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Abstract

A general formulation of an assurped strain method in the context of mixed finite elements is presented.
A mixed strain fleld, to which an enhancement is added, results in a formulation which produces coarse
mesh accuracy in bending dominated problems and locking-free response in the near incompressible limit.
Due to the mixed fields present, variational stress recovery is also available. Also, the construction of
the formulation is such that the mixed parameters may be obtained explicity and the resulting finite
element arrays obtain full rank using standard order quadrature. In this paper our attention s focused
on finite deformation problems in solid mechanics. Specifically, we investigate the proposed formulation
in the setting of incompressible hyperelasticity . Representative simulations illustrate the performance
of the formulation.

1. Introduction

The key idea of the present work 1s the parametrization of the deformation gradient in
terms of a mixed and an enhanced deformation gradient from which a consistent formu-
lation is derived using standard mixed method techniques. This methodology allows for
a formulation which has standard order quadrature and variationally recoverable stresses,
hence circumventing difficulties which arise in other assumed strain methods. To the
authors™ knowledge, the formulation presented herein has not been currently explored.
Developments of the formulation are cast within the area of non-linear elasticity.

It 1s well known that finite elements based upon low order isoparametric displacement
formulations exhibit poor performance in bending and locking in the nearly incompress-
ible limit. Recent formulations which exhibit improved coarse mesh accuracy fall into
two categories namely assumed stress and assumed strawn methods. Our formulation is
addressed in the context of assumed strain methods which are preferred to their assumed
stress counterparts, due to their natural compatibility with the strain drive format.

Oune of the first developments in the linear regime was by WILSON ET. AL. [1973] who
proposed the addition of internal incompatible displacement modes of quadratic distri-
bution to enhance bending performance of quadrilateral elements. Subsequently, it was
discovered that the element failed the patch test for an arbitrary quadrilateral. TAYLOR
ET. AL. [1976] proposed modifications to Wilson’s original formulation which allowed
for satisfaction of the patch test for arbitrary configurations. In later developments SIMO
& RIFAL [1990] present a systematic development of a class of assumed strain methods.
They provide the framework for the development of low order elements possessing im-
proved performance in bending dominated problems in the context of small strains. Issues
related to convergence and stability are also presented. Extensions were made by SIMo &
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ARMERO [1992] to the enhanced strain formulation to incorporate geometrical nonlinear-
ities. They discussed the appearance of hourglass modes for highly strain regimes. The
appearance of the modes was analyzed by WRIGGERS & REESE [1996]. REESE & WRIG-
GERS [1995] further discuss these spurious modes and proposed a stabilization technique,
but unfortunately a general solution remains unknown. Improvements were made for the
three dimensional formulation of SIMO & ARMERO [1992] by SIMO ET. AL. [1993] which
incorporated modifications to the tri-linear shape functions, additional enhanced modes
and an increased quadrature rule. The resulting element yielded a locking-free response
in the incompressible limit and improved bending characteristics for both geometrically
linear and nonlinear problems. Other approaches incorporating the effect of geometric
nonlinearities include a co-rotational approach by CRISFIELD ET. AL. [1995], the work of
KoRrRELC & WRIGGERS [1996] which introduce additional orthogonality conditions which,
if fulfilled, yield a stable enhanced element and the recent developments of GLASER &
ARMERO [1996] which make two different extensions to the work of SIMO ET. AL. [1993].
In the first formulation they symmetrized the original enhanced interpolation of SIMO ET.
AL. [1993] while the second formulation makes use of the transpose of the enhanced inter-
polation fields. These attempts resulted in elements which overcame deficiencies in highly
strained compressive regimes. The present formulation also overcomes these deficiencies
without the need for additional enhanced modes and uses standard order quadrature.

The paper is outlined as follows. In §2, basic notation is presented and a general formu-
lation of a three field functional is given along with the strong form of the problem. The
notion of the mixed-enhanced displacement gradient is introduced in §3 along with finite
element approximations and interpolants for the mixed independent fields. Residual equa-
tions are then obtained, from which a numerical formulation is presented in the context of
a Newton method. Representative numerical simulations are presented in §4 for the case
of plane strain and three dimensional hyperelasticity. Finally, in §5 conclusions are drawn.

