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ABSTRACT OF THE DISSERTATION

Controllable and Efficient Visual Generation

by

Zheng Ding

Doctor of Philosophy in Computer Science

University of California San Diego, 2025

Professor Zhuowen Tu, Chair

This dissertation presents several contributions aimed at enhancing visual generation

by focusing on controllability and efficiency within computer vision systems. Before delving

into the field of visual generation, we will first introduce MaskCLIP, which efficiently leverages

pretrained vision-language models for open-vocabulary image segmentation tasks. Following

that, we will discuss DiffusionRig, PatchDM, and Gen2Res to showcase the advancements we

have made in controllable and efficient image generation. Collectively, the works presented

in this dissertation strive to establish vision systems that are both controllable and efficient,

facilitating improvements in visual generation as well as understanding.

Chapter 2 introduces a novel task, open-vocabulary universal image segmentation, which

xv



aims for semantic, instance, and panoptic segmentation on arbitrarily described categories at in-

ference. We first build a baseline using pre-trained CLIP models and then propose MaskCLIP—a

Transformer-based approach featuring a MaskCLIP Visual Encoder that integrates mask tokens

with a pre-trained ViT CLIP model. This design enables segmentation and class prediction while

efficiently leveraging CLIP’s dense features without resource-intensive student-teacher training.

Chapter 3 introduces DiffusionRig for personalize facial appearance editing. By employ-

ing a diffusion model conditioned on rough 3D face models derived from in-the-wild images, it

maps simple CGI renderings to realistic images of an individual. DiffusionRig is trained in two

stages: first learning generic facial priors from a large-scale dataset, then fine-tuning on limited

person-specific photos. This strategy robustly edits facial features while preserving identity and

high-frequency details.

Chapter 4 describes Patch-DM, a denoising diffusion model that generates high-resolution

images (e.g., 1024×512) using small image patches (e.g., 64×64) during training. It alleviates

boundary artifacts in patch-based synthesis by using a novel feature collage strategy that crops

and combines overlapping features from neighboring patches to seamlessly predict shifted

patches.

Chapter 5 proposes a method for adapting pretrained denoising diffusion models to image

restoration tasks. The approach restores images by adding noise to degraded inputs and then

denoising them using the pretrained model. By fine-tuning the model on selected anchor images

that preserve the input’s characteristics, the constrained generative space ensures high-quality

restoration that maintains the original identity and overall quality.
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Chapter 1

Introduction

In recent years, the fields of computer vision and generative modeling have witnessed

transformative advancements, driven largely by the emergence of deep learning methodologies.

From generating realistic human faces to creating intricate artworks, the capability of machines

to produce high-quality visuals has expanded the horizon of both academic research and practical

applications. However, as the complexity and scale of visual data continue to grow, so do the

challenges associated with generating images that are not only aesthetically appealing but also

controllable and computationally efficient.

The need for controllability in visual generation stems from the desire to steer the output

of generative models in accordance with specific, user-defined attributes or semantic conditions.

Whether it is adjusting the style of an artwork, tailoring the features of a synthetic face, or

ensuring coherent adaptation of scenes in virtual environments, the ability to exert precise control

over generated imagery is critical for bridging the gap between algorithmic creativity and human

intent.

Equally important is the aspect of efficiency. In practical applications, resource constraints

and the need for real-time performance require models that not only produce quality outputs

but also maintain low computational costs. Efficient visual generation encompasses both the

architectural design and the learning paradigms that minimize the burden on hardware while

ensuring that models scale gracefully to larger, more diverse datasets. This balance between
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efficiency and quality is paramount in contexts such as mobile applications, interactive media,

and large-scale simulation environments, where processing power and latency are often limited.

Although the central focus of this thesis is on developing methods for controllable and

efficient visual generation, a supporting theme of visual understanding is interwoven throughout

the work. Visual understanding plays an important role in influencing how generated content

can be more effectively aligned with semantic cues and context, thereby enhancing both the

interpretability and practical utility of vision systems.

First, we addressed open-vocabulary universal segmentation, which unifies semantic

segmentation for “stuff” (background regions) and instance segmentation for “things” (fore-

ground objects). Traditional methods rely on a fixed set of categories with discrete labels, but

recent developments in computer vision are pushing toward open-world and zero-shot settings

where models recognize categories beyond what they were trained on. Taking advantage of

pre-trained CLIP models that embed both images and text in the same feature space, we first

establish an open-vocabulary panoptic segmentation baseline without additional training. We

then propose MaskCLIP—a Transformer-based algorithm that efficiently leverages partially

dense CLIP features through minimal re-training.

Second, we tackled the problem of the controllability of the facial image generation.

More specifically, we studied the challenging problem of photorealistically editing portrait

photos—adjusting lighting, expression, head pose, etc.—while preserving a person’s identity and

fine facial details. Traditional approaches use zero-shot learning on large datasets to generalize

across identities, but this often loses the high-frequency facial nuances specific to an individual.

To overcome this, we propose a two-stage method: we first learn generic facial priors from a large-

scale face dataset. Then, using about 20 images of the target person (e.g., from personal photo

albums), these generic priors are fine-tuned to capture the individual’s unique high-frequency

details. By first utilizing general facial priors and then fine-tuning with a small set of personalized

images, we demonstrate that the model can achieve impressive photorealistic face editing with

3D understanding, effectively preserving identity and detailed facial characteristics.
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Next, we studied the problem of efficiency in diffusion models. While diffusion models

have recently garnered attention for their high-quality outputs despite being computationally

intensive due to pixel-space optimization and multi-timestep training. To overcome these limita-

tions in high-resolution image generation, current methods either depend on super-resolution

techniques or latent space optimization, both of which require large models and substantial

memory. In contrast, we propose Patch-DM to introduce a patch-based denoising diffusion

model that generates full-size, high-resolution images directly without boundary artifacts by

employing a novel feature collage strategy. This strategy uses a sliding-window, shifted patch

generation process to ensure seamless feature sharing and consistency across neighboring patches

without adding extra model complexity, thereby offering an efficient and promising direction for

high-resolution generative diffusion modeling with lightweight architectures.

Last, we studied a problem on personalized facial image restoration where we leveraged

powerful facial generation models to restore high-quality images from degraded ones. Standard

discriminative methods learn an inverse mapping from paired data but are confined to the

degradations seen during training. In contrast, model-based approaches learn image priors

assuming a known degradation process at inference, often hindering real-world applicability. Our

method relies solely on a trained denoising diffusion model, bypassing any assumption on the

degradation process. We first project a low-quality image into the diffusion process by adding

Gaussian noise to mimic clean-image distributions, then constrain generation to preserve key

features (e.g., identity) via fine-tuning with anchor images. When explicit anchors are absent,

we generate a “generative album” from soft-guided diffusion results that resemble the input,

ensuring the restored image retains its essential characteristics.
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Chapter 2

Open-Vocabulary Universal Image Seg-
mentation with MaskCLIP

2.1 Introduction

Panoptic segmentation [KHG+19] or image parsing [TCYZ05] integrates the task of

semantic segmentation [Tu08] for background regions (e.g. “stuff” like “road”, “sky”) and

instance segmentation [HGDG17] for foreground objects (e.g. “things” such as “person”,

“table”). Existing panoptic segmentation methods [KHG+19, KGHD19, LCZ+19, XLZ+19,

LLST20] and instance segmentation approach [HGDG17] deal with a fixed set of category

definitions, which are essentially represented by categorical labels without semantic relations.

DETR [CMS+20] is a pioneering work that builds a Transformer-based architecture for both

object detection and panoptic segmentation. Under a more general setting, the tasks of semantic

[Tu08], instance [HGDG17], and panoptic [KHG+19] can be unified under a universal image

segmentation paradigm [CMS+22].

The deep learning field is moving rapidly towards the open-world/zero-shot settings

[BB15] where computer vision tasks such as classification [RKH+21a], object detection

[LZZ+22, ZRHC21, ZLZ+22, GLKC22, CKR+22], semantic labeling [LWB+22, GGCL22],

and image retrieval [BB15, HS18, ZRHC21, HS18, KSL+21] perform recognition and detection

for categories beyond those in the training set.

In this paper, we take advantage of the existence of pre-trained CLIP image and text
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embedding models [RKH+21a], that are mapped to the same space. We first build a baseline

method for open-vocabulary panoptic segmentation using CLIP models without training. We

then develop a new algorithm, MaskCLIP, that is a Transformer-based approach efficiently and

effectively utilizing pre-trained partial/dense CLIP features without heavy re-training. The key

component of MaskCLIP is a Relative Mask Attention (RMA) module that seamlessly integrates

the mask tokens with a pre-trained ViT-based CLIP backbone. MaskCLIP is distinct and

advantageous compared with previous approaches in three aspects: 1) A canonical background

and instance segmentation representation by the mask token representation with a unique encoder-

only strategy that tightly couples a pre-trained CLIP image feature encoder with the mask token

encoder. 2) MaskCLIP avoids the challenging student-teacher distillation processes such as OVR-

CNN [ZRHC21] and ViLD [GLKC22] that face a limited number of teacher objects to train; 3)

MaskCLIP also learns to refine masks beyond simple pooling in e.g. OpenSeg [GGCL22].

The contributions of our work are listed as follows.

• We develop a new algorithm, MaskCLIP, to perform open-vocabulary universal image seg-

mentation building on top of canonical background and instance mask representation with a

cascade mask proposal and refinement process.

• We device the MaskCLIP Visual Encoder under an encoder-only strategy by tightly coupling

a pre-trained CLIP image feature encoder with the mask token encoder, to allow for the direct

formulation of the mask feature representation for semantic/instance segmentation+refinement,

and class prediction. Within the MaskCLIP Visual Encoder, there is a new module called

Relative Mask Attention (RMA) that performs mask refinement.

• MaskCLIP expands the scope of the CLIP models to open-vocabulary universal image

segmentation by demonstrating encouraging and competitive results for open-vocabulary

semantic, instance, and panoptic segmentation.
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Table 2.1. Comparison for recent open-vocabulary approaches for object detection, semantic
segmentation, instance segmentation, and panoptic segmentation. GLIP [LZZ+22]; OVR-CNN
[ZRHC21]; ViLD [GLKC22]; RegionCLIP [ZYZ+22]; OV-DETR [ZLZ+22]; LSeg [LWB+22];
OPenSeg [GGCL22]; DenseCLIP [RZC+22]; XPM [HKL+22]. ✓✗ indicates that the corre-
sponding method is loosely following the definition. Dense Clip features refer to the use of
pixel-wise/local features. Note that OpenSeg uses its ALIGN [JYX+21], which is an alternative
to CLIP.

Task Method Arbitrary Online Segmentation Dense CLIP Training Annotation

Inference semantic instance features data type

Object Det.

GLIP ✔ FourODs, GoldG, Cap24M labels + bbox + captions
OVR-CNN ✔ COCO base, CC3M bbox + captions

ViLD ✔ COCO labels + bbox
RegionCLIP ✔ CC3M, COCO captions

Semantic Seg.
LSeg ✓✗ ✔ COCO + others labels + segmentations

OpenSeg ✔ ✔ ✓✗ ✔ COCO, LocalizedNarratives masks + captions
DenseCLIP ✔ ✔ COCO labels + segmentations

Instance Seg. XPM ✓✗ ✔ COCO, CC3M labels + masks + captions

Panoptic Seg. MaskCLIP (ours) ✔ ✔ ✔ ✔ COCO labels + masks

2.2 Related Work

Open vocabulary. The open vocabulary setting is gaining increasing popularity lately as

traditional fully supervised settings cannot handle unseen classes during testing, while real-world

vision applications like scene understanding, self-driving and robotics are commonly required to

predict unseen classes. Previous open-vocabulary attempts have been primarily made for object

detection. ViLD [GLKC22] trains a student model to distill the knowledge of CLIP. RegionCLIP

[ZYZ+22] finetunes the pretrained CLIP model to match the image areas with corresponding

texts. OV-DETR [ZLZ+22] uses CLIP as an external model to obtain the query embedding from

CLIP model. Recently there is also work made for open-vocabulary semantic segmentation

[GGCL22].

Universal segmentation. Previously semantic/instance/panoptic segmentation tasks have

been treated as different tasks using different methods. With the recent trends in computer vision,

the formulation and methods of the three segmentation tasks have gradually been uniformed

[CSK21, CMS+22]. Instead of separately dealing with the stuff/instance, those methods treat

them as the same one and output masks for each stuff/instance and do a post-process on the
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output masks for different segmentation tasks.

Open-vocabulary universal segmentation: an emerging task. As open-set, open-

world, zero-shot, and open-vocabulary are relatively new concepts that have no commonly

accepted definitions, thus, different algorithms are often not directly comparable with differences

in problem definition/setting, training data, and testing scope. Table 2.1 gives a summary for

the recent open-vocabulary applications. XPM [HKL+22] utilizes vision-language cross-modal

data to generate pseudo-mask supervision to train a student model for instance segmentation,

and thus, it may not be fully open-vocabulary to allow for arbitrary object specifications in the

inference time. LSeg [LWB+22] also has a limited open-vocabulary aspect as the learned CNN

image features in LSeg are not exposed to representations beyond the training labeling categories.

OpenSeg [GGCL22] is potentially applicable for instance/panoptic segmentation, but OpenSeg

is formulated to be trained on captions that lack instance-level information that is fundamental

for panoptic segmentation. The direct image feature pooling strategy in OpenSeg is potentially

another limiting factor towards the open-vocabulary universal segmentation. Nevertheless, no

results for open-vocabulary panoptic/instance segmentation are reported in [GGCL22].

Class-agnostic segmentation. Most closed-vocabulary segmentation methods are

class-ware i.e. predicting the classes along with the corresponding labels [HGDG17, CSK21,

CMS+22]. However, in tasks involving open-vocabulary or open-world scenarios where novel

classes may appear during testing, it is common to use class-agnostic segmentation methods

for generating masks[JYX+21, QKW+22, XZW+22]. The difference in methodology between

class-aware and class-agnostic segmentation methods is typically not substantial. Class-aware

methods often incorporate a class-prediction head, whereas class-agnostic methods do not. In

our method, we adopt a class-agnostic segmentation model by removing the class-prediction

head from previous class-aware class-aware segmentation methods.

