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Abstract

Superflatness

by

Adam Lee Boocher

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Eisenbud, Chair

One way to obtain geometric information about a homogeneous ideal is to pass to a
monomial ideal via a flat degeneration. Flatness is strong enough to ensure this degeneration
preserves the Hilbert function, which allows us to make geometric statements about the
original ideal. Although it is by no means trivial, full analysis of monomial ideals is aided by
a wealth of interactions with combinatorics, topology, and commutative algebra. However,
since flatness only goes so far, finer invariants than the Hilbert function cannot typically be
detected via this technique.

One finer invariant is the minimal free resolution. Originally introduced by Hilbert, free
resolutions encode algebraic relations among the generators of an ideal. Numerically, the
data of a free resolution are the graded Betti numbers which detect surprising geometric
information. In recent years there has been much study devoted to the relationship be-
tween the modules occurring in a free resolution (collectively called syzygies) and geometric
invariants.

Flatness is not strong enough to guarantee that the free resolution will be preserved
upon degeneration. In fact, in some sense, the expected behavior is that the resolution will
become more poorly behaved. This dissertation studies situations in which flat degenerations
preserve more than they ought, and how these superflat degenerations allow us to better
understand the resolution of our original ideal. It contains a brief introduction followed by
three self-contained chapters.

In Chapter 2 we study ideals associated to sparse-generic matrices, those whose entries
are distinct variables and zeros. Such matrices were studied by Giusti and Merle in [GM82]
where they computed some invariants of their ideals of maximal minors. Here we extend
these results by computing a minimal free resolution for all such sparse determinantal ideals.
We do so by introducing a technique for pruning minimal free resolutions when a subset
of the variables is set to zero. Our technique correctly computes a minimal free resolution
in two cases of interest: resolutions of monomial ideals, and ideals resolved by the Eagon-
Northcott Complex. As a consequence we can show that sparse determinantal ideals have a
linear resolution over Z, and that the projective dimension depends only on the number of
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columns of the matrix that are identically zero. Finally, we show that all such ideals have
the property that regardless of the term order chosen, the Betti numbers of the ideal and
its initial ideal are the same. In particular the nonzero generators of these ideals form a
universal Gröbner basis.

Chapter 3 presents joint work with Elina Robeva and initiates a systematic study of
ideals minimally generated by a universal Gröbner basis. We call such an ideal robust.
We show that robust toric ideals generated by quadrics are essentially determinantal. We
then discuss two possible generalizations to higher degree, providing a tight classification for
determinantal ideals, and a counterexample to a natural extension for Lawrence ideals. We
close with a discussion of robustness of higher Betti numbers.

Chapter 4 is joint work with Federico Ardila concerning the closure of linear spaces in
a product of projective lines. Let L be an linear space in An. We study the closure L̃ in
(P1)n and show that the degree, defining equations, graded Betti numbers, and universal

Gröbner basis of its defining ideal I(L̃) are all combinatorially determined by the linear
matroid associated to L. We explicitly compute these invariants. In so doing, we study the
set of monomial initial ideals of I(L̃).
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Chapter 1

Introduction

Let S = k[x0, . . . , xn] be a polynomial ring over a field k. If M is a graded S-module, then
one important invariant of M is its minimal free resolution, which is an exact sequence

0 // Fd // Fd−1
// · · · // F0

//M // 0

where the Fi are free modules chosen to have rank as small as possible. Such a resolution
is unique up to isomorphism and many geometric invariants can be obtained only from the
ranks and generating degrees of the Fi. We define the graded Betti numbers to be these
ranks

βi,j(M) := dimk(TorSi (M,k))j.

In what follows we assume that M = S/I, for a homogeneous ideal I and interpret M as
the coordinate ring of a projective variety.

An effective way to compute Betti numbers is to pass to a monomial ideal via a flat
degeneration. Typically this arises in the context of a Gröbner degeneration coming from a
monomial term order <, and the resulting monomial ideal is called the initial ideal, denoted
in< I. We say such a degeneration is flat because there exists an ideal Ĩ ⊂ S[t] such that
S[t]/Ĩ is a flat k[t]-module with the property that

S[t]/Ĩ ⊗k[t] k[t, t−1] ∼= S/I[t, t−1], S[t]/Ĩ ⊗k[t] k[t]/(t) ∼= S/ in< I.

Flatness ensures that the Hilbert function of S/I is equal to that of S/ in< I, but once we
pass to Betti numbers we obtain only an inequality:

βi,j(S/I) ≤ βi,j(S/ in< I) (1.1)

(See [Pee11]).
This inequality is typically strict. Indeed, equality for i = 1 is equivalent to the fact

that I is minimally generated by a Gröbner basis with respect to <, which is hardly typical
behavior. Various authors have considered cases where equality holds in 1.1 for a particular
term order (see [CHT06, BR07, JW07]), and for the case i = 1, papers supplying examples
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and non-examples alike about Gröbner bases abound. In this dissertation, we take the
approach of analyzing the much stronger condition that equality holds for all term orders
<, and for all i and j. In other words, we seek to understand those ideals I whose initial
ideals are not only flat degenerations, but superflat!

The three chapters that follow all share a component of our superflat theme. The goal
of this thesis is to show that not only is superflatness an interesting property, but also one
that occurs in many classical settings. Each chapter is meant to be self-contained, although
there is a natural progression. It is worth noting, that this dissertation began by studying
matrices of zeros and variables in an attempt to compute the minimal free resolution of their
ideal of maximal minors. In completing that project, the importance of ideals with superflat
degenerations became apparent.

In order to make precise statements, we have adopted the word robust to refer to ideals
minimally generated by a universal Gröbner basis, and say an ideal has robust Betti numbers
if equality holds for all i, j, and < in Equation 1.1.

Sparse Determinantal Ideals

In Chapter 2 we study ideals associated to sparse-generic matrices, those whose entries are
distinct variables and zeros. For example consider the ideals of maximal minors of the
following two matrices:

X =

 x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

 X ′ =

 0 0 x3 0 x5

0 0 y3 y4 y5

z1 z2 0 0 z5

 .

Figure 1.1: A Generic Matrix and a Specialization

Such ideals were studied by Giusti and Merle in [GM82] where they computed some
invariants of their ideals of maximal minors. In particular they proved that the codimension,
primeness and Cohen-Macaulayness of such ideals depend only on perimeter of the largest
block of zeros. For example, their result says that the codimension of the ideals in the figure
are given by

codim I3(X) = 3, codim I3(X ′) = 2.

It is natural to ask how the minimal free resolutions of such ideals change as we add or
remove zeros. For example, the two matrices in Figure 1 yield ideals whose free resolutions
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have the following Betti tables:

0 1 2 3
total: 1 10 15 6

0: 1 . . .
1: . . . .
2: . 10 15 6

0 1 2 3
total: 1 7 9 3

0: 1 . . .
1: . . . .
2: . 7 9 3

In Chapter 2 we prove that the minimal free resolution of a sparse determinantal ideal
is always given by a direct summand of the Eagon-Northcott complex, and as such the
resolution is always linear. We also show that except in degenerate cases when an entire
column consists of zeros the projective dimension is always equal to that of the generic case.

We prove this by introducing a technique for pruning minimal free resolutions when a
subset of the variables is set to zero. Our technique correctly computes a minimal free
resolution in two cases of interest: resolutions of monomial ideals, and ideals resolved by
the Eagon-Northcott Complex. Finally, we show that all such ideals have the property that,
regardless of the term order chosen, the Betti numbers of the ideal and its initial ideal are the
same. In particular the nonzero generators of these ideals form a universal Gröbner basis.
In other words, the ideals are robust and have robust Betti numbers.

Robust Toric Ideals

Chapter 3 presents joint work with Elina Robeva and initiates a systematic study of ideals
minimally generated by a universal Gröbner basis, which we call robust. Robust ideals were
essential in the proof of the results in Chapter 2, but few large classes of robust ideals are
known. We begin by studying prime ideals generated by binomials. Such ideals are called
toric ideals and enjoy many connections with combinatorics. In this chapter we show that
robust toric ideals generated by quadrics are essentially determinantal. We then discuss two
possible generalizations to higher degree, providing a tight classification for determinantal
ideals, and a counterexample to a natural extension for Lawrence ideals. We close with a
discussion of robustness of higher Betti numbers.

Closures of Linear Spaces

Chapter 4 presents joint work with Federico Ardila concerning the closure of linear spaces
in a product of projective lines. Such closures are a natural extension of the construction
of Lawrence ideals considered in chapter 3. Let L be an linear space in An. We study the
closure L̃ in (P1)n and show that the degree, defining equations, graded Betti numbers, and

universal Gröbner basis of its defining ideal I(L̃) are all combinatorially determined by the
linear matroid associated to L.
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Example 1.2. To the linear ideal

I = 〈x1 + x2 + x6, x2 − x3 + x5, x3 + x4〉 .

given by r = 3 independent equations in n = 6 variables, and the corresponding linear
subspace L ⊂ k6 of dimension d = n − r = 3, we associate the r × n matrix whose rows
correspond to our 3 equations:

A =

1 1 0 0 0 1
0 1 −1 0 1 0
0 0 1 1 0 0

 .
We regard the columns of A as a point configuration in Pr−1 = P2, respectively, as shown
in Figure 1.2. The affine dependence relations among the points correspond to the linear
dependence relations among the columns of the matrix. A different generating set for I
would give a different point configuration with the same affine dependence relations.

16 
2 

5 4 3 

Monday, November 4, 13

Figure 1.2: A point configuration A ⊂ P2 corresponding to the linear ideal I.

It is known that the minimal universal Gröbner basis of I is given by the cocircuits of I:
the linear forms in L using an inclusion-minimal set of variables.

I = 〈x1 + x2 + x6, x1 + x3 − x5 + x6, x1 − x4 − x5 + x6, x2 − x3 + x5, x2 + x4 + x5, x3 + x4〉

We identify the cocircuits with their support sets 126, 1356, 1456, 235, 245, and 34. They are
the complements of the hyperplanes 345, 24, 23, 146, 136, and 1256 spanned by A. Our main
result claims that the homogenized cocircuits minimally generate Ĩ, and give a universal
Gröbner basis:

Ĩ = 〈x1y2y6 + y1x2y6 + y1y2x6, x1y3y5y6 + y1x3y5y6 − y1y3x5y6 + y1y3y5x6, . . . , x3y4 + y3x4〉

Similarly, other invariants of the matroid yield information about the multi-degree, initial
ideals, and Betti numbers. Again it turns out that the ideal Ĩ is robust and has robust Betti
numbers.
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Chapter 2

Resolutions of Sparse Determinantal
Ideals

This chapter presents the paper “Free Resolutions and Sparse Determinantal Ideals” [Boo12]
which has been published in Math Research Letters, with only minor changes.

2.1 Introduction

Let S be a polynomial ring over K, where K is any field or Z. By a sparse generic matrix,
we mean a k × n matrix X ′ (with k ≤ n) whose entries are distinct variables and zeros,
and will denote by Ik(X

′) its ideal of maximal minors, which we call a sparse determinantal
ideal. For example, the two matrices below are both sparse generic matrices.

X =

 x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

 X ′ =

 0 0 x3 0
0 0 y3 y4

z1 z2 0 0

 .

Figure 2.1: A Generic Matrix and a Specialization

Sparse generic matrices and determinantal ideals were studied by Giusti and Merle in
[GM82] where they showed that the codimension, primeness, and Cohen-Macaulayness of
Ik(X

′) depend only on the perimeter of the largest subrectangle of zeros in X ′. In this paper
we continue the story by studying the homological invariants of these ideals and describe
explicitly how to compute their minimal free resolution in terms of the arrangement of zeros.
In particular we prove that except in trivial cases, the projective dimension and regularity
of such ideals is the same as in the generic case:

Theorem 2.1. Let X ′ be a k×n sparse generic matrix with no column identically zero, and
I = Ik(X

′) its ideal of maximal minors. If I 6= 0 then regS/I = k and pdimS/I = n−k+1.
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Finally, if X is a generic k × n matrix, then the Betti numbers of S/I satisfy

βij(S/Ik(X
′)) ≤ βij(S/Ik(X)), for all i, j.

