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Growth phase estimation for abundant
bacterial populations sampled longitudinally
from human stool metagenomes

Joe J. Lim 1, Christian Diener 2, James Wilson 2, Jacob J. Valenzuela2,
Nitin S. Baliga2,3,4,5,6 & Sean M. Gibbons 2,6,7,8,9

Longitudinal sampling of the stool has yielded important insights into the
ecological dynamics of the human gut microbiome. However, human stool
samples are available approximately once per day, while commensal popula-
tion doubling times are likely on the order of minutes-to-hours. Despite this
mismatch in timescales, much of the prior work on human gut microbiome
time series modeling has assumed that day-to-day fluctuations in taxon
abundances are related to population growth or death rates, which is likely not
the case. Here, we propose an alternative model of the human gut as a sta-
tionary system, where population dynamics occur internally and the bacterial
population sizes measured in a bolus of stool represent a steady-state end-
point of these dynamics. We formalize this idea as stochastic logistic growth.
We showhow thismodel provides a path toward estimating the growth phases
of gut bacterial populations in situ.We validate ourmodel predictions using an
in vitro Escherichia coli growth experiment. Finally, we show how this method
canbe applied todensely-sampledhuman stoolmetagenomic time series data.
We discuss how these growth phase estimates may be used to better inform
metabolic modeling in flow-through ecosystems, like animal guts or industrial
bioreactors.

The human gut is an anaerobic bioreactor, ecologically distinct to each
individual, that transforms dietary and host substrates into bioactive
molecules important to host health1–3. Disruptions to the ecological
composition of the gut have been shown tomediate the progression of
various diseases4–8. Furthermore, the ecological dynamics of the gut
appear to be relevant to both health and disease states9,10. However,
the biological interpretation of densely-sampled adult human fecal
microbiome time series is fraught.

Various dynamical models have been applied to gut microbial
abundance data collected from adult human donors11–15. Thesemodels

often assume, either explicitly or implicitly, that day-to-day changes in
abundance are proportional to population growth and/or death16.
However, the underlying data often do not match this
assumption11,16–20. The gut is a flow-through ecosystem and commensal
gut bacteria must grow fast enough to avoid dilution-to-extinction. As
such, gut bacterial doubling times tend to be fast, likely ranging from
minutes-to-hours, although precise in vivo estimates are not available
(we contend that doubling times of a day ormore in the gut would not
be sufficient to maintain a stable population size with a daily defeca-
tion rate)21–23. However, stool sampling frequency is usually limited to,

Received: 27 April 2022

Accepted: 4 September 2023

Check for updates

1Department of Environmental &Occupational Health Sciences, University ofWashington, Seattle,WA98105,USA. 2Institute for Systems Biology, Seattle,WA
98109, USA. 3Departments of Biology and Microbiology, University of Washington, Seattle, WA 98105, USA. 4Lawrence Berkeley National Laboratory, CA
94720 Berkeley, USA. 5Molecular and Cellular Biology Program, University of Washington, WA 98105 Seattle, USA. 6Molecular Engineering Graduate
Program, University ofWashington,WA 98105 Seattle, USA. 7Department of Bioengineering, University ofWashington, Seattle, WA 98105, USA. 8Department
of Genome Sciences, University of Washington, Seattle, WA 98105, USA. 9eScience Institute, University of Washington, Seattle, WA 98105, USA.

e-mail: sgibbons@isbscience.org

Nature Communications |         (2023) 14:5682 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6726-2684
http://orcid.org/0000-0002-6726-2684
http://orcid.org/0000-0002-6726-2684
http://orcid.org/0000-0002-6726-2684
http://orcid.org/0000-0002-6726-2684
http://orcid.org/0000-0002-7476-0868
http://orcid.org/0000-0002-7476-0868
http://orcid.org/0000-0002-7476-0868
http://orcid.org/0000-0002-7476-0868
http://orcid.org/0000-0002-7476-0868
http://orcid.org/0000-0001-8503-2041
http://orcid.org/0000-0001-8503-2041
http://orcid.org/0000-0001-8503-2041
http://orcid.org/0000-0001-8503-2041
http://orcid.org/0000-0001-8503-2041
http://orcid.org/0000-0002-8724-7916
http://orcid.org/0000-0002-8724-7916
http://orcid.org/0000-0002-8724-7916
http://orcid.org/0000-0002-8724-7916
http://orcid.org/0000-0002-8724-7916
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41424-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41424-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41424-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41424-1&domain=pdf
mailto:sgibbons@isbscience.org


at most, about once per day. Consequently, rapid internal population
dynamics likely cannot be directly estimated from the day-to-day
measurements obtained from stool16.

Given these sampling limitations, and in the absence of major
perturbations that require multi-day recovery processes in the human
gut, it is unclear whether or not meaningful insights into commensal
population dynamics can be gleaned from adult human gut micro-
biome time series. Oneworkaround for inferring effectivegrowth rates
of bacterial populations in situ is to leverage metagenome-inferred
replication rates21,22. Briefly, instantaneous replication rates can be
estimated for abundant bacterial populations inmetagenomic samples
by taking advantage of the fact that fast-growing taxa show an asym-
metry in reads mapping to different genomic loci, with higher read
depth near the origin of replication and a lower depth near the ter-
minus due to the initiation of multiple replication forks21–23. However,
even when replication rates and population abundances can both be
estimated from the same metagenomic samples, it is unclear how
these measurements are related to the in situ growth phase of a
population.

Early experiments by Jaques Monod24 identified distinct growth
phases for bacterial populations in culture, which can be captured by
the stochastic logistic growth equation (sLGE)25. The sLGE has been
shown to be a good fit for bacterial population growth in vitro and in
real-world, steady-state ecosystems26–32. We used the sLGE to study
statistical relationships between population sizes and growth rates
across the various phases of growth (i.e., acceleration, mid-log,
deceleration, and stationary phases) to see if we could extract in situ
growth phase information. Overall, the sLGE model yields statistical
relationships thatmaybe leveraged to identify the in situ growthphase
of a bacterial population sampled at a regular period from a quasi-
batch-culture, flow-through, steady-state ecosystem, like the
human gut.