CLIP model distillation/reuse. After its initial release, the CLIP model [RKH+21a]

that is learned from large-scale image-text paired captioning datasets has received a tremendous

amount of attention. Some other similar vision-language models have also been proposed
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Figure 2.1. Illustration of the pipeline. Our pipeline contains two stages. The first stage is
a class-agnostic mask proposal network and the second stage is built on the pretrained CLIP
ViT model. All the weights of the CLIP ViT model during training are fixed. Arrows in orange
denote weight sharing. The embeddings’ weights of Mask Class Tokens are shared by Class
Tokens in the CLIP ViT model and are fixed. RMA represents Relative Mask Attention which
is built based on the CLIP ViT attention layer. RMA contains all the weights from CLIP ViT
attention layer which are all fixed during training. Additional weights are added in RMA for
further mask information utilization and mask refinement. The demo image we use here is from
ADE20K [ZZP+19].

later e.g. ALIGN [JYX+21], GLIP [LZZ+22]. Many algorithms have been developed lately

[ZLZ+22, WCC+22, ZYZ+22, LJZ+21, PWS+21, SLT+22] trying knowledge distillation from

the CLIP model to benefit the down-stream tasks one way or the other by leveraging the rich

semantic language information paired in the images. Here, we directly adopt the backbone

of CLIP image model to train for open-vocabulary panoptic segmentation. There have been

attempts [RZC+22, ZLD22] that use the partial/dense CLIP features to represent pixel-wise

features as teacher model to train student model for semantic segmentation.

2.3 Method

Our pipeline, shown in Figure 2.1, contains two stages. The first stage is a class-agnostic

mask proposal network. The second stage is MaskCLIP Visual Encoder which is built on the

CLIP [RKH+21a] ViT architecture. It takes the images and the coarse masks from the first stage

as the input and outputs refined masks along with the corresponding partial/dense image features
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for further classification.

2.3.1 Class-Agnostic Mask Proposal Network

Our Class-Agnostic Mask Proposal Network is built on instance/segmentation models

such as MaskRCNN[HGDG17] and Mask2Former[CMS+22]. To make the model class-agnostic,

we remove the class supervision during training. The classification head thus becomes a binary

classification for either positive or negative in these models.

2.3.2 MaskCLIP Visual Encoder

Similar to CLIP, our MaskCLIP Visual Encoder also predicts the image features. Unlike

the CLIP Visual Encoder which only uses one class token to output the feature of the whole image.

Our MaskCLIP Visual Encoder uses another M Mask Class Tokens to output the partial/dense

features for each corresponding area of the image given the masks. The Mask Class Tokens

use attention masks and Relative Mask Attention to obtain the partial/dense features which we

discuss in the following two parts.

Mask Class Tokens.

In order to obtain partial/dense image features for the corresponding masks or bounding

boxes for further recognition or distillation, an easy way to do this is simply masking or cropping

the image and then sending the obtained image to the pretrained image encoder. This method

has been widely used in several open vocabulary detection/segmentation methods [ZYZ+22,

GLKC22, XZW+22]. The problem is that it’s not computation efficient (N masks/boxes will lead

to N images and they will be computed through the image encoder independently) and also loses

the ability to see the global image context information which is very important for recognizing

some objects and stuff. For masking, another problem is that masks are in different shapes and

simply masking the image will cause the resulting image to have a transparent background which

usually doesn’t exist in real images that are used for training in large language-vision models

e.g., CLIP.
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To solve this, we propose Mask Class Tokens for efficient feature extraction from images

without losing the global image context information. In the original CLIP ViT-based visual

encoder framework, the input of the network is N image tokens and 1 class token. The final

output of the class token will be used for the relation computation with the text embeddings.

Our newly introduced M Mask Class Tokens will be alongside the image tokens and the class

token. The embeddings’ weights of the Mask Class Token are provided by the class token in the

pretrained CLIP ViT model and are fixed. Each Mask Class Token will output a corresponding

partial/dense image feature similar to the class token which outputs the feature of the whole

image. To achieve this, we design an attention mask as follows

M =

 F(N+1)×(N+1) T(N+1)×M

M
′
M×N FM×1 TM×M

 (2.1)

in which M is the number of Mask Class Tokens, N is the number of image tokens, Tm×n is an

m×n True matrix, Fm×n is an m×n False matrix and M ′ is defined as following:

M ′
i, j =


False if maski contains at least one pixel in patch j

True otherwise.
(2.2)

where True means that this position is masked out i.e. not allowed to attend and False otherwise.

In our mask attention matrix M , F(N+1)×(N+1) shows the N Image Tokens and one

Class Token are attending each other as in the original CLIP. T(N+1)×M shows that the N Image

Tokens and one Class Token are not attending the M Mask Class Tokens. M
′
M×N shows that

the Mask Class Tokens are attending the Image Tokens given the corresponding masks. FM×1

shows that the M Mask Class Tokens are attending the Class Token. TM×M shows that the M

Mask Class Tokens are not interacting with each other.

In this way, each Mask Class Token will learn from the corresponding mask area of

the images. The image tokens are also interacting with each other which means the global
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Figure 2.2. Relative Mask Attention. Our Relative Mask Attention mechanism adds another
attention matrix A′

:M,−N: to the original attention matrix. The newly added attention matrix is
computed using the Image Tokens and the Mask Patch Tokens. The mask patch tokens are
acquired by patchifying the masks using a similar way for the images as shown here. Moreover,
the masks are refined by using Mr in Eq. 2.5 which is computed by Image Tokens and Mask
Class Tokens.

information won’t lose. And it’s also very efficient since we don’t need to do redundant

computing for each mask or finetune the pretrained model. However, the mask information is

not fully utilized and it cannot be refined either. But we will see in the experiments later that

simply adopting Mask Class Tokens to the pretrained CLIP model without any finetuning will

already serve as a competitive baseline.

Relative Mask Attention.

To further utilize the mask information and refine the coarse masks, we propose Relative

Mask Attention mechanism in our transformer. Our key design principle is to try not to change

the CLIP features directly as this would destroy the learned relationship between the image

features and text features in the CLIP model. Therefore, we adopt a way to only change the

attention matrix in the transformer to learn a better linear combination of the values in the

attention layers according to the mask information. As in Figure 2.2, our proposed Relative Mask
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Attention Mechanism only changes the attention matrix and refines the masks. Mr is defined

in Eq. 2.5. A
′

:M,−N: is defined in Eq. 2.3. fM is the class-agnostic mask proposal network. f1

and f2 are two downsampling networks that encode the images/masks to image tokens/mask

patch tokens sharing the same architecture. fr is a two-layer convolutional network that maps

the attention matrix to a mask residual.

Similar to relative positional encoding, we use a relative attention mechanism here. Let

D be the dimension of the token embedding, for each Mask Class Token T MC
i ∈ RD with a

corresponding mask Ki ∈ RH×W whose shape is the same as the image, we use a similar way

as for the images to get mask patch tokens T MP ∈ RM×N×D in the computation of the attention.

In our attention matrix, the Mask Class Tokens attending the image tokens part will then be as

follows:

A
′

:M,−N: =
D

∑
c
(φQm(T

MP)⊙φKm(T
IM))c (2.3)

A:M,−N: =
φQ(T MC) ·φK(T IM)+A

′
:M,−N:

2
√

D
(2.4)

where T IM ∈ RN×D is image tokens, T MC ∈ RM×D is Mask Class Tokens, T MP ∈ RM×N×D is

Mask Patch Tokens φQ,φK,φQm ,φKm are linear transformations, ⊙ is element-wise product and

∑
D
c (·)c is the sum of the embedding dimension. φKm(T

IM) ∈ RN×D will first be broadcast to

RM×N×D before doing element-wise production.

The attention will also in turn be used for the refinement of the masks. The vanilla

attention can be seen as a relationship between each mask area and all the image patches. Thus

we utilize this to help our coarse masks be more accurate. The updating process of the masks is

as following:

Mr = σ(σ−1(Mc)+ fr(φQ(T MC)⊙φK(T IM))) (2.5)

where Mc,Mr ∈RN×H×W denotes the coarse mask and refined mask respectively, fr is a learnable
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non-linear function that maps the attention matrix to a mask residual, σ and σ−1 are sigmoid

and inverse sigmoid functions respectively.

The RMA method aims to leverage detailed mask information and refine masks by

utilizing CLIP’s features. Without RMA, the method would only utilize the mask information

in the attention mask (which is just a low-resolution mask) and cannot refine the mask using

CLIP’s features. In order to utilize the detailed information of masks, we add another attention

matrix, which is obtained from the Mask Patch Tokens and the Image Tokens, to the original

attention matrix in the CLIP ViT model so that the new attention matrix could be aware of the

detailed mask information and thus the Mask Class Tokens could attend the information more

accurately. Furthermore, we use the information from the original attention matrix, which is

obtained from the Mask Class Tokens and the Image Tokens, to refine the mask.

2.4 Experiments

In this part, we train our proposed MaskCLIP method using COCO [LMB+14] training

data and test on other datasets (ADE20K [ZZP+19, ZZP+17], PASCAL Context [MCL+14],

LVIS) under the open vocabulary setting. We report our results on semantic/instance/panoptic

segmentation tasks to evaluate the performance of out model’s universal segmentation.

2.4.1 Datasets

COCO: COCO [LMB+14] includes 133 classes where 80 classes are things and 53

classes are stuff or background. There are 118k training images and 5k validation images. In our

experiments, we first train the class-agnostic mask proposal network on COCO training dataset

using the annotations of panoptic masks. Then we train our models on COCO training images in

a supervised manner.

ADE20K: ADE20K [ZZP+19, ZZP+17] contains 20,210 images and annotations for

training and 2000 images and annotations for validation. It serves both panoptic segmentation

and semantic segmentation. The full version (A-847) [ZZP+19] includes 847 classes and the

13



Table 2.2. Results on open-vocabulary semantic segmentation. A-150 and A-847 represent
the ADE20K dataset with 150 classes and 847 classes respectively. P-459 and P-59 represent
PASCAL Context dataset with 459 classes and 59 classes respectively. All results use the mIoU
metric. All methods presented here don’t use extra data other than COCO for training.

Method COCO Training Data A-150 ↑ A-847 ↑ P-459 ↑ P-59 ↑
ALIGN [JYX+21] None 10.7 4.1 3.7 15.7
ALIGN w/ proposals [JYX+21] Masks 12.9 5.8 4.8 22.4
LSeg+ [LWB+22] Masks + Labels 18.0 3.8 7.8 46.5
OpenSeg [GGCL22] Masks + Captions 21.1 6.3 9.0 42.1
SimSeg [XZW+22] Masks + Labels 20.5 7.0 - 47.7
CLIP Baseline Masks 13.8 5.2 5.2 25.3
MaskCLIP w/o RMA Masks 14.9 5.6 5.3 26.1
MaskCLIP (MaskRCNN) Masks + Labels 22.4 6.8 9.1 41.3
MaskCLIP Masks + Labels 23.7 8.2 10.0 45.9

short version (A-150) [ZZP+17] includes 150 classes. We use the validation set in ADE20K for

testing without any training on this dataset in which case we can test our model’s capability of

open vocabulary segmentation.

PASCAL Context: PASCAL Context [MCL+14] contains 10,103 per-pixel annotations

for images of PASCAL VOC 2010 [EVGW+], where 4998 for training and 5105 for validation.

The full version (P-459) includes 459 classes and the short version includes 59 classes. This

dataset serves as another benchmark testing our model’s open vocabulary segmentation ability.

LVIS: LVIS [GDG19] contains 100,170 images for training and 19,809 images for

validation. It extends COCO [LMB+14] but contains 1,203 categories. It is considered one

of the most challenging benchmark for instance segmentation because of its large vocabulary,

long-tailed distribution, and fine-grained classification. We report our model’s performance of

open vocabulary instance segmentation on the validation dataset.

2.4.2 Implementation Details

Class-Agnostic Mask Proposal Network. In our first stage, we train a class-agnostic

mask proposal network using MaskRCNN [HGDG17] and Mask2Former [CMS+22] on COCO

training data. The experiment setting we use for MaskRCNN is R50-FPN-1x. The backbone we

use in Mask2Former is ResNet-50. All the training setting follows the default in their models.
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Figure 2.3. Comparison on open-vocabulary semantic segmentation. The input image and the
results for GT, ALIGN++, OpenSeg are from [GGCL22].

CLIP Baseline. We design our first baseline by directly using the class-agnostic mask

proposal network from the first stage and the pretrained CLIP model. We mask the images

according to the masks from the class-agnostic mask proposal network and send the masked

images to the CLIP model to get classification results. The pretrained CLIP model we use is

ViT-L/14@336px and the text inputs we use are simply the category names defined by each

dataset. Those two settings keep the same with the following two methods for a fair comparison.

MaskCLIP w/o RMA Baseline. Our second baseline is based on the Mask Class Tokens

which doesn’t use the Relative Mask Attention mechanism. Instead of masking the images and

sending the resulting images directly to the CLIP model for feature extraction, we use Mask

Class Tokens to acquire the corresponding partial/dense image features. The obtained image

features will then be used for further open vocabulary classification.

The two baselines above don’t need any training in the second stage and can be used

to directly perform the open vocabulary tasks. We will demonstrate that the second baseline

is better at feature extraction in both quantitative results and qualitative results under the open

vocabulary setting and show the effectiveness and efficiency of the proposed Mask Class Tokens.

MaskCLIP. In our MaskCLIP method, we still use the CLIP ViT-L/14@336px pretrained

model as with the previous two. This model has 24 attention layers and we add Relative Mask

Attention in four of them which is 6, 12, 18, 24. We use AdamW [LH19] as our optimizer and

the learning rate is set to 0.0001. We train our model on COCO training data for 10k iterations

with a batch size of 8. The training takes around 3h on 8 Nvidia A5000 GPUs.
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Loss Function. The loss function is L = λceLce +λdiceLdice +λbceLbce, where Lce is

the loss for classification, Ldice and Lbce are the losses for mask localization. In our experiments,

We set λce = 2,λdice = 5,λbce = 5.

In the next three parts, we evaluate our methods on open vocabulary semantic, panoptic

segmentation, and instance segmentation tasks. The class-agnostic mask proposal networks we

use in those methods are trained using Mask2Former other than noted.

2.4.3 Open-Vocabulary Semantic Segmentation

First, we use our method to compare with open-vocabulary semantic segmentation as

in Table 2.2. We train our method on the COCO dataset and evaluate on another four different

datasets. On the four datasets we test, MaskCLIP outperforms the two baselines we described in

the implementation details which demonstrates that our feature extraction method is better than

the vanilla way in this setting. It extracts the features without the need to change the input and

can simultaneously extract multiple mask area features easily. For 100 masks’ feature extraction

in a single image, the CLIP baseline takes about 3s on a single 3090 GPU while the MaskCLIP

w/o RMA baseline only takes ˜0.6s which is about 4x faster. Our MaskCLIP beats both baselines

significantly as it utilizes accurate mask information and refines the masks during the feature

extraction process. Furthermore, our proposed method also reaches state-of-the-art results on

three of the benchmarks with only P-59 slightly lower than LSeg+[LWB+22].

