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Improving bandwidth efficiency of video-on-demand servers 1

Steven W. Carter, Darrell D.E. Long ) ,2

Department of Computer Science, UniÕersity of California, Santa Cruz, CA 95064, USA

Abstract

Ž .Video-on-demand VOD servers have a limited amount of bandwidth with which to service client requests. Conventional
VOD servers dedicate a unique stream of data for each client, and that strategy can quickly allocate all of the available
bandwidth on the server. We describe a system called stream tapping that allows clients to ‘‘tap’’ into existing streams on
the VOD server. By using existing streams as much as possible, clients can reduce the amount of new bandwidth they
require, and that allows more clients to use the server at once, reducing client latency. Stream tapping uses less than 20% of
the bandwidth required by a conventional VOD server for popular videos, and it performs better than many other strategies
designed to improve VOD servers. q 1999 Elsevier Science B.V. All rights reserved.

Keywords: Video-on-demand; Efficiency; Bandwidth

1. Introduction

At some point in the future, video-on-demand
Ž .VOD will allow clients to turn on their television
sets, connect to a VOD server by way of a television

Ž .set–top box STB , select a video from the server’s
video library, and then begin viewing the video
instantaneously.

That point is still some time off. Although numer-
ous companies have conducted VOD trials and spon-
sored market tests that show the public is very

w xreceptive to the idea of VOD 12,13 , these compa-
nies have not been able to create a commercially

) Corresponding author. E-mail: darrell@cs.ucsc.edu.
1 This extends work previously reported at Sixth International

w xConference on Computer Communications and Networks 3 .
2 This research was supported by the Office of Naval Research

under Grant N00014-92-J-1807.

available system. The reason, almost unanimously, is
cost. Time Warner, for example, spent over $250

Žmillion on its Full Service Network which provided
.VOD and more before ending the project because

w xthe system just was not yet economically viable 7 .
So while it is always important to improve effi-

ciency, it is critical with VOD. Strategies that can
make existing hardware more efficient and reduce

Ž .the need for additional hardware and cost may be
enough to help VOD companies succeed where they
are currently failing.

w xOne such strategy is called stream tapping 3 ,
and it improves the bandwidth efficiency of a VOD
server. Stream tapping accomplishes this by allowing
clients to ‘‘tap’’ into any stream of data on the VOD
server that is displaying data the client can use. By
using existing streams as much as possible, clients
require their own stream of data for shorter period of
time, making them less of a burden to the VOD
server, and the existing streams are able to service
more clients, making them more efficient. However,

1389-1286r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S0169-7552 98 00233-5
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since client STB’s will be able to receive data out of
order, they will require a small amount of buffer
space in which to store the data until it is needed.
This buffer space need not be large, and it should not
add greatly to the price of the STB.

A conÕentional system, on the other hand, does
not make efficient use of the VOD server. In fact, it
does not allow any sharing of data between clients;
each client simply receives its own unique stream of
data, and this strategy can quickly allocate all of the
streams available on the VOD server.

When measuring efficiency, we will use two met-
rics:
Ø SerÕer bandwidth: the average number of streams

used by the VOD server. Alternatively, we may
Ž .use aÕerage serÕice time AST which is the

average bandwidth, in streams, used by the VOD
server multiplied by the amount of time the server
has been running and divided by the number of
clients.

Ø Client latency: the average amount of time a
client must wait before its request is serviced by
the VOD server. In some ways this is the most
important metric of the two because it is the only
one clients will see.
We classify VOD servers in two ways. A server

provides true VOD if it never delays a client request
when it has the bandwidth available to service it. If
the server delays requests, then it provides near
VOD. A server can also provide interactiÕe VOD if
it allows clients to manipulate the display of the

video through the use of VCR controls such as
pause, fast forward, and rewind. We have not yet
modified stream tapping to support interactivity, but
it is a topic we plan to pursue in the future.