To assess our model predictions, we sampled Eschericial coli
populations at different points along the growth curve. We calculated
population sizes and replication rates for these samples and observed
excellent agreement between this in vitro model and our sLGE simu-
lations. We also measured population abundance and replication rate
trajectories from more than a dozen organisms across four densely
sampled human gut metagenomic time series33. On average, when
controlling for taxonomy, gut commensal growth rates andpopulation
sizes were positively correlated, both cross-sectionally over 84 stool
donors and longitudinally within each of four stool donor time series,
which suggests that most abundant taxa in the gut are growing
exponentially when sampled in stool. However, we saw more hetero-
geneity for specific taxa within individual donor time series. We were
able to identify specific growth phase signatures in abundant bacterial
populations in the guts of four individuals with long and dense meta-
genomic time series by analyzing paired replication rate and abun-
dance trajectories. We describe how our growth phase inference
approach can serve to improve statistical inferences derived from
microbiome data and to inform more accurate mechanistic modeling
of flow-through ecosystems (e.g., community-scale metabolic models,
which usually assume exponential growth), which could have broad
implications for human health8,34,35, agricultural systems36,37, climate
change36,38,39, and industrial bioreactors40,41.

Results
Framing the gut as an anaerobic flow-through bioreactor
The mammalian gut can be understood as an anaerobic batch culture
reactor with a semi-continuous input (i.e., discrete boluses of dietary
inputs, mixed with host substrates like mucin and bile acids) and
output (i.e., discrete boluses of stool)42, and microbial taxa must grow
fast enough within the system to avoid dilution-to-extinction (Fig. 1a).
Thus, stool sampling captures the endpoint of internal gut bacterial
population dynamics. For example, in our conceptual figure we see

that Taxon 1 starts growing higher up in the colon and is in stationary
phase by the time a stool sample is collected, while Taxon 3 starts
growing lower in the colon and is still growing exponentially at the
point of stool sampling (Fig. 1a). Overall, the daily abundances of Taxa
1–3 represent the average (μ) steady-state population size, plus or
minus some amount of biological and technical noise, at the time of
stool sampling (Fig. 1a). To investigate improved methods for inter-
preting the dynamics of human gut microbial time series, we down-
loaded shotgunmetagenomic time series data from the BIO-MLcohort
(i.e., health-screened stool donors who provided fecal-transplant
material to the stool bank OpenBiome)33. The BIO-ML cohort con-
tained 84 donors33. To filter for dense longitudinal data, we selected a
subset of donors with more than 50 time points. Four donors (i.e.,
donors ae, am, an, and ao)met this criterion,with 3–5 fecal samples per
week for >50 days (Fig. 1b).

Characterizing the relationships between gut commensal
population size and growth rate using metagenomic time
series data
We first investigated the statistical properties of day-to-day fluctua-
tions in gut bacterial population sizes, estimated from fecal shotgun
metagenomic time series. Specifically, we looked at the associations
between population abundance estimates (tn) and the changes in
abundance estimates (i.e., deltas) between time points (tn+1 – tn).
Naïvely, if most bacterial populations in stool were growing expo-
nentially, we would expect that population abundances and growth
rates would be positively correlated. However, prior work has indi-
cated an overall negative correlation between abundances and chan-
ges in abundances in stool 16 S rRNA gene amplicon sequencing data
generated from densely sampled human stool time series15,33. Indeed,
we found that abundant bacterial populations in the stool of the four
BIO-ML donors maintained stable average abundances over time (μ),
with day-to-day fluctuations above and below this average, as pictured
in the example of Bacteroides cellulosilyticus in donor am (Fig. 2a, b).
This kind of pattern mirrors what one would expect when randomly
sampling from a stationary distribution (Fig. 2b).We observed that the
deltas (tn+1 – tn) for the same gut taxon (Bacteroides uniformis) mea-
sured across each donor time series, when plotted against their
respective normalized abundances (tn), showed the same negative
association (Fig. 2c). Furthermore, similar negative associations were
uniformly observed across all taxa analyzed, across all four donors
(Fig. 2d). This consistent negative association between population
abundances and changes in abundancebetween timepoints is strongly
consistent with sampling from a stationary distribution, which is
equivalent to ‘regression-to-the-mean’ as an organism fluctuates
around a fixed carrying capacity, similar to what we have reported
previously15,32.

One important ecological factor that can impact gut microbial
dynamics is host diet43,44. Although changes in dietary intake can alter
microbial abundance, average dietary choices are highly conserved
within an individual and these choices are notoriously difficult to
modify outside of radical changes in geography or lifestyle45–47. Prior
work demonstrated that macronutrient intake within an individual is
largely stable over time and does not show significant autocorrelation
or drift15,48. Indeed, for donor A from this prior study, we found that
longitudinal measurements of macronutrients (i.e., daily intake of
calories, carbohydrates, protein, fat, fiber, cholesterol, saturated fat,
sugar, sodium, calcium) were stationary over several months, despite
day-to-day fluctuations (Fig. S1). Combined with the overwhelming
stationarity of microbial abundance trajectories within healthy indivi-
duals not undergoing major lifestyle changes15,32,33, these results sup-
port our assertion that dietary patterns are largely stable over weeks-
to-months and stool samples provide stable, steady-state population
abundance estimates of abundant gut commensal bacteria. Further-
more, we have shown in prior studies on these same BIO-ML
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participants that average within-person taxon abundances are highly
correlated across people, which suggests that these carrying capa-
cities, likely representing dietary and host substrate niches, are fairly
conserved across humans15,33.