2. General Formulation

This section examines the proposed formulation in the setting of finite elasticity. We begin
by an introduction to the basic notation and then summarize a three-field Hu-Washizu
functional, WasH1zu [1982]. Finally, we present the resulting field equations, to be used
subsequently for the finite element formulation.

2.1. Notation

The open set 2 C R"(n = 1,2 or 3) with smooth boundary 90 represents a bounded
reference configuration B for the continunm body. Identify a material point X & Q with
its position vector X relative to the standard basis in R”. We admit the decomposition
of the boundary nto two parts: I', < 9§ where the motion is prescribed as ¢ = @ and
[, C 99 where the traction vector is prescribed as PN = £ subject to

o =T,Ul, and T_NI =0 (2.1)
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In the above P 1s the 1st Piola-Kirchhoff stress tensor and IV is the outward normal field
to the boundary of the reference configuration. Upon deformation the material point X is
mapped into a spatial position & by means of a single-valued continuously differentiable
mapping function ¢ : 2 — R" defined as!

~J

3

z=p(X)=X +u(X), (2.2)

where u is the displacement field and ¢ € U, I{ being the space of admissible motions

written as

U={p : Q= R"|pcW"P(Q)and ¢ = @ on FL,;} (2.3)

where p > 2 is dependent on the growth conditions of the stored energy function, see
CIARLET [1988] for further details. we denote the deformation gradient and jacobean of

the motion as

5} ,
F = Grad|g] = 5—}2— with J=detF >0 (2.4)
where F € M and M is defined as
M={F:Q—=R""|F;eL* ()} . (2.5)

2.2. Three-Field Variational Formulation

For the proposed formulation we use a Hu-Washizu type variational principle in which the
motion @ € U, the deformation gradient F' € M and the first Piola-Kirchhoff stress tensor
P & M are regarded as the independent variables. The proposed three-field functional
I:U < M x M — R may be expressed as

g, . F,P)= / {W(X.E“Hﬁ(emd[@j_iﬁ)} v+ I, (2.6)
Q

where W( X, F') is an objective stored energy function and for conservative external loading

o
~1

Hf‘:]‘i(/‘p) = W/ b ¥ v — / t ¥ ds (»
{1 J
in which b: @ — R" 1s the reference body force per unit volume,

We may state the solution of (2.6) as: Find ¢, F and P. with e satisfiying the Dirichlet
boundary condition ¢ = @ on I',, which make the Hu-Washizu functional IT{p, F, P)
stationary for all admussible variations o € V, §F € M and 6P € M. Where V is the
space of admissible variations of the motion written as

YV ={ép : Q—R"|ép c WP(Q)and ép =0 on .t . (2.8)

Note the reference and spatial coordinate frames are chosen to coincide and share a common

basis.
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Since there are no explicit constraints on F' and P we may take the variations 6 F' and 6 P
to be contained within M as defined in (2.5).

The stationary point of II is obtained by setting to zero the first variation of (2.6) with
respect to the three independent fields. Accordingly

/‘Grmﬂé¢]aﬁcﬂf+6ﬂg“::0
J

v/éf'<§@-wﬁ>(ﬂf:0 (2.9)
Q oF

/ 5P (Grad lp] — ?) dv =0.
0

for all admissible variations dp € V, SF € Mand 6P € M.

Assuming regularity of the solution, using the divergence theorem along with standard
arguments of the calculus of variations and assuming the integrand is well behaved yield
the following Euler-Lagrange equations

DivP +b=0
W - ;
?":T““P':O in (2 (2.10)
oF
Grad[p] - F =0
and the traction boundary condition
PN =t on I'y. {(2.11)

Equations (2.10) and (2.11) together with the requirement ¢ = @ on I', constitute the
strong form of the local boundary value problem in the setting of finite elastostatics.