To compare with previous methods, we also provide a semantic segmentation comparison

in Figure 2.3. Results on ALIGN++ and OpenSeg are directly from [GGCL22] and we run the

same image using our MaskCLIP model. It can be seen that due to the open vocabulary setting,

some similar classes may be mistakenly classified e.g. all three methods predict the house in this

image while the ground truth is building.
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Table 2.3. Results on open-vocabulary panoptic segmentation using the ADE20k validation
dataset. th and st represent thing and stuff classes respectively.

Method PQ ↑ PQth ↑ PQst ↑ SQ ↑ SQth ↑ SQst ↑ RQ ↑ RQth ↑ RQst ↑
CLIP Baseline 8.207 8.473 7.675 53.124 52.661 54.048 10.534 10.883 9.835
MaskCLIP w/o RMA 9.565 8.922 10.852 62.507 62.268 62.985 12.645 11.758 14.418
MaskCLIP (MaskRCNN) 12.860 11.242 16.095 64.008 64.183 63.658 16.803 14.968 20.473
MaskCLIP 15.121 13.536 18.290 70.479 70.021 71.396 19.211 17.448 22.737

2.4.4 Open-Vocabulary Panoptic Segmentation

Next, we compare our MaskCLIP with the two baselines on ADE20K validation set

under the open vocabulary panoptic segmentation setting. The results are presented in Table

2.3. As can be seen from the table, the MaskCLIP w/o RMA baseline performs better on all the

metrics in panoptic segmentation setting which further demonstrates our method’s effectiveness.

We also show two sets of images to demonstrate our model capability. The first is the

qualitative results on ADE20K. We compare our method with the two baselines in Figure 2.4. It

can be seen that our method performs much better than the two baselines. The results from the

first column show that due to the lack of global information, CLIP baseline fails to predict “floor”.

Instead, it predicts “skyscraper”. While the MaskCLIP w/o RMA baseline and MaskCLIP model

can predict the floor correctly as it does not lose the global context information.

The second set of images we’re presenting is in Figure 2.5. These figures show our

capability of specifying any arbitrary classes in performing panoptic segmentation task. The

results show that though we train a new model based on the CLIP model without any distillation

methods, we can still preserve the CLIP image features very well. Our model doesn’t have a

clear bias towards the base classes in the training set and could tell the difference very well that

have no chance to learn in the COCO training: e.g toy vs real and filled vs empty.

2.4.5 Open-Vocabulary Instance Segmentation

Cross-Dataset Setting. We present the results on open vocabulary instance segmentation

in Table 2.4 under the cross-dataset setting. Since instance segmentation can be regarded as
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Figure 2.4. Qualitative results on ADE20K panoptic segmentation. The images are taken
from the ADE20K validation set. We use the class names directly from the ADE20K 150 classes
as the text inpputs. Three images are presented here using our MaskCLIP model along with the
two baselines.
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(a) “toy rabbit”, “real rabbit”, (b) “horse”, “donkey”, (c) “empty bottle”, “filled bottle”,

“background” “sky”, “grass” “door”, “wall”, “ground”

Figure 2.5. User-specified class panoptic segmentation. The labels above are the text inputs
we used for testing the images. Texts in bold are novel classes i.e. don’t exist in the labels of
COCO training data. (a) Our model is able to distinguish object properties of real rabbit and toy
rabbit. (b) This example shows that our model is potential for fine-grained classifications and
does not have bias toward the base classes. (c) Our results show that it can tell the difference
between the filled status and empty status of bottles.
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Table 2.4. Results on open-vocabulary instance segmentation under the cross-dataset
setting.

Method
ADE20K LVIS

AP ↑ AP50 ↑ AP75 ↑ AP ↑ AP50 ↑ AP75 ↑
CLIP Baseline 3.974 6.090 4.288 4.989 7.244 5.227
MaskCLIP w/o RMA 4.263 6.696 4.402 5.762 8.202 6.169
MaskCLIP (MaskRCNN) 6.164 12.072 5.775 6.431 12.753 5.777
MaskCLIP 5.989 9.739 6.209 8.404 12.190 8.810

Table 2.5. Results on open-vocabulary instance segmentation under the COCO split setting.

Method
Constrained Generalized

Base Target Base Target All
Soft-Teacher[XZH+21] 41.8 14.8 41.5 9.6 33.2
Unbiased-Teacher[LMH+21] 41.8 15.1 41.4 9.8 33.1
XPM[HKL+22] 42.4 24.0 41.5 21.6 36.3
MaskCLIP 42.8 23.2 42.6 21.7 37.2

“thing-only“ panoptic segmentation, we directly apply our model trained on COCO panoptic

dataset to the instance segmentation task. MaskCLIP with different class-agnostic mask proposal

networks performs better than CLIP Baseline and MaskCLIP w/o RMA in general.

COCO Split Setting. Besides the cross-dataset setting, we also follow the COCO Split

Setting in XPM[HKL+22] to perform the instance segmentation in Table 2.5. On the generalized

setting which is a more challenging setting, we outperform previous results in base, target, and

all categories. In the constrained setting, we also show competitive results in both base and target

categories.

2.4.6 Efficiency Analysis

We further provide efficiency analysis in Table 2.6 to demonstrate the efficiency of

our feature extraction method. Previous methods usually perform a crop/mask operation on

the input images and send the resulted images to CLIP to obtain the partial/dense features

for classification which is rather slow. In contrast, our proposed method employs Mask Class
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Table 2.6. FLOPs Comparison. We use the CLIP ViT-L/14 model in all methods for fair
comparison and 640x640 as the input resolution.

Method TFLOPs
RegionCLIP[ZYZ+22] 9.5
ZegFormer[DXXD22] 10.3
SimSeg[XZW+22] 9.6
CLIP Baseline 10.5
MaskCLIP(Ours) 0.3

Table 2.7. Incorporating GT Masks. Results on using GT masks as mask proposals for
open-vocabulary panoptic segmentation and semantic segmentation.

PQ ↑ mIoU ↑
OpenSeg [GGCL22] - 21.1
MaskCLIP 15.1 23.7
OpenSeg + GT masks [GGCL22] - 27.5
MaskCLIP + GT masks 35.8 31.7

Tokens to obtain the partial/dense features for classification. By doing so, our method can

extract partial/dense features more efficiently (instead of running CLIP N times, our method only

requires running CLIP one time with N more Mask Class Tokens) and is also aware of the global

context information.

2.5 Ablation Study

2.5.1 Incorporating GT Masks.

Since our model can decouple the mask proposal process and the classification process,

we could also use the ground truth mask proposals which can be regarded as a “perfect” mask

proposal network in our method. In this way, we can eliminate the effects of the quality of the

mask proposals and inspect the method’s classification capabilities. In Table 2.7. We can see that

the performance could gain a lot from the “perfect” mask proposals. And our MaskCLIP method

also outperforms OpenSeg in this setting.
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Table 2.8. Ablation Study on Mask Refinement. Results on ADE20K validation set are
reported here. Both methods are trained on COCO and tested on ADE20K validation dataset.
MR refers to mask refinement.

PQ ↑ PQTh ↑ PQSt ↑ SQ↑ SQTh ↑ SQSt ↑
MaskCLIP w/o MR 13.624 13.253 14.368 66.361 67.715 63.653
MaskCLIP 15.121 13.536 18.290 70.479 70.021 71.396

2.5.2 Mask Refinement.

In our Relative Mask Attention part, the attention layer will use the accurate mask

information to learn a better attention matrix and the mask will also use the attention information

to gradually refine itself. In this ablation study, we only let the attention matrix learn from the

mask without any mask refinement. And we get the results in Table 2.8. Since the SQ reflects

the segmentation quality, we care more about SQ here. It can be seen that MaskCLIP performs

slightly better than that without the mask refinement which demonstrates the effectiveness of the

mask refinement.

2.6 Conclusion

In this paper, we have presented a new algorithm, MaskCLIP, to tackle an emerging com-

puter vision task, open-vocabulary universal image segmentation. MaskCLIP is a Transformer-

based approach using mask queries with the ViT-based CLIP backbone to efficiently and effec-

tively utilize pre-trained partial/dense CLIP features. MaskCLIP consists of a Relative Mask

Attention (RMA) module that is seamlessly integrated with a pre-trained CLIP. MaskCLIP

is distinct compared with prior approaches in open-vocabulary semantic segmentation/object

detection by building an integrated encoder module for segmentation mask refinement and image

feature extraction with a pre-trained CLIP image model. Encouraging experimental results on

open-vocabulary semantic/instance/panoptic segmentation have been obtained.
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Chapter 3

Learning Personalized Priors for Facial
Appearance Editing with DiffusionRig

3.1 Introduction

Input Rigging Expression Rigging Lighting Rigging Pose
Condition Output Condition Output Condition Output

Figure 3.1. DiffusionRig takes in coarse physical rendering as the condition to “rig” the input
image with learned personal priors. The edited images respect the rendering conditions, preserve
the identity, and exhibit high-frequency facial details.

It is a longstanding problem in computer vision and graphics to photorealistically change

the lighting, expression, head pose, etc. of a portrait photo while preserving the person’s

identity and high-frequency facial characteristics. The difficulty of this problem stems from its
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fundamentally underconstrained nature, and prior work typically addresses this with zero-shot

learning, where neural networks were trained on a large-scale dataset of different identities and

tested on a new identity. These methods ignore the fact that such generic facial priors often

fail to capture the test identity’s high-frequency facial characteristics, and multiple photos of

the same person are often readily available in the person’s personal photo albums, e.g., on a

mobile phone. In this work, we demonstrate that one can convincingly edit a person’s facial

appearance, such as lighting, expression, and head pose, while preserving their identity and other

high-frequency facial details. Our key insight is that we can first learn generic facial priors from

a large-scale face dataset [KLA19a] and then finetune these generic priors into personalized ones

using around 20 photos capturing the test identity.

When it comes to facial appearance editing, the natural question is what representation

one uses to change lighting, expression, head pose, hairstyle, accessories, etc. . Off-the-

shelf 3D face estimators such as DECA [FFBB21] can already extract, from an in-the-wild

image, a parametric 3D face model that comprises parameters for lighting (spherical harmonics),

expression, and head pose. However, directly rendering these physical properties back into

images yields CGI-looking results, as shown in the output columns of Figure 3.1. The reasons

are at least three-fold: (a) The 3D face shape estimated is coarse, with mismatched face contours

and misses high-frequency geometric details, (b) the assumptions on reflectance (Lambertian)

and lighting (spherical harmonics) are restrictive and insufficient for reproducing the reality,

and (c) 3D morphable models (3DMMs) simply cannot model all appearance aspects including

hairstyle and accessories. Nonetheless, such 3DMMs provide us with a useful representation that

is amenable to “appearance rigging” since we can modify the facial expression and head pose by

simply changing the 3DMM parameters as well as lighting by varying the spherical harmonics

(SH) coefficients.

On the other hand, diffusion models [HJA20a] have recently gained popularity as an

alternative to Generative Adversarial Networks (GANs) [GPAM+20] for image generation. Diff-

AE [PCWS22a] further shows that when trained on the autoencoding task, diffusion models
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can provide a latent space for appearance editing. In addition, diffusion models are able to

map pixel-aligned features (such as noise maps in the vanilla diffusion model) to photorealistic

images. Although Diff-AE is capable of interpolating from, e.g., smile to no smile, after semantic

labels are used to find the direction to move towards, it is unable to perform edits that require 3D

understanding and that cannot be expressed by simple binary semantic labels. Such 3D edits,

including relighting and head pose change, are the focus of our work.

To combine the best of both worlds, we propose DiffusionRig, a model that allows us to

edit or “rig” the appearance (such as lighting and head pose) of a 3DMM and then produce a

photorealistic edited image conditioned on our 3D edits. Specifically, DiffusionRig first extracts

rough physical properties from single portrait photos using an off-the-shelf method [FFBB21],

performs desired 3D edits in the 3DMM space, and finally uses a diffusion model [HJA20a]

to map the edited “physical buffers” (surface normals, albedo, and Lambertian rendering) to

photorealistic images. Since the edited images should preserve the identity and high-frequency

facial characteristics, we first train DiffusionRig on the CelebA dataset [LLWT15] to learn

generic facial priors so that DiffusionRig knows how to map surface normals and the Lambertian

rendering to a photorealistic image. Note that because the physical buffers are coarse and do not

contain sufficient identity information, this “Stage 1 model” provides no guarantee for identity

preservation. At the second stage, we finetune DiffusionRig on a tiny dataset of roughly 20

images of one person of interest, producing a person-specific diffusion model mapping physical

buffers to photos of just this person. As discussed, there are appearance aspects not modeled by

the 3DMM, including but not limited to hairstyle and accessories. To provide our model with

this additional information, we add an encoder branch that encodes the input image into a global

latent code (“global” in contrast to physical buffers that are pixel-aligned with the output image

and hence “local”). This code is chosen to be low-dimensional in the hope of capturing just the

aspects not modeled by the 3DMM, such as hairstyle and eyeglasses.

In summary, our contributions are:

• A deep learning model for 3D facial appearance editing (that modifies lighting, facial
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Figure 3.2. Reconstruction with v.s. without personalized priors. Given the input image and
its conditions (surface normals, albedo, and Lambertian rendering) automatically extracted using
DECA, Stage 1 learns only generic face priors and fails to reconstruct the identity in both of the
randomly sampled reconstructions. With Stage 2, DiffusionRig is able to faithfully reconstruct
the input image using either of the two stochastically sampled noise maps.

expression, head pose, etc. ) trained using just images with no 3D label,

• A method to drive portrait photo generation using diffusion models with 3D morphable

face models, and

• A two-stage training strategy that learns personalized facial priors on top of generic face

priors, enabling editing that preserves identity and high-frequency details.

3.2 Related Work

Our work is related to generative models, 3D Morphable Face Models (3DMMs), and

personalized priors.