A VOD server can also be reactiÕe or proactiÕe.
If the server requires some amount of a priori infor-
mation about the videos and their popularity then it
is called proactive. For example, with some systems
the service provider must reserve a specific amount
of bandwidth in advance for popular videos. That
means the provider must know which videos are
going to be popular and how much bandwidth should
be reserved for each. If no information about the
videos is required, the server is called reactive.

We contend that true VOD is better than near
VOD, and a reactive system is better than a proactive
one. These classifications represent, respectively, the
ideal nature of VOD and the simplest form of main-
tenance. Stream tapping is a true reactive VOD
system.

2. Related work

Over the past five years, several groups of re-
searchers have presented systems for improving the
bandwidth utilization and response times for VOD
servers. In the following sections, we will briefly
describe some of these systems. The key points of
these systems are summarized in Table 1.

Table 1
A summary of key points for several efficiency-improving systems

System True Proactive Client Client Saves on
versus versus bandwidth buffer size network

Ž . Ž .near VOD reactive streams minutes bandwidth

Conventional True Reactive 1 0 No
Batching True Reactive 1 0 Yes
Delayed batching Near Reactive 1 0 Yes
Staggered broadcasting Near Proactive 1 0 Yes
Pyramid broadcasting Near Proactive 2–3 30 Yes
Skyscraper broadcasting Near Proactive 3 5–40 Yes
Harmonic broadcasting Near Proactive 4–6 40 Yes
Piggybacking True Reactive 1 0 Yes
Interval caching True Reactive 1 0 No
Asynchronous multicasting Near Reactive 3q 10–30 Yes
Stream tapping True Reactive 2–4 10–30 Yes
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2.1. Batching

w xWith batching 6 , when the server has multiple
requests for the same video in its request queue, it

Ž .can service them all i.e. batch them together by
multicasting the video to all of the requesting clients.
If there are M requests in the queue, the VOD server
will save My1 times the bandwidth of the video.

Note that if there is only one request for a video
in the server’s request queue, the server will not save
any bandwidth. The only way for batching to gain
any savings is for the VOD server to allow its
request queue to grow, and that only happens when
the server has allocated all of its bandwidth. The rest
of the time batching will perform exactly the same as
conventional systems.

2.2. Delayed batchingrstaggered broadcasting

w xDelayed batching 14 and staggered broadcast-
w xing 2,4 are similar strategies that attempt to fix the

problem with batching. Both allow the VOD server
to delay a certain amount of time after receiving a
request in order to increase the size of the multicast
group. With delayed batching, the server starts delay-
ing after a request is received, and the length of time
it delays is usually based on the arrival rate of the
requests. With staggered broadcasting, the server
simply starts streams for a video after fixed intervals
of time, and the delay is dependent on when the
request arrives during the current interval.

The problem with delayed batching and staggered
broadcasting is that, while they improve the effi-
ciency of the server’s bandwidth, they force a la-
tency penalty on the client in order to do so. In fact,
the average client latency is guaranteed to be non-zero
with these strategies. Delayed batching and staggered
broadcasting are also only used with popular videos
since unpopular videos are unlikely to receive multi-

Ž .ple requests during the short delay intervals.

2.3. Segmentized broadcasting

Segmentized broadcasting systems include Pyra-
w x w xmid broadcasting 15 , Skyscraper broadcasting 9 ,

w xand Harmonic broadcasting 10 . These systems do
not broadcast an entire video on a stream; they break
up each video into segments and then show each
segment repeatedly on a stream. The differences in

the systems relate to the sizes of the segments, the
number of segments clients must receive at any one
time, and the data transfer rates used by the VOD
server.

While the segmentized broadcasting systems can
significantly reduce client latencies over staggered
broadcasting systems, they require a more compli-
cated client STB. The STB must, for example, be
able to switch from stream to stream in order to
receive all of the segments, be able to receive data at
two or more times the consumption rate for the
video, and contain a local buffer able to hold up to
half of the video data. Moreover, these systems still
guarantee a non-zero client latency and are only
suitable for popular videos.