Next, we looked at the statistical associations between calculated
peak-to-trough ratios (i.e., PTRs; a proxy for the effective growth-rate)
for abundant bacterial populations from each metagenomic sample
and their respective metagenomic population abundance estimates22.
If the deltas, presented above, were truly proportional to growth and/
or death rates, we would expect that the statistical relationships
between deltas and population size would be similar to those between
PTRs and population size. However, unlike the putative regression-to-
the-mean signature identified for the deltas, we found variable statis-
tical relationships between log2(PTR) and centered log-ratio (CLR)
transformed population abundances for the same taxon across the
four donors (Bacteroides ovatus_1, Fig. 3a). Similarly, we saw a wide
range of positive, negative, and null associations between log2(PTRs)
and CLR abundances across all measured taxa within each donor
(Fig. 3b). These results are inconsistent with a regression-to-the-mean
signal, and suggest a more complex relationship between growth rate
and population size49–51. Finally, we calculated temporally-averaged
PTRs and population sizes for each abundant taxon within each of the
four donors. Overall, there was a significantly positive association
(linear regression, p values = 0.0318, 0.125, 0.155, 0.031 for donors ae,
am, an, and ao, respectively; combinedp-valueusing Fisher’smethod =
0.005) between average log2(PTR) and average CLR abundance across
all four donors (Fig. 3c), indicating that taxa with higher average

population sizes tend to have higher average growth rates. We also
looked into whether or not log2(PTR) magnitudes were inter-
comparable across taxa (Fig. S2). We calculated log2(PTRs) for all
abundant taxa detected across all 84 BIO-ML donors and found that
the median log2(PTR) was fairly similar across taxonomic classes
(~0.45–0.75), with most classes showing a wide range (Fig. S2). To
assess whether or not log2(PTR)-CLR associations were robust to
controlling for taxonomy, we included either class- or species-level
categorizations as covariates in a linear regression model and saw a
significant positive association, independent of taxonomy (class-level
β = 0.0612, p = 8.359e−60; species-level β = 0.0101, p =0.0006). While
we saw a significantly positive cross-sectional association between
PTRs and abundances when controlling for species identity, we found
that the vast majority of individual species showed null associations
between abundance-PTR relationships, indicating that we were per-
haps underpowered to detect this weak effect at the level of individual
taxa (Figs. 3 and S3). For three species, we actually saw significant
negative associations: Alistipes shaii, Alistipes finegoildii, and Odor-
ibacter splanchnicus (FDR-adjusted p <0.1; Fig. S3).

Stochastic logistic growth equation provides insights into
growth phases
In order to better understand and interpret the varying relationships
we observe between log2(PTRs) and CLR abundance time series, we
used a modeling approach. The basic properties of growth curves of
microbial taxa can be captured using the logistic growth equation
(LGE) (Fig. 4). Although simplemodels like the LGE do not capture the

Fig. 1 | Conceptual figure showing internal bacterial population dynamics
within a human gut and the observed steady-state abundance derived from
stool sampling. a Mammalian guts are continuous flow-through systems. Taxa
grow in the large intestine with varying growth rates, carrying capacities, and
steady-state population sizes, andmay be in different growth phases at the time of
stool sampling. For example, see dynamics for Taxa 1–3. Daily stool collections

show variation in abundances, but this variation likely does not reflect internal
growth dynamics in the gut.bHealthy BIO-ML stool donors (subject IDs: ae, am, an,
and ao) with samples collected 3-5 days perweek for a total of >50 time points. Red
indicates presence of shotgun metagenomic sequencing data and gray represents
absence of metagenomic data from consecutive daily time points.
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full complexity of the gut, such as spatial structure and specific
resource usage, the LGE and its variations have been widely applied to
population and community dynamics26,27,31,32,52. This model is defined
such that the change in abundance for each taxon i ðdxi=dtÞ is captured
by the current abundance at time t, xiðtÞ, multiplied by the maximal
growth rate, r, and the carrying capacity (k) term ð1� xiðtÞ=kÞ53. In this
model, population size over time shows a sigmoidal curve, with the
abundance asymptotically approaching k (Fig. 4a, top panel). The
derivative of this curve with respect to time yields the change in
abundance, which reflects the effective rate of population growth at a
given point along the curve (i.e., effective growth rate over time), and
peaks during mid-log phase (Fig. 4a, middle panel). The second deri-
vative of abundance with respect to time, which is the instantaneous
change in effective growthwith respect to time and is often referred to
as the acceleration rate, shows a peak during the acceleration phase
and a trough during the deceleration phase (Fig. 4a, bottom panel).
Based on this second-derivative curve, we show the expected rela-
tionships between the effective growth rate (i.e., dx/dt) and abundance
moving across the logistic growth curve, along the time axis (Fig. 4b).
These expected relationships provide a potential path forward for
inferring the in situ growth phase of a bacterial population sampled at
a semi-consistent frequency from a flow-through ecosystem.

The logistic growth model is a deterministic equation. However,
the observed abundances of commensal bacterial populations in the
gutfluctuate due tomyriad factors including interspecies competition,

resource fluctuations, technical noise, sampling noise, and stool resi-
dence time27,32,54. In order to approximate these fluctuations in our
modeling, we introduced a stochastic term to the logistic growth
model (Fig. 5a). Herein, σ denotes the noise magnitude and ωðtÞ
represents a white noise term. Four growth phases (i.e., acceleration,
mid-log, deceleration, and stationary) were defined using the half-
maximum and half-minimum, respectively, of the second derivative of
the LGE curve (Fig. S4A). We simulated 100 iterations of the stochastic
logistic growth equation (sLGE) for each of a range of parameteriza-
tions (see Methods), which recapitulated the expected statistical
relationships between growth rates and abundances for populations
consistently sampled within our four major growth phase categories
(Fig. 5a–c). For example, Pearson correlations between growth rates
and abundances were significantly positive in the acceleration phase
and significantly negative in the deceleration phase (Fig. 5b). Mid-log
phase growth was more variable, but showed little-to-no significant
association between growth rates and abundances (Fig. 5b, c). These
results were reproduced when combining simulation results across a
wide range of parameter space and varying noise levels (Fig. S4B).

