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Accurate and Efficient Unions of Balls

Nina Amenta and Ravi Krishna Kollurif
University of Texas at Austin

Abstract

Given a sample of points from the bound-
ary of an object in IR3, we construct a rep-
resentation of the object as a union of balls.
We use many fewer balls than previous con-
structions, but our shape representation is
better. We bound the distance from the
surface of the union to the original object
surface, and show that when the sampling
is sufficiently dense the two are homeomor-
phic. This implies a topological relation-
ship between the true medial axis of the
object and both the medial axis, and the
a-shape, of the union of balls. We show
that the set of ball centers in our construc-
tion converges to the true medial axis as
the sampling density increases.

1 Introduction

Any object can be represented as a union
of balls: the Medial Axis Transform repre-
sents an object W as the union of the (gen-
erally infinite) set of maximal balls con-
tained in its interior. It is often convenient,
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in R3, to approximate this representation
with a finite set B of balls such that B
resembles WW. Generally B is found by tak-
ing the Voronoi diagram of a dense set S
of point samples on the boundary W of W,
finding the set Py of Voronoi vertices in the
interior of W, and using the set By of all
Voronoi balls with centers in Pyy. We point
out that a subset of these Voronoi vertices,
the set Pr of interior poles, actually gives a
better approximation of W. Under the as-
sumption that S is a sufficiently dense sam-
ple from W, we prove that the boundary of
the union of the set By of Voronoi balls cen-
tered at points of P; is close to W, that its
surface normals are close to nearby normals
on W, and that it is homeomorphic W.

The portion of the Voronoi diagram of
S interior to W has been used as a dis-
crete approximation of the medial axis of
W; the centers of By form the vertices
of this approximation. In three dimen-
sions By contains many balls with centers
close to the object surface, corresponding
to flat “sliver” tetrahedra in the Delaunay
triangulation of S, as shown in Figure 1.
These balls may be (and almost always are)
present even when the data is completely
noise-free, at any finite sampling density.
Their centers form the endpoints of long
branches (or “hairs”) on the approximate
medial axis, which have no relation to any
actual feature of W, and must be removed
with a heuristic clean-up step. Using By,
rather than By, leads immediately to easily



Figure 1: Left, the usual construction: the union of all 10,093 interior Voronoi balls. Right,
the union of the 2,931 interior polar balls. The “warts” on the first model are due not to
noise, but to discretization, and would appear at any finite sampling density.

computable, and better, approximations to
the three-dimensional medial axis (see Fig-
ure 2). One is the weighted a-shape, or
dual shape as defined by Edelsbrunner [6].
A second is the medial axis of the union of
the By, which, as Attalli and Montanvert
[2] have shown, is easily computable in this
special case. We prove that both of these

Figure 2: Left, the dual shape of a union of
balls, and their medial axis, right.

constructions are homotopy equivalent to
the medial axis of W, and that the set Pr
of inner poles, which belongs to both, con-
verges to the medial axis of W as the sam-
pling density increases. This is not true of
Py.

Finding Py is actually easier than find-
ing Py. To find Py, an inside/outside test
must be performed for each Voronoi ver-
tex, typically by intersecting an infinite ray

starting at the vertex with the model. The
interior poles, on the other hand, are easy
to identify with local operations using the
Voronoi diagram itself.

2 DMotivation and related

work

Our main motivation for studying By is that
we plan to use it as a tool for polygonal
surface reconstruction. But finite unions of
balls and discrete medial axis transforms
have many other applications as well.

Hubbard [8] promotes the use of unions
of balls for collision detection, guided by
the observation that detecting the intersec-
tion of two balls is much easier than de-
tecting intersections of two other primitives
like triangles or polyhedra. He constructs
a hierarchical representation, using increas-
ingly simple unions of balls, and gives con-
vincing experimental evidence that this hi-
erarchy is more efficient in practice than
others. Hubbard’s experience shows that
the success of the approach depends on the
quality of the shape approximation. He
finds that By is superior to a larger and less
accurate set of balls derived from a quad-
tree; we believe that B; should be better



still.