Generative Modeling. Since the proposal of early Generative Adversarial Networks

(GANs) [GPAM+20], researchers have made significant progress in generating photorealistic

images of constrained classes, such as faces [Kar19, KLA+20, KAL+21]. Recently, denoising

diffusion models [HJA20b], which learn to denoise random noise images into photorealistic

images, have shown impressive synthesis results and gained popularity as an alternative to

GANs. Different diffusion models are invented for faster sampling [SME20a] (used in this

work), conditional generation [ND21, DN21a], and later pixel-aligned conditional generation

[SHC+22]. Similarly, we use pixel-aligned conditions, specifically surface normal, albedo, and

Lambertian rendering images, as the condition that our diffusion model should satisfy. Closely
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related to DiffusionRig are Diffusion Autoencoders (Diff-AE) that learn a latent space of facial

attributes (e.g., +smiling v.s. −smiling) via the autoencoding task [PCWS22b]. Given binary

labels of a certain attribute, the authors find the direction, along which the latent code should be

pushed, to manipulate that attribute. 3D-aware generative models are a recent popular trend to

combine 3D controllability with 2D image generation [GGU+20, TEB+20b, ZMG+22, TPF+22,

CLC+22, CMK+21, HMBL21, TFM+22].

Facial Appearance Modeling. 3D Morphable Face Models or 3DMMs provide a

valuable parameter space to describe (and in turn solve for) 3D facial characteristics [BV99]. The

FLAME face model learned from 4D scans is a widely-used 3DMM that supports shape, pose,

and expression change [LBB+17]. We refer the reader to a recent survey paper on Morphable

Face Models [EST+20]. RingNet regresses FLAME parameters from 2D images [SBFB19].

Also a learning-based method, DECA additionally predicts albedo and lighting in spherical

harmonics (SH) from a single face image [FFBB21]. An alternative to using 3DMMs for “face

de-rendering” is directly predicting surface normals, albedo, and lighting in the image space, as

in SfSNet [SKCJ18]. Although such approaches enjoy the benefit of being able to represent hair,

accessories, etc. , image-space representations do not provide a physically meaningful parameter

space for rigging like 3DMMs do. The geometry, albedo, and lighting from 3DMM are still

extremely coarse and far from reality. The community has bridged the realism gap between

3DMM rendering and real photos through expensive hardware setups to capture fine-grained

facial geometry [WCY+22, WZA+22] and reflectance fields [DHT+00]. Neural network-based,

implicit appearance models have also been proposed to address the infeasibility of explicitly

describing the appearance with precise reflectance and lighting [LSSS18, BLS+21, MHP+19,

RBS+22, GPL+22, SZA+19, RTD+21, ZGSR21, NLML20, SBT+19, ZBT+20].

Personalized Priors. Learning personal priors has been more widely discussed in super-

resolution, face restoration, and inpainting, by using examplar imagery [WOT20], personal

supplemental attributes [YFHP18], an attention module with identity penalty [WZC+22], or

facial component dictionaries [LCZ+20]. Conditional portrait image editing also shares the
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objective of preserving the input identity [LSL+22, TEB+20a]. However, it remains a chal-

lenge how to compute an unbiased identity score, and these approaches do not explicitly learn

personalized priors.

Closer to DiffusionRig that learns a personal prior from a set of personal album of the

person, MyStyle [NAH+22] is a method to finetune a pre-trained StyleGAN model to achieve a

generative model for a specific identity, while preserving the expressiveness of the latent space.

However, it does not support precise 3D rigging to control the generation and requires a much

larger personal dataset to obtain a smooth personalized latent space. DiffusionRig, on the other

hand, focuses on controllable image editing and achieves the smooth editing naturally with the

continuous physical space as conditions.

3.3 Method

To enable personalized appearance editing, our model, which we dub DiffusionRig, needs

to (a) generate images based on different appearance conditions, such as novel lighting, and (b)

learn personal priors so that the person’s identity is not altered during editing.

To this end, we design a two-stage training pipeline as shown in Figure 5.2. At the first

stage, the model learns generic face priors by being trained to reconstruct portrait images given

their underlying “appearance conditions” represented as physical buffers automatically extracted

using an off-the-shelf estimator. At the second stage, we finetune our model using portrait photos

of just one person so that the model learns personalized priors, which are necessary to prevent

identity shift during appearance editing.

3.3.1 Learning Generic Face Priors

Our first stage is designed to learn facial priors that enable photorealistic image synthesis

conditioned on physical constraints like lighting. For the physical conditioning, we use DECA

[FFBB21] to produce the physical parameters including the FLAME [LBB+17] parameters

(shape β , expression ψ , and pose θ ), albedo α , (orthographic) camera c, and (spherical harmon-
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ics) lighting l from the input portrait image. We then use the Lambertian reflectance to render

these physical properties into three buffers: surface normals, albedo, and Lambertian rendering.

Although these physical buffers provide pixel-aligned descriptions of the facial geometry, albedo,

and lighting, they are rather coarse and nowhere close to photorealistic images (see the Lam-

bertian rendering in Figures 3.1 and 3.2). Still, using these buffers, we can “rig” our generative

model in a disentangled, physically meaningful way by changing the DECA parameters. For

photorealistic image synthesis, we use a Denoising Diffusion Probabilistic Model (DDPM) as

our generator because DDPMs can naturally take pixel-aligned conditions (more advantageous

than latent code conditions as shown in Section 3.4.5) to drive the generation process.

Besides the pixel-aligned physical buffers, we keep the random noise images in DDPMs

to explain the stochasticity during generation. In addition to the pixel-aligned buffers and noise

map, we need another condition to encode global appearance information (as opposed to local

information such as local surface normals) that is not modeled by the physical buffers, such as

hair, hat, glasses, and the image background. Therefore, our diffusion model takes both physical

buffers and a learned global latent code as conditions for image synthesis. Formally, our model

can be described as ε̂t = fθ ([xt ,z], t,φθ (x0)) where xt is the noisy image at timestep t, z represent

the physical buffers, x0 is the original image, ε̂t is the predicted noise, and fθ and φθ are the

denoising model and the global latent encoder, respectively.

It is theoretically possible that the global latent code also encodes local geometry, albedo,

and/or illumination information, which could lead to the diffusion model ignoring the physical

buffers entirely. Empirically, we find that the network learns to use the physical buffers for

local information and does not rely on the global latent code, possibly because these buffers are

pixel-aligned with the ground truth and thus more easily leveraged by the model.

3.3.2 Learning Personalized Priors

After learning the generic facial priors at the first stage, DiffusionRig is able to generate

photorealistic images given coarse physical buffers. The next step is to learn personalized priors
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for a given person to avoid identity shift during appearance editing. Personal priors are crucial

to preserving identity and high-frequency facial characteristics, as shown in Figure 3.2. We

achieve this by finetuning our denoising model on a specific person’s photo album of around 20

images. During the finetuning stage, the denoising model learns the person’s identity information.

We fix the global encoder from the previous stage since it has learned to encode global image

information not modeled by the physical buffers (which we want to retain). We show that this

approach is simple and yet effective compared with GANs that need careful tuning, as mentioned

in MyStyle [NAH+22].

For this small personalized dataset, we also extract the DECA parameters first. However,

since DECA is a single-image estimator, its output is sensitive to extreme poses or expressions.

Under the assumption that the general shape of a person’s face does not change drastically within

a reasonable period of time, we compute the mean of the shape parameters in FLAME over all

the images in the album and use that mean shape when conditioning DiffusionRig.

3.3.3 Model Architecture

DiffusionRig consists of two trainable parts: a denoising model fθ and a global encoder

φθ . The architecture of our denoising model is based on ADM [DN21a] with modifications to

reduce computational cost and take an additional global latent code as input. For the global code,

we use the same method that ADM uses for their time embedding: We scale and shift the features

in each layer using the global latent code. The encoder is simply a ResNet-18 [HZRS16] and we

use the output features as the global latent codes.

Our loss function is a P2 weight loss [CLS+22] that computes distances between pre-

dicted and ground-truth noises: L = λ ′
t ||ε̂t − εt ||22, where λ ′

t is a hyperparameter to control the

loss weight at different timesteps. We empirically find that the P2 weight loss speeds up the

training process and generates high-quality images compared with a constant loss weight.
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3.3.4 Implementation Details

During the first stage, we train DiffusionRig on the FFHQ dataset [KLA19a], which

contains 70,000 images. With Adam [KB14] as the optimizer with a learning rate of 10−4, we

train DiffusionRig for 50,000 iterations with a batch size of 256 (so the total number of samples

seen by the model is 12,800,000). During the second stage, we use only 10–20 images of a

single person. In the following, we show results for four celebrities (Obama, Biden, Swift, and

Harris) and two non-celebrities. Please see the supplemental material and video for more results

including more identities. We use 20 images for each person except for Harris, for whom we use

only 10, and for the ablation study on the number of training images. We provide the personal

photo album of two identities in the supplemental material. We finetune our model on each

small dataset for 5,000 iterations with a batch size of 4 (so the total number of seen samples

during finetuning is 20,000). We furthermore decrease the learning rate to 10−5 for the second

stage. Training for the first stage takes around 15 hours using eight A100 GPUs, and the Stage 2

finetuning completes within 30 minutes on a single V100 GPU.

3.4 Experiments

We first show how to edit a person’s appearance (e.g., facial expression, lighting, and

head pose) by modifying the physical buffers that condition the model. We then demonstrate

how to rig, with the global latent code, other aspects of a person’s appearance not modeled by the

physical buffers such as hairstyle and accessories. By swapping in the global latent code from

another image, we can transfer portrait characteristics, such as hairstyle, accessories including

glasses, and/or the image background, while preserving the physical properties (e.g., identity,

pose, expression, and lighting) from the original image. Finally, we show the power of the

learned personal priors by conditioning, for example, an Obama model on both the physical

buffers and global latent code from a different person (to “Obama-fy” that person).
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Figure 3.3. Appearance editing. DiffusionRig achieves convincing appearance edits while
preserving the individual’s identity using only 20 images per identity. GIF creates realistic-
looking images but does not use personalized priors, leading to significant identity shifts. MyStyle
is unable to make dramatic changes to the expression or pose without artifacts or minor identity
shifts. In addition, MyStyle does not trivially support controllable relighting, so the corresponding
fields have been left empty.
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3.4.1 Rigging Appearance With Physical Buffers

In this section, we use our personalized model to rig the appearance with physical buffers.

We show three different types of appearance rigging: relighting, expression change, and pose

change. For relighting, we use different Spherical Harmonics (SH) parameters for producing

the Lambertian rendering. To change the expression, we modify the expression and jaw rotation

parameters of FLAME (the last three parameters of the pose vector). To vary the pose, we modify

the head rotation parameters (the first three parameters of the pose vector). The 64-dimensional

global latent code is produced by encoding the input image and remains unchanged when editing

appearance.

Our results are displayed in Figure 3.3, where we depict three identities: two celebrities

and one daily user. All the images have a resolution of 256×256. Additionally, 512×512 results

can be found in the supplemental material. We compare our method against DECA [FFBB21],

HeadNerf [HPX+22], GIF [GGU+20], and MyStyle [NAH+22], of which the first two are 3D

face model estimation methods, and the latter two are GAN-based approaches. As Figure 3.3

shows, while GIF is capable of rigging the appearance by changing the expression and pose, it

fails to preserve the individual’s identity. DiffusionRig and MyStyle, on the other hand, are both

personalized models that are able to preserve the identity. However, since our method is directly

conditioned on physical buffers, we can rig the appearance in a physically-based manner, whereas

MyStyle needs to search for and step into a certain direction within the latent space to produce

the target appearance, limiting its controllability, interpretability, and capacity for dramatic

appearance changes. We also observe more artifacts for MyStyle when doing appearance editing,

which is likely due to the use of too few images during finetuning the StyleGAN model.

3.4.2 Rigging Appearance With Global Latent Code

By design, DiffusionRig finds it easier to learn what physical buffers can describe from

the pixel-aligned buffers than from the global latent code. The latent code thus encodes what
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physical buffers cannot describe including background, makeup, and hairstyle. In this part, we

change the global latent code to show its effects on the generated images.

In Figure 3.4, we show a 2×3 matrix of generated images. Along the horizontal axis, we

swap in the global latent code from another image of the same person while keeping the physical

buffers identical (i.e., same physical buffers but different global codes). Along the vertical axis,

we replace the physical buffers while keeping the same global latent code (i.e., same global code

but different physical buffers). We can see that geometry information, such as head pose and

expression, is preserved for each row, which shows that only the physical buffers (not the latent

code) contain such information. This means that in DiffusionRig these physical properties are

well disentangled from each other and from other appearance properties that physical buffers

cannot describe. On the other hand, the information hard to model explicitly, including image

background, glasses, and hair style/color, is encoded in the global latent code.

3.4.3 Identity Transfer With Learned Priors

In previous sections, we saw what information the physical buffers and the global latent

code encode. Now, we demonstrate what information is encoded in the personalized diffusion

models’ weights. Here, we keep both physical buffers and global latent code the same but

exchange the personalized model itself with another person’s personalized model (i.e., model

swapping without code or buffer swapping). The results of this experiment for four identities

are shown in Figure 3.5. Each row uses the same physical buffers and latent code but another

personalized model. Each column uses the same personalized model but different physical

buffers and latent code. For example, the column “Obama-fy” shows four images that are

generated by Obama’s personal model but using the other celebrities’ images as input. We see

that across each row, while all inputs (physical buffers plus global latent code) are the same, the

four different personalized models output different identities. These results further corroborate

that our model is able to learn personalized priors from a small dataset.
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Figure 3.4. Mix and match of physical buffers and global latent code. We mix the physical
buffers from one image and the global latent code from another image to demonstrate how the
two conditions encode disentangled information.
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Obama-fy Hopkins-fy Swift-fy Williams-fy

Figure 3.5. Swapping personalized models. We demonstrate the power of personalized priors
by running one person’s model on other identities. This creates the effect of “adding” one
person’s identity to another person. The images with green borders are “no-swap” results where
the corresponding person’s model is used.
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Table 3.1. RMSE of DECA re-inference. All numbers are multiplies of 10−3. We generate
1,000 images to compute the RMSE. For shape, expression, and pose, the RMSE is computed on
rendered FLAME faces. For lighting, the RMSE is computed on re-inferred spherical harmonics
directly. We only use our Stage 1 model since GIF is not a personalized model. Numbers for
GIF and its vector-conditioned variant are cited from the original paper [GGU+20].

Light ↓ Shape ↓ Exp. ↓ Pose ↓
GIF [GGU+20] 13.8 3.0 5.0 5.6
GIF, vector cond. [GGU+20] – 3.4 23.1 29.7
DiffusionRig (Ours) 11.2 4.3 2.8 4.2
DiffusionRig, vector cond. 15.5 10.7 8.8 14.0
DiffusionRig, feature cond. 27.0 5.3 4.1 21.6

3.4.4 Baseline Comparisons & Evaluation Metrics

We evaluate our DiffusionRig quantitatively in three aspects: rigging quality, identity

preservation, and photorealism, since these three qualities are the most important for our person-

alized appearance editing.