Sparse generic matrices can be thought of as generic matrices after setting some variables
equal to zero. For an arbitrary ideal, it is difficult to describe how the minimal free resolution
changes after setting some linear forms equal to zero. Indeed, the Betti numbers, projective
dimension, and regularity can be wildly different before and after specialization. However,
in the case of determinantal ideals, which are resolved by Eagon-Northcott complex, there
is a simple greedy algorithm that can be used to compute the minimal free resolution of any
sparse determinantal ideal. This is the basis for our proof of Theorem 2.1. The following
example illustrates our method:

Example 2.2. Consider the matrices X and X ′ in Figure 2.1. We begin with the Eagon-
Northcott complex that resolves S/I3(X):

0 // S3


x4 y4 z4

x3 y3 z3

x2 y2 z2

x1 y1 z1


// S4

(
∆123 −∆124 ∆134 −∆234

)
// S

where ∆J denotes the minor indexed by the columns in J . Now suppose we want to resolve
S/I3(X ′). Naively we might just set x1, x2, x4, y1, y2, z3 and z4 equal to zero - i.e. tensor with
T = S/(x1, x2, x4, y1, y2, z3). The result is:

0 // T 3


0 y4 0
x3 y3 0
0 0 z2

0 0 z1


// T 4

(
0 0 x3y4z1 −x3y4z2

)
// T

Notice that the first two columns of the rightmost matrix are redundant, and hence, so are
the first two rows of the leftmost matrix. Deleting the corresponding summand of T 4 we
obtain:

0 // T 3

0 0 z2

0 0 z1


// T 2

(
x3y4z1 x3y4z2

)
// T

And now similarly prune the first matrix:

0 // T 1

z2

z1


// T 2

(
x3y4z1 −x3y4z2

)
// T

In this case the resulting sequence of maps is a minimal free resolution of T/I3(X ′). This
exemplifies what we call the Pruning Technique.
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We will define and study the pruning technique in Section 2.2. Our main result on
pruning is the following:

Theorem 2.3. Suppose that I ⊂ S is an ideal in a polynomial ring and Z is a subset of the
variables. If T = S/(Z) then the pruning technique computes a minimal free resolution of
S/I ⊗ T as a T -module in the following two cases:

• I is a monomial ideal.

• I is a determinantal ideal resolved by the Eagon-Nortcott Complex

In Section 2 we also discuss a homological interpretation of pruning. One feature of this
interpretation is that it can be used (see Corollaries 2.10 and 2.22) to describe the shape of
the Betti table of Tor1(S/I, S/(x)) where x is a variable and I is either a monomial ideal or
a sparse determinantal ideal.

Our proof of Theorem 2.3 proceeds in two cases. For monomial resolutions, we study
an Nn grading. For determinantal ideals, we use the result of Sturmfels, Zelevinsky, and
Bernstein [SZ93, BZ93] that shows that the maximal minors of a generic matrix are a uni-
versal Gröbner basis for the ideal I that they generate. Since setting variables equal to zero
is almost like taking them last in a term order, it is natural to study the free resolution of
initial ideals of Ik(X) when X is generic. For example, the aforementioned Gröbner basis
result says that for any term order “<”,

β1(S/I) = β1(S/ in< I).

We extend this to show that in fact the maximal minors are a universal Gröbner resolution
in the following sense:

Theorem 2.4. Let X be a (sparse) generic matrix and let I denote its ideal of maximal
minors. Then for any term order <, we have

βij(S/I) = βij(S/ in< I) for all i, j.

In particular, every initial ideal of I has a linear resolution.

We note that the analagous result does not hold for lower order minors. In fact, even the
2× 2 minors of a 3× 3 matrix are not a universal Gröbner basis. [SZ93]

Theorem 2.4 provides a new class of squarefree Cohen-Macaulay monomial ideals gen-
erated in degree k that have a linear resolution. Combining the techniques of pruning and
taking initial ideals, we can obtain a class of squarefree monomial ideals with linear resolu-
tions that sit inside of the Eagon-Northcott complex. Finally, although the proofs rely on
the Gröbner basis property, the pruning algorithm itself is algebra free - it only involves an
eraser.
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2.2 The Pruning Technique

In this section we define and study the pruning technique. Throughout, S will denote a
polynomial ring over K, where K is any field or Z. The variable names may change for
convenience, but should always be clear from the context. By Z ⊂ S we will always mean a
subset of the variables or as an an abuse of notation, the ideal that they generate in S. We
set T := S/Z.

The pruning technique is a way of approximating a T -resolution of M⊗T starting from an
S-resolution of M . To do so, we essentially tensor the given resolution with T and erase any
obvious excess. The definition here - which makes precise the method outlined in Example
2.2 - requires a choice of basis, but as we will discuss later, this is mostly for convenience.

Definition 1. Let C• be a complex of free S-modules with choice of bases (so we have a
matrix for each map)

Ft
At // Ft−1

// · · · // F1
A1 // F0 .

Let Z be a subset of the variables. We define the pruning of C• with respect to Z to be the
complex of T := S/Z-modules obtained from C• by the following algorithm:

Let i = 1
For i ≤ t do:
In the matrix Ai, set all variables in Z equal to zero. Set Ai equal to this new matrix,

and set U equal to the set indexing which columns of Ai are identically zero.
Replace, {Ai+1, Fi, Ai} with news maps, and modules obtained by simply deleting the rows,

basis elements, and columns, respectively, corresponding to U .
Let i = i+ 1.
The resulting sequence of maps with bases is naturally a sequence of T -modules, which

we will denote P (C•, Z).

Proposition 2.5. If C• is a complex, then so is P (C•, Z). In addition, if the entries of
the matrices of C• are in the homogeneous maximal ideal, then the same is true for those of
P (C•, Z).

Proof. It is clear that if Ai ·Ai−1 = 0 then the same is true once we set variables in Z equal to
zero. Further, any column that is identically 0 in Ai−1 essentially makes the corresponding
row in Ai irrelevant for the product to be zero. Indeed the non-identically-zero columns of
Ai−1 must now necessarily pair to zero with the corresponding rows of Ai. This is exactly
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what the pruning process does. Finally, since pruning only erases entries, the second claim
of the Proposition is clear.

In some cases, the pruning technique preserves exactness:

Theorem 2.6. Let I be a monomial ideal in a polynomial ring S with n variables, and let
C• be a minimal free resolution of S/I with Nn homogeneous bases. If Z is an ideal generated
by a subset of the variables then P (C•, Z) is a minimal free resolution of S/I ⊗ S/Z as an
S/Z module.

The proof follows from a careful study of the
mathbbNn grading. We will use a similar technique below to study the case of the Eagon-
Northcott complex.

Proof. We may assume that Z = (x1, . . . , xr). By the grading of C•, the maps will be of the
form⊕

not all
bi1,...,bir=0

S(−bi1, . . .− bir, . . . ,−bin)⊕⊕
S(0, . . . , 0,−ci r+1, . . . ,−cin)

Mi //

⊕
not all

aj1,...,ajr=0
S(−aj1,−aj2, . . . ,−ajn)⊕⊕

S(0, . . . , 0,−dj r+1, . . . ,−djn)

where the matrix Mi has the form (
Ai 0
Ci Di

)
.

By the grading, it is clear that every nonzero entry in the submatrix Ci is divisible by some
xi ∈ Z. In this notation, the beginning of the resolution of S/I is:

F2

 A2 0
C2 D2


// F1

(
C1 D1

)
// S

where the first matrix is a row matrix consisting of the generators of I. Thus the pruning
algorithm, will commence by deleting the columns in C1, the rows of A2, obtaining

F2

(
C2 D2

)
// F ′1

(
D1

)
// S .

Now, inductively we can see that the pruning algorithm will successively prune each matrix
Mi down to the matrix Di. Hence P (C•, Z) is the complex of T of modules whose ith map
is given by Di.

To see that P (C•, Z) is a resolution, notice that any element v = (v1, . . . , vk) in the
kernel of Di trivially extends to the element w = (0, . . . , 0, v1, . . . , vk) which is in the kernel
of Mi. By the exactness of the original complex, we deduce that w is in the image of Mi+1,
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say w = Mi+1(u). Finally, since every entry of Ci+1 is zero mod Z, we have the following
equality over S/Z:

v = π(w) = π(Mi+1(u)) = (Ci+1|Di+1)(u) = Di+1(u)

where π is the obvious projection sending w to v and u consists of the last entries of u.
Hence mod Z, v is in the image of D.

The pruning technique does not preserve exactness in general, as the following example
shows:

Example 2.7. Consider the Buchsbaum-Rim resolution of the generic 2 by 3 matrix M :

0 // S1


∆23

−∆13

∆12


// S3

x y z
a b c


// S2 .

This is a minimal free resolution of cokerM. Here ∆ij denotes the ij minor of the presenta-
tion matrix. Pruning by setting x and y to zero yields

0 // T 1


bz
−az

0


// T 3

0 0 z
a b c


// T 2

which is not exact since the kernel of the second map contains the element (b,−a, 0)T , which
is not in the image of the first.

We note that the pruning process has only been defined for complexes with a choice of
bases. We have chosen this definition because it is all we need for the main results in this
paper, and we feel that it highlights the important aspects of monomial resolutions, and the
Eagon-Northcott complex. However, we could easily modify our definition to allow row and
column operations over K. In fact, pruning can be defined without referring to matrices
at all, simply by tensoring the given resolution with T and then taking successive quotients
by the free module of degree zero syzygies at each stage. A further generalization might be
to also include saturating by dividing through by common factors, which would remedy the
problem with Example 2.7. We plan to study this generalization in the future.

Another interpretation of pruning is as follows: If F• → M is a minimal free resolution
and x is a variable, then a general pruning technique should “work” exactly when the minimal
free resolution of M⊗S/(x), is a direct summand of F•⊗S/(x). The following general result
gives a necessary and sufficient condition for this to occur.

Proposition 2.8. Let F• be a minimal free resolution of a graded S-module M and let x ∈ S
be any homogeneous polynomial. By F ′• we will denote the complex of S/(x)-modules obtained

by tensoring F• with S/(x). If H denotes H
S/(x)
1 (F ′•), then the following are equivalent:
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1. The minimal free resolution of M ′ := M ⊗ S/(x) is a direct summand of F ′•.

2. There is a split inclusion of the minimal free resolution of H as an S/(x)-module into
F ′•[1].

Proof. We being by noting that since TorSi (M,S/(x)) = 0 for i > 1 we have Hj(F
′
•) = 0 for

all j > 1.
(i) =⇒ (ii): Let G• be a minimal free resolution of M ′. Then (i) says that there are

projection maps π such that the following diagram commutes:

· · · // Gn
// · · · // G1

// G0

· · · // F ′n //

π

OO

· · · // F ′1 //

π

OO

F ′0

π

OO .

Letting K• denote (kerπ)•, we see that K• split injects into F ′•. To see that K• is a resolution
of H, notice that the long exact sequence of homology implies that

· · · → Hi+1(G•)→ Hi(K•)→ Hi(F
′
•)→ Hi(G•)→ · · ·

is exact. Since Hj(F
′
•) = 0 for all j > 1, and G• is exact, we conclude that Hj(K•) = 0 for

j ≥ 2. Finally, we obtain the exact sequence:

0→ H1(K•)→ H1(F ′•)→ 0→ H0(K•)→M ′ =→M ′ → 0

and we see that H1(K•) ∼= H, so that K•[−1] is a minimal free resolution of H, and hence
K• split-injects into F ′•[1].

(ii) =⇒ (i): Suppose that we have a minimal free resolution K• → H which split injects
into F ′•[1]. Then we have the following commutative diagram:

· · · // F ′n // · · · // F ′1 // F ′0

· · · // Kn−1
//

φ

OO

· · · // K0
//

φ

OO

0

φ

OO
.

Taking cokernels of each map, and applying the long exact sequence of homology as in the
first part of the proof, we see that (cokerφ)• is a minimal free resolution of M ′.

Remark 2.9. Notice that in general, if K• → H is a resolution, then there is always a (non-
canonical) map of complexes: φ : K• → F ′•[1]. The mapping cone of φ will be a (typically
non-minimal) free resolution of M ′. In cases where pruning works, φ can be taken to be an
inclusion.

Corollary 2.10. If I is a monomial ideal, and x is a variable, then

βij

(
I : x

I

)
≤ βij(I) for all i, j
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Proof. Let F• → S/I be a minimal free resolution. By Theorem 2.6, the minimal free
resolution of S/I⊗S/(x) is a direct summand of F ′• = F•⊗S/(x). Hence by Proposition 2.8,
the resolution of H1(F ′•)

∼= (I : x)/I is a direct summand of F ′•[1]. In particular, the degrees
and ranks of the free modules appearing in a minimal free resolution of (I : x)/I can be no
larger than those appearing in F ′•[1]. Since F [1] is a minimal free resolution of I we see the
desired inequality.

2.3 Initial Ideals of Ik(X)

In order to prove Theorems 2.1 and 2.3, it is useful to study the various initial ideals of
Ik(X) when X is a generic k × n matrix. By term order, we will always mean a monomial
term order <, so that the initial ideal will be monomial.

In general, when passing to an initial ideal, we expect homological invariants to change.
Indeed, since passing to the initial ideal is a flat deformation, we have

βij(S/ in< I) ≥ βij(S/I) for all i, j

and typically these inequalities are strict. (For a great exposition, see [HH11]). For instance,
the first Betti numbers are equal if and only if the ideal is minimally generated by a Gröbner
basis with respect to the term order. In this vein, Sturmfels, Zelevinsky, and Bernstein
have shown in [SZ93, BZ93] that the maximal minors form a universal Grob̈ner basis for
I := Ik(X). This proves, for instance, that β1(S/ in< I) = β1(S/I) =

(
n
k

)
for any term order.