Even though we expect dietary intake to be stationary within an
individual, variation in diet can drive day-to-day fluctuations in the
carrying capacities of microbial populations. In order to investigate
whether growth-phase specific associations between abundances and
growth rates were influenced by fluctuations in carrying capacity, we
added variation to k in the sLGE model (Fig. S5). Fluctuations in k did

Fig. 2 | Regression-to-the-mean effect in human microbial time series data.
a Yellow line represents themean abundance (μ) of Bacteroides cellulosilyticus over
time in donor am. Time points t1 and t3 indicate fluctuations below and above the
mean abundance, and t2 and t4 show the return to the mean abundance.
bDistribution of time series delta values (e.g., t2-t1) for Bacteroides cellulosilyticus in

donor am, which is approximately normally distributed. c Delta vs. abundance for
Bacteroides uniformis time series from donors ae, am, an, and ao. d Box plots
(showingminima, 25thpercentile,median, 75th percentile, andmaxima) of Pearson
r values for deltas vs. abundances across all taxa time series in all four donors. Red
line indicates a Pearson correlation coefficient of 0.
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not alter the sigmoidal shape of the sLGE curve (Fig. S5A), and the
relationships between abundances and growth rates across growth
phases were preserved (Fig. S5B–C). Simulations with the noise level
set at 0.2 recapitulated the correlation coefficient distributions seen in
the human time series data, while maintaining the distinct growth-
abundance relationships previously associated with each growth
phase (Fig. S6). However, these distinct relationships could be
destroyed at high enough noise levels (Fig. S6).

Validating sLGE growth phase inferences in vitro
To validate the relationship between growth/replication rates and
abundances across growth phases, we cultured replicate E. coli
populations in vitro and sampled them across their growth curves
(Fig. 6a). E. coli abundances weremeasured as OD600 values and as
the log-ratio of E. coli reads to phiX reads (i.e., a fixed amount of the
phiX genome was spiked into each DNA extraction) from the
shotgun sequencing data (Fig. 6a–c). Effective growth rates were
quantified as the log2(PTR) for each E. coli sample55. The relation-
ships between the log2(PTRs) and CLR-normalized E. coli abun-
dances across growth phases matched the sLGE model predictions
(Fig. 6b, c). Specifically, growth rates and abundances were sig-
nificantly positively and negatively correlated in acceleration and
deceleration phases, respectively (Fig. 6b, c). Furthermore, we saw
no significant association between growth rates and abundances in
mid-log and stationary phases (Fig. 6b, c). Finally, we found that
samples in mid-log phase had an average log2(PTR) of 1.25 ± 0.167
(± standard deviation), while samples in stationary phase had an
average log2(PTR) of 0.358 ± 0.059, which clearly distinguished
between these phases that lacked a differentiable correlation
signal.

Inferring in situ growth phases for abundant gut commensal
populations sampled in metagenomic time series
Based on the sLGE results and in vitro validation work presented
above, we assigned putative in situ growth phases to abundant gut
bacterial populations from the four BIO-ML gut metagenomic time
series. The average magnitude of the PTR provides additional infor-
mation on whether a population is more likely to be in acceleration/
mid-log/deceleration (i.e., log2(PTR) ≫ 0.358) or stationary (i.e.,
log2(PTR) < 0.358) phase (Fig. 6). This log2(PTR) threshold of 0.358 is
somewhat arbitrary, based on experimental data from a single organ-
ism (Fig. 6), but it was able to classify several gut species (Escherichia
coli, Citrobacter rodentium, Lactobacillus gasseri, Enterococcus faecalis,
and several more) grown into stationary phase from prior in vitro
experiments21. For those taxa with average log2(PTRs) above the
empirical stationary phase threshold, significantly positive associa-
tions (linear regression, FDR-adjusted p value < 0.05, with a positive
beta-coefficient) between log2(PTRs) and CLR abundances likely indi-
cate acceleration phase and significantly negative associations (linear
regression, FDR-adjusted p value < 0.05, with negative beta-coeffi-
cient) likely indicate deceleration phase. Bacteroides cellulosilyticus,
Bacteroides ovatus_1, and Megaspaera eldenii showed significantly
positive PTR-abundance associationswithindonor ae (Figs. 7A and S7).
Bacteroides xylanisolvens had an average log2(PTR) thatwas lower than
the stationary threshold in donor am (Fig. S8).Bacteroides ovatus_1 and
Parabacteroides distasonis showed positive log2(PTR)-CLR abundance
associations, while Alistipes finegoldii and Bacteroides uniformis
showed negative associations in donor am (Figs. 7a and S8). Acid-
aminococcus intestini, Bacteroides xylanisolvens, and Odoribacter
splanchnicus showed average log2(PTR) below the empirical stationary
phase threshold in donor an (Fig. S9). Alistipes shahii, Bacteroides

Fig. 3 | Variable relationships between PTRs and CLR-normalized abundances
across human gut microbial time series. The ratio of sequencing coverage near
the replication origin to the replication terminus for each species (i.e., peak-to-
trough ratio, or PTR), was calculated using COPTR. a Log2(PTR) and CLR-
normalized abundance relationships for Bacteroides ovatus_1 in donors ae, am, an,
and ao. Orange and blue lines show significantly positive and negative linear
regression coefficients (linear regression, FDR adjusted p-value < 0.05),

respectively. Gray lines indicate no statistically significant association. Donor ae:
p =0.0005, donor am: p =0.0317, donor an: p =0.925, donor ao: p =0.00005.
b Box plots (showing minima, 25th percentile, median, 75th percentile, and max-
ima) of Pearson r values combined for all filtered taxa for each donor. c Mean
log2(PTR) and mean CLR-normalized abundance for all abundant taxa in each
donor (p-values for regressions run within each donor were combined using Fish-
er’s method; combined p-value = 0.005).
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intestinalis, Bacteroides thetaiotaomicron, and Bacteroides uniformis
showed significantly negative log2(PTR)-CLR abundance associations
in donor an (Figs. 7a and S9). Finally, Favonifractor plautii showed a
positive log2(PTR)-CLR abundance association and Bacteroides fragilis,
Bacteroides ovatus_1, Bacteroides uniformis, and Bacteroides xylani-
solvens showed negative associations in donor ao (Fig. 7a and S10). In
all four donors,many taxa showed average log2(PTRs) greater than the
stationary threshold but without significant associations between
log2(PTR) and CLR abundances (Figs. 7a and S7–10). The absence of a
significant association for these putatively non-stationary taxa could
indicate mid-log phase, but a non-significant association could also

represent a false negative (i.e., not powered enough to detect a posi-
tive or negative association with the number of time points sampled).