DECA Re-Inference Error. We follow the same setup as in GIF [GGU+20] to compute

the DECA re-inference error. To evaluate relighting quality, we directly compute the RMSE on

the re-inferred spherical harmonics. We show our results in Table 3.1. For our model, we also

evaluate two ablated versions: “vector cond.” and “feature cond.” Instead of using pixel-aligned

physical buffers as the condition, we use DECA’s output parameters and features computed from

physical buffers as conditions in our two ablated models. More details can be found in Section

3.4.5.

Face Re-Identification Error. An important metric for evaluating this work is whether

DiffusionRig can preserve the identity after appearance editing, since identity shift is a notorious

problem in generative model-based editing. To this end, we run a widely popular face re-

identification network [Kin09] to automatically determine if the edited and original images are

of the same person. As Table 3.2 shows, both MyStyle [NAH+22] and DiffusionRig preserve

the identity in all 400 expression-edited images of Obama and another 400 of Swift. That said,

for dramatic changes such as head pose change, DiffusionRig preserves the identity better than
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Table 3.2. DiffusionRig vs. MyStyle [NAH+22] in expression and pose editing, as measured
by an automatic face re-ID error [Kin09] (which has an obvious flaw; see text) as well as a user
study on both realism and identity preservation.

Auto. Face Re-ID ↑ User Study ↑
Obama and Swift Obama Swift

Expr. Pose Expr. Pose Expr. Pose
MyStyle 100% 97.9% 79.4% 78.0% 64.5% 62.5%
Ours 100% 99.3% 87.2% 86.5% 82.4% 80.2%

MyStyle, as also demonstrated by Figure 3.3. One caveat of this error metric, though, is the

obvious degenerate solution of not applying any edit at all, thereby achieving a perfect score. We

refer the reader to Figure 3.3 and Table 3.1, which show that DiffusionRig avoids this degenerate

solution.

User Study. To further evaluate both the photorealism and identity preservation of images

from DiffusionRig against MyStyle, we conduct a user study involving Amazon Mechanical

Turk. During the study, we show pairs of images, where the left image is an original image

from the real image dataset, and the right image is a generated one. We occasionally include

some real images on the right, too, for consistency check and quality control. We then ask the

users whether the right image is a real image of the person on the left (so both photorealism and

identity preservation are probed). We generate images that include either an expression or pose

change for both DiffusionRig and MyStyle. We report our results in Table 3.2.

3.4.5 Ablation Study

We show several ablation studies to motivate the finetuning stage that injects the person-

alized prior and the choice of physical, pixel-aligned buffers to condition the model.

No Personalized Priors. We first show how DiffusionRig performs in the absence of

personalized priors (i.e., trained on only the large dataset from Stage 1). Figure 3.2 shows that

our model learns to use the physical buffers as conditions for pose, expression, and lighting, but

it is incapable of preserving the person’s identity during appearance editing.

Number of Images. Here we explore how the number of images used in Stage 2 affects
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Figure 3.6. Quality w.r.t number of Stage 2 images. DiffusionRig achieves high-quality
relighting and pose change with 20 images for Stage 2. Using fewer may yield blurry results and
make them hard to rig with new conditions.

DiffusionRig’s ability of learning personalized priors. We train three models of a non-celebrity

with 1, 5, 10, and 20 images and test them on relighting, expression change, and pose change. As

Figure 3.6 demonstrates, using just 1, 5, or 10 images yields worse results than using 20 images

(unsurprisingly). With more images, DiffusionRig learns better-personalized priors that capture

high-frequency face characteristics, such as the wrinkles in Figure 3.6.

Different Forms of Conditions. There are alternative ways to condition the image

synthesis. We demonstrate that pixel-aligned physical buffers are the most effective form in

accurately rigging the appearance. We explore the following two conditioning alternatives.

“Vector cond.” is when we directly concatenate DECA parameters, a 236-dimensional vector,

to the global latent code without using pixel-aligned buffers. “Feature cond.” means that we

concatenate the physical buffers to the input image and pass them into the encoder to compute a

global latent code, which is then used as a non-spatial feature condition.As shown in Figure 3.7,

using pixel-aligned physical guidance is essential for accurate conditional image editing. Both

vector and feature conditioning suffer from the generated images not following the desired

physical guidance.
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Rigging Expression: input and src.

Rigging Pose: input and src.

Feature Cond.

DiffusionRig

DiffusionRig

Vector Cond.

Figure 3.7. Ablation on the form of conditions. Neither feature conditioning nor vector
conditioning is able to rig the input image to follow the physical properties of the target image.

3.5 Limitations & Conclusion

Although DiffusionRig achieves state-of-the-art facial appearance editing, it relies on a

small portrait dataset to finetune, which limits its scalability for massive user adoption. Further-

more, when the edit involves dramatic head pose change, DiffusionRig may not stay faithful to

the original background, since head pose change sometimes reveals what used to be occluded,

therefore requiring background inpainting—a topic beyond the scope of this paper. Additionally,

since DiffusionRig relies on DECA to get physical buffers, it will also be affected by DECA’s

limited estimation capability: for instance, extreme expressions usually cannot be well predicted.

and the estimated lighting is sometimes coupled with the skin tone.

In this paper, we have presented DiffusionRig, a riggable diffusion model for identity-

preserving, personalized editing of facial appearance. We introduced a two-stage method to

first learn generic face priors and later personalized priors. Using both explicit conditioning via

physical buffers and implicit conditioning via global latent code, we can drive and control our
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model’s facial image synthesis.
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Chapter 4

Patched Denoising Diffusion Models For
High-Resolution Image Synthesis

4.1 Introduction

There have been explosive developments in generative adversarial learning [Tu07,

GPAM+14, RMC16, ACB17, KLA19a, DKD17], though many GAN models remain hard to

train. VAE models [KW14] are easier to train, but the resulting image quality is often blurry.

Diffusion generative models have lately gained tremendous popularity with generated images of

superb quality [SDWMG15, HJA20a, SE20, SSDK+20, CHIS23, RDN+22]. Despite the excel-

lent modeling capability of generative diffusion models, the current models still face challenges

in both training and synthesis.

Due to direct optimization in the pixel space and multi-timestep training and inference,

diffusion models are hard to scale up to high-resolution image generation. Therefore, current

state-of-the-art models either use super-resolution methods to increase the generated images to

higher resolutions [RDN+22, SCS+22], or optimize the latent space instead of the pixel space

[RBL+22]. However, both types of approaches still consist of high-resolution image generators

that consume a large memory with a big model size.

To ameliorate the limitations in the current diffusion models, we propose a new method,

Patch-DM, to generate high-resolution images with a newly-introduced feature collage strategy.

The basic operating point for Patch-DM is a patch-level model that is relatively compact compared
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to those modeling the entire image. Though it appears to have introduced compromises for a

patch-based representation, Patch-DM can perform seamless full-size high-resolution image

synthesis without artifacts of the boundary effects for pixels near the borders of the image patches.

The effectiveness of Patch-DM in directly generating high-resolution images is enabled by a

novel feature collage strategy. This strategy helps feature sharing by implementing a sliding-

window based shifted image patch generation process, ensuring consistency across neighboring

image patches; this is a key design in our proposed Patch-DM method to alleviate the boundary

artifacts without requiring additional parameters. To summarize, the contributions of our work

are listed as follows:

• We develop a new denoising diffusion model based on patches, Patch-DM, to generate

images of high-resolutions. Patch-DM can perform direct high-resolution image synthesis

without introducing boundary artifacts.

• We design a new feature collage strategy where each image patch to be synthesized

obtains features partially from its shifted input patch. Through systematic window sliding,

the entire image is being synthesized by forcing feature consistency across neighboring

patches. This strategy, named feature collage, gives rise to a compact model of Patch-DM

that is patch-based for high-resolution image generation.

Patch-DM points to a promising direction for generative diffusion modeling at a flexible patch-

based representation level, which allows high-resolution image synthesis with lightweight

models.

4.2 Related Work

Generative diffusion models.

Generative diffusion models [SDWMG15, HJA20a, SE20] which learn to denoise noisy

images into real images have gained much attention lately due to its training stability and high im-

age quality. Lots of progress has been made in diffusion models such as faster sampling[SME20a],
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conditional generation[ND21, DN21a] or high-resolution image synthesis[RBL+22]. The traits

of diffusion models have been amplified particularly by the success of DALL·E 2 [RDN+22]

and Imagen [SCS+22] which generate high quality images from the given texts.

Patch-based image synthesis.

The practice of employing image patches of relatively small sizes to generate images of

larger sizes has been a longstanding technique in computer vision and graphics, particularly in

the context of exemplar-based texture synthesis [EL99]. While generative adversarial networks

(GANs) have been utilized for expanding non-stationary textures[ZZB+18], image synthesis is

still considered more challenging due to the complex structures present in images. To address

this challenge, COCO-GAN[LCC+19] uses micro coordinates and latent vectors to synthesize

large images by generating small patches first. InfinityGAN[LCL+22] further improves this

by introducing Structure Synthesizer and Padding Free Generator to disentangle global struc-

tures and local textures and also generate consistent pixel values at the same spatial locations.

ALIS[SSE21] proposes an alignment mechanism on latent and image space to generate larger

images. Anyres-GAN[CGS+22], on the other hand, adopts a two-stage training method by first

learning the global information from low-resolution downsampled images and then learning the

detailed information from small patches. There are also some works share similar directions

on patch-based diffusion models. [LL22] does a reshaping operation on the input image which

pushes the dimensions of the height and width to the channels. The model still takes the whole

image as input just with the shape changed. [WJZ+23] does a patch operation during the train-

ing stage by concatenating another position embedding layer to the input while still requires

full-resolution during the inference stage. There are also other works applying patch-based

diffusion models to specific applications like image restoration under weather conditions[ÖL23]

and anomaly detection in brain MRI[BBK+24]. Both of them utilize a conditional diffusion

mechanism by utilizing the weather-degraded images or images that miss some patches as

conditions.
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Our work, Patch-DM consists of a new design, feature collage, in which partial features

of neighboring patches are cropped and combined for predicting a shifted patch. We borrow

the term “collage” from the picture collage task [WQS+06] for the ease of understanding of our

method, though our feature collage strategy only has a loose conceptual connection to picture

collage [WQS+06]. Adopting positional embedding in Patch-DM also makes it easier to maintain

spatial regularity. Although Patch-DM employs a shifted window strategy, its motivation and

implementation are different from those of the widely-known Swin Transformers [LLC+21].

4.3 Background

Denoising diffusion models generate real images from randomly sampled noise images

by learning a denoising function [HJA20a]. Instead of directly denoising the random noise image

to a real image, denoising diffusion models learn to denoise the noise image through T steps.

The forward process adds noise to the image x0 gradually while the learned denoising function

fθ tries to reverse this process from the xT ∼ N (0,I). More formally, the forward process at

time step t(t = 1...T ) can be defined as

xt ∼ N (xt−1;
√

1−βtxt−1,βtI), (4.1)

where βt are hyperparameters that control the noise, making the noise level of xt gradually larger

through the timesteps. Note that xt can be directly derived from the original image x0 since Eq.

4.1 can be rewritten as

xt ∼ N (x0;
√

αtx0,(1−αt)I), (4.2)
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Figure 4.1. Patch Generation For Image Synthesis. (a) shows a very basic method of patch-
wise image synthesis by simply splitting the images and generating patches independently. This
method brings severe border artifacts. (b) alleviates the border artifacts by using shifted windows
while generating images and doing patch collage in pixel space. (c) is our proposed method
which collages the patches in the feature space. The features for neighboring features will be
split and collaged for a new patch synthesis. We will show this method is a key design for us to
generate high-quality images without border artifacts.

where αt = ∏
t
s=1(1−βs). In order to generate the images from the noise input, the denoising

model fθ learns to reverse from xt to xt−1, which is defined as

ε̂t = fθ (xt , t), (4.3)

xt−1 ∼ N (xt ;
1√

1−βt
(xt −

βt√
1−αt

ε̂t),σtI), (4.4)

where σt are hyperparameters that control the variance of the denoising process. The objective

of the denoising model is ||εt − ε̂t ||2. εt is ground truth noise added on image.

Therefore, after the denoising model is trained, the model can generate real images

from random noise using Eq. 4.4. As can be seen, the whole generation process depends fully

on the denoising process. Since the model denoises the image in the pixel space directly, the

computation would be very expensive once the resolution gets higher.
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4.4 Patched Denoising Diffusion Model

In this section, we describe our proposed Patched Denoising Diffusion Model (Patch-

DM). Rather than using entire complete images for training, our model only takes patches

for training and inference, and uses our proposed feature collage mechanism to systematically

combine partial features of neighboring patches. Consequently, Patch-DM is capable of resolving

the issue of high computational costs associated with generating high-resolution images, as it is

resolution-agnostic.

Before we dive into our model’s training details, we first give an overview of the image

generation process of our method. The training image from the dataset is x0 ∈ RC×H×W , we split

x0 into x(i, j)0 where i, j is the row and column number of the patch, x(i, j)0 ∈ RC×h×w. Instead of

directly generating x0 like most of methods do, our model only generates x(i, j)0 and concatenate

them together to form a complete image.

A very basic way to do this is what we show in Figure 4.1(a) where the denoising model

takes the noised image patch x(i, j)t as input and output the corresponding noise ε̂t
(i, j). However,

since the patches do not interact with each other, there will be severe borderline artifacts.

A further way to do this is to shift image patches during each time step depicted in

Figure 4.1(b). At different time steps, the model will take either the original split patch x(i, j)t or

the shifted split patch x′t
(i, j) so that the border artifacts can be alleviated which we call “Patch

Collage in Pixel Space”. However, in Section 4.6 we show that the border artifacts still exist.

To further improve this method, we propose a novel feature collage mechanism depicted

in Figure 4.1(c). Instead of performing patch collage in the pixel space, we perform it in the

feature space. The patch collage in the feature space is more in-depth and supports multi-level

interaction. This allows the patches to be more cognizant of the adjacent features and prevent

border artifacts from appearing while generating the complete images. More formally,

[z(i, j)1 ,z(i, j)2 , ...,z(i, j)n ] = f E
θ (x(i, j)t , t), (4.5)
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Figure 4.2. Detailed Inference process at each timestep.

where f E
θ

is the UNet encoder and z(i, j)1 ,z(i, j)2 , ...,z(i, j)n are the internal feature maps. We then split

the feature maps and collage the split feature maps to generate shift patches

ẑ′(i, j)k = [P1(z
(i, j)
k ),P2(z

(i, j+1)
k ),

P3(z
(i+1, j)
k ),P4(z

(i+1, j+1)
k )],

(4.6)

where P1,P2,P3,P4 are split functions as shown in Figure 4.1(c). Then we send these collaged

shift features ẑ′(i, j)k to the UNet decoder to get the predicted shift patch noise:

ε
′(i, j)
t = f D

θ ([z′(i, j)1 ,z′(i, j)2 , ...,z′(i, j)n ], t). (4.7)

In order to make the model generate more semantically consistent images, we also add position

embedding and semantic embedding to the model so that fθ will take another two inputs which

are P(i, j) and E (x0).

