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Abstract

Classical models of perceptual decision-making assume that subjects use a single, consistent 

strategy to form decisions, or that strategies evolve slowly over time. Here we present new 

analyses suggesting that this common view is incorrect. We analyzed data from mouse and human 

decision-making experiments and found that choice behavior relies on an interplay between 

multiple interleaved strategies. These strategies, characterized by states in a hidden Markov model, 

persist for tens to hundreds of trials before switching, and may alternate multiple times within a 

session. The identified mouse decision-making strategies were highly consistent across individuals 

and comprised a single “engaged” state, in which decisions relied heavily on the sensory stimulus, 

and several biased states in which errors frequently occurred. These results provide a powerful 

alternate explanation for “lapses” often observed in rodent psychophysical experiments, and 

suggest that standard measures of performance mask the presence of dramatic changes in strategy 

across trials.

1 Introduction

Understanding the computations performed in the brain will require a comprehensive 

characterization of behavior [1–3]. This realization has fueled a recent surge in methods 
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devoted to the measurement, quantification, and modeling of natural behaviors [4–8]. 

Historically, studies of perceptual decision-making behavior have tended to rely on models 

derived from signal detection theory (SDT) [9, 10] or evidence accumulation [11–13]. More 

recently, approaches based on reinforcement learning have also been used to model the 

effects of context, reward, and trial-history on perceptual decision-making behavior [14–

18]. In all cases, however, these approaches describe decision-making in terms of a single 

strategy that does not change abruptly across trials or sessions.

One puzzling aspect of sensory decision-making behavior is the presence of so-called 

“lapses”, in which an observer makes an error despite the availability of strong sensory 

evidence. The term itself suggests an error that arises from a momentary lapse in attention 

or memory, as opposed to an inability to perceive the sensory stimulus. Lapses arise in all 

species, but are surprisingly frequent in rodent experiments, where lapses can comprise up to 

10–20% of all trials [19–21].

The standard approach for modeling lapses involves augmenting the classic psychometric 

curve with a “lapse parameter”, which characterizes the probability that the observer simply 

ignores the stimulus on any given trial [22–24]. This model can be conceived as a mixture 

model [25] in which, on every trial, the animal flips a biased coin to determine whether or 

not to pay attention to the stimulus when making its choice. Previous literature has offered 

a variety of explanations for lapses, including inattention, motor error, and incomplete 

knowledge of the task [22, 24, 26], and recent work has argued that they reflect an 

active process of uncertainty-guided exploration [17]. However, a common thread to these 

explanations is that lapses arise independently across trials, in a way that does not depend on 

the time course of other lapses.

Here we show that lapses do not arise independently, but depend heavily on latent states that 

underlie decision-making behavior. We use a modeling framework based on hidden Markov 

models (HMMs) to show that mice rely on discrete decision-making strategies that persist 

for tens to hundreds of trials. While the classic lapse model corresponds to a special case in 

our framework, the model that best described the empirical choice data of real mice had one 

state corresponding to an “engaged” strategy, in which the animal’s choices were strongly 

influenced by the sensory stimulus, and other states that corresponded to biased or weakly 

stimulus-dependent strategies. Our analyses show that lapses arise primarily during long 

sequences of trials when the animal is in a biased or disengaged state. Conversely, we found 

that animals with high apparent lapse rates may nevertheless be capable of high-accuracy 

performance for extended blocks of trials. We applied our modeling framework to datasets 

from two different mouse decision-making experiments [19, 20], and to one dataset from a 

decision-making experiment in humans [27]. Taken together, these results shed substantial 

new light on the factors governing sensory decision-making, and provide a powerful set of 

tools for identifying hidden states in behavioral data.
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2 Results

2.1 The classic lapse model for sensory decision-making

A common approach for analyzing data from two-choice perceptual decision-making 

experiments involves the psychometric curve, which describes the probability that the 

animal chooses one option (e.g., “rightward”) as a function of the stimulus value [22–24]. 

The psychometric curve is commonly parameterized as a sigmoidal function that depends on 

a linear function of the stimulus plus an offset or bias. This sigmoid rises from a minimum 

value of γr to a maximal value of 1 − γl, where γr and γl denote “lapse” parameters, which 

describe the probability of of making a rightward or leftward choice independent of the 

stimulus value. Thus, the probability of a rightward choice is always at least γr, and it cannot 

be greater than 1 − γl. In what follows, we will refer to this as the “classic lapse model of 

choice behavior”, which can be written:

p yt = 1|xt = 1 − γr + γl
1

1 + e−xt ⋅ w + γr, (1)

where yt ∈ {0, 1} represents the choice (left or right) that an animal makes at trial t, xt ∈ ℝM

is a vector of covariates, and w ∈ ℝM is a vector of weights that describes how much each 

covariate influences the animal’s choice. Note that xt includes both the stimulus and a 

constant ‘1’ element to capture the bias or offset, but it may also include other covariates 

that empirically influence choice, such as previous choices, stimuli, and rewards [28–30].

Although the classic lapse model can be viewed as defining a particular sigmoid-shaped 

curve relating the stimulus strength to behavior (Fig. 1c), it can equally be viewed as a 

mixture model [25]. In this interpretation, we regard the animal as having an internal state 

zt that takes on one of two different values on each trial, namely “engaged” or “lapse”. If 

the animal is engaged, it makes its choice according to the classic sigmoid curve (which 

saturates at 0 and 1). If lapsing, it ignores the stimulus and makes its choice based only on 

the relative probabilities of a left and right lapse. Mathematically, this can be written:

p yt = 1|xt =

1
1 + e−w ⋅ xt

, zt = “engaged”

γr
γr + γl

, zt = “lapse ”,
(2)

where p(zt = “lapse”) = (γr + γl) and p(zt = “engaged”) = 1 − (γr + γl). In this interpretation, 

the animal flips a biased coin, with fixed probability (γr + γl), on each trial and then adopts 

one of two strategies based on the outcome—a strategy that depends on the stimulus vs. one 

that ignores it. Note that the animal can make a correct choice in the lapse state through pure 

luck; we use “lapse” here simply to indicate that the animal is not relying on the stimulus 

when making its decision.

Viewing the classic lapse model as a mixture model highlights some of its limitations. 

First, it assumes that animals switch between only two decision-making strategies. Second, 

it assumes that lapses occur independently in time, according to an independent Bernoulli 
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random variable on each trial. Finally, the model assumes that choices in the “lapse” state 

are fully independent of the stimulus, neglecting the possibility that they are still weakly 

stimulus dependent [24], or are influenced by other covariates such as reward or choice 

history [28, 29]. These limitations motivate us to consider a more general family of models, 

which includes the classic lapse model as a special case.

2.2 A model for decision-making with multiple strategies

Recognizing the limitations of the classic lapse model, we propose to analyze perceptual 

decision-making behavior using a framework based on Hidden Markov models (HMMs) 

with Bernoulli generalized linear model (GLM) observations [6, 31]. The resulting “GLM-

HMM” framework, also known as an input-output HMM [32], allows for an arbitrary 

number of states, which can persist for an extended number of trials and exhibit different 

dependencies on the stimulus and other covariates.

A GLM-HMM has two basic pieces: an HMM governing the distribution over latent states, 

and a set of state-specific GLMs, specifying the decision-making strategy employed in each 

state (see Fig. 1). For a GLM-HMM with K latent states, the HMM has a K × K transition 

matrix A specifying the probability of transitioning from any state to any other,

p zt = k|zt − 1 = j = Ajk, (3)

where zt−1 and zt indicate the latent state at trials t − 1 and t, respectively. The “Markov” 

property of the HMM is that the state on any trial depends only on the state from the 

previous trial, and the “hidden” property refers to the fact that states are latent or hidden 

from external observers. For completeness, the HMM also has a distribution over initial 

states, given by a K-element vector π whose elements sum to 1, giving p(z1 = k) = πk.

To describe the state-dependent mapping from inputs to decisions, the GLM-HMM contains 

K independent Bernoulli GLMs, each defined by a weight vector specifying how inputs are 

integrated in that particular state. The probability of a rightward choice (yt = 1) given the 

input vector xt and the latent state zt is given by

p yt = 1|xt, zt = k = 1
1 + e−xt ⋅ wk

, (4)

where wk ∈ ℝM denotes the GLM weights for latent state k ∈ {1, …, K}. The full set of 

parameters for a GLM-HMM, Θ ≡ π, A, wk k = 1
K , are learned directly from each animal’s 

choice data via the EM algorithm described in Section 4.1.

It is worth noting that the classic lapse model described in Eq. 1 and Eq. 2 corresponds to 

a restricted 2-state GLM-HMM. If we consider state 1 to be “engaged” and state 2 to be 

the “lapse” state, then the state-1 GLM has weights w1 = w, and the state-2 GLM has all 

weights set to 0 except the bias weight, which is equal to −log(γl/γr). The transition matrix 

has identical rows, with probability 1 − (γr + γl) of going into state 1 and probability (γr + 

γl) of going into state 2 at the next trial, regardless of the current state. This ensures that the 

probability of a lapse on any given trial is stimulus-independent and does not depend on the 
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previous trial’s state. Fig. 1a–c shows an illustration of the classic lapse model formulated as 

a 2-state GLM-HMM.

However, there is no general reason to limit our analyses to this restricted form of the GLM-

HMM. By allowing the model to have more than two states, multiple states with non-zero 

stimulus weights, and transition probabilities that depend on the current state, we obtain a 

model family with a far richer set of dynamic decision-making behaviors. Fig. 1d shows an 

example GLM-HMM with three latent states, all of which have high probability of persisting 

for multiple trials. Intriguingly, the psychometric curve arising from this model (Fig. 1f) is 

indistinguishable from that of the classic lapse model. Thus, multiple generative processes 

can result in identical psychometric curves, and we must look beyond the psychometric 

curve if we want to gain insight into the dynamics of decision-making across trials.