We observed a slight difference in the number of significantly
positive andnegative PTR-abundance associations betweendonors ae/
am, and an/ao. Donors ae and am tended to have a larger proportion of
taxa in acceleration phase, while an and ao tended to have a larger
proportion of taxa in deceleration or stationary phases. Interestingly,
donors an and ao had a lower average defecation frequency (≤1 per
day) than donors ae and am (> 1 per day). Concordantly, based on our
flow-through model of the gut ecosystem (Fig. 1a), we would expect
that bacterial populations would be pushed towards earlier growth
phases at faster flow rates (Fig. 7b). Overall, we were able to at least
partially constrain our putative phase estimates for all taxa with suffi-
cient longitudinal data (Fig. 7a). Our approach provides a new poten-
tial path toward providing constraints on in situ growth phases for
microbial populations in flow-through ecosystems.

Discussion
Many prior studies assumed, either implicitly or explicitly, that the
growth and death rates of gut bacterial populations were proportional
to day-to-day changes in abundances, as measured from human stool
samples. However, we outline how this assumption is likely invalid due
to the fact that human gut bacterial population growth/death pro-
cesses inside the intestinal tract are likely faster (minutes-to-hours)
than our sampling timescales (days). Despite the fundamental mis-
match between gut bacterial population dynamics and sampling
timescales, we attempt to identify statistical signatures within these
daily-sampled human gut time series that might provide accurate
insights into in situ population dynamics.

While changes in abundance between time points do not appear
to be related to population growth, metagenome-derived PTRs have
been shown to be proportional to effective growth rate measures
in vitro21–23,56–58. However, normalizing PTRvalues across taxa remains a
challenge. For example, one might assume that the time required to
replicate a particular bacterial chromosome (i.e., C-period)21,59 would
be an important conversion factor between PTRs and effective growth
rates. However, prior work has shown that genome size and growth
rates are uncorrelated in bacteria and archaea, and that ribosomal
gene copy number explains much more variance in bacterial growth
rates60. Ribosomal gene copy number, on average, has been shown to
be higher for microbes living in the human gut, as compared to taxa in
non-host-associated environments61–64, which suggests that gut
microbial taxa are optimized for higher maximal growth rates. Even if
we cannot precisely convert PTRs to effective growth rates that are
intercomparable across taxa, prior work has shown similar ranges of
minimum and maximum PTRs across diverse gut-associated taxa
in vitro21, sowe havemade the coarse assumption that these values can
be roughly compared across organisms (Fig. 3c).

Unlike the relationships between deltas and abundances, which
were always negative (Fig. 2c, d), the relationships between PTRs and
abundances were quite variable (Fig. 3a, b). While regression-to-the-
mean is a plausible mechanism for the consistent negative delta-
abundance relationships (Fig. 2), the underlying processes driving
variable log2(PTR)-abundance relationships appear to be more
nuanced (Fig. 3). We turned to the sLGE to explore relationships
between growth rate and abundance across different phases of
growth, and we found clear diagnostic patterns (Fig. 4). Prior work has
shown that the sLGE is an optimal model for capturing within-person
strain- and species-level dynamics for the vast majority of human gut
commensals32. Simulations showedhow these diagnostic patterns held
across a wide range of external stochastic noise levels (Fig. 5). Fur-
thermore, fluctuations in carrying capacities, which could be inter-
preted as fluctuations in niche-size due to dietary variation, could not
ablate these patterns (Fig. S5). However, as one might expect, adding

Fig. 4 | Diagram of the logistic growth equation. a The logistic growth curve
models abundance (x)with respect to time (toppanel).Orange, gray, blue, andnavy
indicates acceleration, mid-log, deceleration, and stationary phases, respectively.
The first derivative of the logistic growth curve shows the growth rate with respect
to time (middle panel). The second derivative of the logistic growth curve shows
growth acceleration with respect to time (bottom panel). b Expected relationships
between abundance and growth rate at different locations along the logistic
growth curve.
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enough noise to these models eventually did override the sig-
nal (Fig. S6).

We validated the putative growth phase diagnostic patterns
from our sLGE model in vitro and saw marked correspondence
(Figs. 5 and 6). The in vitro data indicated that the average log2(PTR)
across the growth curve could easily distinguish between stationary
phase (i.e., no effective growth) and the other phases (Fig. 6). This is
particularly useful for distinguishing stationary phase from log-phase
growth, which are both expected to show a null association between
log2(PTRs) and abundances (Figs. 4 and 5). We saw that E. coli grown
in vitro showed a maximum log2(PTR) of ~1.75 and a minimum of
~0.3, which is quite consistent with log2(PTR) ranges observed for
other organisms growing in vitro and in vivo21. While log2(PTR) ran-
ges can vary across taxa, we tentatively set a log2(PTR) threshold of
≤0.358 to assign taxa measured in vivo to putative stationary phase,
which is on the lower end of what has been observed in vitro and
in vivo21.

We applied our sLGE predictions to four human gut metage-
nomic time series. Consistent with our sLGE predictions, we found
that individuals with higher defecation rates tended to be enriched
for taxa in earlier growth phases (Fig. 7). In a recent study, we
observed a similar association between PTRs and bowel movement
frequency (BMF) in another independent cohort, where average
community PTRs appeared to increase with increasing BMF65. Over-
all, our results reveal a promising approach to inferring in situ growth
phases for abundant organisms detected in human gutmetagenomic
time series.

We observed that the average log2(PTR) and average CLR abun-
dance of a given taxon over time were positively, albeit weakly, cor-
related, which is consistent with exponentially-growing populations
(Fig. 3c).Wewere also able to identify specific taxa that were abundant
in stool that appeared to be in stationary phase, based on our in vitro
stationarity threshold (Fig. 7a). These results are highly relevant to the
metabolic modeling community. Ecological interactions within free-
living and host-associatedmicrobial communities are largely governed
by exchanges of small-molecule metabolites66,67. Genome-scale meta-
bolic modeling and flux-balance analysis (FBA) has been effective
mechanistic tools for simulating thesemetabolic exchanges, especially
in controlled bioreactor systems68. The objective function used to find
a solution subspace for these bacterial FBA models is often biomass
maximization, which assumes that these organisms are growing
exponentially at steady state. Exponential growth is a valid assumption
for organisms in acceleration ormid-log phases, and to some extent in
deceleration phase, but this assumption breaks down completely in
stationary phase. Prior work has demonstrated that biomass compo-
sition can change depending on the growth phase of a population,
which ideally could be taken into account to more accurately model
metabolic fluxes within the system69–71. Alternatively, organisms that
are not actively growing in the distal colon could be omitted from
community-scale metabolic models of colonic metabolism72. Overall,
our work suggests that most abundant organisms in human stool are
amenable to FBA, and our growth phase estimation approach allows
for the identification of abundant populations thatmay not fit classical
FBA assumptions.