2.4. Piggybacking

w xIn piggybacking 1,8 , the display rates of videos
Žare changed by "5% an amount supposedly unde-

.tectable to human observers so that two existing
data streams can be ‘‘merged’’ into one. Once the
two streams reach the same point in the video, one of
the streams can be released and its clients switched
to the surviving stream.

There are two main drawbacks to piggybacking.
The first is that it takes a long time for two streams
to merge. If the streams start D minutes apart, it will
take piggybacking 10D minutes to merge them. The
second drawback is that, unless the VOD server is
powerful enough to make the video rate changes on
the fly, it will have to store at least two versions of
each video, doubling the storage requirements.

2.5. InterÕal caching

w xWith interÕal caching 5 , the VOD server uses a
local cache for its storage system. Inside the cache,
as much as possible, the server stores intervals of
data between pairs of streams for the same video.
This strategy allows the second stream of the pair to

Žget almost all of its data from the cache which is
.being fed by the first stream of the pair , saving the

server almost a stream of bandwidth.
The main issue with interval caching is its cost

effectiveness. The VOD provider has a choice of
using a cache and saving bandwidth, or adding more
storage devices and adding bandwidth. Dan and
Sitaram did a cost analysis and found for the VOD
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Ž .servers of the size discussed here 300 streams , the
cache should only be large enough to hold 20–40

w xminutes of video data 5 . That will only provide
savings for approximately 5–10% of the requests.
Note also that interval caching does nothing to re-
duce the bandwidth of the network. Cached streams
on the VOD server will still need to be transported
across the network just like normal streams.

2.6. Asynchronous multicasting

w xAsynchronous multicasting 16,11 allows a client
to join a multicast group for a video after the video
has started. The VOD server accomplishes this by
breaking up the video into segments of length S and
sending out a segment every S minutes, but using a
transfer rate N times the display rate of the video so
the transfer only takes SrN minutes. That allows a
client to join a multicast group late, store the seg-
ments that are current for the other members of the
group in a local buffer until they are needed, and use
the gaps between the segments to receive segments it
missed.

Due to the high transfer rate of the segments,
clients can only receive one segment of the video at
a time. That means a client must arrive before the

ŽNth segment of a video is shown—or within Ny
.1 S minutes of the start of the video—if it wants to

join the multicast group. Using an example of Ns3
w xand Ss6 11 , the client’s buffer must be able to

hold 18 minutes of video data, but the client can only
catch up to videos that started less than 12 minutes
in the past. Also, if the client arrives while another
segment is being shown, it must wait for a free slot,
adding latency.

Asynchronous multicasting shares some similari-
Ž .ties with stream tapping see Section 3.2 , but there

are also some key differences. Stream tapping does
not break the video into segments, does not make
any assumptions about the transfer rate, makes more
efficient use of the client buffer, never delays re-
quests, and requires a lower data rate at the client
STB.

3. Stream tapping

The key idea behind stream tapping is that clients
are not restricted to their assigned stream. If other

streams for the same video are active on the VOD
server, clients are allowed to ‘‘tap’’ into them, stor-
ing the tapped data in a local buffer until it is
needed. By using existing streams as much as possi-
ble, clients minimize the amount of new bandwidth
they require.

3.1. Notation

We use the following notation when describing
the parameters and workload characteristics of the
system:

bs the size of the STB buffer, measured in minutes

of video data,

B s the maximum bandwidth of the client STB,c

measured in streams,

B s the maximum bandwidth of the VOD server,s

measured in streams,

Ns the number of videos offered by the VOD

server,
L s the length of video i , in minutes, for 1F iFN ,i

ls the arrival rate of requests at the VOD server,

measured in requests per hour,

D s the amount of time that has passed, in minutes,i

since video i required a stream of data for the

entire length of the video.

3.2. Stream classifications

Stream tapping classifies streams into three differ-
ent types:
Ø Original streams read the entire video from the

VOD server’s storage system. They can be used
at any time, but since they do not use data from
other streams, they do not provide any savings for
the VOD server. Stream tapping avoids using
them when possible.
Since they read out the entire video, original
streams have a service time of

S i sL 1Ž . Ž .o i

minutes, where i is the index of the video being
read.