Finite unions of balls or discrete medial
axis transforms have also been proposed
as a representation for deformable objects.
Rajan and Fournier [9] use a union of balls
for interpolating between shapes. Teich-
man and Teller [11] use a discrete medial
axis as a skeleton in a semi-automatic sys-
tem for animating arbitrary computer mod-
els. Both papers again begin with By and
use a heuristic clean-up phase, and again,
we believe that By would be a better start-
ing point. Cheng, Edelsbrunner, Fu and
Lam [3] do morphing in two dimensions
with skin surfaces, which are smooth sur-
faces based on unions of balls. Our work
can be seen as a step toward converting an
arbitrary polygonal surface into a provably
accurate skin surface.

The computation of the exact medial
axis for simple polyhedra has been demon-
strated only recently [5]. For more compli-
cated shapes, approximation probably con-
tinues to be more appropriate. Attalli and
Montanvert [2] and others [10] have pro-
posed approximating the medial axis us-
ing the Voronoi diagram. This approach
is sometimes justified by a reference to
[7], which argues, incorrectly, that Py con-
verges to the true medial axis as the sam-
pling density increases. Since P does con-
verge to the medial axis, we believe that the
discrete approximations based on Pr should
be much better.

3 Union of interior poles

We let S be a sample from a smooth object
surface W. For simplicity, we will that S is
contained in a large bounding box, so that
all Voronoi vertices of samples in S are fi-
nite. We use the notation B, , for the ball
of radius p centered at c.

Definition: The poles of a sample s
are the two vertices of its Voronoi cell far-

thest from s, one on either side of the sur-
face. When c is a pole of some sample s,
the Voronoi ball B, , is a polar ball, with
p=d(c,s).

Amenta and Bern [1] show that both poles
of s are found correctly by the following
procedure: select the Voronoi vertex of s
farthest from s as the first pole p;. From
among those Voronoi vertices v of s such
that the angle /vsp; > 7/2, select the far-
thest as the second pole. The orientation
of the surface W determines which is the
inside, and which the outside pole.

The intuition behind this paper is that
the polar balls approximate medial balls.
Let P be the set of poles. The surface W
divides the set of poles into the set P; of in-
side poles and the set Pp of outside poles.

Definition: Let U; be the union of
Voronoi balls centered at inside poles, and
Up be the union of Voronoi balls centered at
outside poles. Let Uy = éU; and Up = dUp
be the boundaries of these unions.

Observation 1 Every sample s € S lies
on both Uy and Up.

4 Geometric accuracy

The result in this section is that the union
boundaries Uy and Up are both close to
W under the assumption that S is a suf-
ficiently dense sample. We formalize this
assumption using the following definitions

[1].

Definition: The Local Feature Size at a
point w € W, written LFS(w), is the dis-
tance from w to the nearest point of the
medial axis of W.

Definition: S C W is an r-sample if the
distance from any point € W to its closest

sample in S is at most a constant fraction
r times LF'S(z).

For convenience, we define ' =r/(1—r) =



O(r).

Assumption: We assume that S is a r-
sample from W and r < 0.1.

One key idea is that under this assump-
tion, the Voronoi cell of every sample s € S
is long, skinny and roughly perpendicular
to W. More precisely, given a sample s and
a point v in its Voronoi region, the angle
between the vector sv from s to v and the
surface normal 7 at s has to be small (lin-
ear in r) when v is far away from s (as a
function of LF'S).

Lemma 2 (Amenta and Bern [1])

Let s be a sample point from an r-sample
S. Let v be any point in Vor(s) such that
d(v,s) > KLFS(s) for & > r'. Let o be
the angle between the vector st and the sur-
face normal @i at s. Then o < arcsinr’/k +
arcsinr’.