2.3 Mice switch between multiple strategies.

To examine whether animals employ multiple strategies during decision-making, we fit 

the GLM-HMM to behavioral data from two binary perceptual decision-making tasks (see 

Methods 4.1). First, we fit the GLM-HMM to choice data from 37 mice performing a visual 

detection decision-making task developed in [33] and adopted by the International Brain 

Laboratory (IBL) [19]. During the task, a sinusoidal grating with contrast between 0 and 

100% appeared either on the left or right side of the screen (Fig. 2a). The mouse had to 

indicate this side by turning a wheel. If the mouse turned the wheel in the correct direction, 

it received a water reward; if incorrect, it received a noise burst and an additional 1-second 

timeout. During the first 90 trials of each session, the stimulus appeared randomly on the 

left or right side of the screen with probability 0.5. Subsequent trials were generated in 

blocks in which the stimulus appeared on one side with probability 0.8, alternating randomly 

every 20–100 trials. We analyzed data from animals with at least 3000 trials of data (across 

multiple sessions) after they had successfully learned the task (see Fig. S1, Fig. S2). For 

each animal, we considered only the data from the first 90 trials of each session, when the 

stimulus was equally likely to appear on the left or right of the screen.

We modeled the animals’ decision-making strategies using a GLM-HMM with four inputs: 

(1) the (signed) stimulus contrast, where positive values indicate a right-side grating and 

negative values indicate a left-side grating; (2) a constant offset or bias; (3) the animal’s 

choice on the previous trial; and (4) the stimulus side on the previous trial. A large weight 

on the animal’s previous choice gives rise to a strategy known as “perserveration” in which 

the animal makes the same choice many times in a row, regardless of whether it receives a 

reward. A large weight on the previous stimulus side, which we refer to as the “win-stay, 

lose-switch” regressor, gives rise to the well-known strategy in which the animal repeats 

a choice if it was rewarded, and switches choices if it was not. Note that for the IBL 

task in question, bias and trial-history dependencies were sub-optimal, meaning that the 

maximal-reward strategy was to have a large weight on the stimulus and zero weights on the 

other three inputs.

To determine the number of different strategies underlying decision-making behavior, we fit 

GLM-HMMs with varying numbers of latent states. Note that the 1-state model is simply 

a standard Bernoulli GLM, while the classic lapse model (Eq. 1, Eq. 2) is the constrained 
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2-state model mentioned previously. We found that a 3-state GLM-HMM substantially 

outperformed models with fewer states, including the classic lapse model. The states of the 

fitted model were readily interpretable, and tended to persist for many trials in a row.

Figures 2 and 3 show results for an example mouse. For this animal, the multi-state GLM-

HMM outperformed both the standard (1-state) GLM and the classic lapse model, both in 

test log-likelihood and percent correct, with the improvement approximately leveling off at 

3 latent states (Fig. 2b–c). Because the test set for this mouse contained 900 trials, test set 

log-likelihood increases of 0.13 bits/trial and 0.09 bits/trial for the 3-state model over the 

1-state model and classic lapse models, respectively, meant that the data were (20.13)900 ≈ 
1.7 × 1035 and (20.09)900 ≈ 2.4 × 1024 times more likely under the 3-state model. Note 

that while the number of model parameters increased with the number of states in the 

GLM-HMM (and a two state GLM-HMM has more parameters than both the classic lapse 

model or single state GLM), the log-likelihood of the test dataset was not guaranteed to 

increase with more states [34]. Indeed, as the number of states increased, the GLM-HMM 

could have started to overfit the training dataset causing it to fit the test dataset poorly (see 

Fig. ED1).

The transition matrix for the fitted 3-state model describes the transition probabilities 

between three different states, each of which corresponds to a different decision-making 

strategy (Fig. 2d). Large entries along the diagonal of this matrix, ranging between 0.94 

and 0.98, indicate a high probability of remaining in the same state for multiple trials. The 

other set of inferred parameters were the GLM weights, which define how the animal makes 

decisions in each state (Fig. 2e). One of these GLMs (“state 1”) had a large weight on the 

stimulus and negligible weights on other inputs, giving rise to high-accuracy performance on 

the task (Fig. 2f). The other two GLMs (“state 2” and “state 3”), by comparison, had small 

smaller weights on the stimulus, and relatively large bias weights.

We can visualize the decision-making strategies associated with these states by plotting the 

corresponding psychometric curves (Fig. 2g), which show the probability of a rightward 

choice as a function of the stimulus, conditioned on both previous choice and reward. The 

steep curve observed in state 1, which corresponds to the mouse achieving near-perfect 

performance on high-contrast stimuli, led us to adopt the name ‘engaged’ to describe this 

state. By comparison, the psychometric curves for states 2 and 3 reflected large leftward and 

rightward biases, respectively. They also had relatively large dependence on previous choice 

and reward, as indicated by the gap between solid and dashed lines. While this mouse had an 

overall accuracy of 80%, it achieved 90% accuracy in the engaged state, compared to only 

60% and 58% accuracy in the two biased states (Fig. 2f).

To gain insight into the temporal structure of decision-making behavior, we used the fitted 

3-state model to compute the posterior probability over the mouse’s latent state across all 

trials (Fig. 3). The resulting state trajectories reflect our posterior beliefs about the animal’s 

internal state on every trial, given the entire sequence of observed inputs and choices during 

a session (See Methods, Sec. 4.1.3).
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Contrary to the predictions of the classic lapse model, states tended to persist for many trials 

in a row. Remarkably, we found that the most probable state often had probability close to 

1, indicating a high degree of confidence about the mouse’s internal state given the observed 

data.

To quantify state occupancies, we assigned each trial to its most probable state, and found 

that this example mouse spent approximately 69% of all trials in the engaged state (out of 

5040 total trials over 56 sessions), compared to 15% and 16% of trials in the biased-left and 

biased-rightward states (Fig. 3c). Moreover, the mouse changed state at least once within 

a session in roughly 71% of all 90-trial sessions, and changed multiple times in 59% of 

sessions (Fig. 3d). This rules out the possibility that the states merely reflect the use of 

different strategies on different days. Rather, the mouse tended to remain in an engaged, 

high-performance state for tens of trials at a time, with lapses arising predominantly during 

interludes when it adopted a left-biased or right-biased strategy for multiple trials in a 

row. The multi-state GLM-HMM thus provides a very different portrait of mouse decision-

making behavior than the basic GLM or lapse model.

2.4 State-based strategies are consistent across mice

To assess the generality of these findings, we fit the GLM-HMM to the choice data from 

37 mice in the IBL dataset [19] (Fig. 4). We found that the results shown for the example 

animal considered above were broadly consistent across animals. Specifically, we found that 

the 3-state GLM-HMM strongly outperformed the basic GLM and classic lapse model in 

cross-validation for all 37 mice (Fig. 4a and Fig. S3). On average, it predicted mouse choices 

with 4.2% higher accuracy than the basic GLM (which had an average prediction accuracy 

of 78%), and 2.8% higher accuracy than the classic lapse model (Fig. 4b). Furthermore, for 

one animal the improvement in prediction accuracy for the 3 state GLM-HMM was as high 

as 12% relative to the basic GLM, and 7% relative to the classic lapse model.

Although performance continued to improve slightly with four and even five latent states, 

we will focus our analyses on the 3-state model for reasons of simplicity and interpretability. 

Fig. S4 provides a full analysis of 4-state model, showing that it tended to divide the 

engaged state from the 3-state model into two “sub-states” that differed slightly in bias.

Fits of the 3-state GLM-HMM exhibited remarkable consistency across mice, with a 

majority exhibiting states that could be classified as “engaged”, “biased-left”, and “biased-

right” (Fig. 4d). (See Methods section 4.1.5 for details about the alignment of states across 

mice). While we plot inferred transition matrices for all 37 mice in Fig. S5, here we used 

the diagonal elements of each matrix to compute an expected dwell time for each animal in 

each state (Fig. 4e). This revealed a median dwell time, across animals, of 24 trials for the 

engaged state, versus 13 and 12 trials for the biased-left and biased-right states, respectively. 

This description of behavior departs dramatically from the assumptions of the classic lapse 

model: for the classic lapse model and a lapse rate of 20%, the expected dwell time in 

the lapse state is just 1/(1–0.2) = 1.25 trials. We analyzed the distribution of state dwell 

times inferred from data and found they were well approximated by a geometric distribution, 

matching the theoretical distribution of data sampled from a Hidden Markov Model (Fig. 

ED2 and Fig. S6).
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We also examined the fraction of trials per session that mice spent in each of the three 

states (Fig. 4c). To do so, we used the fitted model parameters to compute the posterior 

probabilities over state, and assigned each trial to its most likely state. The resulting 

“fractional occupancies” revealed that the median mouse spent 69% of its time in the 

engaged state, with the best mice exceeding 90% engagement. Moreover, the majority of 

sessions (83% of 2017 sessions across all animals) involved a switch between two or more 

states; in only 17% of sessions did a mouse remain in the same state for an entire 90-trial 

session.

To further quantify the model’s ability to capture temporal structure of choice data, we 

examined choice run-length statistics, where runs were defined as sequences of trials in 

which the mouse repeated the same choice. We found that the IBL mice exhibited longer 

runs than if they performed the task perfectly, and the fitted GLM-HMM reproduced this 

feature more accurately than the classic model (Fig. ED8).

Finally, to make sure that the states identified by the model were not a consequence of the 

IBL mice having been previously exposed to blocks of trials with a consistent side bias (see 

Section 4.4), we examined data from 4 mice that were never exposed to “bias blocks”. In 

Fig. ED3, we show that the retrieved states, dwell times and model comparison results for 

these animals were similar to those shown in the rest of the IBL population (shown in Fig. 

4).

2.5 Data provide evidence for discrete, not continuous, states

The GLM-HMM describes perceptual decision-making in terms of discrete states that persist 

for many trials in a row before switching. However, the model’s dramatic improvement 

over classic models does not guarantee that the states underlying decision-making are 

best described as discrete. One could imagine, for example, that a state governing the 

animal’s degree of engagement drifts gradually over time, and that the GLM-HMM simply 

divides these continuous changes into discrete clusters. To address this possibility, we fit 

the data with PsyTrack, a psychophysical model with continuous latent states [35, 36]. The 

PsyTrack model describes sensory decision-making using an identical Bernoulli GLM, but 

with dynamic weights that drift according to a Gaussian random walk (see Methods sec. 