During inference time, we take a 3x3 example as illustrated in Figure 4.2, in order to

generate the border patches, we first pad the images so that the feature collage can be done for

each patch without information loss. At each time step t, image xt is decomposed into patches
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Table 4.1. Quantitative comparison with previous patch-based image generation methods.
All models are trained on the natural images dataset (1024×512), standard benchmarks
LHQ(1024×1024) and FFHQ(1024×1024). We use FID to measure the overall quality of
generated images and sFID for the quality of high-level structures.

Nature-21K(1024×512) LHQ(1024×1024) FFHQ(1024×1024)

Method Patch Size FID sFID FID sFID FID sFID

COCO-GAN[LCC+19] 64×64 70.980 74.208 35.693 88.988 80.059 209.683
InfinityGAN[LCL+22] 101×101 46.550 70.041 50.646 92.577 174.789 270.699
Anyres-GAN[CGS+22] 64×64 44.173 34.430 130.591 100.041 67.076 170.911

Patch-DM (Ours) 64×64 20.369 34.405 23.777 37.217 19.696 36.512

Figure 4.3. Generated 2048×1024 image. We double the number of patches so that the model
can generate images with 2x resolution from 1024×512. The left image is a 2048×1024 image,
and the right image is a zoom-in of the red bounding box, with a resolution of 256×256.

which are fed into the subsequent encoder. Before a feature map goes through the decoder, a split

and collage operation is applied to it. Thus, the decoder outputs the predicted noise of the shifted

patch. According to Eq. 4.4, we are able to obtain xt−1 and thus generate the final complete

images.

4.5 Experiments

4.5.1 Implementation Details

Architecture. For the model architecture, we base our denoising U-Net model from

[DN21a] with changes of taking global conditions and positional embeddings. We use two

methods to obtain the global conditions. The first is to use a pretrained model to obtain the
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image features and use the image features as the global conditions, while optimizing the features

directly during training. In this case, we do not have to increase the model parameters and can

scale to high-resolution images. However, when the number of images in the training dataset is

too large, optimizing the pre-obtained image features requires more effort. We use this approach

for global conditioning when training on datasets of 1024×512 images. The pretrained model we

use for obtaining the image embeddings is CLIP[RKH+21b]. We resize the images to 224×224

and send them to ViT-B/16 to obtain the features as global conditions; we then optimize these

global conditions directly.

The second is jointly training an image encoder and using its output as the global

conditions. Here, the jointly training image encoder may borrow the same architecture as in

the denoising U-Net’s encoder. It works particularly well when the training dataset is large.

However, it requires another model, which would be a bottleneck in training on high-resolution

datasets, since the computation would increase significantly as the resolution increases. We use

this approach when training on large datasets of 256×256 images. We utilize global conditions

with a dimension of 512 in both methods.

Classifier-free guidance. We also use the classifier-free guidance [HS22] to improve

the training speed and quality. We use classifier-free guidance on both the global conditions

and position embeddings. The dropout rate is 0.1 for the global conditions and 0.5 for position

embeddings.

Patch size. We use a patch size of 64×64 in all our experiments. The denoising U-Net

model’s architecture is the same across all the datasets, as it is only related to the patch size

regardless of the training images’ resolution.

Inference. Once the denoising U-Net model has been trained, we train another latent

diffusion model for unconditional image synthesis. The latent diffusion model’s architecture

is based on the one described in [PCWS22a]. The data we use for training the latent diffusion

model is either from the output of the trained image encoder or the directly optimized image

embeddings. To synthesize an image, we will first sample a latent code from the latent diffusion

51



FFHQ LSUN-Bedroom LSUN-Church

Figure 4.4. Generated images on FFHQ, LSUN-Bedroom, and LSUN-Church datasets using
our proposed method. All the resolutions are 256×256.

model and then use this latent code to serve as the global conditions for sampling an image.

During the sampling stage, we use the inference process proposed by DDIM [SME20a] and set

the sampling step to 50.

Evaluation. We conduct both qualitative and quantitative evaluations on four datasets.

For quantitative evaluation, we use FID, a popular metric in generative modeling[HRU+17a]

and sFID[NMDB21] for the quality of high-level structures. To compute FID, we follow the

setting of [HRU+17a] and generate 50K images to compute the metrics over the full dataset. We

apply the same setting for sFID.

4.5.2 Results on 1k-Resolution Images

Setup. To show our model’s capability on direct high-resolution image synthesis, we

show our model’s performance on three datasets: LHQ(1024× 1024), FFHQ(1024×1024) and a

self-collected 21443 natural images from [Wal23](1024×512). We use a patch size of 64×64

across all datasets. Therefore, each image is split into 16×16 for 1024×1024-resolution and

16×8 for 1024×512-resolution.

We use the CLIP ViT-B/16 pretrained image visual encoder to obtain the image embed-

dings first. While downsampling to fit the CLIP model may result in the loss of some detailed

image information in the embeddings, these details can still be “recovered” during the embedding
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optimization in the training process, aided by the supervision of the original high-resolution

image. Each image patch can be trained and sampled independently with feature collage assisting

to be aware of the surrounding information. Since every image is segmented into smaller patches,

the total number of model parameters is much smaller than other large diffusion models.

As most existing diffusion models merely can directly generate images of 1k resolution,

and the general strategy for high-resolution synthesis is to sample hierarchically (generate

relatively low-resolution images first and then perform super-resolution), our Patch-DM simplifies

sample procedure using much more lightweight models, which is one of the main advantages.

Results. We compare our model with previous patch-based image generation methods

in Table 4.1. From the table, we can see our method delivers the best overall quality of the

generated images on both FID and sFID scores. Apart from the quantitative evaluation, we also

present an image generated by our model in Figure 4.3. For more generated images, please refer

to our supplementary material.

4.5.3 Results on 256×256 Images

Setup. To compare with other existing generative models, we also train our Patch-DM

on three standard public datasets: FFHQ, LSUN-Bedroom, and LSUN-Church, and evaluate

its sampling performance. All the resolution is 256×256. Thus, the number of patches is 4×4.

Notice that the model architecture keeps the same; the only change here is the number of patches

during training and inference. We use the same training setting across the three datasets.

Results. We report the quantitative results in Table 4.2 and qualitative results in Figure

4.4, respectively. In Table 4.2, we can see our model achieves competitive results while still

outperforms previous patch-based methods. Figure 4.4 illustrates that despite producing small

image patches, our denoising model exhibits minimal boundary artifacts and offers good visual

quality. This demonstrates the effectiveness of our feature collage mechanism.

Model size comparison. Compared with other widely used diffusion models, our

proposed method could achieve competitive performance using a smaller model with above
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Table 4.2. Evaluation Metrics of unconditional image synthesis on three 256×256 datasets:
FFHQ, LSUN-Bedroom, and LSUN-Church. For a fair comparison, results are reproduced
in the same sampling steps as ours i.e. 50, using provided pretrained checkpoints of other
diffusion models. We adopt a patch size of 64×64 for Patch-DM, Anyres-GAN, COCO-GAN
and 101×101 for InfinityGAN. We bold the numbers to denote the best numbers in the same
category (top: non-patch-based methods, bottom:patch-based methods).

FFHQ LSUN-Bedroom LSUN-Church

Method FID sFID FID sFID FID sFID

LDM [RBL+22] 8.76 7.09 3.40 7.53 4.23 11.44
UDM [KSS+22] 5.54 - 4.57 - - -
DiffAE [PCWS22a] 9.71 10.24 - - - -
PGGAN [KALL18] - - 8.34 9.21 6.42 10.48
StyleGAN [KALL18] - - 2.35 6.62 4.21 -

COCO-GAN[LCC+19] 34.02 37.44 41.84 62.69 17.91 73.94
InfinityGAN [LCL+22] 28.87 127.92 10.71 19.28 7.08 33.58
Anyres-GAN [CGS+22] 24.48 55.77 15.65 56.24 17.09 80.66
Patch-DM (Ours) 10.02 10.58 6.04 9.93 5.49 14.80

mentioned indispensable components. Patch-DM is fully built upon the network on 64×64

patches regardless of the target image resolution and uses optimized global conditions to avoid

the increase of model parameter amounts brought by higher input resolution. Comparison of

model parameters with other classic diffusion models on 256×256 resolution is shown in Table

4.3. Notice that we use the same diffusion model architecture for the 1024×1024 and the

1024×512 resolutions.

4.5.4 Applications

We now demonstrate several applications of our Patch-DM. All of them are conducted

without post-training.

Beyond patch generation.

Since our method samples images using patches, we have the option to incorporate

more patches during testing. This enables the model to produce images with higher resolutions

compared to the ones in the training set without requiring further training. We adopt two ways to

achieve this.
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Table 4.3. Number of parameters comparison between different diffusion models on 256×256
resolution. SE means semantic encoder to extract global information. The size of our previously
trained 1024×1024 and 1024×512 models is 70M+[size of optimized semantic embeddings]
during training and [63M latent DPM] in inference.

Method Model Size ↓

Base model + Super-resolution
SR3 [SHC+22] B[64]+625M

Direct generation
ADM [DN21a] 552M
DiffAE [PCWS22a] 232M
LDM [RBL+22] 274M

Patch-DM (Ours, full model) 154M
Patch-DM (Ours, w/ SE, w/o latent DPM) 91M
Patch-DM (Ours, w/o SE, w/o latent DPM) 70M

The first one is to add more patches internally. We test this on our Nature-21K dataset.

To generate 512×1024 images which has the same resolution as the training dataset, we need

8×16 patches (random gaussian noise maps) to start with. To generate a 2× resolution images,

we can add another 8×16 patches internally so that the total patch number will become 16×32

that can generate images with a resolution of 1024×2048. The global conditions we use for

these patches is the same as the original, while we interpolate the position embeddings in this

setting. We provide a generated 2048×1024 image in Figure 4.3. As can be seen, our model can

still generate consistent patches even though the newly added patches have never been used in

the training process.

The second one is to add patches outside the original image. This way is similar to

beyond-boundary generation in COCO-GAN[LCC+19] with a key difference that it needs a

post-training process to improve the continuity among patches. We conduct an experiment on

LSUN-Bedroom and LSUN-Church by adding more patches. The original resolution in the

training data we use is 256×256, which is divided by 4×4 patches. We add more patches to

the existing 4×4 patches so that the number grows to 6×6. Therefore, the model can generate

an image with a resolution of 384×384. For the original 4×4 patches, we use the condition
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COCO-GAN InfinityGAN Patch-DM(Ours)

Figure 4.5. Synthesized 384×384 images on LSUN-Bedroom (256×256) and LSUN-Church
(256×256).The left half of each group is LSUN-Bedroom and the right half of each group
is LSUN-Church. Despite only being trained on 256×256 images, our model can generate
384×384 images by adding more patches (outside the red bounding box). Extended images
generated by our models are compared with COCO-GAN and InfinityGAN, which also have the
ability to extend fields without further training.

generated from the latent diffusion model and the position embeddings as pre-defined. For the

additional patches, we use the same semantic condition, while we don’t use position embeddings

for these added ones as in this case we’re adding patches outside which the position embeddings

could not be interpolated. Thus the model needs to synthesize the additional patches only

according to the global conditions and the neighboring context information. We present our

results in Figure 4.5 and compare it with COCO-GAN[LCC+19] without post-training and

InfinityGAN[LCL+22] under the same setting.

Image outpainting. Another practical application would be image outpainting that only

draws the outer part of the image while keeping the input image the same. To do this, we

experiment using the model trained on LSUN-Church and LSUN-Bedroom. First, we send

images from the LSUN-Church validation dataset and LSUN-Bedroom validation dataset to the

image encoder to obtain the global conditions. Then, to keep the original image the same, we

replace the inner predicted noised image patches with the ground truth noised images patches

(adding corresponding noise to the input images) during each timestep while sampling. We

present our results in Figure 4.6. It can be seen from the results that our model can “imagine”

the surrounding areas reasonably and generate rather consistent outer parts of the image without

obvious border effects.

Image inpainting. In this task, we infill the corrupted images with random masks, which

requires the restored results to be consistent in context. We experiment on the LSUN-Church
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Figure 4.6. Image outpainting on LSUN-Church and LSUN-Bedroom. The image inside the
red bounding box is the input image from the validation dataset. We pad the image patches from
4×4 to 6×6 to enable the image outpainting. The image parts outside the red bounding box are
the outpainting results.

Figure 4.7. Image Inpainting on LSUN-Church. Six pairs of images are presented here. For
each pair, the left side is the masked image; the right one is the inpainted result by our model
without further training on this task. The number of masked patches increasing from left to right.

validation set using already trained models without further tailored training. The original images

are masked by different numbers of blocks ranging from 1 to 6, and the sampling process is only

conditioned on local position embeddings w/o global conditions. The results are presented in

Figure 4.7. From the figure, we can see that our model can infill the blocks consistently using

surrounding patches, demonstrating that feature collage facilitates the model with the capability

to be aware of adjacent information, enabling it to be naturally applied to inpainting tasks.

4.6 Ablation Study

Three indispensable components: semantic code, position embeddings and shift window

strategy on feature levels, considerably eliminate border artifacts and improve our model perfor-

mance. Here, we conduct ablation study to investigate the effects of these modules. We provide

both qualitative results and quantitative results in Figure 4.8 and Table 4.4 respectively.

Global conditions.

We study the problem without global conditions; thus, the generation process will fully

rely on the positional embedding and neighboring context information. We present our images
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in Figure 4.8 (a). It’s interesting to see how the model generates when no global conditions are

given, which is a strong constraint for the model to generate semantic-related patches. From the

given image, we can see that the model can still generate locally-consistent images; the image

quality is however relatively low.

Position embeddings.

The last section shows that global conditions are necessary for our model to generate

high-quality images. We then condition the model only on those to investigate the role of

positional embeddings. The results are shown in Figure 4.8 (b). Without the position information,

the model would generate distorted images with patchTheelonging to where they should be,

although the whole image may follow a certain style. Hence, the positional embeddings are vital

to our model.

Collage in the pixel space.