Ø Full tap streams can only be used within b

minutes of the start of an original stream for the
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Ž .same video i.e. when D Fb . This proximityi

allows full tap streams to work in conjunction
with original streams so they can be released after
a very short period of time.
In particular, the requesting STB will receive both
the full tap and original streams for D minutes.i

During that time the full tap stream will read the
first D minutes of the video, and the STB willi

display it live. The data from the original stream
will be stored in the STB’s buffer. After Di

minutes, the STB will be able to release the full
tap stream and receive the rest of the video from
its buffer, which will be continually updated from
the original stream and contain a moving D -i
minute window of the video.
Fig. 1 illustrates the two stages an STB goes
through when it is assigned a full tap stream. Part
Ž .A represents the STB when it is receiving the

Ž .full tap and original streams, and Part B repre-
sents the STB after the full tap stream has been
released. The buffer here is simply a block of
storage on the STB that can store b minutes of
video data. The shaded part of the buffer indicates
where there is data the STB still needs.
Since full tap streams can be dropped after Di

minutes, they have a service time of

S i sD 2Ž . Ž .f i

minutes.
Ø Partial tap streams can be used when an original

stream for the same video is active but started

Fig. 1. The two stages an STB goes through when it is assigned a
full tap stream.

Žover b minutes in the past i.e. when b-D Fi
.L . Like full tap streams, partial tap streams cani

work in conjunction with original streams, but
they provide less savings and that savings quickly
diminishes the farther away the partial tap stream
gets from the start of the original stream.
In particular, the STB will receive the partial tap
stream and the original stream for b minutes. The
partial tap stream will read the first b minutes of
the video, and the STB will display it live. Mean-
while, the original stream will read minutes D toi

D qb of the video, and the STB will place thati

data in its buffer.
From that point on, the STB will alternate be-
tween the following two steps until the video is
complete.
1. The STB will stop receiving the original stream

Ž .and reacquire if necessary the partial tap
stream. The STB’s buffer will be full at this
point, but the data in it will be D yb minutesi

away from the STB’s current position in the
video, so the STB will use the partial tap
stream to receive the data it needs.

2. The STB will release the partial tap stream and
begin displaying the data from its buffer. At
the same time it will begin receiving the origi-
nal stream again, simultaneously filling its
buffer while emptying it.

Fig. 2 illustrates the three stages an STB assigned a
Ž .partial tap stream must go through. Part A repre-

sents the first b minutes when it is receiving the
Ž .partial tap and original streams, and Parts B and

Ž .C represent, respectively, Steps 1 and 2 from above.
In total, partial tap stream will exist for the first b

minutes of the display and then for the first D ybi

minutes of every succeeding D -minute interval. Thati

gives partial tap streams a service time of
L ybi

S i sbq D ybŽ . Ž .p i
Di

qmin D yb , L yb mod D 3Ž . Ž .Ž .i i i

minutes.
Fig. 3 shows the three stream types from the

VOD server’s perspective. The two tap streams are
tapping data from the original stream, and the shaded
areas indicate when the streams are active.

One last definition relating to stream types is that
for Õideo groups. A video group is defined as an
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Fig. 2. The three stages an STB goes through when it is assigned a
partial tap stream.

original stream for a video plus all of the streams
tapping data from it.

3.3. The stream tapping algorithm

The actual algorithm for stream tapping is very
straightforward. Every time the VOD server recog-
nizes the potential to service a request, it must first
assign each of the requests in its request queue one
of the three stream types. Once the requests have
been assigned, the server will know deterministically
the service time and scheduling requirements of each.
It can then use that information to check which
requests can be serviced.

The stream assignment process works as follows.
If no original stream is active for the requested
video, then the request requires an original stream.
Otherwise, if the request can use a tap stream, the
server must decide between assigning the request a
tap stream or assigning it an original stream. The
choice for the current request will affect later re-

Ž .quests, so the local greedy answer is not always
best.