4.3).

For all 37 mice in our dataset, the 3-state GLM-HMM achieved substantially higher test 

log-likelihood than the PsyTrack model (left panel of Fig. 4f). Model selection also correctly 

identified simulated data from the GLM-HMM, whereas datasets simulated from a matched 

first-order autoregressive model had roughly equal log-likelihood under the two models 

(middle and right panels of Fig. 4f). Not only was the GLM-HMM favored over PsyTrack 

for IBL mice, but we show that it was favored over PsyTrack for the other mouse datasets 

we study in this work: see Fig. ED4. Finally, to verify that the GLM-HMM’s improved 

performance compared to PsyTrack was not merely due to the fact that the GLM-HMM does 

better at accounting for lapses, we also show the average fits of both PsyTrack and the 3 

state GLM-HMM to the empirical choice data of the example mouse in Fig. S7. Despite the 

absence of explicit lapse parameters in both of these models, both are able to capture the 

non-zero error rates of the mouse on easy trials.
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2.6 Mice switch between multiple strategies in a second task

To ensure that our findings were not specific to the IBL task or training protocol, we 

examined a second mouse dataset with a different sensory decision-making task. Odoemene 

et al. [20] trained mice to report whether the flash rate of an LED was above or below 12Hz 

by making a right or left nose poke (Fig. 5a). Once again, we found that the multi-state 

GLM-HMM provided a far more accurate description of mouse decision-making than a 

basic GLM or the classic lapse model (Fig. 5b). Although the performance of the 3-state 

and 4-state models was similar, we focused on the 4-state model because—in addition to 

having slightly higher test log-likelihood for a majority of animals (see Fig. S8 for individual 

curves)—the 4-state model balanced simplicity and interpretability, with each state in the 

4-state model corresponding to a distinct behavioral strategy. (See Fig. S9 and Fig. S10 for a 

comparison to 3-state and 5-state fits). The 4-state model exhibited an average improvement 

of 0.025 bits/trial over the classic lapse model, making the test dataset approximately 1 × 

1018 times more likely under the GLM-HMM than to the lapse model.

Fig. 5d shows the inferred GLM weights associated with each state in the 4-state GLM-

HMM. Based on the qualitative differences in the state-specific psychometric curves (Fig. 

5e), we labeled the four states as “engaged”, “biased left”, “biased right” and “win-stay”. 

The combination of stimulus and choice history weights for this fourth state gave rise to a 

large separation between psychometric curves conditioned on previous reward; the resulting 

strategy could be described as “win-stay” because the animal tended to repeat a choice if it 

was rewarded. (However, it did not tend to switch if a choice was unrewarded). Accuracy 

was highest in the engaged state (92%) and lowest in the biased-left (67%) and biased right 

states (77%). Similar to the IBL dataset, the identified states tended to persist for many trials 

in a row before switching (Fig. 5f and Fig. ED5b).

Finally, we used the fitted model to examine the temporal evolution of latent states within 

a session. Figure 5g shows the average posterior state probabilities over the first 200 trials 

in a session for two example mice and the average over all mice (Fig. ED6 shows average 

posterior state probabilities for each individual mouse in the cohort separately). These 

trajectories reveal that mice typically began a session in one of the two biased states, and 

had a low probability of entering the engaged state within the first 50 trials: mice used 

these initial trials of a session to “warm-up” and then gradually improved their performance 

[14]. This represents a substantial departure from the IBL mice, most of which had a high 

probability of engagement from the very first trial, and had relatively flat average trajectories 

over the first 90 trials of a session (Fig. 3 and Fig. S12). Note however that the warm-up 

effect was not the only form of state switching observed in the Odoemene et al mice, as the 

animals switched states multiple times per session and continued switching beyond the first 

100 trials (Fig. ED5). We also examined whether the effects of fatigue or satiety could be 

observed in the average state probabilities at the end of sessions, but did not find consistent 

patterns across animals (Fig. ED7).

2.7 External correlates of engaged and disengaged states

One powerful feature of the GLM-HMM is the fact that it can be used to identify internal 

states from binary decision-making data alone. However, it is natural to ask whether these 
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states manifest themselves in other observable aspects of mouse behavior. In other words, 

does a mouse behave differently when it is in the engaged state than in a biased state, above 

and beyond its increased probability of making a correct choice? To address this question, 

we examined response times and violation rates, two observable features that we have did 

not incorporate into the models.

Previous literature has revealed that humans and monkeys commit more errors on long 

duration trials than short duration trials [37–39]. This motivated us to examine the 

distributions of response times for the engaged state, compared to for the disengaged (left 

and right biased) states.

In the IBL dataset, we found that engaged and disengaged response time distributions were 

statistically different for all 37 mice (Komogorov-Smirnov tests reject the null hypothesis 

with p < 0.05 for all 37 mice; Fig. 6a). Examining the Q-Q plots, it was also clear that the 

most extreme response times for each animal were associated with the disengaged states 

(Fig. 6b). In the Odoemene et al. [20] dataset, we examined differences in the rate of 

violations—trials where the mouse failed to make a decision within the response period.The 

mean violation rate across all mice was 21% (much higher than the 1% violation rate 

observed in the IBL dataset), and violations were 3.2% more common in the disengaged 

states (2, 3, and 4) than in the engaged state (state 1).

2.8 State dependent decision-making in human visual task

Finally, while the primary focus of this paper is identifying the discrete latent strategies 

underpinning mouse decision-making, the GLM-HMM framework is general and can be 

used to study choice behavior across species. We, thus, applied the GLM-HMM to the 

choice behavior of humans performing the visual motion discrimination task of [27]. 

Participants had to judge the difference in motion coherence between two consecutive 

random dot kinematograms: the first kinetogram always corresponded to a reference 

stimulus with 70% motion coherence, while the second stimulus could have greater or less 

motion coherence (Figure 7a). Participants indicated the stimulus they perceived to have 

the greater motion coherence by pressing a button. Cross-validation revealed that the choice 

data of 24 out of 27 humans was better explained by a 2 or 3 state GLM-HMM compared 

to the classic lapse model (Fig. 7b–c). The mean improvement of the 2 state GLM-HMM 

compared to the classic lapse model was 0.013 bits/trial, making a test dataset of 500 trials 

90 times more likely to have been generated by a 2 state GLM-HMM than by the classic 

lapse model.

Fig. 7d shows the retrieved weights for each participant for the 2 state model (we focus 

on the 2 state model as this was the model favored by the majority of participants), while 

Fig. 7e shows the probability of the participant selecting, in each of the two states (blue 

and green curves), that the second stimulus had greater motion coherence than the first 

(choice = ‘more’) as a function of the relative motion coherence. The 2 states correspond 

to participants having a bias for selecting each of the two possible outcomes - when using 

the blue state, participants were biased toward selecting ‘more’, while participants were 

biased toward selecting ‘less’ in the green state. Fig. 7f shows the expected dwell times for 

all participants in each state, while Fig. 7g shows the empirical number of state changes 
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detected in each session (across the entire participant population). The median number of 

state changes per session was 6 switches, indicating that it is not just mice that switch 

between strategies multiple times per session. Fig. 7h illustrates the strategy changes across 

a session and shows the posterior state probabilities for 3 example sessions (for 3 different 

participants).

3 Discussion

In this work, we used the GLM-HMM framework to identify hidden states from perceptual 

decision-making data. Mouse behavior in two different perceptual decision-making tasks 

[19, 20] was far better described by a GLM-HMM with sustained engaged and biased states. 

Unlike the classic lapse model, these states alternated on the timescale of tens to hundreds of 

trials. We also applied the model to human psychophysical data [27] and found that human 

behavior was also better described by a GLM-HMM with sustained states that differed in 

bias. While it may seem obvious that mice should exhibit fluctuations in task engagement 

over time, this is a very different account of behavior to that given by the classic lapse 

model, which assumes that error trials do not occur in blocks, and are instead interspersed 

throughout a session. Furthermore, our method offers the practical benefit that it allows 

practitioners to segment trials according to the inferred behavioral strategy. Finally, it was 

not obvious that this alteration in choice policy over the course of a session should occur in 

a discrete rather than continuous manner. Comparing our results with those for PsyTrack—a 

model with continuous decision-making states—provided support for the view that mice use 

discrete rather than continuous decision-making states.

While we found similarities in the strategies pursued by mice performing the different 

visual detection tasks, we also found some differences. For example, we found that mice 

performing the Odoemene et al. [20] task used an additional ‘win-stay’ strategy that was not 

observed in the IBL mice. One possible explanation for these strategy differences is that they 

arise due to the different shaping protocols associated with the different tasks. A follow-up 

study could investigate the role of shaping on GLM-HMM behavioral strategies.

The ability to infer the state or strategy employed by an animal on a trial-by-trial basis will 

be useful for characterizing differences in performance across sessions and across animals. 

It will also provide a powerful tool for neuroscientists studying the neural mechanisms 

that support decision-making [40–46]. It may be the case that different strategies rely on 

different circuits or different patterns of neural activity [47].

Although we found evidence of warm-up behavior at the start of sessions in the Odoemene 

et al. [20] mice, we were somewhat surprised to find few signatures of satiation or fatigue 

toward the end of a session. This might be due to the fact that sessions were typically of 

fixed duration, and may have ended before mice had a chance to grow satiated or fatigued. 

One future direction will be to apply the GLM-HMM to experiments with longer sessions, 

where it may be useful for detecting changes in behavior reflecting satiety or fatigue.

Compared to the mice we studied, humans used two relatively engaged strategies 

with opposite biases when performing the perceptual decision-making task of [27]. 
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Unfortunately, it is impossible to say if the difference in strategies observed across species 

were due to species differences, or to differences in task protocol. An interesting follow-up 

experiment would be to apply the GLM-HMM to data from different species performing the 

same task.

In future work, we will aim to make explicit the connection between the ‘engaged’ and 

‘disengaged’ strategies identified by our model and existing measures of arousal and 

engagement in the literature. Identifying the relationship between the GLM-HMM’s hidden 

states and pupil diameter, low-frequency LFP oscillations, spontaneous neuronal firing, 

noise correlations and the action of neuromodulators [48–51] will be a priority.

