ðr1; r2Þeiq·r12d3r1d3r2; ðB10Þ

where the first term comes from the terms in the sum
with k ¼ l.
Assuming translation invariance, the two- and three-

particle distribution functions must satisfy the following
recursion relations:

1

N − 1

Z
d3r2p2ðr1; r2Þ ¼ p1ðr1Þ ¼ n0 ðB11Þ

1

N − 2

Z
d3r3p3ðr1; r2; r3Þ ¼ p2ðr1; r2Þ: ðB12Þ

In particular Eq. (B12) allows us to constrain the three-
particle distribution function. It is convenient to define the
dimensionless function

hðr12Þ ¼
1

n20
p2ðr1; r2Þ − 1: ðB13Þ

Without loss of generality, we can decompose the three-
particle distribution function as

KNAPEN, LIN, and ZUREK PHYSICAL REVIEW D 95, 056019 (2017)

056019-20



p3ðr1; r2; r3Þ ¼ n30½1þ hðr12Þ þ hðr23Þ þ hðr13Þ
þ hðr12Þhðr23Þ þ hðr23Þhðr31Þ
þ hðr31Þhðr12Þ� þ δp3ðr1; r2; r3Þ: ðB14Þ

The term in the brackets models the behavior of
p3ðr1; r2; r3Þ when two or more points are well
separated, and the nonfactorized core δp3ðr1; r2; r3Þ
captures the UV behavior and is large when all three
points are close together. To satisfy Eq. (B12) one must
requireZ

δp3ðr1; r2; r3Þd3r3 ¼ − n30

Z
hðr13Þhðr23Þd3r3: ðB15Þ

At this point in the derivation it becomes necessary to
choose an ansatz for δp3ðr1; r2; r3Þ. A popular choice is the
convolution approximation, where we take

δp3ðr1; r2; r3Þ ¼ n40

Z
hðr14Þhðr24Þhðr34Þd3r4 ðB16Þ

which satisfies Eq. (B15). Substituting Eq. (B14) in the
integral in Eq. (B6), we find that the first four terms are of
the formZ

d3r1d3r2d3r3eiq·r12þik·r23 × 1 ¼ Vδð3ÞðkÞδð3ÞðqÞ

ðB17Þ

Z
d3r1d3r2d3r3eiq·r12þik·r23hðr12Þ

¼ N
n20

δð3ÞðkÞðSðqÞ − 1Þ − Vδð3ÞðkÞδð3ÞðqÞ ðB18Þ

plus permutations. In the second line we used Eq. (B10).
These terms all vanish, since we are interested in k;q ≠ 0.
The next three terms are of the formZ

d3r1d3r2d3r3eiq·r12þik·r23hðr12Þhðr23Þ

¼
Z

d3r1d3r2d3r3eiq·r12þik·r23
p2ðr1; r2Þ

n20

p2ðr2; r3Þ
n20

¼ N
n30

ðSðkÞ − 1ÞðSðqÞ − 1Þ; ðB19Þ

where we used Eq. (B10) and dropped terms of the form
in Eqs. (B17) and (B18). Similarly, inserting Eq. (B16)
results inZ

d3r1 � � � d3r4eiq·r12þik·r23hðr14Þhðr24Þhðr34Þ

¼ N
n40

ðSðkÞ − 1ÞðSðqÞ − 1ÞðSðk − qÞ − 1Þ: ðB20Þ

Putting everything together then finally gives

hq − k;kjqi0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðq − kÞSðqÞSðkÞp

ffiffiffiffi
N

p : ðB21Þ
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