The server makes the decision between tap and
original streams by examining the current video group
of the request. With a minimal amount of extra

Ž .storage three fields for each video , the server can
keep track of the minimum average service time
Ž .AST for the streams in the group. It can also

Ž Ž . Ž ..calculate using Eq. 2 and Eq. 3 the exact service
time for the request should it be assigned a tap
stream. The server can then compare the minimum
AST of the group to the AST of the group with the
tap stream included. If the new AST is worse than
the minimum AST, then the server will select an
original stream for the request; otherwise it will
select the appropriate tap stream.

The key problem is deciding what ‘‘worse’’ means
when comparing the service times. The AST of the
group does not always decrease monotonically to its
minimum point, and so using a strict comparison
could cause the server to start a new group when the
existing group could still be improved. Allowing the
AST of the group to grow could cause the server to
stay with a video group too long.

We solved this problem by adopting a ‘‘3% rule’’
where an original stream is only assigned if the new
AST is at least 3% higher than the minimum AST.
We chose the value 3% by examining simulated
traces of client requests and by checking how often
and by what amount different percentages would
stop a group too early or stay with a group too long.
Values of 0–6% performed well overall, with the
smaller percentages in that range doing better with
small buffers and small arrival rates and the larger
percentages doing better on the opposite side of the
spectrum. The value 3% was a nice middle ground,
and it was never far from the optimal percentage for
any trace.

Fig. 3. The three stream types from the VOD server’s perspective.
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The stream decision process is summarized in
Fig. 4.

3.4. Options

With the stream tapping algorithm as described in
Section 3.3, the client STB only needs to receive at
most two streams at any one time. If it can receive
more, two options become available to the system.

The first of these options is called extra tapping.
It allows an STB to tap data from any stream on the
VOD server, not just from the original stream in its
video group. By tapping extra data, the STB’s re-
quest will require a shorter service time and the
VOD server will save bandwidth.

There are three restrictions for extra tapping: the
STB should not tap from more streams than its
maximum bandwidth allows, the tapped data should
not displace any data in the STB’s buffer that the
STB still needs, and the tapped data should still be in
the STB’s buffer when it is needed. These restric-

tions mean that extra tapping can only be used
during the first b minutes of full and partial tap
streams.

As an example, consider a situation where bs10
and there are two full tap streams to an original
stream, the first with Ds5 and the second with
Ds6. Without extra tapping, the STB receiving the
second full tap stream would require a stream of data
on the VOD server for the first 6 minutes of the
video. But since the STB can also use the data from
the first full tap stream, extra tapping allows the STB
to get minutes 2–5 of the video from there, reducing
its service time from 6 to 2 minutes.

The second option is called stream stacking. If
the VOD server currently has bandwidth available,
an STB can acquire additional streams from the
server to more quickly load in the data it needs.
However, the STB must give up those streams if the
server later needs them back, and stream stacking is
faced with the same restrictions—and therefore can
only be used in the same situations—as extra tap-
ping.

Fig. 4. The stream decision process.
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Note that stream stacking does not change the
service time of the request like extra tapping does. It
simply rearranges when storage accesses take place
on the server to try and avoid future bandwidth
contention.

For example, suppose bs10 and a full tap stream
starts 4 minutes after an original stream. If the VOD
server has an extra stream available, then the STB
receiving the full tap stream can acquire the extra
stream from the server and effectively double its
bandwidth for receiving the first 4 minutes of the
video. It can then release both streams after 2 min-
utes, thus freeing up bandwidth more quickly than it
would have otherwise.

If stream stacking and extra tapping are used
simultaneously, stream stacking can cause data to be
read redundantly on the server. This happens when
one request stacks data that later-arriving requests
could have tapped, causing the VOD server to access
the data again.

This redundancy does not hurt the VOD server,
though, since the redundant data only uses band-
width that otherwise would not have been used, and
so at worst stream stacking can have no effect.

4. Simulation

We used simulation to analyze the stream tapping
system. Several of the assumptions we made for this
simulation are described below.

4.1. Video library

The length of each video was modeled using a
normal distribution with a mean of 110 minutes and
a standard deviation of 10 minutes. These lengths
were truncated to a minimum of 80 minutes and a
maximum of 180 minutes to keep the values realis-
tic.