Conversely, if the angle is large, then point
v has to be close to s. Specifically, if
a > arcsinr’/k + arcsinr’, then d(v,s) <
kLFS(s). Rearranging things, we get:

Corollary 3 For any v such that o >
arcsinr’, we have d(v,s) < kLFS(s) with

TI

K =
sin(a — arcsinr’)

Our first lemma says that inside balls can
only intersect outside balls shallowly, if at
all. We measure the depth of the intersec-
tion by the angle at which the balls inter-
sect, as in Figure 3.

Lemma 4 Let By be an inside Voronoi ball
and Bo be an outside Voronoi ball. By

and Bo intersect at an angle of at most
2arcsin 3r = O(r).

Proof: Consider the line segment connect-
ing ¢y and cp, the centers of By and Bp.
Since ¢y and ¢ lie on opposite sides of W,

Figure 3: An inside and outside ball can
intersect only at a small angle a.

this segment crosses W in at least one point
x.

Let B(e, p) be the smaller of the two balls
of radii of By and Bp. If z € B(c,p), we
have LFS(z) < 2p. Since, the polar ball ,
B(c, p) contains a point of the medial axis
( Corollary ?7).

Otherwise z is in the larger of the two
balls, but not in the smaller, as in Fig-
ure 3. Let ¢ be the center of the smaller
ball, let z be the center of the circle C in
which the boundaries of By and Bp inter-
sect, and let A be the radius of C. By Corol-
lary 7, we have LFS(z) < d(z,c) +p =
d(z,z) +d(z,c) + p. But the distance from
x to the nearest sample is at least

\/)\2 + d*(z,2) = \/,o2 —d?(z,¢) + d?*(z, 2)

So the r-sampling requirement means that

\/p2 —d?(z,¢) + d?*(z, z) < rlp+d(z, 2)+d(z, c)]

Since d(z,¢) < p, we can simplify to
d(z,2) < 2r'p

which, for » < 1/3, means that = is very
close to B(c, p), and LFS(x) < 3p.

Since the distance from z to the near-
est sample is at least A and at most 3rp,
A < 3rp. The angle between the plane P
containing C' and a tangent plane on B(c, p)
at C is thus at most arcsin 37, the angle be-
tween P and the tangent plane of the larger



ball is smaller, and the two balls meet at an
angle of at most 2 arcsin 3r.
O

A medial ball is a maximal ball with no
points of W in its interior; the center of
a medial ball is a point of the medial axis.
The next lemma shows that a similar fact
holds when one of the balls is a medial,
rather than a polar, ball.

Lemma 5 Let B, be an inside (outside)
polar ball and let By, be an outside (inside)
medial ball. The angle at which B, and By,
intersect is at most 2arcsin2r = O(r).

Proof: Similar to the previous lemma.
O

We can infer that the surface cannot pen-
etrate too far into the interior of either
union, as a function of the radii of the balls.
But this does not yet give a bound in terms
of LF'S, which could be much smaller than
the radius of either medial ball at a surface
point x.

Lemma 6 Let u be a point in the Vorono:
cell of s but outside both polar balls at s.
The distance from u to s ts O(r)LFS(s).

Proof: We assume without loss of gen-
erality that LFS(s) = 1. Let p; be the
pole farther from s. If Zusp; < 7/2, we
let p = p1, otherwise we consider p = po,
the pole nearer to s. We let B, , be the
polar ball centered at p. In either case
d(u,s) < p, because of the way in which
the poles were chosen. Let 6 be the angle
between vectors si and sp. Since u is out-
side the polar ball,

d(s,u) > 2pcosf

Since d(s,u) < p, we have 6 > T >
3arcsinr’. Let 7 represent the normal at
s. We find /7 sp < 2arcsinr’ by Lemma, 2.

So /7l s > /3 — 2arcsinr’ > arcsinr’.