A straightforward idea is to perform collage in the pixel space as present in Figure 4.1(b);

the images are decomposed by window-shifted patches from their original positions. To maintain

patch size consistency, we add zero padding around the image. For the sampling procedure: In

an odd-number step, original patches are generated independently, while in an even-number step,

patches with shifted positions are sampled.

Under this scheme, we experiment in two different settings. The first is to take a fixed

shift step (half patch size) along the height and width direction. The sample result is shown in

Figure 4.8(c). There are still apparent artifacts along the border. This proves that even though

the shift window on the image level could enable patches to be aware of surroundings during

sampling, the awareness level is quite limited, and the final generation is similar to breaking the

image into smaller patches.

The second setting is to shift the patch position with a randomly sampled step ranging

from zero to patch size. The inference result is shown in Figure 4.8(d). The sample quality is

much improved compared to the previous situation. However, the result is still not as photo-
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Table 4.4. FID evaluation on 1,000 images of different ablation settings to investigate the
importance of semantic condition, position embedding, and feature-level window shift.

Method FID (1k) ↓

No global semantic condition 79.33
No position embedding 48.82
Pixel space fixed shift 49.80
Pixel space random shift 52.11

Patch-DM (Ours) 37.99

(a) No global conditions (b) No position embeddings (c) Pixel space fixed shift (d) Pixel space random shift (e) Ours

Figure 4.8. Ablation study on global conditions (a), position embeddings (b), and feature level
shift (c, d).

realistic as Patch-DM. The reason is that although the random shift enables finer surrounding

awareness, it lacks in-depth feature interaction as our model does. Therefore, the feature-level

window shift and collage can significantly eliminate border artifacts and improve final inference

quality.

4.7 Conclusion

We have presented a new algorithm, Patch-DM, a patch-based denoising diffusion model

for generating high-resolution images. We introduce a feature collage strategy to combat the

boundary effect for patch-based image synthesis. Patch-DM achieves a significant reduction in

model size and training complexity compared to the standard diffusion models trained on the

original size images. Competitive quantitative and qualitative results are obtained for Patch-DM

when trained on several image datasets.
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Chapter 5

Restoration by Generation with Con-
strained Priors

5.1 Introduction

Image restoration involves recovering a high-quality natural image x from its degraded

observation y = H(x) is a fundamental task in low-level vision. The challenge lies in finding a

solution that 1) matches the observation through a set of degradation steps; and 2) aligns with

the distribution of x. In scenarios where the degradation process H is unknown, the problem

becomes a blind image restoration problem.

Discriminative learning approaches [GWX+22, ZCLL22, WLZS21, YRXZ21] aim to

solve this inverse problem directly by training an inverse model F(y), typically a neural network,

using datasets of low- and high-quality image pairs (x,y). However, the trained model is limited

to restoring images with degradations H present in the training set. This limitation places the

burden of generalization on the construction of the training set. The effectiveness of these

methods also heavily depends on the capacity of the inversion model and the characteristics

of the loss function. Model-based optimization methods [ROF92, ZLZ+21, REM17, KEES22,

CKM+22], on the other hand, assume that the degradation model is only known at inference time.

They focus on learning the image prior p(x), which can be represented as regularization terms

[ROF92], denoising networks [ZZGZ17, REM17], or more recently pre-trained diffusion models

[KEES22, CKM+22]. However, these methods generally assume that the degradation process
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is known at inference time, limiting their practicality and often relegating them to synthetic

evaluations.

In this paper, we adopt a markedly different approach to the image restoration problem.

We observe that humans are able to recognize a degraded image (i.e., a ‘bad photo’) and envision

a fix without knowing the imperfections in the image formation process. Such insights rely on our

inherent understanding of what constitutes a high-quality image. Building on this observation,

we propose to approach image restoration using the recent success of large generative models,

which possess the capacity of forming high-quality imagery. Unlike prior works, we do not make

any assumption on the degradation process. Our method solely relies on a well-trained denoising

diffusion model.

The challenges then arise in how to project the input image into the generative process

given the models are trained on mostly clean images. And once projected, how to constrain

the generation to preserve the useful features in the input, e.g., the identity. We address the

input projection by adding Gaussian noise to the low-quality image to be restored, matching

the distribution of clean images added with noise. Once projected, we can then denoise the

image as is normally done in the generation process of a diffusion model. To handle the second

challenge of preserving useful signals in the input, we propose to constrain the generative space

by finetuning the model with anchor images that share characteristic features with the low-quality

input. When the anchor is given, such as from an album of other photos of the same identity, we

can simply finetune the model with the provided images. When the anchor is missing, as in most

single-image restoration scenarios, we propose to use a generative album as the anchor. The

generative album is a set of clean images generated from the diffusion model with the low-quality

input image imposing soft guidance, and thus closely resembles the input image.

Surprisingly, we find that our straightforward approach yields high-quality results on

blind image restoration. Unlike previous methods, our approach does not rely on paired training

data or assumptions about the degradation process. It thus generalizes well to real-world

images with unknown degradation types, such as noise, motion blur, and low resolution. By
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Figure 5.1. Left: Image projection. When sufficient Gaussian noise is added to the low- and
high-quality image, we can bring them to the same distribution. The low-quality image can thus
be denoised with a pre-trained diffusion model. Right: With and without space constraining.
A regular diffusion step lands yt in an arbitrary position in the generative space; with space
constraining, the path of generation becomes more constrained towards the space defined by the
anchor images.
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effectively harnessing the generative capacity of a pre-trained diffusion model, our generation-

based restoration approach produces high-quality and realistic images that are faithful to the

input identity.

5.2 Related Works

Supervised Learning for Image Restoration.

The trend of leveraging advanced neural network architectures for image restoration

has spanned from CNNs [ZZC+17, CJH+21, ZZZ18, TXL+20, ZLL+19] to GANs [LTH+17,

KBM+18, KMWW19], and more recently, to transformers [ZAK+22, LCS+21, WCB+22]

and diffusion models [SHC+22, WDT+22, SCC+22]. One aspect remains unchanged: these

methods are trained on datasets comprising pairs of high-quality and low-quality images. Typ-

ically, these image pairs are synthetically generated, depicting a single type of degradation,

leading to task-specific models for denoising [ZZC+17, ZZZ18, XC20, TXL+20, GYZ+19], de-

blurring [KBM+18, KMWW19, WDT+22, CJH+21], or super-resolution [LTH+17, WXDS21,

SHC+22]. However, they fall short when applied to real-world low-quality images, which often

suffer from diverse, unknown degradations.

In specific domains, particularly with facial images, numerous works have focused

on training blind restoration models that simulate various degradation types during training.

For instance, GFPGAN [WLZS21] and GPEN [YRXZ21] enhance pretrained GAN networks

with modules to leverage generative priors for blind face restoration. Recent approaches like

CodeFormer [ZCLL22], VQFR [GWX+22] and RestoreFormer[ZAK+22] exploit the low-

dimensional space of facial images to achieve impressive results. Emerging works have also

started building upon the success of diffusion models [HJA20c, SME20b, DN21b]. For example,

IDM [ZHS+23] trains a conditional diffusion model for face image restoration by injecting

low-quality images at different layers of the model. Conversely, DR2 [WZZ+23] combines the

generative capabilities of pre-trained diffusion models with existing face restoration networks.

Another line of works [LLY+18, LLR+20] seeks to enhance the results by incorporating addi-
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tional information present in a guide image or photo album, which is often available in practice.

Nevertheless, these methods rely on a synthetic data pipeline for training, which limits their

generalizability. Diverging from these methodologies, our approach does not use paired data,

synthetic or real, allowing it to generalize naturally to real data without succumbing to artifacts.

Model-based Image Restoration.

Unlike supervised learning methods, model-based methods often form a posterior of the

underlying clean image given the degraded image, with a likelihood term from the degradation

process and an image prior. [ZLZ+21, REM17] proposed using denoising networks as the image

prior. These priors are integrated with the known degradation process during inference, and the

Maximum A Posteriori (MAP) problem is addressed through approximate iterative optimization

methods. DGP [PZD+21] proposes image restoration through GAN inversion, searching for

a latent code that generates an image closely matching the input image after processing it

through the known degradation. The recent success of pre-trained foundational diffusion models

has inspired works [KS21, KVE21a, CKJ+21, KVE21b] to utilize diffusion models as such

priors. Kawar et al. [KEES22] and Wang et al. [WYZ22] proposed an unsupervised posterior

sampling method using a pre-trained denoising diffusion model to solve linear inverse problems.

Chung et al. [CKM+22] extends diffusion solvers to general noise inverse problems. Despite

these advancements, these methods generally assume that the degradation process is known at

inference, limiting their practicality to synthetic evaluations. In contrast, our method does not

assume any knowledge of the degradation model at training or inference.

Personalized Diffusion Models.

Personalization methods aim to adapt pre-trained diffusion models to specific subjects or

concepts by leveraging data unique to the target case. In text-to-image synthesis, many works

opt for customization by fine-tuning with personalized data, adapting token embeddings of

visual concepts [GAA+22, GAA+23], the entire denoising network [RLJ+23], or a subset of the

network [KZZ+23]. Recent studies [JZC+23, SXLJ23, XYF+23] propose bypassing per-object
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Figure 5.2. An illustration of our finetuning and inference stage. The core of our method
is to constrain the generative space by fine-tuning a pre-trained diffusion model with either
a generative album or a personal album. The generative album is generated from the input
low-quality image with skip guidance to loosely follow the characteristics of the input. Once
the generative space is constrained, at inference time, we can simply add noise to the input
low-quality image and pass it through the diffusion model to do restoration.

optimization by training an encoder to extract embeddings of subject identity and injecting them

into the diffusion model’s sampling process. In other domains, DiffusionRig [DZX+23] learns

personalized facial editing by fine-tuning a 3D-aware diffusion model on a personal album. In

this work, we demonstrate that a personalized diffusion model represents a constrained generative

space, directly usable for sampling high-quality images to restore images of a specific subject,

without additional complexities. For single-image restoration, unlike previous instance-based

personalization methods [JZC+23, SXLJ23, XYF+23], we generate an album of images close

to the input and then constrain the diffusion model using this generative album. This approach

enables restoration by directly sampling from the fine-tuned model, eliminating the need for

guidance.
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5.3 Method

5.3.1 Preliminaries

A diffusion model approximates its training image distribution pθ (x0) by learning a

model θ that effectively reverses the process of adding noise. The commonly used Denoising

Diffusion Probabilistic Models (DDPM) gradually introduce Gaussian noise into a clean image

x0:

xt =
√

αtx0 +
√

1−αtε, where ε ∼ N (0,I) (5.1)

The reverse generative process aims to progressively denoise xt until it is free from noise. Once

a diffusion model is trained, for any given time t and the corresponding noisy image xt , it can

iteratively denoise by sampling from p(x0|xt) using the trained model.

The objective of image restoration, on the other hand, is to recover the latent high-quality

image x0 from a low-quality, partially observed image y0. Contrary to previous methods that

decompose the posterior distribution into the likelihood p(y0|x0) and the prior p(x0) to solve a

MAP problem, we propose to recover the complete observation by directly sampling from the

posterior:

x̂ ∼ p(x0|y0) (5.2)

5.3.2 Restoration by Generation

We aim to maximally leverage the generative capacity of the diffusion model by using its

iterative sampling process for restoration. A critical observation underlies this approach: when

sufficient Gaussian noise is added to the degraded observation y0, the resultant image yt :

yt =
√

αty0 +
√

1−αtε, where ε ∼ N (0,I) (5.3)
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becomes indistinguishable from the underlying clean image x0 with the same noise. That is,

there exists a large enough K such that

yK ≈ xK (5.4)

This phenomenon becomes apparent from Eq 5.1 and 5.3 as α decreases and when the same

noise ε is sampled. It is also demonstrated in Fig 5.1, where adding noise to high-quality and

low-quality images can progressively align their distributions, making them more similar over

time, this suggests:

p(x0|yK)≈ p(x0|xK) (5.5)

Based on this observation, we can sample a clean image x0 from p(x0|yK) using the same

sampling process as from p(x0|xK); in other words, we can denoise yK iteratively directly with

the pre-trained diffusion model. Since the sampling process remains unchanged, the resultant

image should match the quality of the images generated from the original diffusion model.

We find it critical to select the optimal time K, which determines the amount of noise

added to the low-quality input image to start the sampling process. If too little noise is added,

the discrepancy between xK and yK becomes large, yielding low-quality samples as yK does not

align with the training distribution p(xK) of the diffusion model. On the other hand, with too

excessive noise added, the original contents in the input yK are hardly discernible. The generated

sample, though with high quality, will not be faithful to the input. We aim to produce high-quality

samples, while mitigating the information loss, and achieve so by constraining the generative

space of the pre-trained diffusion model.

5.3.3 Generative Space Constraining

The loss of information is inherent in the diffusion process. Due to the stochasticity of

the forward Markov chain, the clean image generated using the reverse process from xt may not
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Table 5.1. Quantitative comparison on real-world single-image blind face restoration on
four datasets.

Wider-Test WebPhoto-Test LFW-Test Deblur-Test
FID ↓ MUSIQ ↑ FID ↓ MUSIQ ↑ FID ↓ MUSIQ ↑ FID ↓ MUSIQ ↑

Input 183.03 15.68 161.82 20.26 131.68 27.51 169.43 27.53
GFPGAN[WLZS21] 59.38 56.48 114.15 55.13 64.10 60.46 178.40 58.03
CodeFormer[ZCLL22] 48.57 55.70 98.55 55.20 66.31 58.72 163.47 57.09
VQFR[GWX+22] 52.64 54.23 105.94 52.44 63.73 57.52 168.36 54.45
DR2(+VQFR)[WZZ+23] 69.40 53.62 143.96 51.92 67.70 57.42 173.33 55.34
Ours 46.38 58.73 96.44 57.71 56.32 60.68 135.33 60.20

match the original x0. The larger t is, the larger the generative space p(x0|xt) spans. The learned

score functions guide xt to the clean image space without constraining its content. This property

is desirable for a generative model where the diversity of generation is valued. However, this is

not ideal for image restoration where the input contents also need to be preserved. The goal is

thus to constrain the generative space to a small subspace that tightly surrounds the underlying

clean image.

We propose to use a set of anchor images to fine-tune the diffusion model, thus imposing

the generative space. These anchor images can be given in the form of a personal album, or be

generated as a generative album in the common scenario of single image restoration.

Personal Album as Additional Information.