The popularity of each video was modeled using a
Zipf-like distribution with a parameter of 0.271. The
Zipf distribution is the distribution recommended by

Ž .Drapeau et al. 1994 and used by many others
w x6,14 . The parameter value was selected by Dan et

Ž .al. 1996 to tune the distribution to match empirical
video store rental patterns for the most popular 92
videos of the time.

4.2. Clients

Clients were generated using a Poisson arrival
process with an interarrival time of 1rl. Clients
were only allowed to select a video based on the
distribution described above. Interactivity is planned
for the future.

We also made the simplifying assumption that all
client STB’s were exactly the same in terms of
buffer size and bandwidth. In general, this does not
need to be the case.

4.3. VOD serÕer and network

We made three assumptions about the VOD server
and the network: that the start-up latency for a
stream was zero, that the network always had band-
width available for the VOD server, and that the
network latency was zero. These assumptions simpli-
fied the simulation while not significantly changing
the results and are consistent with the assumptions

wmade by other researchers in the field 1,2,6,8–
x11,14–16 .

5. Results

We will now present several results for the stream
tapping system. These results were obtained through
the use of the simulation described in Section 4.
Each run of the simulation consisted of a three-hour
warm-up period followed by a 12-hour interval dur-
ing which statistics were kept, and each data point is
the mean of five such runs. This kept the variance of
the values to less than 5%.

5.1. Configurations

We drew upon two standard configurations—one
for each of our metrics—when running the simula-
tion. Unless specified otherwise, these configurations
define the parameters we used when simulating re-
sults.

The latency configuration is defined as follows:
Ø The VOD server has enough bandwidth for 300

streams of data and has a library of 92 videos.
Ø The client STB has a ten-minute buffer and has

enough bandwidth to accept four streams of data.
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The STB is also allowed to use extra tapping and
stream stacking.

This represents a moderately-sized VOD server, one
that might serve a community of several thousand
people.

For the bandwidth configuration, we wanted to
know how much bandwidth a VOD server would use
if there was no contention for resources. Therefore
this configuration has the following parameters:
Ø The VOD server has an unconstrained amount of

bandwidth, but it only shows a single video.
Information for multiple videos can then be ex-
trapolated from the data for the single video.

Ø The client STB is the same as in the latency
configuration, except it is not allowed to perform
stream stacking. Given the unconstrained nature
of the VOD server, stream stacking would only
cause the server to read a great deal of redundant
data, skewing the results.

5.2. Stream decision process

The stream decision process is the strategy by
which the VOD server assigns a request one of the

Ž .three stream types see Section 3.3 . Comparing our
strategy to the optimal set of choices turned out to be
slightly difficult.

Since almost every request can be assigned an
original stream or a tap stream, exhaustively check-

Ž l.ing every possible set of choices would take O 2
time. Thus, instead of determining the average ser-

Ž .vice time AST of the optimal set of choices, we
decided to find upper and lower bounds for it. We

Ž 2 .accomplished this through the use of an O l algo-
rithm that made several passes through the requests,
each pass i starting a video group at request i and
determining the minimum AST of that group. The
smallest of the minimum AST’s over all of the
requests is then a lower bound on what any set of
choices could accomplish. By also keeping track of
the index of the video where the minimum AST was
achieved for each group, the same algorithm was
also able to determine the AST of a policy that
would always start a new video group when the
current group had reached its minimum AST. The
AST of this ‘‘good’’ policy is then an upper bound
on the AST of the optimal set of choices.

Fig. 5 shows that our 3% rule fared very well in
comparison to the bounds for the optimal set of
choices. In fact, it is almost indistinguishable from
the upper bound, which we expect is much closer to
the optimal value than the lower bound. The greedy

Žalgorithm always taking a tap stream when the
.opportunity is there is shown as a point of interest.

5.3. Client STB

The more complex the client STB is, the more it
will cost, and the less popular it will be with the
consumer. Stream tapping was designed to work
under a variety conditions, and in this section we
will show how the complexity of the STB affects the
efficiency of the VOD server.