3. Finite Element Approximations

In this section we outline the interpolates used for the field variables, from which the
mixed strain and stress fields are constructed in terms of nodal parameters as well as
internal element parameters. Using the mixed strain field we construct an approximation
to the three-field variational formulation. We then use the stationary condition to yield a
reduced set of nonlinear equations, which are then linearized. From these equations finite
element arrays are formulated. Finally, we outline a procedure for implementation of the
formulation.
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3.1. Finite Element Interpolations for the Field Variables

We begin by a discretization of the given reference domain €2 into a collection of polygonal
shaped subdomains, {2, such that Q ~ Q" = be Q. where €, is the closure of an individual
element. Note that the collection is an approximation of the actual domain . We admit
the decomposition of the approximation to the boundary as 90 ~ 90" = Ff}o NTE and

Ul =0.

For isoparametric finite elements we define the reference geometry X" € R™ and displace-
ment field u” € U" over a typical element €1, in the form

XM= Ni&) X' and  ut =3 Nig)ul (3.1)
[=1 =

where N;(£) are the standard isoparametric shape functions associated with node I, nen
15 the number of nodes on Clemont Qc. h is a characteristic length of element Q. and
" X" € R™, see ZIENKIEWICZ & TAYLOR, [1989] or HUGHES, [1987] for further details.
The deformation gradient is then expressed by the standard relation

F = Grad[ep] =T+ Grad [u] = T + Z Grad Nyu! (3.2)
I=1

For the approximate problem we introduce the space U" as a finite-dimensional approxi-
mation of U, accordingly the space of admissible motions maybe written as

U = {cph Q- R" " e WIP(Q) and " = &" on I (3.3)

Lastly, the space M”" which contains the approximations to the stress and deformation
gradient, 1s a finite-dimensional approximation of M given by

MM ={H" | H] e L*(Q")} . (3.4)

3.1.1. Mixed Approximations. The key idea for the mixed stress and deformation
fields is to develop interpolates in the natural or isoparametric space and transform the
results to the physical space. Based on requirements of tensor calculus, SOKOLNIKOFF,
[1964], we use the following transformation relations for the stress tensor and deforn 1atlou
gradient

Posl€.B) = PrFisTa,Trg (3.5)

and

Fasl€.B8) = Fiy(Fa) " (Tae) ((Tr5)7" (3.6)

where P and F are the stress and deformation gradient in the isoparametric space, respec-

tively. The above are defined so that P: F = P : F.
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Let [J denote the parent domain in the isoparametric space £. Utilizing the mapping
X [0 — Q. the Jacobian and the Jacobian determinant are expressed as

ox!

Jfa(g):: aga

and = det Jr, . (3.7)

For the present formulation 7" and F used in (3.5) and (3.6) are averaged over the element
Q.. This will permit direct inclusion of constant states, minimize the order of quadrature
needed to evaluate the residual and tangent arrays and also reduce problems associated
with initially distorted elements. The average quantities are denoted as

€

1
T = —_—/ J(E)dV  and F, = __..,/ Fdv . (3.8)
JOQ, { Q.

Substituting (3.8) into (3.5) and (3.6) vields the transformation of the fields (7, F) in the
isoparametric space to the fields (P, F') in the physical space

Py =T"FIPT and FEB) =T 'F,FT T | (3.9)

Remark 3.1.

1. The need for the deformation gradient in (3.5) and (3.6) which automatically comes
from the tensor transformation, will ensure that the resulting stress and deformation
gradient are objective when subjected to a superposed rigid body motion.
Alternatively, the Jacobian can be evaluated at the centroid, as originally suggested
by PIAN & SUMIHARA, [1985] and TAYLOR et al., [1976]. Note for two dimensions
the average and centroidal Jacobians are identical.

3. Since the above transformation relations for the stress and strain are typically a
measure of the isoparametric and physical space alternative transformations are
admissible. Numerical observation by GLASER & ARMERO, [1996] and WRIGGERS
& REESE, [1996] and confirmed during the developments of the present work show
that replacing J by J~7 in (3.8); results in transformation relations which are

b

superior for the class of problems examined.

We next assume there exist linear maps £(£,-) and &,(€, ) for which the fields (P, F) in
the isoparametric space may be expressed as:

PE.B)=Bo + E(E.B)
(3.10)

FE ) = + = [E1(&7) + &8, )]

Sl s

where 3o, 3, 4o and -y are parameters and £,(&, ) and &,(&, «) denote linear forms

7

6y =D Enlé and  S(&a)=) Eulfay
k=1

k=1
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where 1 and m are the number of parameters for the mixed and enhanced fields, respec-
tively,

We construct the approximations £ and & such that

/gl(;y)dm:o’ /&(»)(imxo and /51(.)52(»(1(3:. (3.11)
JI JII I

The relations in (3.11) are used subsequently to decouple and solve for the element pa-
rameters of the mixed stress and strain.