In many real-world scenarios, additional information about the underlying clean image

beyond a single degraded observation is available, such as an album of different clean images of

the same subject. We personalize the pre-trained diffusion model in this case — fine-tuning it

with the personal album. This approach naturally addresses the ill-posed nature of single-image

restoration, producing results containing authentic high-frequency details absent in the degraded

observation. This is demonstrated in identity preservation in face restoration tasks (Sec 5.4.2).

Generative Album from a Single Degraded Observation.

For single-image restoration, due to its ill-posed nature, we can only constrain the

generative space to a subspace of high-quality realistic images close to the degraded observation.
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To generate this album of high-quality images, we follow approaches similar to previous works

on guided image generation [CKM+22, SZY+23, BCS+23]. Specifically, given a degraded

image y0, we first add noise εK to obtain yK , then denoise it progressively with the pre-trained

diffusion model. For the denoised image xt , we apply a simple L1 guidance that computes the

distance between the input degraded image and the generated image:

x′t = xt −λ∇xt ||y0 − x̂0,t ||22 (5.6)

Unlike previous methods where the guidance needs to be strongly followed, our guidance,

the low-quality input, is an approximation. Instead of applying the guidance at every step

[SZY+23, CKM+22], we propose to apply this approximated guidance periodically at every

n steps. The proposed Skip Guidance enforces the generated image to loosely follow the

information in the degraded input while retaining the quality of images in the generative steps.

We repeat this process multiple times to generate a set of images that form a generative album,

which is used to fine-tune the diffusion model.

Once the diffusion model is fine-tuned with a personal or generative album, we restore

a degraded image y0 by adding noise εK . Then, we iteratively denoise yK using the fine-tuned

model for K steps, without further guidance. Notably, our approach does not rely on paired data

for training and makes no assumptions about the degradation process at training or inference.

5.4 Experiments

With the core observation that generation can be directly applied for restoration, our

method requires only a pre-trained unconditional diffusion model and is applicable to any image

domain for which the diffusion model has been trained. We first show results of our restoration-

by-generation approach on the standard task of single-image blind face restoration in Sec 5.4.1.

In Sec 5.4.2, we extend our approach to personalized face restoration. Here, the objective is to

restore a degraded image of a subject using other clean images of the same identity. Sec 5.4.3
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Input GFPGAN VQFR CodeFormer DR2(+VQFR) Ours

Figure 5.3. Qualitative comparison with baselines on Wider-Test. With strong generative
capacity of the diffusion model, our method performs well on severely degraded images. We
are able to produce high-quality and realistic images while prior works suffer from unrealistic
artifacts.
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presents the adaptation of our method to different image categories, such as dogs and cats, by

simply swapping the pre-trained diffusion model. Notably, as our method does not presume any

specific form of degradation, all our evaluations are conducted on real images with unknown

degradation.

5.4.1 Blind Face Restoration with Generative Album

For the task of single-image blind face restoration, we utilize an unconditional diffusion

model pretrained on the FFHQ dataset [KLA19b]. We first assess our approach on three widely-

used real-world face benchmarks with degradation levels ranging from heavy to mild: Wider-Test

(970 images) [ZCLL22], LFW-Test (1771 images) [WLZS21], and Webphoto-Test (407 images)

[WLZS21]. These datasets are collections of in-the-wild images aligned using the method

employed in FFHQ [KLA19b].

Our approach uses a generative album as the anchor for restoring these in-the-wild

images. For each input low-quality image, we generate 16 images with skip guidance to form

the album. We then fine-tune the diffusion model using this album to constrain the generative

space. The process involves adding noise to the input low-quality image and denoising it for K

steps with the fine-tuned model, where K = 200. The model is fine-tuned for 3,000 iterations

with a batch size of 4 and a learning rate of 1e-5.

We benchmark our method against state-of-the-art supervised alternatives for blind

face restoration, including the GAN-based GFPGAN [WLZS21], two codebook-based ap-

proaches (Codeformer [ZCLL22] and VQFR [GWX+22]), and a diffusion-based approach DR2

[WZZ+23]. Except for DR2, which combines a diffusion model with the pretrained supervised

face restoration model VQFR [GWX+22], all methods utilize supervised training with synthetic

low-quality images from FFHQ.

Quantitative and qualitative results are provided. For the former, we use FID [HRU+17b]

and MUSIQ(Koniq) [KWW+21] as metrics following CodeFormer [ZCLL22]. The quantitative

scores are in Table 5.1. Previous methods, except for DR2 [WZZ+23], are trained on FFHQ-
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Input VQFR CodeFormer Ours

Figure 5.4. Comparison with previous methods on Deblur-Test. Previous methods do not
include motion blur as part of the degradation simulation for training, and thus fail to restore
the images. In contrast, our method does not make assumptions on the degradation types and
generalizes more robustly.

512×512 for restoration. For a fair comparison, we downsize the outputs of these methods

to 256×256 for metric calculation. Our results surpass all previous methods in terms of FID

and MUSIQ across all datasets, despite not undergoing a supervised training approach for

image restoration. Qualitative comparisons in Figure 5.3 illustrate that our method produces

high-quality restoration results akin to those from an unconditional diffusion model, even with

severely degraded input images.

Our method’s agnosticism to the degradation process leads to superior generalization

capabilities. To further demonstrate this, we constructed a motion blur dataset (Deblur-Test) by

selecting 67 images from [LSC+22] featuring moderate to severe real motion blur. The synthetic

data pipeline in other supervised approaches does not model motion blur, resulting in poor

performance on this out-of-distribution dataset. In contrast, our method consistently restores

clean images from complex non-uniform motion blur, as seen in Figure 5.4, outperforming

previous methods significantly, as shown in Table 5.1.
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Input CodeFormer DR2(+VQFR) ASFFNet Ours

Figure 5.5. Qualitative Comparison on personalized face restoration. From top to bottom:
Subject A, Obama and Hermione. With a personal album as anchor, we are able to restore images
with faithful preservation of the input identity. Previous single-image methods alter the identity
with lost details; previous reference-based methods fail to produce high-quality images and are
prone to artifacts.
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5.4.2 Personalized Face Restoration

We now evaluate our method on personalized restoration. Given a set of clean images

of a subject, the goal is to restore any degraded image of the same subject using personalized

features to preserve identity and recover high-frequency details that may have been lost in the

degraded image. Our method naturally incorporates the personal album as the anchor. We use

a personal album that contains around 20 images with diversity in pose, hairstyle, accessories,

lighting, etc. We fine-tune on the personal album for 5,000 iterations. The model can then be

used to restore any low-quality images of the same subject through direct sampling.

We compare our method against three single-image-based works: Codeformer [ZCLL22],

VQFR [GWX+22], DR2 [WZZ+23], as well as an exemplar-based approach ASFFNet

[LLR+20] which also incorporates a personal album for additional information. We evaluate our

approach on three subjects: an elderly woman (Subject A), Obama and Hermione. We present

the qualitative comparison in Figure 5.5. Single-image-based methods struggle to preserve

identity – for example, wrinkles and other facial structures are often missing in the results of

CodeFormer or DR2 for the elderly subject, altering their age and identity. By using a photo

album as reference, ASFFNet preserves identity better, but fails to produce high-quality results.

Our method, on the other hand, directly samples from the personalized generative space to do

restoration, and thus produces faithful and high-quality results.

We also provide quantitative evaluation in Table 5.2 where we focus on the identity

preservation. We use the identity score which uses the cosine similarity of the features given

by a face recognition network ArcFace[DGXZ19]. For each subjects, we collect around 20 test

images and compute their average identity scores. Table 5.2 shows that our method preserves the

identity of the subject much better than both single-image-based methods and the exemplar-based

approach ASFFNet.
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Table 5.2. IDS comparison on three subjects. We use the cosine similarity of the features
given by ArcFace[DGXZ19] to compute identity score.

Subject A Obama Hermione
Input 0.721 0.502 0.483
CodeFormer[ZCLL22] 0.633 0.558 0.518
VQFR[GWX+22] 0.560 0.527 0.483
DR2(+VQFR)[WZZ+23] 0.384 0.400 0.392
ASFFNet[LLR+20] 0.694 0.574 0.522
Ours 0.731 0.716 0.664

5.4.3 Beyond Face Restoration

Our model does not make any assumptions about the type of degradation or image

contents, allowing it to be easily extended to other categories of data where a generative model

is available. Specifically, we evaluate our approach’s ability to generalize to restoring dog and

cat images. We pre-train two diffusion models with the same architecture, one for dogs and one

for cats, on the AFHQ Dog and Cat datasets [CUYH20]. Our testing involves three subjects: a

gray cat, an English golden retriever, and an Australian shepherd. For each subject, we fine-tune

the pre-trained diffusion model using an album of around 20 images. Once fine-tuned, given a

low-quality image, we add noise to it and then denoise it using the fine-tuned model. Qualitative

results in Figure 5.6 demonstrate that our method can effectively reconstruct high-frequency

details such as fur, while preserving the identity.

5.5 Ablation Studies

Noise Step K. Our restoration-by-generation approach is predicated on the observation

that sufficient noise added to a degraded image y0 and subsequent denoising of the noisy image

yK with a pre-trained diffusion model yields a high-quality, realistic image. Here, we demonstrate

this observation and analyze the effect of the choice of K, which determines the noise level

added to initiate the sampling process. Figure 5.7 displays sampled images from yK for varying

K values. A smaller K leads to a yK that falls outside the typical diffusion process’s training
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Figure 5.6. Results on real-world cat/dog restoration. Our method easily extends to other
categories with corresponding pre-trained diffusion models. We show results on cats and dogs
where we can reconstruct high-frequency details while preserving the identity.
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trajectory, resulting in lower-quality sampled output. Conversely, while a larger K enhances

sample quality as hypothesized, it may also produce outputs less faithful to the input.

Constraining Prior with Generative Album. In the same Figure 5.7, we illustrate the

significance of prior constraining and the effectiveness of using a generative album. As shown,

a generative space that is too diverse increases the difficulty of sampling high-quality images

from a given input, especially when K is small. Conversely, for large K values, the sampled

image can deviate significantly from the input. Constraining the generative space with an album

close to the input ensures preservation of input information in the output for large K, while still

allowing high-quality sampling from small K. Ablation on Skip Guidance is included in the

supplementary.

Constraining Prior with Personal Album. When a personal album is available, we

directly constrain the generative space with this album. This not only improves output quality

and faithfulness, as with the generative album, but also aids in recovering information absent

in the input. As demonstrated in Figure 5.8, compared to an unconstrained model (i.e., the

pre-trained diffusion model), the personalized model produces higher-quality images that better

preserve identity.

5.6 Conclusion

We propose a method for image restoration that involves simply adding noise to a

degraded input and then denoising it with a diffusion model. The key to our approach is

constraining the generative space with a set of anchor images. We demonstrate in single-image

restoration tasks that this method yields high-quality restoration results, surpassing previous

supervised approaches. Furthermore, we show that constraining the generative space with a

personal album leads to a personalized restoration-by-generation model that is effective for any

image of the same subject, producing results with high quality and faithful details.

Limitations and Future Work. Unlike the personalization case, for single-image
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Figure 5.7. Ablation on Noise Step K and Constraining with Generative Album. As K
increases, quality of images sampled from yK improves, but alignment with the input reduces.
Fine-tuning with a generative album notably enhances both image quality and input fidelity.

Input w/o constraining w/ generative w/ album
constraining constraining

Figure 5.8. Constraining with personal album. Personalized model produces higher-quality
images that better preserve identity compared to the model without constraining.
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restoration, our approach requires fine-tuning for each input image. This is relatively slow

compared to feed-forward approaches. Investigating methods to constrain the generative space

without fine-tuning could be interesting. Furthermore, we have primarily validated our approach

on class-specific image restoration tasks, largely due to the absence of a high-quality pre-trained

diffusion model for natural images. Exploring whether our approach remains effective within a

more diverse generative space would be intriguing. Such exploration could potentially address

the challenge of blind restoration for general images.

5.7 Acknowledgments

We thank Marc Levoy for providing valuable feedback, and everyone whose photos

appear in the paper, including our furry friends, Chuchu, Nobi and Panghu.

This chapter, in full, is a reprint of the material as it appears in “Restoration by Generation

with Constrained Priors”. Ding, Zheng; Zhang, Cecilia; Tu, Zhuowen; Xia, Zhihao, IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2024. The dissertation author

was the primary investigator and author of this paper.

80



Chapter 6

Conclusion

This dissertation has presented a series of novel approaches that effectively address

both controllability and efficiency challenges in visual generation as well as understanding.

We began with the development of MaskCLIP, which harnesses the power of pretrained CLIP

models for open-vocabulary universal image segmentation. By rethinking the fusion of semantic

segmentation tasks with dense vision-language features, MaskCLIP establishes a flexible baseline

for segmentation while significantly reducing the need for resource-intensive training procedures.

This work not only advances open-world segmentation but also lays a foundation for further

exploration into the integration of vision-language paradigms with segmentation tasks.

Building on the importance of controllability, we introduced DiffusionRig for person-

alized facial appearance editing. By leveraging a two-stage training methodology—initially

capturing generic facial priors and subsequently refining these with a limited set of person-specific

images—DiffusionRig achieves photorealistic face editing that robustly preserves identity and

critical high-frequency details. This approach elegantly addresses the inherent trade-off between

generalization and specificity, suggesting promising avenues for future personalized editing

applications in both entertainment and professional settings.

Further emphasizing efficiency in generative modeling, Patch-DM was proposed as a

novel patch-based denoising diffusion model that generates high-resolution imagery without

succumbing to the common pitfalls of boundary artifacts. The introduction of a feature collage
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strategy that enables smooth transitions between patches demonstrates that significant reductions

in computational complexity are possible without compromising image quality. This result

contributes an important perspective on designing lightweight architectures capable of support-

ing high-resolution generation, a critical requirement for real-time and resource-constrained

applications.

Lastly, we tackled the challenge of personalized image restoration, formulating a method

that repurposes pretrained diffusion models to restore degraded images while preserving essential

characteristics. By strategically adding noise and constraining the generation process with anchor

images or a “generative album,” our approach effectively adapts to the nuances of the degradation

process. This demonstrates the versatility of diffusion models beyond standard generative tasks

and opens up opportunities for their application in robust image restoration.

In summary, the methods presented in this dissertation not only push the boundaries

of what is achievable in controllable image generation and segmentation but also provide

efficient computational strategies that are essential for practical deployment. Through MaskCLIP,

DiffusionRig, Patch-DM, and Gen2Res framework, this dissertation has set forth a comprehensive

research agenda that addresses critical challenges in visual generation. We believe that these

contributions will inspire continued innovation in creating more accessible, controllable, and

efficient computer vision systems, ultimately bridging the gap between algorithmic creativity

and practical, human-centric applications.
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