From Corollary 3 it follows that, for any
point u in the Voronoi cell of s,

T',

d(u,s) <

(sin(6@ — 3arcsinr’))

Since 6 > % the angle,
(6 — 3arcsinr’) > ¥. Which means that ,

d(u,s) < 2r

Since we assumed LFS(s) = 1, the
lemma follows.
a

The Voronoi cell of a sample s € W must
contain the point of the medial axis induced
by s. Since this point is atleast at a dis-
tance LFS(s) from s, we get the following
corollary.

Corollary 7 Every polar ball contains a
point of the medial axis.

It remains to bound the distance from
any point on the boundary of one union and
in the interior of the other, to the surface.

Observation 8 If d(u,s)= O(r)LFS(u)
then d(u,s)=0(r)LFS(s) as well.

Lemma 9 For a point u on U (resp. Up)
and inside Uo (resp. U;p), the distance to
the closest sample s is O(r)LF S(s).

Proof: Without loss of generality let u be
a point on Up and inside U;. The line join-
ing the centers of the balls Bp and By inter-
sects the surface at some point . Let s, be
the closest sample to x and let s be the clos-
est sample to u. A ball centered at z, and
with radius d(s, s;), should also contain wu,
as u to closer to = than s;,which is outside
both Bp and Bj. This and the r-sampling
condition give a bound on d(z, u).



d(z,u) <d(z,sz) = O(r)LFS(x)

From the triangle inequality |,
d(u, sz) < d(u, ) +d(z, sg) = O(r) LFS(x)
(1)
Since s is the closest sample from u, we
get
d(z,s) < d(z,u)+d(u,s) < d(z,u)+d(u, s5)

Which gives, d(z,s) = O(r)LFS(xz). The
LFS function is Lipshitz, that is |[LFS(p)—
LFS(q)| < d(p,q). From equation 1 we
then get

d(u,s) < d(u,s,) = O(r)LFS(s)

Figure 4: The point u is closer to x than
sz, which is outside both the balls.

Theorem 10 The distance from a point
u € Ur or u € Up to its closest point on
the surface x € W is O(r)LF S(x).

Proof: The point x is at least as close to
u as s, and hence is within O(r)LF S(s) of
s. Since |LFS(xz) — LFS(s)| < d(z, s), the
result follows from Lemma 6 and Lemma 9.
O

This theorem tells us that most of R? is
contained in exactly one of the two unions

of balls. A small part - the region within
O(r)LFS of W - is contained in both, or
neither.

Now we show that the normals on Uy and
Up are also close to the normals of nearby
points of W, approaching the correct nor-
mal as O(y/r) as r — 0.

B K —u

Y

Figure 5: Since B cannot intersect By very
deeply, and d(u,x) has to be small, the in-
dicated angle cannot be too large.

Observation 11 Let B, be a polar ball,

at distance at most k from a point x € W.
Then p > %

This follows because B is a polar ball, so
it contains a point of the medial axis, by
Corollary 7, while the nearest point of the
medial axis to z is at distance LFS(z).

Lemma 12 Let u be a point such that the
distance to the nearest point x € W 1is at
most O(r)LFS(x). Let B = B, , be a polar
ball containing u. Then the angle, in radi-
ans, between the surface normal at  and

the vector uec is O(y/T).

Proof: The angle we are interested in
is « = lucgey + Zucpreg. 'We begin by
bounding Zucprcp. Without loss of gener-
ality, assume LFS(z) = 1.

Since Bjs is the medial ball at z, the
radius R of Bj is at least one. Since B



and Bjs cannot intersect at r at an an-
gle greater than 2arcsin 2r (Lemma 5), the
thickness of the lune in which they inter-
sect is at most a factor of O(r?) times the
smaller of the two radii. So we can as-
sume B is tangent to a ball B’ of radius
R(1 — O(r?)), concenteric with Bys. Let
k = d(u,B') = O(r*) R+O(r), as on the left
in Figure 5, where the angle we are bound-
ing is . If R > 1, then k is a smaller
fraction of R, and Zucpcg will be smaller,
so we assume in the worst case that R = 1.
Increasing the radius p of B, on the other
hand, increases the angle so we assume that
B is infinitely large. Angle /ucpep, then,
is O(v/k/R) = O(\/r).