Remark 3.2.

1. The mapping & (&, ) with its associated element parameters, a were added to
(3.10), for two reasons: a) to improve performance in nearly incompressible regions,
b) and to improve coarse mesh accuracy in bending dominated regimes.

2. Note the strain field in (3.10) has more parameters than the stress, hence we adopt
the phrase mized-enhanced strain as an extension of the terminology introduced by

Simo & Riral, [1990].

For two and three dimensional problems employing 4-node quadrilateral and 8-node hex-
ahedral elements the maps &£,(€, ) and &, (€, ) are given in Tables 3.1 and 3.2 below,
respectively. The independent components are ordered in standard Voigt notation as:

Table 3.1 Two Dimensional Interpolations

g EEY) (&)
1 1 E274 Eran

2 2 172 £raeg

1 2 0 0

2 1 0 0

Table 3.2 Three Dimensional Interpolations

tJ (1€, 7)) [E2(€, )]y
Vool O+ 867+ 686y Siar + 6o+ 803
2002 Gyt 8+ aérs Sas + Llsas + Lifras
303 Lyt &s Gy Gor + 8o + a0
12 {3710 0

2 3 L1712 0

1 3 £2714 0

2 1 £a711

3 2 E1713

3 1 £2715 0




8 E.P. Kasper €& R.L. Taylor

The interpolates for P and F in the physical space are obtained by substituting (3.9) into
(3.10), resulting in

Fly)=v +

1 ,
’].(/:)F()T[gi(.gvﬁ)/)“5‘2(570)1 77 (3.12)
P(e)=Bo+ F T T8 (€,8)T} (3.13)

where N
vo =T '%T™ ' and By =T78,T

3.2. Mixed-Enhanced Deformation Gradient

By isolating the equations associated with the first variation of the first Piola-Kirchhoff
stress tensor P in (2.9) we may solve for the element parameters of the mixed-enhanced

deformation gradient F. Recall (2.9)3

/ tr [éf’T (Gradp] - F)} AV =0 . (3.14)
J, -

Substitution of (3.12) and (3.13) into (3.14) and noting (3.11) yields

/ tr [{553(@1‘&(1[30] - *yo)] dV =0
2,

(3.15)

7€)
Regarding 03¢ and 63 as independent of the arguments within the integrand and the limits
of integration we obtain v, as

/ tr {5?(5‘3[3) (T"‘Foml(Gmd [p] = 70)T ™" ~ f}wa(é,‘r)” dv =0
S, \ y

1 ) )
Yo = / Grad|p] dV = Fy . (3.16)
Qf Q.
and cast (3.15); as
T 1 ) .
/ ElT (E:-; - fEl‘l’) dV =0 (3.17)
Ja. J

In (3.17) we have defined the following operators which enable a mapping between tensors
and matrices

Ei(y) — Eyy, &(B)— Ef and T"IFU‘"}(GI‘ad [p] — )T ! — Ey . (3.18)

For two dimensions

£ 0 £ 0
_ 10 & , = _ |0 & |
E = 0 0 and F; = 0 ol (3.19)
0 0 0 0
Grouping terms in (3.17) and solving for the element parameter 4 gives
~=G"1g (3.20)

where

g:/ E\ By dV and G = /“E'fE1 do . (3.21)
Q. JOI
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Remark 3.3.

1. Using the interpolations from the previous section results in a diagonal form for G.
This sumplies the solution of the element parameters  to a set of scalar decoupled
equations.

2. Note orthogonality of & and & is assumed by (3.11);. In KASPER & TAYLOR
[1997] an alternative formulation for constructing & and &; to automatically satisfy
the orthogonality condition is presented. However, in this case (3.11); » may not
hold in general.

3. From the condition (3.11), the resulting enhanced part of the deformation gradient
will inherit the same properties provided any operators multipling it are constant,
/Qﬁ Fo.pAy dV =0 with Ay = constant. Thus the consistency condition or patch
test set forth in SIMO et al., [1993] is satified.