That discrete states underpin mouse and human choice behavior may also call for new 

normative models to explain why subjects develop these states to begin with [52]. The 

existence of disengaged and engaged states could reflect explore-exploit behavior [17, 53, 

54], optimal learning (e.g., [55–58]), or could simply indicate incomplete learning of the 

task. Alternatively, if the states uncovered by our model reflect a similar phenomenon to the 

internal and external modes of sensory processing observed in [59, 60], it may be that they 

arise due to the limited information-processing capacity of the brain.

Another promising direction will be to replace the model’s fixed transition matrix with 

a generalized linear model so as to allow external covariates to modulate the probability 

of state changes[6]. This would allow us to identify the factors that influence state 

changes (e.g., a preponderance of unrewarded choices) and, potentially, seek to control such 

transitions.

While there are many avenues for future research, we believe that these results call for a 

significant rethinking of rodent and human perceptual decision-making behavior and the 

methods for analyzing it. Indeed, standard analysis methods do not take account of the 

possibility that an animal makes abrupt changes in decision-making strategy multiple times 

per session. We feel that the ability to infer internal states from choice behavior will open 

up new directions for data analysis and provide new insights into a previously inaccessible 

dimension of perceptual decision-making behavior.

4 Methods

We confirm that our research complies with all relevant ethical regulations.

4.1 Inference of GLM-HMM parameters

4.1.1 GLM-HMM objective function—When fitting the GLM-HMM, the goal is to 

learn the transition matrix A ∈ ℝK × K, the set of weights influencing choice in each 

state, wk k = 1
K  with wk ∈ ℝM, and the initial state distribution, π ∈ ℝK. We fit this set 

of parameters, collectively labeled as Θ, to choice data using Maximum A Posteriori 

(MAP) estimation. This was practically implemented by the Expectation Maximization 

(EM) algorithm [61].
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The EM algorithm has been adapted to fit Hidden Markov models with external 

inputs before [6, 31, 32]. However, there are some application-specific choices in the 

implementation, so for completeness we describe the full procedure here.

The EM algorithm seeks to maximize the log-posterior of the parameters given the choice 

and input data, D ≡ y, x t = 1
T . The log-posterior is given, up to an unknown constant, by:

log p(Θ|D) = ∑
s = 1

S
log ∑

zs
p ys, zs | xs, t t = 1

Ts , Θ + log p(Θ), (5)

where s indexes the session in which the data was collected (out of S total sessions), and the 

sum over zs is over all KTs possible latent state paths in the Ts trials of session s.

The prior distribution over the model parameters p(Θ) that we used was:

p(Θ) ≡ p wk p(A)p(π) = ∏
j = 1

K
N wj | 0, σ2I ∏

j = 1

K
Dirichlet Aj | α Dirichlet

π |απ .
(6)

The prior over the GLM weight vectors wk was thus an independent, zero-mean Gaussian 

with variance σ2. Smaller values of σ2 have the effect of shrinking the fitted weights towards 

zero, while σ2 = ∞ corresponds to a flat prior. For the transition matrix, we placed an 

independent Dirichlet prior over each row Ai, which is a natural choice for vectors on the 

unit (K − 1) simplex (i.e., all elements of the vector must be non-negative and sum to 1). The 

Dirichlet distribution is controlled by a shape parameter α: p Aj | α = 1
B(α) ∏i = 1

K Aji
α − 1. 

A value of α = 1 corresponds to a flat prior, while large values of α have the effect of 

spreading probability mass equally over states. We also placed a Dirichlet prior over the 

initial state distribution π.

In order to select the hyperparameters σ and α governing the prior, we performed a grid 

search for σ ∈ {0.5, 0.75, 1, 2, 3} and α ∈ {1, 2} and selected the hyperparameters 

that resulted in the best performance on a held-out validation set. For IBL mice, the prior 

hyperparameters selected were σ = 2 and α = 2. For mice in the Odoemene et al. [20] 

dataset, the best hyperparameters were σ = 0.75 and α = 2. Finally, for the initial state 

distribution, we set απ = 1.

4.1.2 Expectation Maximization Algorithm—We used the Expectation Maximization 

(EM) algorithm [61, 62] to maximize the log posterior given in Eq. 5 with respect to the 

GLM-HMM parameters. As the sum given in Eq. 5 involves an exponential number of 

terms—O KTs  terms to be specific—we don’t maximize this expression directly. Instead, 

the EM algorithm provides an efficient way to compute this term using a single forward 

and backward pass over the data. During the E-step of the EM algorithm we compute 

the “Expected Complete-Data log-likelihood” (ECLL), which is a lower bound on the right-

hand side of Eq. 5 [61–63]. Then, during the ‘Maximization’ or M-step of the algorithm, 

we maximize the ECLL with respect to the model parameters, Θ. It can be shown that this 
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procedure has the effect of always improving the log posterior in each step of the algorithm 

[63].

Concretely, the ECLL can be written as a sum over the ECLLs for each session and the 

log-prior. The ECLL for a single session s can be written

ECLLs(Θ) ≡ ∑
zs

p zs |Ds, Θold log p ys, zs |Θ, xs, t t = 1
Ts

= ∑
k = 1

K
γs, 1, k log πk + ∑

t = 1

Ts
∑
j = 1

K
∑

k = 1

K
ξs, t, j, k log Ajk

+ ∑
t = 1

Ts
∑

k = 1

K
γs, t, k log p ys, t | zs, t = k, xs, t, wk

(7)

In order to get to the second line, we substituted the definition of the joint distribution for the 

GLM-HMM:

p ys, zs | xs, t t = 1
Ts , Θ ≡ p z1 p y1 | z1, x1 ∏

t = 2

Ts
p zt | zt − 1 p yt | zt, xt . (8)

In Eq. 7, p(ys,t|zs,t = k, xs,t, wk) is the Bernoulli GLM distribution given by Eq. 4. Finally,

γs, t, k ≡ p zs, t = k|Ds, Θold
(9)

is the posterior state probability at trial t (in session s) for state k, while

ξs, t, j, k ≡ p zs, t + 1 = k|zs, t = j, Ds, Θold
(10)

is the joint posterior state distribution for two consecutive latents.

While the formula for the log posterior (Eq. 5) involved the sum over all possible state 

assignments at each trial, by taking advantage of the structure of the joint probability 

distribution for the GLM-HMM (Eq. 8), this sum was implemented efficiently and Eq. 7 

involves summing over at most O(K2Ts) elements.

The single and joint posterior state probabilities, γs,t,k and ξs,t,k, are estimated via the 

forward-backward algorithm, which we describe below.

4.1.3 Expectation Step: Forward-Backward Algorithm—During the E-Step of the 

EM algorithm, the single and joint posterior state probabilities for all trials and states, 

{γs,t,k} and {ξs,t,j,k}, are estimated using the forward-backward algorithm [64] at the current 

setting of the GLM-HMM parameters, Θold.

The forward-backward algorithm makes use of recursion and memoization to allow these 

posterior probabilities to be calculated efficiently, with the forward and backward passes of 

the algorithm each requiring just a single pass through all trials within a session.
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The goal of the forward pass is to obtain, for each trial t within session s and each state k, 

the quantity

as, t, k ≡ p ys, [1: t], zs, t | xt′ t′ = 1
t , (11)

which represents the posterior probability of the choice data up until trial t and the latent 

state at trial t being state k.

The posterior probability associated with trial 1, as,1,k, can be calculated as follows:

as, 1, k = πkp ys, 1 | zs, 1 = k, xs, 1, wk , (12)

where p(ys,1|zs,1 = k, xs,1, wk) is the usual Bernoulli GLM distribution.

For trials 1 < t ≤ Ts, we can obtain these probabilities as follows:

as, t, k = ∑
j = 1

K
as, t − 1, jAjkp ys, t | zs, t = k, xs, t, wk . (13)

During the backward pass, the goal is to calculate the posterior probability of the choice data 

beyond the current trial, bs,t,k, for each trial t within session s and for all states, k:

bs, t, k ≡ p ys, t + 1:Ts | zs, t = k, xt′ t′ = t + 1
Ts . (14)

Similar to the forward pass, these quantities can be calculated efficiently by recognizing that

bs, Ts, k = 1 (15)

and, for t ∈ {Ts − 1, …, 1}:

bs, t, j = ∑
k = 1

K
bs, t + 1, kAjkp ys, t + 1 | zs, t + 1 = k, xs, t + 1, wk . (16)

From the as,t,k and bs,t,k quantities obtained via the forward-backward algorithm, we can 

form the single and joint posterior state probabilities, γs,t,k and ξs,t,j,k, that we actually care 

about for forming the ECLL of Eq. 7 as follows:

γs, t, k ≡ p zs, t = k|ys, xs, t t = 1
Ts , Θold

=
p ys, [0: t], zs, t = k| xs, t′ t′ = 1

t , Θold p ys, t + 1:Ts |zs, t = k, xs, t′ t′ = t + 1
Ts , Θold

p ys | xs, t t = 1
Ts , Θold

= as, t, kbs, t, k
∑k = 1

K as, Ts, k
.

(17)

Similarly,

Ashwood et al. Page 15

Nat Neurosci. Author manuscript; available in PMC 2022 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ξs, t, j, k = as, t, jAjkbs, t + 1, kp ys, t + 1 | zt + 1 = k, xt + 1, wk
∑k = 1

K as, Ts, k
(18)

where, once again, p(ys,t+1|zt+1 = k, xt+1, wk) is the Bernoulli GLM distribution.