In this section we prove

Theorem 2.11. If I := Im(X) is the ideal of maximal minors of a generic matrix X and
< is any term order, then

βij(S/ in< I) = βij(S/I) for all i, j.

In particular, every initial ideal is a Cohen-Macaulay, squarefree monomial ideal with a linear
free resolution. Further, the resolution can be obtained from the Eagon-Northcott complex by
taking appropriate lead terms of each syzygy.

For certain orders, analyzing the initial ideal explicitly is manageable. For example,
diagonal term orders were viewed in the context of basic double links in [GMN13] where
they proved such initial ideals are Cohen-Macaulay. In general, however, not all term orders
have “nice” descriptions. Instead we use the following fact:

Lemma 2.12. [Sturmfels-Zelevinsky [SZ93]] For any monomial term order <, the initial
ideal in< I is squarefree and has a primary decomposition of the form

in< I =
⋂
α

Iα

where α ranges over all subsets {j1, j2, . . . , jc} of {1, . . . , n}with c = n − k + 1, and Iα =
(xi1j1 , . . . , xicjc).
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Remark 2.13. [SZ93] gives an explicit description of these components in terms of the
monomial order <, but we will not need that much detail in what follows.

Proof of Theorem 2.11. Let < be any term order, and write in I = in< I. We will show that

{x11 − x21, . . . , x11 − xk1} ∪ {x12 − x22, . . . , x12 − xk2} ∪ · · ·

· · · ∪ {x1n − x2n, . . . , x1n − xkn}

is a regular sequence on S/ in I. Indeed, once this is shown, we know that the Betti numbers
of in I are the same as those of the ideal obtained by substituting the relations induced by
the regular sequence above. These are precisely the substitutions xij = x1j for all i, j. Since
in I is the ideal generated by the leading term of each minor, these substitutions deform
in I into the ideal J consisting of all squarefree degree k monomials in K[x11, . . . , x1n]. The
resolution of this ideal is well known. In particular, its Betti numbers are equal to those in
the Eagon-Northcott complex, and βij(S/ in I) = βij(S/J) = βij(S/I) as required.

To prove that the sequence defined above is a regular sequence, we successively modify
the primary decomposition described in Lemma 2.12 after each substitution. Since in the
end, we will only compute with the ideal formed by substituting xij = x1j, we study these
substitution ideals.

Set K = in I and suppose K =
⋂
Pi as in the Lemma. Since we will inductively apply

the following argument, we first highlight the following properties that we will use about K:

• K has no minimal generators that contain a product of two elements from the same
column of X.

• The ideals Pi = (xi1 , . . . , xic) are generated by variables in different columns of X.

Let xij be any variable with i 6= 1. For the ease of notation, we will write sub to denote the
substitution xij → x1j. We claim that the following two monomial ideals are equal:

(K)sub =
⋂

(Pi)sub.

Indeed, since substitution is just a ring map, K ⊂ ∩Pi implies that Ksub ⊂ ∩(Pi)sub.
Conversely, suppose that f is a minimal generator of ∩(Pi)sub. Notice that f does not

involve xij. We have two cases:
Case 1: x1j does not divide f . In this case, the membership of f in (Pi)sub guarantees

membership in (Pi) since the factors of f relevant to ideal membership do not change under
our substitution.

Case 2: x1j divides f , say f = x1jg. Consider the element h = xijf. Since h is divisible
by both xij and x1j, and since f is in ∩(Pi)sub, we know h is in fact in each ideal Pi. Thus
h = xijf = xijx1jg ∈ K. But since K has no minimal generators divisible by xijx1j we know
that either xijg or x1jg must be in K. Under the substitution, both of these elements will
be sent to f , so that f ∈ Ksub.
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Notice that if we next replace K and Pi with (K)sub and (Pi)sub, then K and Pi still
satisfy the bulleted properties above. Therefore, we may inductively apply our argument to
the next substitution xij → x1j to complete the proof.

Remark 2.14. It is a very rare property for an ideal be minimally generated by a Gröbner
basis, and it is an even rarer property for βij(S/I) = βij(S/ in< I) for i > 0, for every
term order. Indeed, there are ideals that are minimally generated by a Gröbner basis, but
whose initial ideals have still have larger Betti numbers than the ideal itself. It would be
interesting to study whether such behavior is possible for ideals minimally generated by a
universal Gröbner basis. But apart from determinantal ideals, monomial ideals, and trivial
examples of ideals whose generators have all coprime terms, the author does not know of any
other (large) classes of ideals with this property. It may be that the symmetry inherent in
being a universal Gröbner basis is enough to ensure that all Betti numbers remain constant
upon passing to the initial ideal.

Question 2.15. Do there exist ideals minimally generated by a universal Gröbner basis
whose initial ideals have distinct Betti tables?

Having shown the Betti numbers of S/I and S/ in< I are equal, a natural question is
how to obtain a minimal free resolution for S/ in I. We next show that this can easily be
obtained from the Eagon-Northcott complex.

Since our pruning technique is defined only for complexes where the maps are represented
by matrices, we need to specify what we mean by “Eagon-Northcott complex”. By this, we
will always mean the complex whose first map consists of the minors ∆J and whose later
maps are of the form

Da(S
k)⊗ ∧a+k(Sn)→ Da−1(Sk)⊗ ∧a+k−1(Sn)

where Di is the divided power algebra and the matrices are chosen with respect to the natural
basis e

(n1)
1 · · · e(nk)

k ⊗ fj1 ∧ · · · ∧ fj` , where e1, . . . , ek and f1, . . . , fn are bases for the rows and
columns of X.

Remark 2.16. Notice that with this choice of basis, the first matrix in the complex consists
of the minors ∆J , and all syzygy matrices are essentially multiplication tables between the
rows and columns. For this reason we notice that each entry is simply a variable ±xij and
that no variable appears twice in the same row or column.

Now let w be any set of weights on the variables xij. Then since we can always choose a
monomial order <w which refines that of w, we have

βij(S/I) ≤ βij(S/ inw I) ≤ βij(S/ in<w I).

By Theorem 2.11, we have equality.
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For a weight w, we can homogenize any f ∈ S by taking the leading term to be the one
of highest weight, and multiplying smaller order terms by appropriate powers of a parameter
t. We denote the homogenization fh and will write Ih for the ideal by Ih the ideal

Ih = {fh | f ∈ I} ⊂ S[t].

Similarly, we can homogenize any map between free S-modules.

Example 2.17. If we consider the Eagon-Northcott complex on the matrix with weights

X =

(
x y z
a b c

)
, w =

(
1 1 2
2 2 2

)
we could homogenize the maps to obtain

0 //
S[t](−5)
⊕

S[t](−6)


z ct
−y −b
x a


//

S[t](−3)
⊕

S[t](−4)
⊕

S[t](−4)

(
∆h

12,∆
h
13,∆

h
23

)
// S[t]

where ∆h
12 = xb− ay, ∆h

13 = xct− az, ∆h
23 = cyt− bz.

In this example the above is a minimal free resolution of Ih. This is always true, which
we prove now.

Proposition 2.18. Let w be an integral weight order on the variables and let E• denote the
Eagon-Northcott complex. Then Eh

• is a minimal free resolution of S[t]/Ih.

Proof. We notice that Ih = (∆h
J) since the ∆J form a universal Gröbner basis, so we just

need to show that Eh
• is exact. To show this, it suffices to show that Eh

• is exact after
tensoring with S[t]/(t) - in other words, after erasing each entry divisible by t. By Remark
2.16 the surviving columns of each matrix will be linearly independent over K. But since

βij(S/I) = βij(S/ inw I) = βij(S/I
h) for all i, j.

we see that these columns in fact span the full space of syzygies.

Corollary 2.19. To obtain the minimal free resolution of S/ in< I simply set t = 0 in the
resolution Eh

• defined above.
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2.4 Minimal Free Resolution of Determinantal Ideals

In this section we compute the minimal free resolution of the ideal Ik(X
′) where X ′ is

a sparse generic matrix. This section was inspired by the work of Giusti and Merle in
[GM82]. Throughout this section, X and X ′ will denote generic and sparse generic matrices
respectively.

Since a matrix with a column identically equal to zero is essentially a k× (n− 1) matrix,
we will assume X ′ has no column identically zero. We also assume that Ik(X

′) is not the
zero ideal. This is equivalent to the fact that there is no rectangle of zeros in X ′ whose
perimeter is greater than 2n+ 1. (See [GM82])

Theorem 2.20. Let X = (xij) be a generic k×n matrix and Z be a subset of the variables.
Let X ′ be the sparse generic matrix with variables in Z set to zero. If E• is the Eagon-
Northcott Complex with standard bases that resolves S/(Ik(X)), then the result of pruning -
P (E•, Z) is a minimal free resolution of S/Ik(X

′) as an S/Z module.

Proof. Let I = Ik(X). To simplify notation, we will use zij to denote the variables in Z, and
use xij to denote the other variables. Assign a grading on S by assigning weights

w(zij) = 1, w(xij) = 2.

Under this grading, the ideal I is no longer homogenous.
By Proposition 2.18 Eh

• is a resolution of S[t]/Ih. In particular,

Ih = (∆h
J)

where J runs over all the k × k minors.
Further, there is a dichotomy

w(∆h
J) = 2k ⇐⇒ ∆J 6= 0 mod Z,

w(∆h
J) < 2k ⇐⇒ ∆J = 0 mod Z.

By virtue of the simplicity of the maps in the Eagon Northcott complex, every matrix
after the first contains entries that are simply variables of S. Hence, with respect to our
grading every element in these matrices is either of degree one or two before homogenization.
After homogenizing we can split our resolution into pieces: One corresponding to the strand
that resolves the “surviving” minors of weight 2k, and the other consisting of everything
else. Explicitly, the ith map of Eh

• will look like:⊕
aj<2k+2i+2 S[t](−aj)⊕⊕
S[t](−2k − 2i− 2)

Mi //

⊕
bj<2k+2i S[t](−bj)⊕⊕
S[t](−2k − 2i)
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where the matrix Mi has the form (
Ai Ti
Ci Di

)
.

From the grading alone we can deduce three things:

• The nonzero entries of Ti are divisible by t since the degree shift is more than two.

• The nonzero entries of Ci have degree at most one. (i.e. they are zij)

• The nonzero entries of Di have degree two (i.e. they are zijt or xij.)

Note that this implies that if we take the matrix Di modulo Z or modulo t we get the same
result. Denote this matrix Fi:

Fi := Di mod t = Di mod Z.

Therefore when we set t equal to zero in Eh
• , we obtain a complex E ′• where all matrices take

the following form (
Ai 0
Ci Fi

)
.

This is analogous to the decomposition we had in the monomial case. By the same argument
in the proof of Theorem 2.6 we conclude that modulo the variables in Z, the complex F• is
equal to P (E•, Z) and is a minimal free resolution of S/I ⊗ S/(Z) ∼= S/Ik(X

′).

Corollary 2.21. If X and X ′ are as above, then

• S/Ik(X ′) has regularity k

• βij(S/Ik(X ′)) ≤ βij(S/Ik(X)) for all i, j.

• S/Ik(X ′) has projective dimension n− k + 1.

Proof. Let I ′ = Ik(X
′). By Theorem 2.20, the minimal free resolution of S/I ′ is given by

pruning the Eagon-Northcott complex, and as such, the degrees of syzygies do not change.
Hence the regularity is equal to k, the generating degree of the ideal, which proves the first
statement.

Notice that each time we add a zero to our matrix, we can compute a minimal free
resolution by pruning, and as such the Betti numbers can only possibly decrease. This
shows the second statement.

We compute the projective by using induction on k and n. Since the only 1×n matrices
with no columns identically equal to zero are generic matrices, the base case is trivial.
Similarly, k × k matrices give rise to a principal ideal of minors, which have projective
dimension 1.
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Since I ′ is nonzero, we can assume without a loss of generality that D = ∆1···k 6= 0,
and that a nonzero term of D is a multiple of xk1. Notice that by pruning, the projective
dimension can only decrease by adding more zeros, so it is sufficient to compute the projective
dimension in the case when the first column has k − 1 zeros. Thus we may assume X ′ has
the form

X ′ =


0 ? . . . ?
...

... · · · ...
0 ? · · · ?
xk1 ? · · · ?

 =


0
... M ′

0
xk1 ? · · · ?


Let Y denote the matrix of the rightmost n− 1 columns of X ′. Then

I ′ : xk1 = Ik−1(M ′) and (I ′, xk1) = (xk1) + Ik(Y ).

M ′ is a sparse generic matrix and since the minor ∆2···n (indices refer to those of X ′) of M ′

is nonzero by assumption, Ik−1(M ′) is nonzero. We have two cases:

• Case 1: Suppose that some column j of M ′ is identically zero. Then since D 6= 0 we
know that j > n, and since X ′ had no column identically zero, the kj entry of X ′ must
be nonzero. Hence ∆{2···n}∪{j} 6= 0, so that Ik(Y ) is nonzero. In this case, by induction,
pdimS/Ik(Y ) = n− k.