4. The stability condition set forth in SiMmo & RiIFAL, [1990] and SiMO et al., [1993]
places the restriction that the conforming and enhanced spaces be independent
is satisfied by the choice of interpolations found in Tables 3.1 and 3.2, 1.e. the
mappings are disjoint.

3.3. Variational Stress Recovery

By isolating (2.9); we may solve for the element parameters of the mixed stress. £. Recall

(2.9),

/ SF - (P _ ﬁ) AV =0 (3.22)
NAYIR '
where 5
I 4
P = IW (3.23)
oF

Substitution of (3.12) and (3.13) into (3.22) and noting (3.11) we arrive at

/ tr [45'731(P — Bo )J dV =10

. e (3.24)

/ M{ffmw(fﬂp~ﬂMT~EMﬁ» dV =0.
. .

Regarding é+vy and 8+ as independent of the arguments within the integrand and the limits
of integration we may obtain 3y as

1

@FTT/_P&H:R (3.25)

and cast (3.24), as
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where we have defined the following operators which enable a mapping between tensors to

a matrices

TTFy(P - P)T — Es . (3.27)

Grouping terms in (3.26) and solving for the element parameter 3 gives
B=G 'h where h= /EE”ES do . (3.28)
JUI

The variationally recoverable stress becomes
P=p+F T 6.8T " (3.29)
Remark 3.4.

1. The variational stresses developed above are used for postprocessing only and are
not needed for the construction of the residual or tangent.

3.4. Residual and Tangent

By construction, the substitution of (3.12) and (3.13) into (“,b) renders the second term

of (2.6) zero, hence we may express a modlﬁed functional 11 as
fliw F)= | W) aV + Tolp) (3.30)
S

The stationary condition of II yields a reduced set of nonlinear equations, which may be

expressed (neglecting the external loads) as
~ ow o . ‘ ,
oIl = / SR AV = {sul sal) {g“ } av =0 . (3.31)
0 ‘F Ja o

To solve the mixed boundary value problem the above nonlinear residual equations, R,
and R, are linearized and solved by a Newton method as a sequence of linearized problems.
Hence, linearizing (3.31) we obtain

2
W sF+ M sk av

OF? aF

K K du
T uuU ua 4
~ (0T b }/[R } l {da}

Noting that the variations éu and éa in (3.31) are arbitrary we obtain the finite element

d(sTl) = / dF -
J0

residual vectors
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emt Jimtither Xe) T Jertl e} = (3.33)
ffnh U, {-’)"'D (631,2,.”7’&6[?72).

where

fznt ’U” ’ / Ru dv fm*z/z ue» : / R, dV (334)

fez: 15 the standard external force vector

Q. Jr,

and A denotes the finite element assembly operator. With the aid of (3.32) linearizing

(3.33) about an intermediate state (u (k). a(ék)) yields

L{find = £ + KW du, + KV de,

it

(3.36)
L{f&nh} f,nh + I(r(xl; du + Ana (]CX( :

From (3.33), we observe that (3.36); may be solved at an element level. Accordingly,

-1 :
dor, = — {Kéﬂ () + K5 du) (3.37)

nh

Substituting (3.37) into (3.36); we arrive at an equivalent displacement model involving
ounly the nodal displacement vector at the global level

K" du = R (3.38)
where l
nelm (k)
K(k) - 6 [I{uu - Krur:x (K—wu’)_l I(ﬂu}
nelm | (k)
R“‘) = A} ‘:f“t - fmi + Ku,a (Km,a)ml fﬁn/i] k

The system (3.38) 13 solved and the unknown fields are updated by

wftY =M 4y,

QD — O{g@) 4 dev, | (3.39)

The process is repeated within a particular time step 1, until convergence of the (k 4 1)
iterate is obtained, the solution is then advanced to the next time step ,,41.
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Remark 3.5.

1. To obtain da i (3.37) one can either recompute the array for each element at each
global iterate k or store the arrays associated with the k global iterate. This storage
is in addition to any other data needed for the element such as for inelastic internal
variables. For three dimensional problems with fine meshes demand on memory or
disk becomes significant.