4.1.4 Maximization Step—After running the forward-backward algorithm, we can 

compute the total ECLL by summing over the per-session ECLLs (Eq. 7) and adding the 

log prior. During the M-step, we maximize the ECLL with respect to the GLM-HMM 

parameters, Θ. For the initial state distribution π and the transition matrix A, this results in 

the closed-form updates:

πk
new =

∑s = 1
S γs, 1, k

∑s = 1
S ∑j = 1

K γs, 1, j
(19)

Ajk
new =

α − 1 + ∑s = 1
S ∑t = 2

Ts ξs, t, j, k

K(α − 1) + ∑s = 1
S ∑t = 2

Ts ∑k = 1
K ξs, t, j, k

. (20)

For the GLM weights, there is no such closed form update, but a Bernoulli GLM falls into 

the class of functions mapping external inputs to HMM emission probabilities considered 

in [31], so we know that the ECLL is concave in the GLM weights. As such, we can 

numerically find the GLM weights that maximize (not just locally but globally) the ECLL 

using the BFGS algorithm [65–68] as implemented by the scipy optimize function in python 

[69].

4.1.5 Comparing states across animals and GLM-HMM parameter 
initialization—In Fig. 4 and Fig. 5, we show the results from fitting a single GLM-HMM 

to each animal; however it is nontrivial to map the retrieved states across animals to one 

another. As such, we employed a multistage fitting procedure that allowed us to make this 

comparison, and we detail this procedure in Algorithm 1. In the first stage, we concatenated 

the data for all animals in a single dataset together (for the IBL dataset, this would be the 

data for all 37 animals). We then fit a GLM (a 1 state GLM-HMM) to the concatenated 

data using Maximum Likelihood estimation. We used the fit GLM weights to initialize the 

GLM weights of a K-state GLM-HMM that we again fit to the concatenated dataset from 

all animals together (to obtain a “global fit”). We added Gaussian noise with σinit = 0.2 to 

the GLM weights, so that the initialized states were distinct, and we initialized the transition 

matrix of the K-State GLM-HMM as 0.95 × 1 + N 0, Σtrans.  where Σtrans. ∈ ℝK2 × K2
 and 

Σtrans. = 0.05 × 1. We then normalized this so that that rows of the transition matrix added 

up to 1, and represented probabilities. While the EM algorithm is guaranteed to converge to 

a local optimum in the log probability landscape of Eq. 5, there is no guarantee that it will 

converge to the global optimum [70]. Correspondingly, for each value of K, we fit the model 

20 times using 20 different initializations.
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In the next stage of the fitting procedure, we wanted to obtain a separate GLM-HMM fit 

for each animal, so we initialized a model for each animal with the GLM-HMM global 

fit parameters from all animals together (out of the 20 initializations, we chose the model 

that resulted in the best training set log-likelihood). We then ran the EM algorithm to 

convergence; it is these recovered parameters that are shown in Fig. 4 and Fig. 5. By 

initializing each individual animal’s model with the parameters from the fit to all animals 

together, it was no longer necessary for us to permute the retrieved states from each animal 

so as to map semantically similar states to one another.

We note that the initialization scheme detailed above is sufficiently robust so as to allow 

recovery of GLM-HMM parameters in various parameter regimes of interest. In particular, 

we simulated datasets from a GLM-HMM with the global fit parameters for both the IBL 

and Odoemene et al. [20] datasets, as well as a global fit lapse model. We show the results of 

these recovery analyses in Fig. ED9 and Fig. ED10.

4.2 Assessing Model Performance

4.2.1 Cross Validation—There are two ways in which to perform cross-validation when 

working with Hidden Markov Models. Firstly, it is possible to hold out entire sessions of 

choice data for assessing test-set performance. That is, when fitting the model, the objective 

function in Eq. 5 and the ECLL in Eq. 7 are modified to only include 80% of sessions (since 

we use 5-fold cross-validation throughout this work); and the log-likelihood of the held-out 

20% of sessions is calculated using the fit parameters, and a single run of the forward-pass 

on the held-out sessions:

LLtest ≡ ∑
s ∈ S\S′

log p ys | xs, t t = 1
T , Θ′ = log ∑

s ∈ S′
∑

k = 1

K
as, T , k (21)

where S \ S′ is the set of held out sessions, and Θ′ is the set of GLM-HMM parameters 

obtained by fitting the model using the trials from S′.

The second method of performing cross-validation involves holding out 20% of trials 

within a session. When fitting the model, the third term in the ECLL is modified so as 

to exclude these trials and is now ∑t ∈ T′ ∑k = 1
K γs, t, k log p ys, t, k | zs, t = k, xs, twk , where T′ 

is the set of trials to be used to fit the model. Furthermore, the calculation of the posterior 

state probabilities, γs,t,k and ξs,t,j,k, is also modified so as to exclude the test set choice 

data. In particular, γs,t,k is now p zs, t | ys, t′ t′ ∈ T′, xs, t′ t′ ∈ T′, Θold  and similarly ξs,t,j,k is 
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now p zs, t + 1 = k|zs, t = j, ys, t′ t′ ∈ T′, xs, t′ t′ ∈ T′, Θold . The method of calculating these 

modified posterior probabilities is as detailed in Eq. 17 and Eq. 18, but now the calculation 

of the forward and backward probabilities, as,t,k and bs,t,k in Eq. 12, Eq. 13, Eq. 15 and Eq. 

16 is modified so that, on trials that are identified as test trials, the p(ys,t|zs,t = k, xs,t, wk) 

term in these equations is replaced with 1.

In Fig. 2, Fig. 4 and Fig. 5, we perform cross-validation by holding out entire sessions. We 

believed it would be harder to make good predictions on entire held out sessions, compared 

to single trials within a session, as we thought that mice would exhibit more variability in 

behavior across sessions compared to within sessions. When we compare the performance of 

the GLM-HMM against the PsyTrack model of [35] in Fig. 4f, we use the second method of 

cross-validation so as to use the same train and test sets as PsyTrack (PsyTrack cannot make 

predictions on entire held-out sessions).

4.2.2 Units for test set log-likelihood—In Fig. 2, Fig. 4, Fig. 5 and Fig. 7, as well as 

in some supplementary figures, we report the log-likelihood of different models on held-out 

sessions in units of bits per trial. This is calculated as follows:

LLbits per trial = LLtest − LL0
ntest log(2) (22)

where, for the GLM-HMM, LLtest is the log-likelihood of the entire test set as calculated in 

Eq. 21, and LL0 is the log-likelihood of the same test set under a Bernoulli model of animal 

choice behavior. Specifically, this baseline model assumes that animals flip a coin on each 

trial so as to decide to go Right, and the probability of going Right is equal to the fraction 

of trials in the training set in which the animal chose to go to the Right. ntest is the number 

of trials in the test set, and is important to include since LLtest depends on the number of 

trials in the test set. Dividing by log(2) gives the log-likelihood the units of bits per trial. 

Clearly, larger values of the log-likelihood are better, with a value of 0 indicating that a 

model offers no improvement in prediction compared to the crude baseline model described 

above. However, even small values of test set log-likelihood, when reported in units of bits 

per trial, can indicate a large improvement in predictive power. For a test set size of ntest = 

500, a log-likelihood value of 0.01 bits/trial indicates that the test data is 31.5 times more 

likely to have been generated with the GLM-HMM compared to the baseline model. For a 

test set of ntest = 5000, and the same value of 0.01 bits/trial for the log-likelihood, the test set 

becomes 1×1015 times more likely under the GLM-HMM compared to the baseline model!

4.2.3 Predictive Accuracy—In Fig. 2, Fig. 4 and Fig. 5, we also report the predictive 

accuracy of the GLM-HMM. When calculating the predictive accuracy, we employ a method 

similar to the second method described above in section 4.2.1. In particular, we hold out 

20% of trials and then obtain the posterior state probabilities for these trials, t″ ∈ {T \ T′}, 

γs, t″, k = p zs, t″ | ys, t′ t′ ∈ T′, xs, t′ t′ ∈ T′, Θ  as, using the other 80% of trials (this latter set 

of trials being labeled T′). We then calculate the probability of the held-out choices being to 

go Right as:
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pR, s, t″ ≡ p ys, t″ = 1| ys, t′ t′ ∈ T′, xs, t′ t′ ∈ T′, xs, t″, Θ

= ∑
k = 1

k
γs, t″, k p ys, t″ = 1|zs, t″ = k, xs, t″, wk

(23)

We then calculate the predictive accuracy as:

predictive accuracy
=

∑t′′ ∈ T \T ′ 1 ys, t′′ = 1 1 pR, s, t′′ > 0.5 + 1 ys, t′′ = 0 1 pR, s, t′′ ≤ 0.5
T \T ′

(24)

4.3 Comparison with PsyTrack Model of Roy et al.

The PsyTrack model of Roy et al. [36] assumes an animal makes its choice at trial t 
according to

p yt = 1|xt = 1
1 + e−wt ⋅ xt (25)

where wt evolves according to

wt = wt − 1 + ηt (26)

where ηt N 0, diag σ1
2, …, σM

2  and w0 N 0, diag σinit , 1
2 , …, σinit , M

2 . Specifically, the animal 

is assumed to use a set of slowly changing weights to make its decision on each trial.

In order to perform model comparison with the PsyTrack model of [35, 36], we utilized the 

code provided at https://github.com/nicholas-roy/psytrack (version 1.3).

4.3.1 Simulating Choice Data with AR(1) Model for Weights—While the GLM-

HMM is a generative model that can be readily used to simulate choice data that resembles, 

in accuracy and in the resulting psychometric curves, the choice data of real animals, this 

is not true for the PsyTrack model of [35, 36]. Indeed, specifying only the σinit, m
2 , σm2

hyperparameters of that model and then generating weights according to Eq. 26 and choice 

data according to Eq. 25 will likely result in choice behavior that is vastly different from that 

of real animals (the PsyTrack model is underconstrained as a generative model). As such, so 

as to produce the rightmost panel of Fig. 4f, we simulated smoothly evolving weights from 

an AR(1) model where the parameters of this model were obtained using the PsyTrack fits 

to real data. Specifically, we assumed that the probability of going rightward at time t was 

given by:

p yt = 1|wt, xt = 1
1 + e−wt ⋅ xt (27)

and we assumed that the weights evolved according to an AR(1) process as follows:
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wm, t = αmwm, t − 1 + 1 − αm mm
PsyTrack + ηm, t (28)

where wm,t is the mth element of wt in Eq. 27 and wm
PsyTrack is the average weight that 

an animal places on covariate m across all trials when fit with the PsyTrack model: 

wm
PsyTrack = 1

T ∑twt, m
PsyTrack. We obtained αm by regressing wt, m

PsyTrack against wt − 1, m
PsyTrack and 

taking the retrieved slope (after confirming that the retrieved slope had a magnitude of less 

than 1, so as to ensure that the weights did not diverge as t → ∞). ηm, t N 0, σm
2 , where 

σm
2 = 1 − αm2 σm2  and σm2  was obtained from the PsyTrack fit to an animal’s real choice data. 