• Case 2: If no column of M ′ is identically zero, then by induction,

pdimS/(I ′ : xk1) = pdimS/Ik−1(M) = n− k + 1, pdimS/Ik(Y ) ≤ n− k

the last inequality is strict if and only if Ik(Y ) is the zero ideal.

In either case, we have

max (pdimS/Ik(Y ) + 1, pdimS/Ik−1(M ′)) = n− k + 1.

Since the resolution of S/(I ′, xk1) can be obtained by tensoring the resolution of S/Ik(Y )
with the Koszul complex on xk1 we see that

pdimS/(I ′, xk1) = pdimS/Ik(Y ) + 1

and that the minimal free resolution of S/(I ′, xk1) is linear after the first map. Applying the
Horseshoe Lemma to the exact sequence

0 // S/(I ′ : xk1)(−1) // S/I ′ // S/(I ′, xk1) // 0 ,

we see that a free resolution of S/I ′ can be computed as the direct sum of the minimal
free resolutions of S/(I ′ : xk1) and S/(I ′, xk1). Finally, since S/(I ′ : xk1) ∼= S/Ik−1(M ′)
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has a linear resolution by Theorem 2.20, this implies that except for the extra generator in
homological degree 0, the direct sum of the resolutions of the outside two modules is in fact
a minimal free resolution of S/I ′. Hence:

pdimS/I ′ = max (pdimS/(I ′, xk1), pdimS/(I ′ : xk1))

= max (pdimS/Ik(Y ) + 1, pdimS/Ik−1(M ′))

= n− k + 1.

We close this section by proving a result analogous to Corollary 2.10.

Corollary 2.22. Let X ′ be a spare k×n generic matrix and I = Ik(X
′). If x is any variable

appearing in X ′ then (I : x)/I has a linear resolution as an S/(x)-module. Furthermore, its
Betti numbers are precisely the difference between those of Ik(X

′) and Ik(X
′′) where X ′′ is

the matrix X ′ with x substituted for zero.

Proof. Let F• be a minimal free resolution of S/I. By inductively applying Theorem 2.20,
we see that the minimal free resolution of S/Ik(X

′′) can be obtained by pruning F•. This
precisely says that the minimal free resolution of S/Ik(X

′′) is a direct summand of F•⊗S/(x).
Since H1(F• ⊗ S/(x)) = TorS1 (S/I, S/(x)) ∼= (I : x)/I, Proposition 2.8 shows that the
resolution of (I : x)/I injects into (F• ⊗ S/(x))[1] and hence has a linear resolution. The
statement about Betti numbers follows since from the short exact sequence of complexes
used in the proof of Proposition 2.8

2.5 Applications and Examples

Merle and Giusti’s result in [GM82] was particularly beautiful because it showed that several
invariants of Ik(X

′) depended only on one number - the length of the perimeter of the largest
subrectangle of zeros in the sparse generic matrix X ′. In this vein, Corollary 2.21 can be
interpreted as saying that the projective dimension depends only on the number of columns
that are identically zero. The next natural question seems to be how the Betti numbers
depend on the placement of zeros in the matrix. Notice that if codim Ik(X

′) = n − k + 1
then Ik(X

′) is a perfect ideal, and hence the Eagon-Northcott complex itself is a resolution.
In smaller codimension, however, it is easy to produce matrices with the same perimeter

of zeros, but yet whose ideals have a different number of minimal generators. One might
hope that the perimeter and number of generators are sufficient to compute all the Betti
numbers. However, the following example shows two matrices that give rise to ideals with
the same codimension and number of generators, but have different Betti numbers.
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Example 2.23.

X ′ codim I3(X ′)
perimeter
of zeros

Betti Table of (S/I3(X ′))

0 0 0 x y z
0 0 0 a b c
d e f g h w

 2 10
1 − − − −
− − − − −
− 10 18 12 30 0 0 0 a b

0 0 c d 0 0
e f g h 0 0

 2 10
1 − − − −
− − − − −
− 10 17 10 2

This suggests that whatever dependence the Betti numbers have on the arrangement of
zeros is subtle. However, in the case of codimension n− k, we have the following:

Theorem 2.24. Let X ′ be a sparse k × n generic matrix and let I ′ = Ik(X
′). If codim I ′ =

n − k then the Betti numbers of S/I ′ depend only on the number of identically vanishing
minors of X ′.

The proof follows from the more general lemma from Boij-Soderberg Theory ([BS12]):

Lemma 2.25. If I is an ideal generated in degree d with a linear resolution such that
codim I = pdimS/I − 1 then the Betti table of S/I is determined by the minimal number of
generators µ(I).

Proof. Let pdimS/I = r. By Boij-Soderberg Theory, the Betti table of S/I is a linear
combination over Q of two pure diagrams B1 and B2 corresponding to the sequences

(0, d, d+ 1, . . . , d+ r), and (0, d, d+ 1, . . . , d+ r − 1)

respectively. If β(S/I) denotes the Betti table of S/I then we have

β(S/I) = a1B1 + a2B2.

By equating the zeroth and first Betti numbers on each side, we obtain the following equations

a1 + a2 = 1(
d+ r

d

)
a1 +

(
d+ r − 1

d

)
a2 = µ(I)

from which we can determine a1, a2 and hence β(S/I).

Next, we answer a question of Giusti and Merle concerning when the ideals Ik(X
′) are

radical.
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Proposition 2.26. If X ′ is any sparse generic matrix, then the nonzero minors are a uni-
versal Gröbner basis for the ideal they generate. In particular, for each term order, the initial
ideal is squarefree, and thus Ik(X

′) is a radical ideal.

Proof. Let Y be a generic k × n matrix with entries zij and xij corresponding to the zero
and nonzero entries of X ′ respectively. Let < be any term order on the variables supporting
Ik(X

′). Then extend this to an order <2 on the zij where the zij are weighted last. Let
f ∈ Ik(Y ). Then if f =

∑
cJ∆J(X ′) is nonzero, consider the element

f =
∑

cJ∆J(Y ).

Then since the zij are weighted last, in f = in f . And thus in f is divisible by some m0 =
in ∆J(Y ) = in ∆J(X ′).

Monomial Ideals with Linear Resolutions

A corollary of our work is that we can produce many monomial ideals in any degree that have
linear resolutions. For example, by Theorem 2.11, we know that if we choose any monomial
term order < and any generic matrix X, then the initial ideal Ik(X) with respect to < has
a linear resolution. The proof of this fact carries through to work for generic matrices with
zeros as well. Also, in the spirit of the proof of Theorem 2.11 we can also set any entries in
the same column equal to each other, and obtain yet another ideal with a linear resolution.
Hence we have the following:

Theorem 2.27. Let X ′ be a generic k×n matrix with zeros and let < be any monomial term
order. Then the initial ideal J = in< Ik(X

′) is an ideal with a linear resolution. Furthermore,
if {(xi, yi)} is any collection of variables such that for each i, xi and yi are in the same column
of X ′ then the ideal Jx→y where we substitute yi for xi still has a linear resolution.

If we apply this theorem by setting each variable in each column to the same variable
(say yi) then we will obtain a squarefree monomial ideal in K[y1, . . . , yn] which has a linear
resolution. This proves

Corollary 2.28. Let X ′ be a generic k×n matrix with zeros. Let J denote the ideal generated
by all such

∏
yi1 · · · yik such that the detX ′i1,...,ik 6= 0. Then J has a linear resolution.

Questions and Future Work

It is interesting to ask to what extent the pruning technique works in general. There are two
directions in which one could attempt to answer this question:

Question 2.29.
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1. For what other classes of ideals does the pruning technique compute a minimal resolu-
tion after setting variables equal to zero? For example, what can be said for determi-
nantal ideals of lower order minors of sparse determinantal matrices.

2. How does pruning work when we prune by setting arbitrary linear forms equal to zero?
For example, when can we use a pruning technique to compute the minimal free reso-
lution of determinantal ideals of (non-generic) matrices of linear forms?

One interesting case for Question (ii) is the resolution of the ideal of 2× 2 minors of an
arbitrary 2 × n matrix of linear forms. In [ZNZN00], the authors computed Gröbner bases
and a free resolution of all such ideals. In the cases where the matrix is sparse generic, our
resolution agrees with theirs, but they show that in general the regularity can be as large
as n − 1. It is not clear how a pruning technique could be used to prune the linear Eagon-
Northcott complex to a nonlinear resolution. However, there may be an interpretation via
mapping cones as in Remark 2.9.

Another special case of Question 2.29 is the case when the linear forms are the difference
of two variables. In other words, how does the minimal free resolution of an ideal change as
variables are set equal to one another? This question must necessarily be difficult, since any
ideal can be obtained from a generic complete intersection (in many variables) by successively
setting variables equal to one another. However, in some cases it may be possible to give an
effective answer.
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Chapter 3

Robust Toric Ideals

The content of this chapter is the paper [BR13] and is joint work with Elina Robeva. It has
been submitted for publication with only minor changes.

3.1 Introduction

Let S = k[x1, . . . , xn] be a polynomial ring over a field k. We call an ideal robust if it can be
minimally generated by a universal Gröbner basis, that is, a collection of polynomials which
form a Gröbner basis with respect to all possible monomial term orders. Robustness is a
very strong condition. For instance, if I is robust then the number of minimal generators of
each initial ideal is the same:

µ(I) = µ(in< I) for all term orders <.

In general, we can only expect an inequality.
The study of ideals minimally generated by a Gröbner basis (for some term order) is

ubiquitous. In [CHT06], Conca et al studied certain classical ideals and determined when
they are minimally generated by some Gröbner basis. In the study of Koszul algebras,
one of the most fruitful approaches has been via G-quadratic ideals - those generated by
a quadratic Gröbner basis. We are not aware, however, of any systematic study of ideals
minimally generated by a universal Gröbner basis; robust ideals.

For trivial reasons, all monomial and principal ideals are robust. Simple considerations
show that robustness is preserved upon taking coordinate projections and joins (see Section
2). However, nontrivial examples of robust ideals are rare. A difficult result of [BZ93, SZ93]
(recently extended by [Boo12] and [CNG13]) shows that the ideal of maximal minors of a
generic matrix of indeterminates is robust. In the toric case, the broadest known class of
examples is the set of Lawrence ideals. In this paper we study robustness and provide a
classification of robust toric ideals generated in degree two. It turns out that in this setting,
robust toric ideals are essentially determinantal, (and thus Lawrence as well). On the other
hand, we show that robustness does not in general classify Lawrence ideals.
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The paper is organized as follows: In section 2, we prove our main result, Theorem
3.1 characterizing robust toric ideals generated in degree two. The methods are mainly
combinatorial. In Sections 3 and 4 we pose two questions concerning extensions of Theorem
3.1 using Lawrence ideals. We provide negative and positive answers respectively. Section 5
closes with a discussion of “robustness of higher Betti numbers,” our original motivation for
this project.

3.2 Quadratic Robust Toric Ideals are Determinantal

In the sequel, by toric ideal we will always mean a prime ideal generated minimally by
homogeneous binomials with nonzero coefficients in k. By the support of a polynomial we
mean the set of variables appearing in its terms.

Definition 2. A set F of polynomials in S is called robust if F is a universal Gröbner basis
and the elements of F minimally generate their ideal.

If a set of polynomials F can be written as a union F = G ∪ H of polynomials in
disjoint sets of variables, then we say that G is a robust component of F . If F admits no
such decomposition, then we say the set F is irreducibly robust. Notice that robustness is
preserved under these disjoint unions, so to classify robust ideals, it suffices to study the
irreducible ones. We remark that the ideal of F corresponds to the join of the varieties
corresponding to the G and H.

The goal of this section is to prove the following theorem:

Theorem 3.1. Let F be an irreducibly robust set consisting of irreducible quadratic binomi-
als. Then F is robust if and only if |F | = 1 or F consists of the 2 × 2 minors of a generic
2× n matrix (

x1 · · · xn
y1 · · · yn

)
up to a rescaling of the variables.

Remark 3.2. In the statement of the Theorem, we only assume that the generators are
irreducible. It turns out that this is sufficient to show that the ideal they generate is prime.

Notice that one direction follows immediately from the results of [SZ93] which show that
the 2 × 2 minors are a universal Gröbner basis. To prove the converse, our technique is
essentially to eliminate certain combinations of monomials from appearing in F . To simplify
notation, we will omit writing coefficients in the proofs when it is clear that they do not
affect the argument. In particular, we treat the issue of coefficients only in tackling the proof
of Theorem 3.1 itself and not in earlier lemmas.