2. An alternative algorithm, introduced by SIMO et al, [1993], for obtaining the
element parameters o is outlined in Appendix B of KaspER & TAYLOR [1997]
which circumvents the large demand on memory and requires storage of only the
element parameters, a from the previous global iterate.

4. Numerical Simulations

In this section we investigate the performance of the formulation described above. Specif-
ically, we show the locking free response in the incompressible limit and improved per-
formance in bending dominated problems. To assess the performance of our formulation
several representative simulations are presented below in the setting of plane strain and
three dimensional hyperelasticity. Comparisons are made with different element formula-

tiomns.

The element formulations considered are:

H1 This hexahedral element is a standard eight-node displacement formulation using
tri-linear interpolation functions and a standard 8-pt quadrature rule, its two
dimensional counterpart is denoted as Q1.

H1/E9 This hexahedral element is an enhanced formulation with 9 enhanced modes and
utilizes tri-linear interpolation functions and a standard 8-pt quadrature rule,
see SIMO & ARMERO [1992] for further details, its two dimensional counterpart
is denoted as Q1/E4.

H1/E12 This hexahedral element is an enhanced formulation with 12 enhanced modes
and utilizes modified tri-linear interpolation functions and a special 9-pt quadra-
ture rule, also described in SIMO et al. [1993].

H1/E21 This hexahedral element is an enhanced formulation with 21 enhanced modes
and utilizes tri-linear interpolation functions and a standard 8-pt quadrature
rule, see ANDELFINGER, [1992] for further details.

H1/MES The new mixed-enhanced formulation with 9 enhanced modes, standard tri-
linear interpolation functions, and standard 8-pt quadrature rule, its two di-
mensional counterpart is denoted as Q1/ME?2.

For the simulations presented we consider the elastic response for two stored energy func-
tions, namely a compressible neo-Hookean material model and a generalized Ogden mate-
rial model. The neo-Hookean material model, MOONY [19 | is characterized by the stored
energy density

. S 1
W = }-/\(m TV +

5 5—/L(’CI'C’~-3‘—2111J‘) (4.1)
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while the stored energy density for the Ogden model, OGDEN [1984] is
r Hi g s 3 [s /\ 2 5 i
W=> COTEAT AT — )+ S (J?—1-21nJ) (4.2)

where J 1s the determinate of the deformation gradient, C = F TF is the Cauchy-Green
stress tensor, A and p are the Lame type parameters from linear elasticity and p, and a;
are material parameters. From (4.1) and (4.2) we may obtain the stress and the material
tensor by standard operations.

4.1. Eigenvalue Analysis

To appraise the behavior of the elements above at the nearly incompressible limit an eigen-
value analysis for a single finite element is performed. The two configurations considered

are depicted in Figure 4.1.1. For both, the assumed mechanical properties are A = 1.67
E+405 and p = ]; The analysis 1s performed at the reference state and Table 4.1.1 and

4.1.2 include only the 18 non-zero eigenvalues, 1.e. the 6 rigid body modes are excluded.
Values five orders of magnitude greater than the tabulated values are denoted by the oc
symbol. For a locking-free element only one mode, corresponding to the dilatational mode,
should tend toward infinity as % — oo, If any additional modes tend toward infinity the
element will exhibit volumetric locking.

i
i
1
i
i
'
l
:
'
H
'

L~

Figure 4.1.1 Undistorted and Distorted Configurations of a Hexahedran
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Table 4.1.1 Eigenvalues for a Nearly Incompressible 8-Node Regular Hex-
ahedral Element