We use a similar argument to bound
Lucpcyr. Note that by Observation 11, the
radius p of B is at least (1 — d(u,x))/2.
Again the worst case occurs when p = (1)
and Bjy is infinitely large. In that case B
is tangent to another infinitely large ball,
offset from Bj; by a distance of O(r?)p.
Extending segment uz to hit this ball, as
on the right in Figure 5, gives us a point y
at distance k = O(r?)p + O(r) from u, and
we find Lucgeyr = O(V/k/p) = O(\/7).

O

5 Homeomorphism

We use these geometric theorems to show
that the surface of either Uy or Up is home-
omorphic to the actual surface W. We’ll do
this using a natural map from U to W.

Definition: Let yu : R® — W map each
point ¢ € R? to the closest point of W.

Lemma 13 Let U be either Ur or Up. The
restriction of pu to U defines a homeomor-
phism from U to W.

Proof: We consider Uy; the argument for
Uo is identical. Since Uy and W are both

compact, it suffices to show that p defines
a continuous, one-to-one and onto function.
The discontinuities of p are the points of
the medial axis. From Theorem 10, every
point of U; is within distance O(r)LF S(z)
from some point x € W, wheras every point
of the medial axis is at least LFS(z) from
the nearest point x € W. Thus p is contin-
uous on Uj.

Now we show that u is one-to-one. For
any u' € Uy, let = p(u’) and let n(z) be
the normal to W at z. Orient the line [(z)
through z with direction n(z) according to
the orientation of W at x. Any point on Uy
such that p(u) = x must lie on I(x); let u
be the outer-most such point.

Let B, be the ball in U; with u on
its boundary. Let o be the angle between
uc and the surface normal n(z). We have
d(u,z) = O(r)LFS(x) from Lemma 10, so
that « = O(y/r), by Observation 12. Mean-
while p = Q(LFS(z)), by Observation 11.

Point v’ is at most O(rLFS(x)) from u,
while I(z) lies in the interior of B for dis-
tance at least 2pcosa = O(LFS(z)). Since
v’ must be on [(z) but outside of B, and u
is the outermost such point, it must be the
case that u = u'.

Finally, we need to establish that p(U)
is onto W. Since pu maps U, a closed
and bounded surface, continuously onto W,
w(U) must consist of some subset of the
closed, bounded connected components of
W. But since every connected component
of W contains samples of S, and u(s) = s
for s € S, u(U) must consist of all the con-
nected components of W.

O

6 Medial axis approxima-
tion

Edelsbrunner defined the dual shape of a
union of balls as the weighted a-shape de-



fined by the balls, at « = 0. Let Dy and
Do be the dual shapes of U; and Up, re-
specively. He showed that the dual shape is
homotopy equivalent to the union itself, by
giving a continuous deformation retraction
of the union onto the dual shape. This is a
way of saying that the union and its dual
shape have the same holes, tunnels and con-
nected components, even where they differ
in dimension. Similarly, a shape and its me-
dial axis are homotopy equivalent (a very
similar deformation retraction, in fact, is
given in [4]). Let M and Mo be the medial
axes of the unions U; and Up, respectively.

Theorem 14 Both Dy and My are homo-
topy equivalent to W, and both Do and Mo
are homotopy equivalent to R® —W.

Proof Sketch: The functions p: Uy =+ W
and p: Up — W can be extended to space
homeomorphisms taking U; to W and Up
to R® — W, respectively.