Lemma 3.3. Let F be a robust set of prime quadratic binomials. Then no monomial appears
as a term in two different polynomials in F .
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Proof. Suppose that the monomial m appears in the polynomials f, g ∈ F . Let < be a Lex
term order taking the support of m to be first. Since f and g are prime, < will select m
as the lead term of both f and g, and applying Buchberger’s algorithm, we would obtain a
degree zero syzygy of the elements in F , contradicting the minimality of F .

Proposition 3.4. If F is robust, and 0 ≤ k ≤ n, then so is F ∩ k[x1, . . . , xk].

Proof. Write Fk = F ∩ k[x1, . . . , xk]. It is clear that Fk minimally generates the ideal (Fk).
Let < be any term order on k[x1, . . . , xk]. Extend < to a term order <S on S, taking
x1, . . . , xk last. Then since F is a Gröbner basis with respect to <S, by basic properties of
Gröbner bases, we know that Fk will be a Gröbner basis with respect to <.

The above proposition is extremely useful, because in our analysis it will be helpful to
assume we are working in a ring with few variables. We will use this reduction extensively
in the following main technical lemma. We use the letters a, . . . , z when convenient for ease
of reading.

Lemma 3.5. Let F be a robust set of prime quadratic binomials:

(a) F cannot contain two polynomials of the form

f = x2 + yz, g = xy +m

or
f = x2 + y2, g = xy +m

or
f = x2 + y2, g = xz +m.

where m is any monomial.

(b) F cannot contain two polynomials of the form

f = xixj + xkxl, g = xixk + xpxq

(here we do not assume i, j, k, l, p, q are distinct.)

(c) F cannot contain two polynomials of the form

f = x2 + yz, g = xw +m

or
f = x2 + yz, g = yw +m

where m is any monomial.

(d) If f, g ∈ F are two polynomials whose supports share a variable, then all terms of f and
g are squarefree.
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(e) If F contains two polynomials whose supports share a variable, then (up to coefficients)
F must contain the 2× 2 minors of a generic matrix.(

a b c
d e f

)
Proof. a) We prove the first statement. The proofs of the others are similar. Suppose that
f, g ∈ F . Notice that by primality, m cannot contain a factor of y. Let < be the lex term
order with (y > x > z > all other variables). Then the S-pair of f and g is x3 −mz, whose
lead term is x3. Since F is a Gröbner basis with respect to < we must have some polynomial
h whose lead term divides x3. Since x2 is not the lead term of f , h 6= f and we must have
two distinct polynomials in F with x2 appearing. This contradicts Lemma 3.3.

b) Suppose that f, g ∈ F . By restricting to the subring k[xi, xj, xk, xp, xq], Proposition
3.4 tells us we can assume F involves only these variables. Notice by primality (and part (a))
we know that k and i are distinct from j, l, p, q. Let < be the lex term order with (xk > xi >
all other variables.) Then the S-pair of f and g is x2

ixj − xlxpxq, whose lead term is x2
ixj.

As in part a) we must have some polynomial h ∈ F whose lead term divides x2
ixj. The only

possible monomials are x2
i and xixj. And since xixj appears in f (and is not a lead term)

we must have a polynomial h = x2
i + xaxb ∈ F for some a, b ∈ {i, j, k, l, p, q}. So F contains

f = xixj + xkxl, g = xixk + xpxq, h = x2
i + xaxb.

Applying part a), and primality, we know that a, b ∈ {l, p, q}. By part a), we know that
xaxb must be squarefree, and since xpxq already appears, we can say (renaming p and q if
necessary,) that xaxb = xlxp. But now choosing < to be the lex term order with (xl > xp >
xi > xk > all other variables,) we see that the S-pair of f and h is x2

ixk− xixjxk whose lead
term is x2

ixk which is only divisible by the monomials x2
i and xixk, neither of which can be

a lead term of a polynomial in F by Lemma 3.3.
c) We will prove the first statement. The second proof is similar. Suppose that f, g ∈ F .

First restrict, using Proposition 3.4 to assume we are working only with the variables x, y, z, w
and the factors of m. Let < be the lex term order with (w > x > all other variables. Taking
the S-pair of f and g, we obtain wyz − mx, whose lead term is wyz. Since this must be
divisible by the lead term of some polynomial h ∈ F , without loss of generality, we assume
h = wy + n. Consider now the possibilities for n. By primeness n cannot contain a factor
of w or y. By part b) it cannot contain a factor of x or z. Hence, the only possible options
left are that the factors of n are contained in the factors of m. But this means that m,n are
ab, a2 for some (new, distinct) variables a, b. As in (b), we can conclude this is impossible.

d) This follows immediately from parts a) - c).
e) We assume that F contains two polynomials whose supports intersect. By d) we

can assume that these polynomials are squarefree, and we write them as p = ae − bd, q =
af −m1m2 where mi represents some variable. Notice that by primality and part b), neither
m1 nor m2 can be a, e or f . Nor can m1m2 = bd (since it would be a repetition). Hence we
may as well assume m1 is different from the other variables, and call it c. There are now two
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cases: Either m2 is also a new variable g, or it isn’t, in which case we can see that without
loss of generality, m2 = d. Rewriting: If p, q are two polynomials whose supports intersect,
then they must contain either 6 or 7 distinct variables.

In the case of 6 variables, restrict F to the subring k[a, b, c, d, e, f ]. Now

p = ae− bd, q = af − cd.

Computing an S-pair with the lex order (a > b > d > all other variables) we obtain fbd−ecd
with lead term fbd. This must be divisible by the lead term of some polynomial r ∈ F . But
this lead term cannot be bd (by its presence in p), hence it must be either bf or df . In case
it is bf then F contains a polynomial of the form r = bf − n1n2. Now n1, n2 ∈ {a, c, d, e}
by primality. And part b) of this lemma allows us to further say n1, n2 ∈ {c, e} which along
with squarefreeness implies that r = bf − ce as required. In case the term is df , similar
considerations show that parts a) - d) will not allow any n1n2.

In the case of 7 variables, restrict F to the subring k[a, b, c, d, e, f, g]. Now

p = ae− bd, q = af − cg.

Computing an S-pair with the lex term order (a > b > d > all other variables): we obtain
fbd− ebg with lead term fbd. This must be divisible by the lead term of some polynomial
r ∈ F . But this lead term cannot be bd (by its presence in p), hence it must be either bf
or df . By symmetry we can assume that it is df and that F contains a polynomial of the
form df − n1n2. Now n1, n2 ∈ {a, b, c, e, g} by primality, and part b) restricts us further
to n1, n2 ∈ {c, e, g}. And since cg already appears, we can conclude that n1n2 = eg or ec
(and again by symmetry, we may assume n1n2 = ec. But now notice that q and r are two
polynomials whose supports intersect, and involve only 6 variables. Hence, by the previous
part of this proof, we can conclude that F contains a polynomial s = gd− ae. But this is a
contradiction by Lemma 3.3.

Proof of Theorem 3.1. Suppose that |F | > 1. Since F is irreducible, it must contain two
polynomials whose supports intersect. By Lemma 3.5 we can conclude that F contains
polynomials of the form:

p1 = ae− bd, p2 = af − cd, p3 = bf − ce

up to coefficients. However, computing an S-pair with the lex order on (a > b > · · · > f)
we obtain:

S(p1, p2) = bdf − cde (with some nonzero coefficients)

which after reducing by p3 we obtain either zero, or a constant multiple of cde. In the latter
case, in order to continue the algorithm, we would have to have another polynomial in F
whose lead term divided cde. By the presence of p1, p2, p3, the terms cd and ce are prohibited.
And by Lemma 3.5 b), de is also prohibited. Hence, this S-pair must reduce to zero after
only two subtractions.



CHAPTER 3. ROBUST TORIC IDEALS 28

This means in fact, that the polynomials are precisely determinants of some matrix(
λ1a λ2b λ3c
µ1d µ2e µ3f

)
for some nonzero constants λi, µi.

To complete the proof, suppose that F 6= {p1, p2, p3}. Since F is irreducible, one poly-
nomial p4 ∈ F must share a variable with say, p1. Renaming variables if necessary, say that
variable is a. Then (ignoring constants for the moment) by applying the proof of Lemma 3.5
e), to the polynomials p1 = ae − bd and p4 = ah −m1m2 we can conclude that F contains
the minors of the matrix (

λ1a λ2b λ4g
µ1d µ2e µ4h

)
.

Applying this technique to p2 and p4 as well, shows that we in fact get all 2× 2 minors
of the full matrix (

λ1a λ2b λ3c λ4g
µ1d µ2e µ3f µ4h

)
.

Inductively we continue this process until we obtain all of F .

Notice that in our proof, every term order we used was a Lex term order, and we ended
up a with a prime ideal. Hence, we have the following:

Corollary 3.6. If F is a set of prime quadratic binomials that minimally generate an ideal.
Then the following are equivalent:

1. F is a Gröbner basis with respect to every Lex term order.

2. F is a Gröbner basis with respect to every term order.

3. F generates a prime ideal and the irreducible robust components of F are generic
determinantal ideals and hypersurfaces.

Corollary 3.7. If X is a generic k× n matrix, and F is the set of 2× 2 minors, then F is
a universal Gröbner basis if and only if k = 2.

Remark 3.8. It is almost the case that every irreducibly robust component is determinantal.
Indeed, every prime binomial is up to rescaling either xy − zw or x2 − yz. The former is
determinantal. Thus the only possible non-determinantal robust component is {x2 − yz}.
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3.3 From Determinants to Lawrence Ideals

Encouraged by the result of the previous section, it is natural to ask to what extent robustness
classifies generic determinantal ideals. Indeed, it is easy to see that the ideal of minors of
any 2×n matrix whose entries are relatively prime monomials will be robust. There are two
questions we consider:

Question 3.9.

1. If I is a robust toric ideal, is I generated by the 2×2 minors of some matrix of monomials?

2. Precisely which matrices of monomials provide robust ideals of 2× 2 minors?

The answer to the first question is negative. Examples are provided by Lawrence ideals,
studied in [Stu96]. If I is any toric ideal, with corresponding variety X ⊂ Pn−1, then the
ideal J corresponding to the re-embedding of X in (P1)n is called the Lawrence lifting of I.
Its ideal is generated by polynomials of the following form:

JL =
(
xayb − xbya | a− b ∈ L

)
⊂ S = k[x1, . . . , xn, y1, . . . , yn],

where L is a sublattice of Zn and k is a field. Here a = xa11 x
a2
2 · · ·xann for a = (a1, . . . , an) ∈ Nn.

Binomial ideals of the form JL are called Lawrence ideals. The following result is Theorem
7.1 in [Stu96].

Proposition 3.10. The following sets of binomials in a Lawrence ideal JL coincide:

a) Any minimal set of binomial generators of JL.

b) Any reduced Gröbner basis for JL.

c) The universal Gröbner basis for JL.

d) The Graver basis for JL.

Hence Lawrence ideals provide a large source of robust toric ideals, and naturally include
the class of generic determinantal ideals. Given this, it is natural to rephrase the first part
of Question 3.9 as:

Question 3.11. Does robustness characterize Lawrence ideals?

Again the answer is negative.

Example 3.12. The ideal

I = (b2e− a2f, bc2 − adf, ac2 − bde, c4 − d2ef)
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in the polynomial ring Q[a, b, c, d, e, f ] is robust but not Lawrence. This example was found
using the software Macaulay2 and Gfan [Sti, Jen]. It is the toric ideal IL corresponding to
the lattice defined by the kernel of

L =


1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 2 0 0
1 0 1 0 3 1


Given this counterexample we ask

Question 3.13. Is there a nice combinatorial description of robust toric ideals?

Remark 3.14. Heuristically, it is very easy to find robust ideals that are not Lawrence by
starting with a Lawrence ideal given by JL. This lattice L gives rise to a lattice L̃ ⊂ N2n such
that JL = IL̃. By modifying L̃ slightly, it is very often the case that the resulting toric ideal
is robust (though often non-homogeneous). The ubiquity of these examples computationally
suggests that a nice combinatorial description of robustness may require imposing further
hypotheses.

3.4 Matrices of Monomials

In this section we answer Question 3.9.2.

Theorem 3.15. Suppose that Xi, Yj are monomials of degree at least 1 in some given set of
variables U = {u1, u2, . . . , ud}. Let

A =

(
X1 X2 · · · Xn

Y1 Y2 · · · Yn

)
,

where n > 3 and suppose that the set F of 2 × 2-minors XiYj − XjYi, i 6= j consists of
irreducible binomials. Then F is robust if and only if all the monomials Xi, Yj are relatively
prime.

The proof is technical, so we begin by fixing notation. Since we will assume that each
XiYj −XjYi is prime for all i 6= j, then, gcd(Xi, Xj) = gcd(Yi, Yj) = gcd(Xi, Yi) = 1 for all
i 6= j. Therefore, if we define

zij = gcd(Xi, Yj),

then, we can write

Xi = xi
∏
j 6=i

zij and Yj = yj
∏
i 6=j

zij.
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Thus,
gcd(xi, xj) = gcd(yi, yj) = 1 for all i 6= j (i)

gcd(zij, zkl) = 1 whenever i 6= k or j 6= l, (ii)

gcd(xi, zkl) = 1 if i 6= k and gcd(yj, zkl) = 1 if j 6= l. (iii)

Our goal is to show that zij = 1 for all i 6= j.