Mode H1 H1/E9 H1/E12 H1/E21 H1/ME9
1 5.5556E-02  5.5556E-02  5.5556E-02  5.5556E-02  5.5556E-02
2 5.5556E-02  5.5556E-02  5.5556E-02  5.5556E-02  5.5556E-02
3 1.6667E-01  1.1111E-01  1.1111E-01  5.5556E-02  5.5556E-02
4 1.6667E-01  1.1111E-01  1.1111E-01  5.5556E-02  5.5556E-02
) 1.6667E-01  1.1111E-01  1.1111E-01  5.5556E-02  5.5556E-02
6 2.2222E-01  2.2222E-01  1.1111E-01  1.1111E-01  1.1111E-01
7 3.3333E-01  3.3333E-01  1.1111E-01  1.1111E-01  1.1111E-01
8 3.3333E-01  3.3333E-01  1.1111E-01  1.1111E-01  1.1111E-01
9 3.3333E-01  3.3333E-01  2.2222E-01  2.2222E-01  2.2222E-01
10 3.3333E-01  3.3333E-01  3.3333E-01  3.3333E-01  3.3333E-01
11 3.3333E-01  3.3333E-01  3.3333E-01  3.3333E-01  3.3333E-01
12 o0 3.3333E-01  3.3333E-01  3.3333E-01  3.3333E-01
13 o0 3.3333E-01  3.3333E-01  3.3333E-01  3.3333E-01
14 o0 3.3333E-01  3.3333E-01  3.3333E-01  3.3333E-01
15 00 oo 3.3333E-01  3.3333E-01  3.3333E-01
16 00 00 3.3333E-01  3.3333E-01  3.3333E-01
17 o0 o0 3.3333E-01  3.3333E-01  3.3333E-01
18 00 o0 oo o0 o0

Table 4.1.2 Eigenvalues for Nearly Incompressible 8-Node

Distorted Hexahedral Element

Mode H1 H1/E9 H1/E12 H1/ME9

1 3.6273E-02 3.0720E-02 3.3857E-02  3.3108E-02
2 7.5142E-02 5.5337E-02 5.6785E-02  3.9517E-02
3 1.3489E-01 1.0233E-01 8.0446E-02  6.6768E-02
4 1.6698E-01 1.3401E-01 1.0274E-01  7.4400E-02
5 1.9041E-01 1.4662E-01 1.0760E-01  8.2449E-02
6 2.1365E-01 1.9201E-01 1.2176E-01  8.9910E-02
7 2.5897E-01 2.1791E-01 1.3636E-01  1.0429E-01
3 3.2395E-01 2.5554E-01 1.4528E-01  1.5998E-01
9 3.8442E-01 2.9852E-01 1.8486E-01  1.7127E-01
10 4.0333E-01 3.1738E-01 2.3426E-01  2.2994E-01
11 2.1370E4-01 3.8075E-01 2.6414E-01  2.6744E-01
12 o0 4.3302E-01 2.9215E-01  3.0429E-01
13 o0 4.8680E-01 3.4335E-01  3.1834E-01
14 o0 3.8748E+4+01  3.7548E-01  3.4756E-01
15 20 o0 3.8995E-01  4.2667E-01
16 o0 o0 4.6811E-01  4.4534E-01
7 20 00 5.2791E-01  5.0957E-01
15 50 oo o0 oG
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For the two dimension formulation an eigenvalue analysis is used to track the two hourglass

modes for the two material models under various values of stretch. Figure 4.1.1 illustrates
the configuration and stress state for the simulations.

4 Y

Figure 4.1.1  Undistorted Configurations for Eigenvalue Analysis
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Figure 4.1.2 neo-Hookean Material Model with A = 10° and u = 20.
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Figure 4.1.3  Ogden Material Model with A = 10°, ;1 = 20 and « = (.5.

Figures 4.1.2 and 4.1.3 depict the two eigenvalues corresponding to the bending (hourglass)
modes for the linearized system. Note, for compression the eigenvalues remain positive for
all values of stretch, Ay, correcting the appearence of spurious modes in compression as
observed by WRIGGERS & REESE [1996]. As shown in ARMERO [1996], a limit point
exists for the Ogden model used above at a stretch of A = 3. Values of stretch greater
than this critical value result in a negative axial stiffness and a corresponding negative
stretching eigenvalue. The second hourglass mode in Figure 4.1.3 becomes negative just
after the appearence of this critical value. Thus, a tendency for elements to have large
hourglass modes may still be possible.