Figs. 6 and 7 show how the size of the client
STB’s buffer affects the efficiency of the VOD
server. While the average server bandwidth levels off
fairly quickly, the drop in average client latency is
dramatic. Even with a buffer as small as 10 minutes
Ž .or 115 megabytes for MPEG-1 encoding clients
wait on average well less than ten minutes, and when
the buffer size is 30 minutes, clients almost do not
have to wait at all.

An STB that can only receive two streams is
essentially the same as one that does not use either
of the options to the system, and increasing the
number of streams the STB can receive only in-
creases the degree to which the STB can use the
options. Thus, Figs. 8 and 9 show not only how

ŽFig. 5. Rating the stream decision process Ns1, ls30, Bs
.unconstrained .
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ŽFig. 6. b versus average server bandwidth Ns1, B uncon-s
.strained .

much the STB bandwidth affects VOD server effi-
ciency, they also indicate how useful the options are
to the system.

Clearly, the savings gained from using the options
is minimal. Although Fig. 8 shows a promising drop
in server bandwidth when the STB increases its
bandwidth from two to three streams, the client
latencies are almost constant. In fact, the savings are
due almost entirely to the extra tapping option, which
only uses about one stream of bandwidth. Stream
stacking has the problem that the times when it could
be helpful are the same times when there are no
available streams on the server for it to use. How-

Ž .Fig. 7. b versus average client latency Ns92, B s300 .s

ŽFig. 8. B versus average server bandwidth Ns1, B uncon-c s
.strained .

ever, stream stacking might be much more useful in
Ž .an interactive version of the system see Section 6 .

5.4. Comparisons

In this section we will compare stream tapping to
several other VOD systems. In cases where there are
multiple choices for the competing system, we have
chosen a representative version for the comparison.

Fig. 10 illustrates how much server bandwidth is
saved by using stream tapping instead of a conven-
tional system. Note that stream tapping saves over
80% when the interarrival time is small and even
saves 5–30% when the interarrival time is as much

Ž .Fig. 9. B versus average client latency Ns92, B s300 .c s
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ŽFig. 10. Comparing stream tapping to conventional systems Ns
.1, B unconstrained .s

as 60 minutes. We could also compare latencies
between stream tapping and conventional systems,
but for any arrival rate over 163 per hour, a conven-
tional system will begin to generate an infinite queue,
and its latency will grow with the simulation length.
For rates of 163 per hour and less, stream tapping
will always generate a zero latency for clients unless
the STB buffer is only one minute in size.

Next we compared stream tapping to the broad-
casting systems. Since the quality of the broadcasting
systems do not depend on the arrival rates of client
requests, we were able to model them analytically,
calculating the average client latency as a function of

ŽFig. 11. Stream tapping versus the broadcasting systems Ns5,
.b s30, ls360 .

the bandwidth reserved by the systems. Approxi-
mately five videos are released each week, and so we
chose that as the number of videos with which to
evaluate the systems. Also, since the broadcasting
systems tend to use at least a half hour of buffer
space, we allowed stream tapping to use that much
space as well.

The results are shown in Fig. 11, and even with
the extremely high request rate—a situation that
should hurt stream tapping in comparison to the
broadcasting systems—stream tapping performs very
well. In fact, from seven stream per video on, stream
tapping beats all of the other systems except for
Harmonic Broadcasting, and Harmonic Broadcasting
may be of more theoretical than practical importance
since it can require the client STB to receive hun-
dreds of low bandwidth streams from the VOD
server.

Finally, we compared stream tapping to the fol-
lowing reactive systems: batching, piggybacking us-

w xing the ‘‘optimal simple merging policy’’ 1 , inter-
val caching with an 8-hour cache, and asynchronous
multicasting modeled as stream tapping with only
full tap streams and no options. Reducing asyn-
chronous multicasting to a subset of stream tapping
should help the system since it allows the client STB
to use the entire buffer, and it allows clients to join
existing multicast groups without waiting.