Lemma 3.16. If z12 6= 1 then n > 4 and for each m > 3, there exist permutations im, lm 6=
1, 2,m and jm, km 6= 1, 2 and term orders >1 and >2 such that

XimYjm | X2Y
2
m

X1

z12

and XimYjm >1 XjmYim (iv)

XkmYlm | X2
mY1

Y2

z12

and XkmYlm >2 XlmYkm . (iv’)

Moreover,
Xim = ximzimm and xim|zimm,

Ylm = ylmzmlm and ylm|zmlm .

Proof. We will build <1 and <2 in several steps. To begin, take a lex term order > where
the variables in z12 are first. Consider the S-pair:

S
(
X1Ym −XmY1, XmY2 −X2Ym

)
=

=
lcm(X1Ym, XmY2)

X1Ym
(X1Ym −XmY1)− lcm(X1Ym, XmY2)

XmY2

(XmY2 −X2Ym) =

= Xm
Y2

z12

(X1Ym −XmY1)− Ym
X1

z12

(XmY2 −X2Ym) =

= X2Y
2
m

X1

z12

−X2
mY1

Y2

z12

.

Since all of the variables in X2Y
2
m
X1

z12
−X2

mY1
Y2
z12

are different from the variables in z12, then,

there exist term orders >1 and >2 refining > for which X2Y
2
m
X1

z12
is the leading term for >1

and X2
mY1

Y2
z12

is the leading term for >2.

Consider first >1: X2Y
2
m
X1

z12
>1 X

2
mY1

Y2
z12

. Since the XiYj − XjYi form a Gröbner basis
with respect to >1, there exist im 6= jm such that

XimYjm | X2Y
2
m

X1

z12

and XimYjm >1 XjmYim (iv)
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in this ordering. If jm = 2, then, z12 | Y2 | X2Y
2
m
X1

z12
, which is not true. If jm = 1, then, since

z12 | X1 | X1Yim and z12 - XimY1 and z12 was chosen to have its variables first in >1, then,
XjmYim = X1Yim >1 XimY1 = XimYjm , which is not true by (iv). Thus, jm > 3. Similarly,
we can deduce that im > 3. Thus, im, jm > 3.

Since im > 3, gcd(X1, Xim) = gcd(X2, Xim) = 1, and we are assuming that Xi, Yi 6= 1
for all i and Xim | X2Y

2
m
X1

z12
then, Xim | Y 2

m. Since gcd(Xm, Ym) = 1, im 6= m either.
Thus, we have that im 6= 1, 2,m and , jm > 3. So, in particular, if n = 3, we already
have a contradiction. We assume now that n > 4. Since Xim = xim

∏
j 6=im zimj and Ym =

ym
∏

k 6=m zkm, properties (i) and (iii) allow us to conclude that Xim = ximzimm and xim | zimm.
Going back to when we chose the ordering >1, consider now the ordering >2 for which

X2
mY1

Y2
z12

>2 X2Y
2
m
X1

z12
. By a symmetric argument we find that there exist km > 3, lm 6= 1, 2,m

such that XkmYlm | X2
mY1

Y2
z12

and, thus, Ylm = ylmzmlm with ylm | zmlm .

Hence, there exist im, lm 6= 1, 2,m and jm, km 6= 1, 2 such that Xim = ximzimm, xim | zimm
and Ylm = ylmzmlm , ylm | zmlm .

Lemma 3.17. If z12 6= 1, then, n is even and we can rearrange the numbers 1, .., n so that
for each i 6 n

2
,

X2i = x2iz2i,2i+1 and Y2i = y2iz2i+1,2i

X2i+1 = x2i+1z2i+1,2i and Y2i+1 = y2i+1z2i,2i+1

and x2i, y2i+1 | z2i,2i+1 and x2i+1, y2i | z2i+1,2i.

Proof. By property (ii) and Lemma 4.2 we have that m 7→ im and m 7→ lm are permutations
on {3, .., n} with no fixed points. Thus, for each i > 3, there exists m > 3 such that m 6= i
and i = im, Xi = xizim with xi | zim and for each l > 3, there exists m > 3, m 6= l such that
l = lm and Yl = ylzml.

Fix m′ 6= 1, 2. Then, Xim′
= xim′zim′m′ and xim′ | zim′m′ . Since we assumed that Xim′

6= 1,
then, zim′m′ 6= 1. So now, repeating the whole argument with m′ and im′ instead of with 1
and 2 (recall that im′ 6= 1, 2,m′), we would get similar permutations on {1, . . . , n}\{m′, im′}.
But, by property (ii), these permutations have to agree with the permutations m 7→ im and
m 7→ lm from above on the set {1, . . . , n} \ {1, 2,m′, im′}. Thus, (1, 2) and (m′, im′) will be
transpositions in all of these permutations (and, in particular, im′ = lm′).

Since we can run the above argument with any m′ 6= 1, 2, we have that the permutations
m 7→ im and m 7→ lm agree and are composed of transpositions (m, im). In particular, n
is even and, after rearranging the numbers from {1, .., n} so that i2k = 2k + 1 and, thus,
i2k+1 = 2k for all k = 1, .., n/2, our matrix A looks as follows:

A =

(
x1z12 x2z21 x3z34 x4z43 · · ·
y1z21 y2z12 y3z43 y4z34 · · ·

)
.

The rest of the statement of the Lemma follows from Lemma 4.2.
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Proof of Theorem: (⇒): It suffices to show that zij = 1 for all i, j. Without loss of generality,
assume that z12 6= 1.

By Lemma 4.2 we have that

XimYjm | X2Y
2
m

X1

z12

and XkmYlm | X2
mY1

Y2

z12

for all m > 3. But by (the proof of) Lemma 4.3 we know that the above hold when we
substitute 1 and 2 with any m′ and im′ such that m 6= im′ ,m

′, i.e.

XimYjm | Xim′
Y 2
m

Xm′

zm′im′
and XkmYlm | X2

mYm′
Yim′
zm′im′

Rewriting out the expressions in the form Xim = ximzimm and Ylm = ylmzmlm and then
canceling repeating factors, we get that

ximyjmzljmjm | xim′zim′m′y
2
mzimmxm′ and xkmzkmlkmylm | x

2
mzmlmym′zim′m′yim′

for all m′ 6= m, im. Therefore, we have that for every m′ 6= m, im

zljmjm | xim′zim′m′y
2
mzimmxm′ and zkmlkm | x

2
mzmlmym′zim′m′yim′

Noting that xim′ | zim′m′ and xm′ | zm′lm′ and, similarly for ym′ , yim′ , switching m′ with im′ ,
and using (ii), shows us that

zljmjm | y
2
mzimm and zkmlkm | x

2
mzmlm

Again, by property (ii), the only way for this to happen is if jm = km = m. In that case, we
have that

ximymzlmm | xim′zim′m′y
2
mzimmxm′ and xmzmlmylm | x2

mzmlmym′zim′m′yim′

Again, by (i),(ii), and (iii), and by switching m′ and im′ , we have that

ximymzimm | y2
mzimm and xmzmlmylm | x2

mzmlm

After cancelations,
xim | ym and ylm | xm.

Thus, xim = ylm = 1. Since i and l are permutations, we have that xm = ym for all m. Thus,
our matrix looks like this

A =

(
z12 z21 z34 z43 · · ·
z21 z12 z43 z34 · · ·

)
.

But then, we have that, for example, X1Y2 −X2Y1 = z2
12 − z2

21, which is not prime! Contra-
diction! Thus, zij = 1 for all i 6= j.
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Thus, z12 = 1 and by symmetry, zij = 1 for all i 6= j and gcd(Xi, Yj) = 1 for all
i 6= j. Combined with the assumptions of the theorem statement, we get that gcd(Xi, Xj) =
gcd(Xi, Yi) = gcd(Yi, Yj) = 1 for all i 6= j, that is, all the entries of A are pairwise relatively
prime.

(⇐): Assume that the entries of A are pairwise relatively prime. Let < be any monomial
term order. To show that the 2×2 minors of A are a Gröbner basis with respect to <, we just
need to show that all S-pairs reduce to zero. By the result of Bernstin-Sturmfels-Zelevinsky,
such a reduction is guaranteed to exist for a generic matrix X = (xij) . Since all entries of
A are relatively prime, it is clear that such a reduction will extend simply by the ring map:
xij 7→ Xij.

3.5 Robustness of Higher Betti Numbers

Our interest in robust ideals originated with the following classical inequality:

βi(S/I) ≤ βi(S/ in< I) for all i. (3.18)

It is natural to ask for which ideals and term orders equality holds (for all i). In the setting
of determinantal ideals, Conca et al proved in [CHT06] that the ideal of maximal minors
of a generic matrix has some initial ideal with this property. They also gave examples
of determinantal ideals for which no initial ideal has this property. In a different vein,
Conca, Herzog and Hibi showed in [CHH04] that if the generic initial ideal Gin(I) has
βi(I) = βi(Gin(I)) for some i > 0, then βk(I) and βk(Gin(I)) also agree for k > i.

Our interest was to instead approach the inequality 3.18 in a universal setting, i.e. to
consider when equality holds for all term orders <. In this case we say that I has robust
Betti numbers. The following result is due to the first author [Boo12]

Theorem 3.19. If I := Ik(X) is the ideal of maximal minors of a generic k × n matrix X
and < is any term order, then

βij(S/ in< I) = βij(S/I) for all i, j. (3.20)

In particular, every initial ideal is a Cohen-Macaulay, squarefree monomial ideal with a linear
free resolution. Further, the resolution can be obtained from the Eagon-Northcott complex by
taking appropriate lead terms of each syzygy.

A combination of Theorems 3.19 and 3.1 yields

Corollary 3.21. Let I be a toric ideal generated in degree two. If I is robust, then I has
robust Betti numbers.

Our original hope with this project was that all robust toric ideals had robust Betti
numbers. Unfortunately, the situation seems much more delicate.
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Example 3.22. Using Gfan [Jen], we were able to check that the Lawrence ideal JL corre-
sponding to the lattice L given by the matrix(

1 1 1 1 1
0 1 2 7 8

)
has initial ideals with different Betti numbers.
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Chapter 4

Closures of Linear Spaces

This chapter presents joint work with Federico Ardila.

4.1 Introduction

If L ⊂ An is a d-dimensional linear space over an infinite field k, then its closure in Pn is
trivially a projective linear space. Its homogeneous ideal is generated by n− d linear forms,
and is perhaps one of the simplest projective varieties. However, this is only just one of many
possible closures! In this paper we consider the next simplest case: the closure L̃ ⊂ (P1)n

of a linear space L ⊂ An induced by the embedding An ↪→ (P1)n. This case is already
quite interesting; it exhibits several elegant algebraic properties, and many of its algebraic
invariants can be determined directly from the matroid of L.

Closures of linear spaces

Let X be an affine variety in affine space An. Choose a frame F = {〈e1〉, . . . , 〈en〉} where
the ei form a basis of kn and 〈 〉 denotes linear span. This allows us to identify An with
A1 × · · · × A1. The usual embedding of A1 into P1 by adding a single point at infinity then
gives us an embedding An → (P1)n. We will study the scheme-theoretic closure X̃ of X in
(P1)n induced by this embedding.

For the remainder of the paper, we fix a choice of coordinates, and let S = k[x1, . . . , xn]. If

I ⊂ S is the ideal of polynomials vanishing at I, then the ideal I(X̃) ⊂ k[x1, . . . , xn, y1, . . . , yn]

of X̃ is given by
I(X̃) := (fh | f ∈ I),

where fh is the total homogenization of f , obtained by substituting xi with xi/yi in f and
clearing denominators. In general, it seems quite difficult to find a canonical presentation
of the ideal I(X̃), or to determine its algebraic invariants, such as the degree, number of
generators, or multigraded Betti numbers. However, we show that when X = L is a linear
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subspace (or an affine subspace), all of these questions have elegant answers in terms of the
matroid of L.

The choice of a basis {ei} gives an embedding π : Gr(d, n)→ P(∧dkn) mapping a vector
subspace L of kn to its Plücker vector π(L) in P(∧dkn). Although the coordinates of π(L)
depend on the choice of basis, the set of coordinate hyperplanes containing π(L) only depends
on the frame F . This set can be identified with the matroid M of L: for a d-subset S of [n],
the hyperplane HS contains π(L) if and only if [n] − S is a basis of M . More explicitly, if
A is an (n− d)× n matrix whose rows generate the ideal I when regarded as linear forms,
then M is the set of linearly independent (n− d)-subsets of columns of A.