Finally, we set w0 = 0.

We simulated weight trajectories for thousands of trials for each animal, so that the AR(1) 

process reached the stationary regime for each covariate, and so that the mean, variance 

and autocovariance of each weight for each covariate were close to those returned by the 

PsyTrack fits to the real choice data.

4.4 Datasets studied

In this paper, we applied the GLM-HMM to three publicly available behavioral datasets 

associated with recent publications. Firstly, we studied the data associated with [19] that is 

made available via figshare at https://doi.org/10.6084/m9.figshare.11636748. We used the 

framework developed in [71] to access the data. We modeled the choice data for the 37 

animals in this dataset which had more than 30 sessions of data during the ‘bias block’ 

regime. We focused on this regime because of the fact that mice, when they have reached 

this regime, understand the rules of the task and exhibit stationary behavior (see Fig. S1 

for plots of accuracy against session identity for each animal, as well as Fig. S2 for the 

psychometric curves for these animals for the trials studied). For each session, we subset 

to the first 90 trials of data because, during these trials, the stimulus was equally likely to 

appear on the left or right of the screen. After the first 90 trials, the structure of the task 

changed and for a block of trials, the stimulus appeared on the left with a probability of 

either 80% or 20%; the block identity switched multiple times throughout a session, so that 

80% and 20% blocks were interleaved. We subset to the animals with more than 30 sessions 

of data because we were able to confidently recover GLM-HMM and lapse model generative 

parameters when we simulated datasets with this number of trials: see Figures Fig. ED9 

and Fig. ED10. As a sanity check to make sure that the recovered states and transitions 

were not a consequence of the animals we study having been exposed to bias blocks in 

earlier sessions, we obtained data for 4 animals that were never exposed to bias blocks (not 

included in the publicly released dataset) and fit the GLM-HMM to the choice data for these 

animals. In Fig. ED3, we show that the retrieved states, dwell times and model comparison 

results for these animals look very similar to those shown in Fig. 4.

The second dataset that we studied was that associated with [20], with the data being 

made available at https://doi.org/10.14224/1.38944. Once again, we studied sessions after 

animals had learned the task (see Fig. S13 and Fig. S14). For this dataset, the retrieved 

states were less distinct compared to those for the IBL dataset, and as such, we required 
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more trials to be able to recover the generative parameters in simulated data: see Fig. ED9. 

We thus subset to the 15 animals with more than 20 sessions of data and 12,000 trials of 

data. Compared to the IBL dataset, where the violation rate across all animals’ data was 

less than 1% of trials (where a violation is where the animal chose not to respond), the 

violation rate across the 15 animals that we studied from this second dataset was 21%. 

Thus, it was important to develop a principled method for dealing with violation trials. 

We treated violation trials as trials with missing choice data, and we handled these trials 

in a similar way to how we handled test data when performing the second type of cross-

validation described in section 4.2.1 above. That is, we modified the third term of the ECLL 

given in Eq. 7 to exclude violation trials, and we modified the definition of the posterior 

state probabilities for these trials to be γs, t, k = p zs, t | ys, t′ t′ ∈ T′, xs, t′ t′ ∈ T′, Θold 

and ξs, t, j, k = p zs, t + 1 = k|zs, t = j, ys, t′ t′ ∈ T′, xs, t′ t′ ∈ T′, Θold , where T′, rather than 

representing the training set data, is now the set of non-violation trials. The calculation 

of the forward and backward probabilities, as,t,k and bs,t,k, was modified so that, on violation 

trials, in Eq. 12, Eq. 13, Eq. 15 and Eq. 16, the p(ys,t|zs,t = k, xs,t, wk) term was replaced with 

1.

Finally, the third dataset that we studied was the human dataset associated with [27], with 

the data being made available at https://doi.org/10.6084/m9.figshare.4300043. We applied 

the GLM-HMM to the data from all 27 participants in this dataset. This dataset has 5 

sessions, each of approximately 500 trials, for each participant and does not include the 

initial session that was used to teach participants how to perform this task.

4.4.1 Forming the Design Matrix—Each of the models discussed in this paper (GLM-

HMM, the classic lapse model, the PsyTrack model of Roy et al. [36]) were fit using a 

design matrix of covariates, X ∈ ℝT × M, where T was the number of trials of choice data 

for a particular animal. A single row in this matrix was the vector of covariates, xt ∈ ℝM, 

influencing the animal’s choice at trial t. For all analyses presented in text, unless specified 

otherwise, M = 4.

For both tasks, the first column in the design matrix was the z-scored stimulus intensity. For 

the IBL task, we calculated the stimulus intensity as the difference in the value of the visual 

contrast on the right side of the screen minus the visual contrast on the left of the screen. 

This resulted in 9 different values for the ‘signed contrast’: {−100, −25, −12.5, −6.25, 0, 

6.25, 12.5, 25, 100}. We then z-scored this difference quantity across all trials. For the 

Odoemene et al. [20] task, we subtracted the 12Hz threshold from the flash rate presented on 

each trial and then z-scored the resulting quantity. For the human dataset [27], we z-scored 

the relative motionstrength presented on each trial.

For all trials, all animals and both tasks, the second column of the design matrix was 

set to 1, so as to enable us to capture the animal’s innate bias for going rightward or 

leftward. The third column in the design matrix was the animal’s choice on the previous 

trial Xt, 3 ≡ 2yt − 1 − 1. Whereas yt−1 ∈ {0, 1}, Xt,3 ∈ {−1, 1}. It is not strictly necessary 

to perform this scaling, but we did so to ensure that the range of values for X:,1 and 

X:,3 were more similar (which can be useful when performing parameter optimization). 
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Finally, the fourth column in the design matrix was the win-stay-lose-switch covariate, 

which was calculated as X: , 4 ≡ rt − 1 × 2yt − 1 − 1 , where rt−1 ∈ {−1, 1} was a binary 

variable indicating whether or not the animal was rewarded on the previous trial. Again X:,4 

∈ {−1, 1}.

4.4.2 Response time data—In Fig. 6, we analyzed response times for IBL animals, as 

reaction time data was unavailable for most sessions. The mouse’s response time is the time 

from the stimulus onset to the time at which it received feedback on its decision (receiving 

its reward/hearing an auditory cue to indicate an error trial). In comparison, a reaction time 

for the IBL task is the time from the stimulus appearing on the screen to the mouse moving 

the wheel for the first time in the direction of its decision. Response times ranged from a few 

hundred milliseconds to 10 seconds in the most extreme case, while typical reaction times 

(calculated on a few sessions for which we had reliable data) tended to be on the order of a 

few hundred milliseconds. Relative to other tasks, the IBL task is a task that results in short 

reaction times.

4.4.3 Data Availability—The raw data studied in this paper is publicly available: 

the IBL data associated with [19] can be accessed at https://doi.org/10.6084/

m9.figshare.11636748. The Odoemene et al. data associated with [20] can be accessed 

at https://doi.org/10.14224/1.38944. Finally, the human data associated with [27] can be 

accessed at https://doi.org/10.6084/m9.figshare.4300043.

4.5 Code availability

We contributed code to version 0.0.1 of the Bayesian State Space Modeling framework of 

[72] and we use this code base to perform GLM-HMM inference. The code to analyze the 

resulting model fits and to produce the figures in this paper is available at https://github.com/

zashwood/glm-hmm.

4.6 Statistics and Reproducibility

We examined the choice data of animals in the IBL dataset with more than 3000 trials of 

data. In the case of Odoemene et al. animals, we required 12,000 trials of data. As detailed 

in the Methods section, as well as in the supplementary information, we determined that 

these numbers were sufficient because we found that we could successfully recover the 

generative parameters of a GLM-HMM in simulated data in the two different parameter 

regimes with these numbers of trials. All animals with the requisite number of trials of 

data were included in the analyses we present in the paper. Each experiment presented in 

the paper was repeated in multiple animals (37 in the case of the IBL dataset, 15 for the 

Odoemene et al. dataset and 27 in the case of the Urai et al. human dataset). The effects 

identified were largely consistent across subjects: the choice data for all 37 IBL animals, 

15 Odoemene et al. mice and for 24 out of the 27 humans were better explained by a 

GLM-HMM compared to a classic lapse model. Analysis was performed with code that is 

freely available to promote replication. We randomized the allocation of sessions to folds for 

each animal when performing 5-fold cross-validation. Blinding was not performed. All trials 

from animals with the requisite number of trials were analyzed; blinding was not necessary 
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as cross-validation ensured that the results were not due to the particular choice of train/test 

split.