4.2. Objectivity

In this section we examine the effect of a super-posed rigid body motion on the deformed
configuration to ensure the formulation is frame-invariant. Frame-invariance will lead
to a finite element method which preserves the objectivity of the constitutive equations,
see GLASER & ARMERO [1995]. We first consider a plane strain strip plate under the
external action of bending moment at the free end. The simulation is performed and the
normal component of the 2nd Piola-Kirchhoff stress in the axial direction is reported in
Figure 4.2.1. The body 1s then subjected to a super-posed rigid body rotation of 60° and
the stresses are recomputed in the new configuration as depicted in Figure 4.2.2. From
Figures 4.2.1 and 4.2.2 we see that the resulting formulation is objective under super-posed
rigid body motion and thus preserves the objectivity of the consitutive equations.
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Figure 4.2.1 Distorted Configuration Before SRBM
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Figure 4.2.2 Distorted Configuration After SRBM

4.3. Homogeneous Compression of a Billet

To determine the performance of the present formulation in highly strained regimes, we
consider the compression of a plane-strain billet. The initial configuration is a unit square
consisting of 256 four node quadralaterial elements. Due to symmetry, only one-half of the
structure was analyzed. The billet is loaded via displacement control on the upper edge,
while the lower edge 1s restrained against translation. The vertical motion of the billet on
the lower edge is enforced by a simple node-on-node penalty formulation with a penalty
parameter of IE+06. A neo-Hookean material model was used for the simulation with A =
4E404 and g = 80.2. Figure 4.3.1 depicts the progression of the deformation.
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Figure 4.3.1 Deformed configurations at various prescribed displacements.

4.4. Indentation Problem

Another simulation for highly strained regimes is the indentation of a rectangular block.
The imitial configuration consists of a 2 x 1 block with 200 four node quadralateral elements.
The block is loaded via displacement control over one-half of the upper edge, while the lower
edge 1s restrained against any motion. The sides of the block are allowed to translate freely
i the vertical direction, but restrained horizontally. A neo-Hookean material model with
A = 4E404 and = 80.2 was used. Figure 4.4.1 depicts the initial and final configurations.
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Figure 4.4.1 Initial and final configurations

4.5. Strip Plate

In this simulation we consider the extension of a perforated sheet. The reference geometry
15 a 20 x 20 square domain with a 6 diameter circular hole at the center with a total of 800
elements. Due to symmetry only one-quarter of the mesh was modeled. The simulation was
performed using four node plane strain quadrilaterals and eight node hexahedral elements
(with one element in the thickness direction). The perforated sheet is clamped and loaded
horizontally (via displacement control) along the two outer vertical boundaries, while the
outer horizontal boundaries are allowed to translate freely. A neo-Hookean material model
with A = 4E+04 and g = 80.2 was used. Figure 4.5.1 depicts the initial configuration,
while Figures 4.5.2 thru 4.5.4 depict the deformed configurations for a plane strain and
three dimensional deformation state.

Figure 4.5.1 Reference configuration.
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Figure 4.5.3 Final configuration using a three dimensional model.
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Figure 4.5.4 Displacement contours of the deformed three dimensional model.

4.6. Upsetting of a Cylindrical Billet

To determine the performance of the present hexahedral element formulation in highly
strained regimes, we consider the compression of a three dimensional cylindrical billet.
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The initial configuration is a cylinder with a radius, r = 10 and a height, A = 15 consisting
of 459 eight node hexahedral elements. The billet is loaded via displacement control on the
upper edge, while the lower edge is restrained against translation. A neo-Hookean material
model was used for the simulation with A = 1E+04 and p = 10. Figure 4.6.1 depicts the
progression of the deformation.

Figure 4.6.1 Deformed configurations at various prescribed displacements.
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5. Closure

We have presented a new class of assumed strain methods employing low order finite ele-
ments in the setting of finite deformation problems in hyperelasticity The present method-
ology circumvents spurious modes in highly compressive regimes in additional to improved
coarse mesh accuracy and locking free response in quasi-incompressible regimes. The
present formulation also allows for variational stress recovery, which is absent in other
enhanced formulations.

The performance exhibited by the Q1/ME2 and H1/ME9 in bending and quasi-incompressible
regions offers an attractive methodology for a systematic development of mixed-enhanced
finite elements. Further extensions to the present work include: a) introduction of alterna-
tive enhanced modes, b) performance evalution of inelastic material models ¢) introduce
alternative interpolatation functions for the first Piola-Kirchhoff stress and the deformation
gradient.
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