Our main result is that the matroid M completely determines several important combi-
natorial invariants of the closure L̃:

Theorem 4.1. Let L ⊂ An be an affine linear space and let L̃ be its closure via the embedding
φ : An ⊂ (P1)n. Let M be the matroid of L. The following invariants depend only on M :

the Zn multi-degree of L̃, the number of minimal generators of the defining ideal I(L̃), the

graded Betti numbers of I(L̃), and the set of initial ideals of I(L̃) (with respect to all term
orders).

Theorem 4.2 provides a detailed description of all these invariants. This theorem also
holds in the slightly more general context of linear spaces not containing the origin. For
simplicity, we delay that treatment to Section 4.6.

Our results on closures of linear spaces

In this section we state our main theorems more precisely, and illustrate them with an
example. We will briefly introduce the relevant definitions in Example 4.4, and discuss them
more carefully in Section 4.2.

Having fixed coordinates, we can associate to L its linear matroid M . We give the ring
S = k[x1, . . . , xn, y1, . . . , yn] a Zn-grading given by

deg xi = deg yi = ei

where ei is the ith unit vector in Zn. We need deg xi = deg yi for our ideal to be homoge-
neous. The following theorem shows that the structure of M determines several algebraic
and combinatorial invariants of I(L̃):

Theorem 4.2. Let L ⊂ An be a d-dimensional linear space and let L̃ ⊂ (P1)n be the closure
of L induced by the embedding An ⊂ (P1)n. Let M be the matroid of L; it has rank r = n−d.
Then:

(a) The homogenized cocircuits of I(L) minimally generate the ideal I(L̃).

(b) The homogenized cocircuits of I(L) form a universal Gröbner basis for I(L̃), which is
reduced under any term order.
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(c) The Zn-multi-degree of L̃ is
∑
B

tb1 · · · tbr summing over all bases B = {b1, . . . , br}.

(d) There are at most r! · b distinct initial ideals of I(L̃), where b is the number of bases.

(e) The primary decomposition of an initial ideal I< := in< I(L̃) is given by:

I< =
⋂

B basis

〈xe : e ∈ IA<(B) , ye : e ∈ IP<(B)〉

where B = IA<(B) t IP<(B) is the partition of B into internally active and passive
elements with respect to <.

Theorem 4.3. The non-zero multigraded Betti numbers of S/I(L̃) are precisely:

βi,~a(S/I(L̃)) = |µ(F, 1̂)|

for each flat F of M , where i = r − r(F ), and ~a = e[n]−F . Here µ is the Möbius function of
the lattice of flats of M .

To illustrate, we include the following running example:

Example 4.4. To the linear ideal

I = 〈x1 + x2 + x6, x2 − x3 + x5, x3 + x4〉 .

given by r = 3 independent equations in n = 6 variables, and the corresponding linear
subspace L ⊂ k6 of dimension d = n − r = 3, we associate the r × n matrix whose rows
correspond to our 3 equations:

A =

1 1 0 0 0 1
0 1 −1 0 1 0
0 0 1 1 0 0

 .
We regard the columns of A as a point configuration in Pr−1 = P2, respectively, as shown
in Figure 4.1. The affine dependence relations among the points correspond to the linear
dependence relations among the columns of the matrix. A different generating set for I
would give a different point configuration with the same affine dependence relations.

It is known [Stu96, Prop. 1.6] that the minimal universal Gröbner basis of I is given by
the cocircuits of I: the linear forms in L using an inclusion-minimal set of variables.

I = 〈x1 + x2 + x6, x1 + x3 − x5 + x6, x1 − x4 − x5 + x6, x2 − x3 + x5, x2 + x4 + x5, x3 + x4〉

We identify the cocircuits with their support sets 126, 1356, 1456, 235, 245, and 34. They are
the complements of the hyperplanes 345, 24, 23, 146, 136, and 1256 spanned by A. Theorem
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16 
2 

5 4 3 

Monday, November 4, 13

Figure 4.1: A point configuration A ⊂ P2 corresponding to the linear ideal I.

4.2(a,b) claims that the homogenized cocircuits minimally generate Ĩ, and give a universal
Gröbner basis:

Ĩ = 〈x1y2y6 + y1x2y6 + y1y2x6, x1y3y5y6 + y1x3y5y6 − y1y3x5y6 + y1y3y5x6, . . . , x3y4 + y3x4〉

The bases of A are the maximal independent sets of A; they correspond to the non-zero
maximal minors of A, and hence to the non-zero Plücker coordinates of L. The 13 bases of
A are

B = {123, 124, 134, 135, 145, 234, 235, 236, 245, 246, 346, 356, 456}.

Theorem 4.2(c) states that the multidegree of L̃ is

mdeg L̃ = t1t2t3 + t1t2t4 + t1t3t4 + · · ·+ t4t5t6.

Theorem 4.2(d) says that I(L̃) has at most (6−3)! ·13 = 78 initial ideals. Using the software
Gfan [Jen] one can check that it actually has 72 initial ideals.

Theorem 4.2(e) tells us the primary decomposition of the initial ideal I< = in<I(L̃) with
respect to any linear order <. For the natural order 1 < 2 < 3 < 4 < 5 < 6 we get

Ic(M,<) = 〈x1, x2, x3〉 ∩ 〈x1, x2, y4〉 ∩ 〈x1, y3, y4〉 ∩ 〈x1, x3, y5〉 ∩ 〈y1, y4, y5〉 ∩
〈y2, y3, y4〉 ∩ 〈y2, x3, y5〉 ∩ 〈x2, x3, y6〉 ∩ 〈y2, y4, y5〉 ∩ 〈x2, y4, y6〉 ∩
〈y3, y4, y6〉 ∩ 〈x3, y5, y6〉 ∩ 〈y4, y5, y6〉 .

We have a primary component 〈zb : b ∈ B〉 for each basis B, where zb equals xb or yb de-
pending on whether b is internally active or passive in B. For each b ∈ B consider the
cocircuit D(B, b), which consists of the points not on the hyperplane spanned by B − b. If b
is the smallest element of D(B, b) then b is said to be active in B, and zb = xb. Otherwise,
b is passive in B and zb = yb.

For example, the basis 235 contributes the primary component 〈y2, x3, y5〉 because 2 is
internally passive (2 is not the smallest element in D(235, 2) = 126), 3 is internally active
(3 is smallest in D(235, 3) = 34), and 5 is internally passive (5 is not smallest in D(235, 5) =
1456).

Theorem 4.3 is best understood pictorially. The flats of M are the affine subspaces
spanned by the points in A. They are partially ordered by inclusion. Recursively define
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the numbers µ(F, 1̂) by µ(1̂, 1̂) = 1 and µ(F, 1̂) = −
∑

G>F µ(G, 1̂) for G 6= 1̂, where 1̂ is the
maximal flat. These numbers are shown circled in Figure 4.2, and they give the non-zero
multigraded Betti numbers of S/I:

β0,∅ = 1

β1,34 = β1,245 = β1,235 = β1,1456 = β1,1356 = β1,126 = 1

β2,2345 = β2,13456 = β2,12456 = β2,12356 = 2, β2,12346 = 1

β3,123456 = 4

16 
2 

5 4 3 

16 
2 

5 

16 
2 

5 4 3 

5 4 3 

16 

4 
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3 

2 

4 

16 

3 

1 

- 1 - 1 - 1 - 1 - 1 - 1 

2 2 2 2 1

- 4

Tuesday, November 26, 13
Figure 4.2: The Möbius function µ(F, 1̂) of the lattice of flats M encodes the non-zero

multigraded Betti numbers of I(L̃)

From this we can read off the standard Z-graded Betti table of S/I

I 1 6 9 4
1 − − −
− 1 − −
− 3 2 −
− 2 7 4
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The equality for i = 1 in Theorem 4.3 is implied by the fact that I(L̃) is robust. To
see this, notice that the flats of rank r − 1 are the hyperplanes, which correspond to the
complements of the cocircuits.

Corollary 4.5. If L is a linear space the ideal I(L̃) and all of its initial ideals are Cohen-
Macaulay.

Our results on matroids

Our analysis of the closure L̃ of a linear space L ⊂ An in (P1)n gives rise to some constructions
and results in matroid theory of independent interest.

Fix an orthonormal basis e1, . . . , en of Rn and let ∆ = conv{e1, . . . , en} be the standard
simplex in Rn. For each subset S ⊆ [n] consider the indicator vector eS =

∑
s∈S es and the

face ∆S = conv{es : s ∈ S} of ∆. For a matroid M on [n] consider the polytope

OM =
∑

D cocircuit of M

∆D,

where the Minkowski sum of P,Q ⊂ Rn is P +Q := {p+ q : p ∈ P, q ∈ Q}.

Theorem 4.6. If a matroid M on [n] has rank r, then the polytope OM

(a) is given by
∑n

i=1 xi = D where D is the number of cocircuits of M , and the inequalities∑
i∈S xi ≤ D(S) for S ⊆ [n], where D(S) is the number of cocircuits intersecting S,

(b) has dimension n− c where c is the number of connected components of M ,

(c) has the matroid polytope PM = conv{eB : B basis} as a Minkowski summand,

(d) has at most r! · b vertices, where b is the number of bases.

We are also led to the study of an interesting simplicial complex. Let M be a matroid and
let < be a linear order on the ground set S. Consider the 2|E|-element set {xe, ye : e ∈ E},
and identify subsets and monomials, and write

xAyB := {xa : a ∈ A} ∪ {yb : b ∈ B}.

Theorem 4.7. There is a simplicial complex B<(M) on {xe, ye : e ∈ E} such that

1. The facets of B<(M) are the sets xB∪EP (B)yB∪EA(B) for each basis B.

2. The minimal non-faces are xminCyC−minC for each circuit C.
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Related results

Closures of linear spaces are closely related to reciprocal varieties. A reciprocal variety may
be thought of as a different homogenization obtained by xi 7→ 1/xi. In [PS06] Proudfoot
and Speyer proved that reciprocal varieties are generated minimally by universal Gröbner
bases and that their degree can be computed as a Tutte polynomial. We originally became
interested in closures of linear spaces because of this universal Gröbner basis property and a
well-known result for toric ideals. If X is any affine toric variety, then its closure X̃ in (P1)n

is minimally generated by a universal Gröbner basis. The variety X̃ is called the Lawrence
lifting of X (see [Stu96]).

Originally we hoped that such a result might hold more generally for affine varieties,
but the following example illustrates that it does not, and the situation is quite subtle.
This example also illustrates that, contrary to the case of closures in Pn, there is no simple
numerical relationship between the number of generators of I(X) and I(X̃), even in terms
of Gröbner bases.

Example 4.8. Let I = (x1 + x2 + x3, x1 + x3 + x4, x
2
1 + x2

2 + x1x4)

I I(X̃)
number of generators 3 12

size of a reduced Gröbner basis 3 14 or 15
size of a universal Gröbner basis 8 21

Ideals minimally generated by universal Gröbner bases, called robust ideals in [BR13], are
by no means a common occurrence. Even in the toric case, this condition is very strong, yet
a complete classification is unknown. Nonetheless, robust ideals have cropped up in many
classical situations, see ([Boo12, BR13, CNG13, PS06, SZ93])

4.2 Preliminaries from matroid theory

The toolkit of matroid theory is ideally suited to study the geometric and algebraic invariants
in this project. Matroid theory can be approached from many equivalent points of view. This
can make the theory confusing at first; different papers often use very different definitions
of a matroid. However, in the long run, the existence of these “cryptomorphisms” is an
extremely powerful feature of the theory. This project illustrates this point very well; many
different matroid theoretic concepts appear naturally, as Example 4.4 clearly shows. In this
section we introduce these concepts in more detail; they will play a fundamental role in what
follows.

One definition of a matroid.

Definition 3. A matroid M = (E, I) consists of a ground set E and a family I of sets of
E, called the independent sets of M , which satisfy the following axioms:
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(I1) The empty set is independent.
(I2) A subset of an independent set is independent.
(I3) If X and Y are independent and |X| < |Y |, then there exists y ∈ Y −X such that X ∪y
is independent.

Matroid theory can be thought of as a combinatorial theory of independence. The pro-
totypical example is the family of linear or realizable matroids, which arise from linear
independence. If E is a set of vectors in a vector space V , then the linearly independent
subsets of E form a matroid.

In a matroid M , a circuit is a minimal dependent set. A basis is a maximal independent
set. All bases of M have the same size, which is called the rank r(M) of M . Similarly, all
maximal independent subsets of any set S ⊆ E have the same size, which is called the rank
r(S).

In our running Example 4.4, the bases and circuits are:

B = {123, 124, 134, 135, 145, 234, 235, 236, 245, 246, 346, 356, 456},
C = {16, 125, 256, 345, 1234, 2346}.

The independent sets are the subsets of the bases.

Duality

If B is the collection of bases of a matroid M , then B∗ := {E − B : B ∈ B} is also the
collection of bases of a matroid, called the dual matroid M∗. If M is the matroid of a set
A of n vectors which generate kd, then one can find a set of n vectors which generate kn−d

whose matroid is M∗. Figure 4.3 shows a point configuration dual to the one of Example
4.4. The reader may check that the bases of A∗ are precisely the complements of the bases
of A.