O

In addition to this topological equivalence,

\ o e

Figure 6: A small bump on the surface in-
duces a long “hair” on the medial axis with-
out having to contain any samples. Here, ¢
is the endpoint of the “hair”, and r is about
1/2, so that neither of the samples lies on
the bump.

we show that the set P; of interior poles
converges, geometrically, to the true medial
axis of W the sampling density increases (a
similar fact holds for Pp). In contrast to
our previous results, we cannot guarantee
that every medial axis is adequately ap-

proximated by an r-sample for a specific
value of r such as 0.1. This is because, as
in Figure 6, for any finite value of r, we
can construct a a very small, shallow bump
on the surface W, inducing a “hair” on the
medial axis but without requiring samples
on the bump. Note, however, that the an-
gle v has to be very small. This motivates
the following definition.

Definition: A medial axis point ¢ be-
longs to the y-medial axis of W when at
least two points u1,us € W on the bound-
ary of the medial ball centered at ¢ form an
angle Zujcug > 27.

Interestingly, the y-medial axis can be dis-
connected.

Figure 7: Since p is in the Voronoi cell of ¢,
it has to be on the same side of the bisector
of ts as t.

Lemma 15 Let B, , be a medial ball such
that c belongs to the y-medial azxis, for some
fized ~v. Then the pole of the nearest sample
converges to c, as r — 0.

Proof: Let ¢ be the closest sample to c.
Let a be the maximum of of angles /tcuy
and /tcuy, and let u € {uy,us} be the one
realizing the maximum. Then o > 7. Let
s be u’s closest sample.

From the sampling criterion we have that
d(u,s) < rLFS(s) < rp. Let x be the
point at which segment ct intersects the



medial ball. Since Zzcu = a, d(t,u) <
2psina. Also, d(c,t) < d(c,s) < p(1+7)
so d(z,t) < rp. We conclude that d(t,s) <
2p(r + sina).

In the Voronoi cell of ¢, d(c,t) > LFS(t).
So from Lemma 2, both /fitc and /iitp are
at most 2arcsinr’, where 7 is the surface
normal at t. So Zctp < 4arcsinr’ = 3.

From Figure 7, some tedious calculations
show that Zuts < arcsin(ﬁ(a_)) =¢€ So
2

we can bound the angle ¢ = /pts, as
p<5—-5+B+e

Since c¢ is point in the Voronoi cell of ¢
p < d(t,c) < d(t,p)

Since p is t’s pole, it lies on the same side
of the bisector of ts as t. So we can bound

d(t, p):

r+sing
dt,p) < AT
sin(§ — B —e)
We choose a = w(r), for example /r. Then
as r goes to zero, the expression on the right
approaches p, since § and € are both O(r).
The angle /ptc goes to zero as well, so p
converges to c.
O

Since v — 0 as r — 0, we get the following:

Theorem 16 The set of interior poles
converges to the interior medial axis of W
as r — 0.

Proof: The Voronoi cell of any sample s
contains the interior medial axis point ¢
corresponding to s. There is some value
of v small enough so that ¢ belongs to the
~v-medial axis for v < vp. So there is some
ro small enough so that by Lemma 15, the
interior pole of s converges to ¢. Similarly,
any medial axis point c lies in the Voronoi
cell of some sample s (which might change
as r decreses). Again, there is some ry small
enough so that the distance from the inte-
rior pole of s to ¢ converges to zero.

O

7 Discussion

As we observed in the introduction, the set
Py of inner poles is generally much smaller
than the entire set Py of inner Voronoi
vertices. Yet we proved that the union of
the inner poles gives a good geometric and
topological approximation of shape when
the sample S is sufficiently dense. Quite
possibly one could prove that the bound-
ary Uy of the union of all inner Voronoi
balls is also close to, and homeomorphic to,
the actual object surface, under a similar
sampling assumption, but the surface nor-
mals on Uy can differ significantly from the
correct normals, even for arbitrarily dense
samples.

We showed that the set of poles converges
to the true medial axis as the sampling den-
sity increases. A good next step would be
to show that both the medial axis of U7 and
the dual shape of U; converge to the true
medial axis as well.

Applications using the union of balls rep-
resentation usually require simplifying the
model for practical reasons. We believe
that a simplification process with provable
bounds on the error introduced should be
possible given the bounds we have on the
quality of Uj.
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