Fig. 5 | Distinguishing growth phases using the stochastic logistic growth
model. a Stochastic logistic growth curves with growth rate (r) = 1.2, carrying
capacity (K) = 100, and noise level (n) = 0.1 across 100 iterations. Major growth
phasegroups in orange (acceleration), gray (mid-log), blue (deceleration), and navy
(stationary). b Pearson r values between abundances and growth rates in each of

the four growth phase windows across variable model parameterizations (r = 1–3,
K = 10-1000) and a fixed noise level (σ = 0.1). Black circles represent themedian and
black bars show 95% confidence interval. c Scatter plots in log scale showing rela-
tionships between abundance and growth rate across the four growth phase
regions defined in (a).
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In conclusion, we provide a new path forward for the biological
interpretation of metagenomic time series data generated from adult
human stool samples. Our results are somewhat reassuring for cross-
sectional studies, as they indicate that bacterial abundances in the gut
fluctuate around stable carrying capacities within an individual, mak-
ing inter-individual comparisons fairly robust. Furthermore, this sug-
gests that multi-day averages of abundances will be even more
accurate estimates of this carrying capacity, as we have suggested
previously33. This work is especially relevant to the design and inter-
pretationof humangutmicrobiome studies that aim to characterize or
investigate ecosystem-scale dynamics. We hope that in situ growth
phase estimation will be applied more broadly to other kinds of flow-
through environments to improve our understanding of internal
dynamics in these systems and provide improved constraints for
mechanistic modeling of microbial communities.

Study limitations
One critique of our approach is that dense longitudinal sampling of
human stool metagenomes is necessary for growth phase inference.

Currently, these data sets are rare, which limits the immediate use of
our approach. However, interest is growing for long-term monitoring
of gut microbial variation73–75. Through technological advances, dense
metagenomic time series will become more and more common over
time76,77.

Another limitation is in our ability to relate PTRs to effective
growth rates. Earlier research compared PTR curves and measured
growth curves (OD600)21, which allows for a continuous mapping
between dx/dt (i.e., the effective population growth rate) and PTRs.
Although our findings lack thorough quantitative estimates of
in vivo effective population growth rates, we make the assumption
here that in vivo PTRs are indeed related to growth. For some of our
analyses, we also assume that PTRs are roughly comparable across
taxa. For example, we chose a simple threshold (log2(PTR) ≤ 0.358)
for determining which taxa in the gut are in stationary phase, based
on our in vitro E. coli experiment. However, as mentioned above, we
do find that this threshold also successfully classifies many other
gut species into stationary phase from prior in vitro experiments21.
Nonetheless, future work is needed in order to develop better

Fig. 6 | Relationship between growth rate and abundance in major growth
phases in E.coli populations. a Growth curve of E.coli (MG1655) using OD mea-
surements. Colors describe major growth phases. Dotted black and red lines show
the growth rate derived from OD measurements and mean growth trajectory,
respectively. b Pearson r values between abundance and growth rate in each of the
four growth phase windows. Asterisks show statistical significance from two-sided
correlation tests without adjustment for multiple comparisons. **: p <0.01

(acceleration: p =0.007), *: p <0.05 (deceleration: p =0.003), n.s.: not significant
(mid-log: 0.184, stationary: 0.622). Black circles represent the median and black
bars show 95% confidence interval. Pooled duplicate samples (4 sets of replicate
cultures) for 40 time points in total were used (see Methods). c Scatter plots in log
scale showing relationships between abundance and replication rate (log2PTR)
across the four growth phase regions defined in (a). Gray regions represent 95%
confidence intervals.
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conversion factors that enable direct comparisons of PTRs
across taxa.

The jury is still out on whether sLGE, in all its simplicity, is an
appropriate coarse-grained model for human gut commensal
dynamics. However, recent work has found that 86.6% of species time
series from the same BIO-ML stool donors studied here could be
optimally fit by the sLGE, using a fairly stringent significance cutoff32.
Phocaeicola vulgatuswas one of the few taxa that overlapped with our
analysis that previously showed a poor fit to the sLGE across stool
donors32. In our analysis P. vulgatus never showed a significant asso-
ciation between PTRs and abundances across any of the stool donors,
but its average PTR was higher than the stationary phase threshold
(Fig. 7). Thus, we only applied a stationary phase cutoff to this
organism. We look forward to other independent research groups
testing, and hopefully improving, our in situ growth phase inference
approach as additional data sets become available.

Methods
Stationarity testing for daily nutrient intake in a human
stool donor
Metadata for daily nutrient intake, excluding the time window when
the donor was traveling abroad, was downloaded from David et al.48.
We tested for stationarity in these nutrient intake time series using the
augmented Dickey-Fuller (ADF) test (tseries package in R78), with sig-
nificance threshold for stationarity at p <0.1. ADF tests the null
hypothesis that a unit root is present in a time series, with the alter-
native hypothesis being that the time series is stationary. Thus, sig-
nificant p-values indicate stationarity of the time series. All analyses
throughout the manuscript in R were conducted in R v4.2.279, unless
stated otherwise.