Fig. 12 shows the bandwidth comparison and Fig.
13 the latency comparison. In both cases, stream

ŽFig. 12. Stream tapping versus other reactive systems Ns1, Bs
.unconstrained .
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ŽFig. 13. Stream tapping versus other reactive systems Ns92,
.Ss300 .

tapping handily beats the other systems. Note that
neither batching nor interval caching are considered
in Fig. 12; batching would simply perform like a
conventional system under the bandwidth configura-

Ž .tion since requests are never queued and interval
caching would be able to store the entire video in its
cache, never having to use disk bandwidth.

6. Future work

The most important topic we plan to pursue in the
future is interactivity. An interactive VOD server
allows clients to use VCR controls such as pause,
fast forward and rewind when viewing videos. It also
makes the stream of data required by the client far
more unique, reducing the ability of client STB’s to
share data.

A VOD server that shows videos at regular inter-
Ž .vals such as one employing staggered broadcasting

can support interactivity very efficiently in a discon-
w xtinuous manner 2 . That is, the VCR controls can be

mimicked by allowing the client STB to switch to an
earlier-starting stream for fast forward, switch to a
later-starting stream for rewind, and wait for a later-
starting stream to catch up to the same position in
the video for pause. This strategy does not require
any extra bandwidth on the VOD server, but it does
not give clients much precision with regard to the

Žcontrols, and it does not allow for cuing viewing
.the video while using fast forward or rewind .

Systems such as stream tapping, piggybacking,
and batching can perform continuous VCR controls
—but at a reduced rate of performance. Each VCR
control used by the client can potentially move the
client STB out of its current video group and into a
new video group where it is the only member. This
move can break down much of the work done by the
system and cost the server extra bandwidth.

However, stream tapping should have an advan-
tage:
Ø Stream tapping already uses a buffer on the client

STB, and that buffer can keep the STB from
requiring a new stream of data on the VOD
server. For example, a client receiving an original
stream can pause for up to b minutes before it
has to switch to a new stream.

Ø If the client STB has to switch from the current
Ž .stream or streams it is receiving, it is possible

the STB will end up closer to an original stream
than it was before, actually saving bandwidth.

Ø Interactive VOD servers often have to use contin-
w xgency channels 4 , which are streams reserved

for clients who use VCR controls and conse-
quently require new bandwidth on the server.
These streams can go to waste in other systems,
but stream tapping will be able to use them at all
times with the stream stacking option.

7. Conclusions

We have presented a system called stream tapping
that can improve the bandwidth efficiency of a

Ž .video-on-demand VOD server. Through the use of
Ž .a small buffer on the set-top box STB , it allows

clients to ‘‘tap’’ into existing streams of data on the
VOD server, thus reducing the amount of new band-
width clients require for their requests. This reduc-
tion allows more clients to use the server at once,
and that in turn lowers the amount of time clients
must wait before their requests can be serviced.

Stream tapping does not make any assumptions
about its environment; it can be scaled to meet most
requirements, including the size of the VOD server
and the sophistication of the client set-top box.
Stream tapping never delays requests when the VOD
server has resources available, making it truly an
on-demand system. It also does not require any a
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priori knowledge by the VOD provider. Stream tap-
ping will divide up the available bandwidth as the
request patterns of the videos dictate.

We analyzed stream tapping through the use of
simulation. Even when the STB buffer was only

Žlarge enough to hold ten minutes of video data 115
.megabytes for MPEG-1 encoding , stream tapping

supported 600 requests per hour on a 300-stream
VOD server and gave less than ten minute latencies
for the clients. With a 30-minute buffer, it supported
600 requests per hour on the same system with
almost no waiting time at all for the clients.

We also compared stream tapping to several other
VOD systems. Against conventional systems, which
simply dedicate a unique stream of data to each
request, stream tapping saved over 80% on band-
width for popular videos. Against more sophisticated
systems, including broadcasting systems that can
guarantee performance results regardless of the client
request rate, stream tapping again performed better,
providing significant savings in bandwidth and client
latency.
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