Extended Data

Figure ED1: Cross-validation for Model Selection.
(a,b) Here we show the cross-validated train and test loglikelihood in units of bits per trial 

for two humans performing the task of [27] as a function of the number of states. While 

the number of parameters of the GLM-HMM increases as the number of states is increased 

(and a two state GLM-HMM has more parameters than both the classic lapse model and 

single state GLM), only the loglikelihood of the training dataset (red) is guaranteed to 

increase as the number of parameters increases. Indeed, as the number of states increases, 

the GLM-HMM may start to overfit the training dataset causing it to fit the test dataset 

poorly. This is what we see here when the grey curves begin to decrease in each of the 

two figures as the number of states increases. Thus, by observing the performance of the 

model on a test dataset, we can appropriately trade off predictive performance with model 

complexity.
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Figure ED2: Retrieved state dwell times are approximately geometrically distributed.
With the solid line, we show the predicted dwell times (according to the retrieved transition 

matrix) in each of the three states for the example animal of Fig. 2 and Fig. 3. Predicted 

dwell times can be obtained from the transition matrix as p(dwell time = t) = 1 − Akk Akk
t − 1

because state dwell times in the Hidden Markov Model are geometrically distributed. We 

then use the posterior state probabilities to assign states to trials in order to calculate the 

dwell times that are actually observed in the real data (shown with the dashed line); we 

also show the 68% confidence intervals associated with these empirical probabilities (n is 

between 36 and 86, depending on state). We find that the empirical dwell times for the 

biased leftward and rightward states seem to be geometrically distributed. For the engaged 

state, because there are some entire sessions (each session is 90 trials) during which the 

animal is engaged, we see that the empirical dwell times associated with this state are 

not as well described by a geometric distribution. A future direction may be to allow 

non-geometrically distributed state dwell times by replacing the Hidden Markov Model with 

e.g. the Hidden semi-Markov Model [0].
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Figure ED3: GLM-HMM application to 4 mice not exposed to bias blocks in IBL task.
We confirm that mice that have never been exposed to bias blocks in the IBL task continue 

to show state-dependent decision-making. This is a sister figure to Fig. 4, and each panel can 

be interpreted in the same way as in Fig. 4.
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Figure ED4: Additional comparisons with PsyTrack model.
(a) Copy of left panel from Fig. 4f showing the difference in test set loglikelihood for 37 

IBL animals for the 3 state GLM-HMM compared to the PsyTrack model of [35, 36]. Black 

indicates the mean across animals. The 3 state GLM-HMM better explained the choice data 

of all 37 animals compared to the PsyTrack model with continuously evolving states. (b) 
Analogous figure for the 4 additional IBL animals studied in Fig. ED3. All 4 animals’ data 

were better explained by the GLM-HMM compared to PsyTrack. (c) Same as in panel a 

for Odoemene et al. animals shown in Fig. 5, although comparison now utilizes 4 state 

GLM-HMM fits. All 15 animals’ data were better explained by the GLM-HMM compared 

to PsyTrack.
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Figure ED5: State switching in Odoemene et al. task.
(a) Posterior state probabilities for three example sessions for three example mice (different 

mice are shown in each row). (b) Histogram giving number of state changes (identified with 

posterior state probabilities) per session for all sessions across all animals. For visibility, 

state changes are censored above 60. (c) Different sessions have different numbers of trials, 

so we normalize the histogram of b to give the number of state changes per 500 trials for 

each session (the median session length is 683 trials). Again, for visibility, state changes are 

censored above 60. Left: we use all data from all trials to generate the normalized histogram. 

Right: we plot the normalized histogram when we exclude the first 100 trials of a session. 

As can be observed, the left and right normalized histograms are very similar (p-value = 0.96 

using KS-test). While the GLM-HMM is able to capture “warm-up” effects (as described in 

the main text), this test reveals that the GLM-HMM is able to capture more than this, and 
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state switching occurs much later in the session too (as also indicated by the posterior state 

probabilities shown in a).

Figure ED6: GLM-HMM captures ‘warm-up’ effect for Odoemene et al. animals.
Average (across 20 sessions) posterior state probabilities for the first 200 trials of a session 

for each animal in the Odoemene et al. dataset. Orange corresponds to the engaged state, 

green to the biased left, blue to the biased right and pink to the win-stay state from Fig. 5. 

Error bars represent standard errors.
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Figure ED7: GLM-HMM posterior state probabilities at end of session.
Average (across 20 sessions) posterior state probabilities for the last 200 trials of a session 

for each animal in the Odoemene et al. dataset. Orange corresponds to the engaged state, 

green to the biased left, blue to the biased right and pink to the win-stay state from Fig. 5. 

Error bars represent standard errors.
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Figure ED8: Simulated data from GLM-HMM captures statistics of real choice data.
(a) Definition of choice run-length. Shown are the choices that an IBL mouse made over 

the course of 30 trials (red, bottom), as well as the choices it should have made during that 

same time course if the mouse performed the task perfectly (grey, top). Choice run-length is 

defined as the number of trials during which a mouse repeated the same decision (example 

choice run-lengths of 2, 3 and 9 trials are highlighted). (b) Red: fraction of trials in choice 

run-lengths of between 1 and 30 trials when calculated from all trials for all mice. Grey: 

distribution of choice run-lengths that would have been obtained if IBL mice performed the 

task perfectly. (c) Difference in choice run-length distribution for simulated data (from three 

different models) compared to the red distribution shown in (b). Models used to simulate 

data were a lapse model with only stimulus intensity and bias regressors, a lapse model that 

also included history regressors (previous choice and win-stay-lose-switch), and a 3 state 

GLM-HMM (also with history regressors). We simulated 100 example choice sequences 

from each model and calculated the mean histogram of choice run-lengths across the 100 

simulations. This was then subtracted from the red histogram of (b). (d) Number of choice 

run-lengths with more than 5 trials for each model simulation used in (c). In the 181,530 

trials of real choice data, there were 6111 run-lengths lasting more than 5 trials (as shown 

with the dashed line). When we simulated choice data according to each of the models 

shown in (c), we found that only the GLM-HMM could generate simulations with as many 

run-lengths lasting more than 5 trials as in the real data (15/100 simulations had 6111 or 
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more run-lengths lasting more than 5 trials for the GLM-HMM compared to 0/100 for both 

of the lapse models).

Figure ED9: GLM-HMM Recovery Analysis 1.
For dataset sizes comparable to those of real animals, we can recover the IBL and 

Odoemene global parameters in simulated data. (a) Dataset sizes for each of the 37 IBL 

animals studied (left) and 15 mice from Odoemene et al. (right). The dashed vertical line 

indicates the number of trials that we used in simulation data in panels b, c and d (3240 

for the IBL parameter regime and 12000 for the Odoemene regime simulation). (b) Test set 

loglikelihood for each of 5 simulations is maximized at 3 states (blue vertical line) after 

we simulate according to the (IBL regime) parameters shown in panel c. Similarly, in the 

right panel, test set loglikelihood is maximized at 4 states when we simulate choice data 

with the (Odoemene regime) parameters shown in panel d. The thick black line marked 
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as ‘ex. sim.’ (example simulation) indicates the simulation whose generative and recovered 

parameters we show in panels c and d. (c) Left: the generative and recovered GLM weights 

(for the simulation marked as ‘ex. sim.’ in panel b) when we simulate choice data in the 

IBL parameter regime. Middle and right: the generative and recovered transition matrices. 

(d) The generative and recovered parameters in the Odoemene et al. parameter regime.

Figure ED10: GLM-HMM Recovery Analysis 2: We can recover lapse behavior.
(a) We simulate 5 datasets, each with 3240 trials, according to the best fitting lapse model 

for IBL animals. We then fit these simulated datasets with GLM-HMMs, as well as a lapse 

model (a constrained 2 state GLM-HMM). The test set loglikelihood is highest for the 

lapse model in all simulations, indicating that lapse behavior can be distinguished from the 

long-enduring multi-state behavior that best described the real data. The thick black line 

marked as ‘ex. sim.’ (example simulation) indicates the simulation whose generative and 

recovered parameters we show in panels b and c. (b) Left: the generative and recovered 

weights when recovery is with a lapse model. Right: the generative weights are the same 

as in the left panel, but we now recover with an unconstrained 2 state GLM-HMM (thus 

the stimulus, previous choice and w.s.l.s. weights for the second state can be non-zero) (c) 
The generative (left) transition matrix and the recovered transition matrices when we recover 

with a lapse model (middle) and an unconstrained 2 state GLM-HMM (right). While the 

Ashwood et al. Page 32

Nat Neurosci. Author manuscript; available in PMC 2022 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lapse model and 2 state GLM-HMM results don’t perfectly agree, if mice were truly lapsing, 

the transition matrix would not have the large entries on the diagonals that we observe in the 

real data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The GLM-HMM generalizes the classic lapse model.
(a) The classic lapse model formulated as a 2-state GLM-HMM. Each box represents a 

generalized linear model (GLM) describing how the probability of a binary choice depends 

on the stimulus in the corresponding state: “engaged” (left) or “lapse” (right). Arrows 

between boxes indicate the transition probabilities between states. Note that the probability 

of switching to the engaged state at the next trial is always 0.8 (it is independent of state at 

the current trial) and similarly there is always a 0.2 probability of entering the lapse state 

on each trial. (b) An example (simulated) sequence for the animal’s internal state when 

the transitions between states are governed by the probabilities in (a). Notice that the lapse 

state tends to last for only a single trial at a time. (c) Psychometric function arising from 

the model shown in (a), depicting the probability of a rightward choice as a function of the 

stimulus. The parameters γr and γl denote the probability of a rightward and leftward lapse, 

respectively. As specified by the transition probabilities in (a), the total lapse probability for 

this model is γr + γl = 0.2. (d) Example 3-state GLM-HMM, with three different GLMs 

corresponding to different decision-making strategies (labeled “engaged”, “disengaged” and 

“right biased”). Note: these are just example states for the 3-state GLM-HMM. In reality, 

we will learn the states that best describe each animal’s choice data using the process 

described in Section 4.1. The high self-transition probabilities of 0.95, 0.86 and 0.75 ensure 

that these states typically persist for many trials in a row. (e) An example sequence for the 

animal’s internal state sampled from the GLM-HMM shown in (d). (f) The psychometric 

curve arising from the model shown in (d), which corresponds to a weighted average of the 

psychometric functions associated with each state. Note that although the decision-making 

models shown in (a) and (d) are vastly different, the resulting psychometric curves are nearly 

identical, meaning that the psychometric curve alone cannot be used to distinguish them.
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Figure 2: GLM-HMM analysis of choice behavior of an example IBL mouse.
(a) Schematic for visual decision-making task, which involved turning a wheel to indicate 

whether a Gabor patch stimulus appeared on the left or right side of the screen [19, 33]. 