E. coli strain information and growth curve analysis with a
microplate reader
Escherichia coli strain (MG1655) was streaked from a glycerol stock
onto R2A agar plates (Thermo Fisher Scientific: Oxoid CM0906) and
incubated overnight at 37 °C. A colony was selected using an inocu-
lating loop and transferred to 200mL of LB-broth (Lennox) and
grown at 37 °C overnight in a shaking incubator at 225 rpm until the
culture reached stationary phase. The overnight culture was then
diluted in fresh LB medium to an OD of 0.51 (600 nm). The diluted
culture was then chilled for ~25minutes at ~2 °C using an ice bath to
synchronize metabolic activity. The chilled culture was then ali-
quoted (2μL) into a non-treated 96-well flat-bottomed plate (Thomas
Scientific Cat No. 1154Q44) containing 198 μL of LBmedia (Lennox) in
each well. The inoculated plate was then transferred to a BioTek
Epoch II plate reader set to 37 °C with orbital shaking and pro-
grammed to make OD600 readings every minute for the first
60minutes and every 5minutes for the remainder of the experiment
(~10 hours). The first set of inoculations covered plate rows A and B
(n = 24), this was followed by the sequential inoculation of the next
3 sets of rows at 15-minute intervals (i.e., Set 1 = A/B: 0min; Set 2 = C/
D 15min; Set 3 = E/F: 30min; Set 4 = G/H 45min). This resulted in
4 sets of replicate cultures inoculated 15minutes apart, allowing
sampling every hour for the next 10 hours, spanning 40 time points
spaced 15minutes apart. To ensure there was enough DNA for
sequencing at early low OD time points (first two sample points), we
pooled two wells into one sample. All samples were collected in PCR
strip tubes (Axygen: PCR-0208-CP-C) and centrifuged at room tem-
perature to pellet the cells. The supernatant was decanted and the
remaining cell pellet was immediately frozen in liquid nitrogen for
storage at −80 °C.

Fig. 7 | In vivo growth phase estimation. aWe find variable relationships between
log2(PTRs) and population abundances across taxa in each of the four donors,
consistent with the growth phase patterns observed in sLGE simulations. Donors
with higher defecation rates tended to have a larger fraction of taxa with positive
log2(PTR)-abundance associations and fewer with negative associations, indicating
acceleration and deceleration-stationary phases, respectively. Taxa in stationary
phase were classified using an empirical threshold (average log2PTR<0.358). Non-
stationary taxa (i.e., above the stationary phase threshold, but lacking a significant

correlation between log2(PTRs) and abundances) are likely in mid-log phase, but
these taxa could also be in acceleration/deceleration phases (i.e., underpowered to
detect the correlation). b We suggest that higher defecation rates (i.e., higher
dilution rates) push bacterial populations towards earlier growth phases, which is
consistent with our results in (a). c Growth phase estimates can be leveraged to
identify taxa that are more-or-less amenable to metabolic modeling techniques,
such as Flux Balance Analysis, which assumes exponential growth.
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DNA extraction, library preparation, and sequencing
Cell pellets were resuspended and transferred to 96 deep-well plates
for DNA extraction using the IBI Scientific 96-well Genomic DNA Bac-
teria Kit (IBI Scientific: IB47295) per the manufacturer’s protocol. DNA
quantificationwas done usingQubitHSDNA assay, on aQubit3 device.
After DNA quantification, we added PhiX DNA (Thermo Fisher Scien-
tific: SD0031) as an internal standard and run-qualitymonitor across all
samples. A total of 500 fg PhiX DNA was added to each DNA sample
before library preparation. DNA libraries were constructed following
theNEBNextUltra II FS DNA Library Prep Kit for Illumina (New England
Biolabs: E7805L) and indexed using Dual Index Primer Set 2 (New
England Biolabs: E7780S). Libraries were quantified again via Qubit 3,
and the quality and size of libraries were checked using an Agilent
Tapestation, and a D5000 high-sensitivity DNA tape assay. Libraries
were pooled to 2 nM and sent to NovoGene for sequencing on a
NovaSeq 6000 device (Illumina, USA). A partial lane was used for
sequencing, 150 cycles, generating ~64GB ( ~ 3.3 million reads per
sample) of paired-end reads.

Shotgun metagenomics data processing and analysis
Longitudinal shotgun metagenomics sequencing data from healthy
human stool samples (BIO-ML) was downloaded fromNCBI BioProject
accession PRJNA544527, and the associatedmetadatawasdownloaded
from the associated article33. Raw FASTQ files from the BIO-ML cohort
and from the in vitro E. coli experiment were filtered and trimmed
using FASTP80, removing the first 5 nucleotides of the read 5’ end to
avoid leftover primer and adapter sequencing not removed during
demultiplexing and an adaptive sliding window filter on the 3’ end of
the read with a required minimum quality score of 20. Reads con-
taining ambiguous base calls, having amean quality score less than 20,
or with a length smaller than 50nt after trimming were removed from
the analysis. Taxonomic assignment on the read level was performed
with Kraken2 using the Kraken2 default database81. Abundances on the
kingdom, phylum, genus, and species ranks were then obtained using
Bracken82. Trimmed and filtered reads were then aligned to 2,935
representative bacterial reference genomes taken from the IGG data-
base (version 1.01) using Bowtie283,84. Coverage profiles and log2 esti-
mates of peak-to-trough ratios (PTRs) were estimated using COPTR
v1.1.2 at the species level within each sample for taxa that passed our
abundance threshold55. PTR estimates were thenmerged with Bracken
abundance estimates, retaining only those species identified by both
methods (Kraken2 and Bowtie2 alignment to IGGdb). For the in vitro E.
coli experiment, reads were aligned to a custom database containing
the E. coli K12 strain genome (NCBI accession NC_000913.3) and the
phiX174 genome (NCBI accessionNC_001422.1). CLR abundances were
then calculated from the read counts for the E. coli genome and the
phiX174 genome.

The processed data containing the raw reads and log2 peak-to-
trough ratios (i.e., log2(PTRs)) were read into R version 4.1.3 for
analysis79. All plots were generated using ggplot285, unless indicated
otherwise. Raw read counts for a given taxon within a sample were
centered log-ratio (CLR) transformed86. Taxa that had matched
log2(PTR) and CLR abundance information available across more than
5 time points within an individual, with time differences between
samples less than three days, were used in subsequent analyses.
Changes in normalized abundance were calculated as
Abundance changes deltað Þ= x t + 1ð Þ � x tð Þ, where Δt <3days. To
assess the regression-to-the-mean effect, CLR-normalized abundances
were plotted against deltas for each taxon, and the regression coeffi-
cients, aggregating all microbial taxa, were plotted as boxplots
(showing median and interquartile range), summarized by donor.