(b) Model comparison between GLM-HMMs with different numbers of latent states, as well 

as classic lapse model (labeled ‘L’) using 5-fold cross-validation. Test set log-likelihood 

is reported in units of bits/trial and was computed relative to a ‘null’ Bernoulli coin flip 

model (see Section 4.2.2). A black rectangle highlights the log-likelihood for the 3-state 

model, which we used for all subsequent analyses. (c) Test set predictive accuracy for each 

model, indicating the percent of held-out trials where the model successfully predicted the 

mouse’s true choice. (d) Inferred transition matrix for best-fitting 3 state GLM-HMM for 

this mouse. Large entries along the diagonal indicate a high probability of remaining in 

the same state. (e) Inferred GLM weights for the 3-state model. State 1 weights have a 

large weight on the stimulus, indicating an “engaged” or high-accuracy state. In states 2 
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and 3, the stimulus weight is small, and the bias weights give rise to large leftward (state 

2) and rightward (state 3) biases. (f) Overall accuracy of this mouse (grey), and accuracy 

for each of the three states. (g) Psychometric curve for each state, conditioned on previous 

reward and previous choice. (h) The standard psychometric curve for all choice data from 

this mouse, which can be seen to arise from the mixture of the three per-state curves shown 

in panel g. Using the fit GLM-HMM parameters for this animal and the true sequence of 

stimuli presented to the mouse, we generated a time series with the same number of trials as 

those that the example mouse had in its dataset. At each trial, regardless of the true stimulus 

presented, we calculated pt(“R”) for each of the 9 possible stimuli by averaging the per-state 

psychometric curves of panel g and weighting by the appropriate row in the transition 

matrix (depending on the sampled latent state at the previous trial). Finally, we averaged 

the per-trial psychometric curves across all trials to obtain the curve that is shown in black, 

while the empirical choice data of the mouse are shown in red, as are 95% confidence 

intervals (n between 530 and 601, depending on stimulus value).
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Figure 3: Inferred state dynamics for example IBL mouse.
(a) Posterior state probabilities for three example sessions, revealing high levels of certainty 

about the mouse’s internal state, and showing that states typically persisted for many trials in 

a row. (b) Raw behavioral data corresponding to these three sessions. Each dot corresponds 

to a single trial; the x-position indicates the trial within the session, while the y-position 

indicates if the mouse went rightward or leftward on the trial (y-positions are slightly jittered 

for visibility). The dot’s color and shape indicates if the trial was an error or correct trial 

(red triangles correspond to errors, while black circles represents correct choices). All trials 

except 0% contrast trials (for which the correct answer is determined randomly) are shown 

here. The dashed vertical lines correspond to the location of state changes (obtained using 

the posterior probabilities shown in a). (c) Average trajectories of state probabilities within 

a session, computed over 56 sessions. Error bars indicate ±1 standard error of the mean. (d) 
Fractional occupancies for the three states across all trials. For this analysis, we assigned 

each trial to its most likely state and then counted the fraction of trials assigned to each state. 

Overall, the mouse spent 69% of all trials in the engaged state, and 31% of trials in one 

of the two biased states. (e) Histogram showing the number of inferred state changes per 
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session, for all 56 sessions of data for this mouse. Only 29% of sessions involved the mouse 

persisting in a single state for the entire 90-trial session.
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Figure 4: Model fits to full population of 37 IBL mice.
(a) Change in test log-likelihood as a function of number of states relative to a (1-state) 

GLM, for each mouse in the population. The classic lapse model, a restricted form of the 

2-state model, is labeled ‘L’. Each trace represents a single mouse. Solid black indicates the 

mean across animals, and the dashed line indicates the example mouse from Figs. 2 and 3. 

The rounded rectangle highlights performance of the 3-state model, which we selected for 

further analyses. (b) Change in predictive accuracy relative to a basic GLM for each mouse, 

indicating the percentage improvement in predicting choice. (c) Grey dots correspond to 
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2017 individual sessions across all mice, indicating the fraction of trials spent in states 1 

(engaged) and 2 (biased left). Points at the vertices (1, 0), (0, 1), or (0, 0) indicate sessions 

with no state changes, while points along the sides of the triangle indicate sessions that 

involved only 2 of the 3 states. Red dots correspond the same fractional occupancies for 

each of the 37 mice, revealing that the engaged state predominated, but that all mice spent 

time in all 3 states. (d) Inferred GLM weights for each mouse, for each of the three states 

in the 3-state model. The solid black curve represents a global fit using pooled data from 

all mice (see Algorithm 1); the dashed line is the example mouse from Fig. 2 and Fig. 3. 

(e) Histogram of expected dwell times across animals in each of the three states, calculated 

from the inferred transition matrix for each mouse. (f) Mice have discrete—not continuous

—decision-making states. Left: Cross-validation performance of the 3 state GLM-HMM 

compared to PsyTrack [35, 36] for all 37 mice studied (each individual line is a separate 

mouse; black is the mean across animals). Middle: As a sanity check, we simulated datasets 

from a 3 state GLM-HMM with the parameters for each simulation chosen as the best 

fitting parameters for a single mouse. We then fit the simulated data both with PsyTrack 

and with the 3 state GLM-HMM in order to check that the 3 state GLM-HMM best 

described the data. Right: We did the opposite and fit PsyTrack to the animals’ data and then 

generated data according to an AR(1) model with parameters specified using the PsyTrack 

fits (see section 4.3 for full details). By performing cross-validation on the simulated data, 

we confirmed that we could use model comparison to distinguish between discrete and 

continuous decision-making behavior in choice data.
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Figure 5: GLM-HMM application to second mouse dataset
(a) Mice in the Odoemene et al. [20] task had to indicate if the flash rate of light pulses 

from an LED panel was above or below 12Hz by nose poking to the right or left. (b) Left: 

test set log-likelihood for 15 mice in this dataset. Black is the mean across animals. Right: 

change in test set predictive accuracy relative to a GLM for each mouse in the dataset. 

Black is the mean across all animals. (c) The psychometric curve when all data from all 

mice are concatenated together. (d) The retrieved weights for a 4 state GLM-HMM for 

each mouse. The covariates influencing choice in each of the four states are the stimulus 
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frequency, the mouse’s bias, its choice on the previous trial (‘p.c’) and the product of reward 

and choice on the previous trial (‘w.s.l.s.’). Black indicates the global fit across all mice. 

(e) The probability that the mouse went rightward in each of the four states as a function 

of the stimulus, previous choice and reward on the previous trial (each of the four lines 

corresponds to a different setting of previous choice and previous reward; the four lines are 

calculated using the global fit weights shown in d). We also report animals’ task accuracy 

(labeled ‘acc.’) when in each of the four states. As discussed in text, we label the fourth 

state the “win stay” state as the psychometric curve for this state is shifted so that the mouse 

is likely to repeat a choice only if the previous trial was rewarded. (f) The expected dwell 

times for each mouse in each state, as obtained from the inferred transition matrices (for 

the full transition matrices for all mice, see Fig. S11). The dashed black line indicates the 

median dwell time across animals. We report the fractional occupancies (labeled ‘occ.’) of 

the four states across all mice. For context, the median session length was 683 trials. (g) Left 

and middle: average (across 20 sessions) posterior state probabilities for the first 200 trials 

within a session for two example mice; error bars are standard errors. Right: posterior state 

probabilities for first 200 trials when averaged across all mice. Error bars indicate standard 

deviation across mice.
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Figure 6: Behavioral correlates for GLM-HMM states.
(a) Q-Q plots for response time distributions associated with engaged and disengaged 

(biased left/rightward) states for IBL mice. Each curve is an individual animal, and the red 

dots indicate the 90th quantile response times. For all 37 mice, a KS-test indicated that the 

engaged and disengaged response time distributions were statistically different. Furthermore, 

as can readily be observed from the Q-Q plots, the longest response times typically occurred 

in the disengaged state. (b) Difference in the 90th quantile response time for the engaged 

and disengaged states for each IBL animal, as well as 95% bootstrap confidence intervals 

(n=2000). Blue is the median difference across mice (0.95s), as well as the 95% bootstrap 

confidence interval. (c) Violation rate differences for mice in the Odoemene et al. [20] 

dataset when in the engaged (state 1) and disengaged states (states 2, 3, 4). Error bars are 

95% bootstrap confidence intervals (n=2000); blue indicates the mean difference in violation 

rate across all mice (3.2%).
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Figure 7: GLM-HMM application to human dataset.
(a) 27 human participants performed the motion coherence discrimination task of [27], 

where they used a button to indicate if there was greater motion coherence in the first or 

second stimulus presented within a trial. (b) Change in test set log-likelihood relative to 

a GLM for each of the 27 participants. Black is the mean across participants. (c) Change 

in test set predictive accuracy relative to a GLM for each participant in the dataset. Black 

is the mean across participants. (d) Retrieved weights for a 2 state GLM-HMM for each 

participant. The covariates influencing choice in each of the four states are the difference 
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in motion coherence between the two stimuli, the participant’s bias, their choice on the 

previous trial (‘p.c’) and the product of reward and choice on the previous trial (‘w.s.l.s.’). 

Black indicates the global fit across all participants. (e) Similar to Figs. 2g and 5e, the blue 

and green curves give the probability that the participant went rightward in each of the 

two states as a function of the stimulus, previous choice and previous reward. That all blue 

curves are overlapping indicates the lack of dependence on previous choice and reward in 

this state; similarly for state 1. The black curve is the overall psychometric curve generated 

by the GLM-HMM. Specifically, using the global GLM-HMM parameters, we generated 

the same number of choices as those in the human dataset. At each trial, regardless of the 

true stimulus presented, we calculated pt(“R”) for each possible stimuli by averaging the 

per-state psychometric curves (blue and green) and weighting by the appropriate row in the 

transition matrix (depending on the sampled latent state at the previous trial). Finally, we 

averaged the per-trial psychometric curves across all trials to obtain the curve that is shown 

in black, while the red dots represent the empirical choice data. (f) The expected dwell times 

for each participant in each state, as obtained from the inferred transition matrices. The 

black dashed line indicates the median dwell time across participants, while the black solid 

line indicates the global fit (see Algorithm 1). (g) Empirical number of state changes per 

session obtained using posterior state probabilities such as those shown in h; median session 

length is 500 trials. Black indicates the median number of state changes across all sessions. 

(h) Posterior state probabilities for three example sessions corresponding to three different 

participants.
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