For each donor, to estimate the growth phase of each individual
taxon, we used linear regression of CLR-normalized abundances vs.
log2(PTRs), followed by a Benjamini-Hochberg p-value correction to
control for the false discovery rate (FDR) in base R. Regression

coefficients with FDR-adjusted p-values < 0.05 were considered sig-
nificant. Taxa with average log2(PTRs) < 0.358 (experimentally-deter-
mined stationary threshold) were designated as being in stationary
phase. For those taxa not designated as being in stationary phase,
significantly positive or negative associations between log2(PTRs) and
abundances were considered to be in acceleration or deceleration
phase, respectively. Those with no correlation and an average
log2(PTR) above the stationary threshold were constrained to be in
mid-log phase or in acceleration/deceleration phase (i.e., if there was a
false negative due to lack of statistical power in detecting a positive or
negative slope). Linear regression was also used to test whether or not
average CLR-normalized abundances and average log2(PTRs) were
significantly associated within each donor, and p-values from indivi-
dual tests were combined using Fisher’s method87.

Stochastic logistic growth model simulation
The stochastic logistic growth equation (sLGE) was implemented as:
dxi
dt = rxiðtÞð1� xiðtÞ

K Þ+ σxiðtÞωðtÞ, where t is time, r is the growth rate, xi is
the abundance of taxon i, K is the carrying capacity, σ is the noise
magnitude term, and ω tð Þ is the noise distribution term. Using the R
package sde88, taxonomic growth was simulated with xi,0 = 1, t0 = 1 to
tf inal = 100, for 100 iterations. The other parameters were varied as
described in the results and below. To investigate the impact of noise
on sLGE trajectories, noise levels were set from 0.001 to 1, with r and k
ranging from 1 to 3 and 10 to 1000, respectively. To investigate the
statistical relationships between deltas and abundances across growth
phases and across model parameterizations, Pearson’s R coefficients
and p-values were calculated for each of the three growth phase
categories. The growth phases for each model parameterization were
defined using the non-stochastic logistic growth equation (LGE):
dxi
dt = rxiðtÞð1� xiðtÞ

K Þ, the solution for which can be written

as xi =
xi,0Ke

rt

K�xi,0ð Þ+ xi,0ert .
The xi values for each simulated time point from solving the LGE

were used to calculate the first derivative (i.e., the growth rate), which
is exactly equal to the LGE. The second derivative (i.e., growth accel-
eration), d2xi

dt2
=K2xið1� xi

K Þð1� ð2xiK ÞÞ, was calculated using solved xi

values. Growth phases from the sLGE were defined using the second
derivative curves. First, the intersections of the acceleration curve and
the half-max, a1 and a2, and the half-min, a3 and a4, were calculated
(Fig. S4A). The corresponding simulated time points of aj , denoted as
sj , where j = 1–4, were then used to define growth phases as follows: lag
phase: t < s1; acceleration phase: s1<t<s2; log phase: s2 < t < s3; decel-
eration phase: s3 < t < s4; and stationary phase: t>s4. Here, lag and
acceleration phases were combined, as these phases display similar
delta-abundance relationships along the logistic growth curve. Con-
ceptual diagrams were created using BioRender.

Death or dilution termswere not explicitly added to the simulated
sLGE models. Here, we discuss how death or dilution rates are
equivalent to changing the carrying capacity term, which has no
impact on our growth phase inferences. Analytically, a decrease in
abundance at a given time can be represented as a fraction of the
current abundance subtracted from the LGE:
dxi
dt = rxiðtÞð1� xiðtÞ

K Þ � HxiðtÞ. Here, H is the “harvest rate”, which
determines the proportional decrease in each timepoint in the equa-
tion. At steady state, rx*iðtÞð1� x*iðtÞ

K Þ � Hx*iðtÞ=0, where x*i tð Þ repre-
sents thefixedpoint. Twoequilibria exist in this equation: x*i tð Þ=0 and
x*i tð Þ=Kð1� H

r Þ, with the latter being asymptotically stable. As H
increases, the stable population size x*i tð Þ decreases due to the pro-
portional decrease in k. As long as H does not exceed the intrinsic
growth rate of gut microbes, which is expected for highly abundant
and stably colonized taxa, the resulting k becomes the new stable k. To
show that variation in k does not impact the relationship between
growth rate and abundance, we simulated the LGE with stochastically
varying kby adding the stochastic term, i.e., σki tð Þω tð Þ, to ki tð Þ (Fig. S5).
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In base R, simulation was performed for 100 iterations with the same
noise levels (σ =0.1) as the representative sLGE simulations with sto-
chastic x. Major growth phases were defined the same way as sLGE
simulations with stochastic x.

Statistics and reproducibility
Data for longitudinal daily nutrient intake48 and human stool metage-
nomic sequencing33 were secondary analyses using the profiling data
obtained from the original studies. Sample sizes were not calculated,
experiments were not randomized, and investigators were not blinded
to allocation during outcome assessments. BIO-ML donors were
selected by retaining individuals with over 50 metagenomic time
points, resulting in four time series (i.e., donors ae, am, an, and ao).
Distinct Bacteroides ovatus strains across all four donors contained
duplicated taxon names with unique taxonomic identifiers, and were
renamed to “Bacteroides ovatus_1” and “Bacteroides ovatus_2”.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw shotgun sequencing data from the in vitro experiment are
publicly available from the National Center for Biotechnology (NCBI)
Sequence Read Archive (SRA), BioProject accession number
PRJNA942341. The raw BIO-ML metagenomic data are available under
the SRA BioProject accession number PRJNA544527.

Code availability
Nextflow pipelines implementing the processing of metagenomic
shotgun sequencing data from raw reads to taxonomic abundance
matrices and PTR estimates can be found at https://github.com/
Gibbons-Lab/pipelines/ (metagenomics pipelines). Scripts used to
analyze the data, run the sLGE simulations, and produce the figures in
the manuscript have been deposited at https://github.com/Gibbons-
Lab/human-microbiome-time-series-growth-phase-estimation89.
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