A circuit of M∗ is called a cocircuit of M . It can also be characterized as a minimal set
D whose removal decreases the rank of M ; that is, r(E−D) < r. The cocircuits in Example
4.4 are

∇ = {34, 126, 235, 245, 1356, 1456}.

In A∗ they are the minimally dependent sets. In A they are the complements of the hyper-
planes spanned by A.

The following technical lemma will be very useful to us.

Lemma 4.9. [Oxl92] If C is a circuit and D is a cocircuit of M , then |C ∩D| 6= 1.

If M is a matroid on E and A ⊂ E then there are matroids M\A = ME−A and M/A on
E − A, called the deletion and contraction of A in M , whose independent sets are

I(M\A) = {I ∈ I(M) : I ⊆ E − A}
I(M/A) = {I −BA : I ∈ I(M), BA ⊆ I}
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Figure 4.3: The point configuration A ⊂ Pr−1 = P2 and a dual configuration A∗ ⊂ Pn−r−1 =
P2.

where BA is a basis of A. Deletion and contraction are dual operations:

(M/A)∗ = M∗\A.

If M comes from a set S of vectors in a vector space V , then M\A corresponds to deleting
the vectors in A, while M/A corresponds to the images of the vectors in V/span(A).

The matroid of a linear ideal.

Fix a choice of a standard basis for kn. Let L be an r-dimensional subspace of kn and let
I(L) ⊂ k[x1, . . . , xn] be its defining linear ideal. There is one particularly useful generating
set for I(L), which we now describe. For each linear form f in I(L) consider its support
supp(f) ⊆ [n] consisting of those i such that xi has a nonzero coefficient in f . Among
these, consider the set ∇ of inclusion-minimal supports; these are called the cocircuits of
I(L). They are the cocircuits of a matroid M(L), called the matroid of L.1 Notice that for
each cocircuit D there is a unique linear form f (up to scalar multiplication) in I(L) with
supp(f) = D, so there is no ambiguity in calling this form f a cocircuit as well.

Proposition 4.10. [Stu96, Prop. 1.6] The cocircuits of the linear ideal I(L) form a universal
Gröbner basis for I(L).

Linear matroids are precisely the matroids of linear ideals. As we explained in Example
4.4, if B is a matrix whose rows generate I(L), one may easily check that the linear matroid
on the columns of B equals the matroid of L.

Matroid duality can then be seen as a generalization of duality of subspaces. Our chosen
basis for kn determines a dual basis for the dual vector space (kn)∗. If L⊥ ⊂ (kn)∗ is the
orthogonal complement of our vector space L, then the matroid of L⊥ is dual to the matroid
of L.

Basis activities

Proposition 4.11. [Cra69] Given a basis B and an element x /∈ B, there is a unique circuit
C = C(B, x) contained in B ∪ x. It is called the fundamental circuit of B and x, and is

1Some authors define the matroid of L to be the dual matroid M(L)∗.
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given by:
C(B, x) = {y ∈ E : B − x ∪ y is a basis}

Notice that x ∈ C(B, x).
Given a basis B and an element y ∈ B, there is a unique cocircuit D = D(B, y) contained

in E −B ∪ y. It is called the fundamental cocircuit of B and y, and is given by:

D(B, y) = {x ∈ E : B − x ∪ y is a basis}

Notice that y ∈ D(B, y).

Definition 4. Consider a matroid M and a linear order < on its ground set. Let B be a
basis of M . We say that an element e /∈ B is externally active if it is the smallest element
in C(B, e), and it is externally passive otherwise. Let EA<(B) and EP<(B) be the sets of
externally active and externally passive elements with respect to B and <.2

Similarly, we say that an element i ∈ B is internally active if it is the smallest element
in D(B, i), and it is internally passive otherwise. We write IA<(B) and IP<(B) for the sets
of internally active and internally passive elements with respect to B and <.

We will need the following beautiful result by Crapo:

Theorem 4.12. [Cra69] Let M be a matroid on the ground set S and let < be a linear order
on S. Every subset A of S can be uniquely written in the form A = B ∪ E − I for some
basis B, some subset E ⊆ EA(B), and some subset I ⊆ IA(B). Equivalently, the intervals
[B−IA(B), B∪EA(B)] form a partition of the poset 2S of subsets of S ordered by inclusion.

Lattice of flats and Möbius function

A flat F of a matroid M is a subset which is maximal for its rank; that is, a set such that
r(F ∪ f) = r(F ) + 1 for all f /∈ F . The flats of rank r− 1 are called hyperplanes. In the case
that interests us, when M is the linear matroid of a set of vectors E ⊂ kn, the flats of M
correspond to the subspaces spanned by subsets of E. The lattice of flats LM is the poset
of flats ordered by containment; it is in fact a lattice, graded by rank. The flats in Example
4.4 are

LM = {∅, 16, 2, 3, 4, 5, 1256, 136, 146, 23, 24, 345, 123456},

as illustrated in Figure 4.2.
The Möbius function of LM is the map µ : Int(LM) → Z from the intervals of LM to

Z characterized by µ(x, x) = 1 for all x ∈ LM and
∑

x≤z≤y µ(z, y) = 0 for all x < y.3 The

Möbius number of M is µ(M) = µ(0̂, 1̂), where 0̂ and 1̂ are the minimum and maximum
elements of LM . Figure 4.2 shows the value of µ(F, 1̂) next to each flat F of M .

2When the choice of the order < is clear, we will omit the subscript and write simply EA(B) and EP (B).
3It is more common to demand that

∑
x≤z≤y µ(x, z) = 0 for all x < y, but it may be shown that these

two conditions are equivalent.
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Independence complexes and cocircuit ideals

To a matroid M on the ground set E one associates a simplicial complex

IN(M) = {I ⊆ E : I is independent in M}

called the independence complex of M . For us, the independence complex of M∗ is more
relevant.

Theorem 4.13. [Bjö92, Theorem 7.8.1] If M is a matroid of rank r on [n], then

Hi(IN(M∗);Z) =

{
Z |µ(M)|, if i = n− r − 1 and M has no loops

0, otherwise.
.

Recall that the Stanley-Reisner ideal of a simplicial complex ∆ on a set {x1, . . . , xn} is
the ideal I∆ = 〈xi1xi2 · · ·xik : {i1, . . . , ik} is not a face of ∆〉 of k[x1, . . . , xn]. The Stanley-
Reisner ring is k[x1, . . . , xn]/I∆. Since the minimal non-faces of IN(M∗) are the circuits
of M∗, which are the cocircuits of M , the Stanley–Reisner ideal of IN(M∗) is the cocircuit
ideal

IIN(M∗) =

〈∏
c∈C

xc : C is a cocircuit of M

〉
.

It is known [MS05, Theorem 1.7] that the components of the primary decomposition of a
squarefree monomial ideal I∆ are in bijection with the facets of ∆; each facet F corresponds
to the primary component 〈xf : f /∈ F 〉. Since the facets of IN(M∗) are the bases of M∗,
we get that the primary decomposition of IIN(M∗) is

IIN(M∗) =
⋂

B basis

〈xb : b ∈ B〉 .

In our running Example 4.4 we have

IIN(M∗) = 〈x1x2x6, x2x3x5, x2x4x5, x3x4, x1x3x5x6, x1x4x5x6〉
= 〈x1, x2, x3〉 ∩ 〈x1, x2, x4〉 ∩ 〈x1, x3, x4〉 ∩ 〈x1, x3, x5〉 ∩ 〈x1, x4, x5〉 ∩
〈x2, x3, x4〉 ∩ 〈x2, x3, x5〉 ∩ 〈x2, x3, x6〉 ∩ 〈x2, x4, x5〉 ∩ 〈x2, x4, x6〉 ∩
〈x3, x4, x6〉 ∩ 〈x3, x5, x6〉 ∩ 〈x4, x5, x6〉

Now we recall Hochster’s formula for the Betti numbers of a squarefree monomial ideal:

Theorem 4.14. [MS05, Corollary 5.12] The nonzero Betti numbers of the Stanley–Reisner
ring I∆ lie only in squarefree degrees σ, and

βi−1,σ(I∆) = dimk H̃
|σ|−i−1(∆|σ)
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Let us apply this formula to ∆ = IN(M∗) and σ = E −A for a subset A ⊂ E. We have
that ∆|E−A = IN(M∗|(E − A)) = IN(M∗\A). Notice that (M∗\A)∗ = M/A has no loops
if and only if A is a flat of M . Also r(M/A) = r− r(A) and µ(M/A) = µ(A, 1̂). Combining
these observations with Theorem 4.13, we obtain the following result.

Theorem 4.15. The only nonzero Betti numbers of the cocircuit ideal IIN(M∗) of M are

βr−r(A),eE−A(IIN(M∗)) = |µ(A, 1̂)|

for the flats A of M .

4.3 The polytope.

Let ∆ = conv{e1, . . . , en} be the standard simplex in Rn, and for each I ⊆ [n] let

∆I = conv{ei : i ∈ I}.

For a matroid M on the ground set [n], consider the polytope defined by the Minkowski sum

OM =
∑

D cocircuit of M

∆D,

where the Minkowski sum of P,Q ⊂ Rn is P +Q := {p+ q : p ∈ P, q ∈ Q}.
We will see that these polytopes OM are related to matroid polytopes, which are much

better known and understood; see, for example [Edm03, GGMS87]. The vertices of the
matroid polytope PM of M are the vectors eB = eb1 + · · · ebr for each basis B = {b1, . . . , br}
of M . The connected components of M are the equivalence classes for the equivalence relation
where a ∼ b if a, b ∈ C for some circuit C. It is known that dimPM = n− c where c is the
number of connected components of M .

Figure 4.3 shows the polytope OM = ∆12 +∆134 +∆234 for the matroid M with bases 12,
13, 14, 23, and 24. For comparison, the matroid polytope PM is shown inside OM in dotted
lines.

2

234+134+12-1234234+134

234

234+134+12

3     :

4

1
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Theorem 4.6. If a matroid M on [n] has rank r, then the polytope OM

(a) is given by
∑n

i=1 xi = D where D is the number of cocircuits of M , and the inequalities∑
i∈S xi ≤ D(S) for S ⊆ [n], where D(S) is the number of cocircuits intersecting S,

(b) has dimension n− c where c is the number of connected components of M ,

(c) has the matroid polytope PM = conv{eB : B basis} as a Minkowski summand,

(d) has at most r! · b vertices, where b is the number of bases.

Before we prove this theorem, it is useful to recall some basic facts about generalized
permutahedra [PRW08]. The permutahedron Πn is the convex hull of the n! permutations of
{1, . . . , n} in Rn; its normal fan is the braid arrangement formed by the hyperplanes xi = xj
for i 6= j. A generalized permutahedron is a polytope P obtained from Πn by moving the
vertices (possibly identifying some of them) while preserving the edge directions. This is
equivalent to requiring that the normal fan of P is a coarsening of the braid arrangement.

Every permutahedron is of the form

Pn({zI}) = {(t1, . . . , tn) ∈ Rn :
n∑
i=1

ti = z[n],
∑
i∈I

ti ≤ zI for all I ⊆ [n]}

where zI is a real number for each I ⊆ [n], and z∅ = 0. The vector (zI)I⊆[n] is submodular ;
that is, zI + zJ ≥ zI∪J + zI∩J for all subsets I and J of [n]. Furthermore, this is a bijection
between generalized permutahedra and points in the submodular cone in R2n defined by
the submodular inequalities. [AA11, MPS+09, PRW08, Sch03]. This shows that generalized
permutahedra are essentially the same as polymatroids, which predate them.

There is an alternative description of generalized permutahedra. Every Minkowski sum
of simplices of the form ∆I is a generalized permutahedron [PRW08] and, conversely, every
generalized permutahedron can be expressed as a signed sum of such simplices.[ABD10] This
automatically implies that OM is a generalized permutahedron. Also, PM is the generalized
permutahedron Pn(r(I))I⊂[n] where r(I) is the rank of I in the matroid. [ABD10, Sch03]

Proof of Theorem 4.6. For a polytope P ∈ Rn and a linear functional w ∈ (Rn)∗, let (P )w
be the face of P minimized by w.

(a) Since OM is a generalized permutahedron, we have OM = Pn(zI) for some vector zI .
Since ∆D = Pn(zDI ) where zDI is 1 if I ∩D 6= ∅ and 0 otherwise, the result follows from the
fact that Pn(zI) + Pn(z′I) = Pn(zI + z′I).

(b) From the Minkowski sum expression for OM it is clear that the edge directions of OM are
precisely the edge directions of the various ∆D. These are the vectors of the form ec−ed where
c and d are in the same cocircuit; that is, in the same connected component of M∗. Their
span is the subspace given by the equations

∑
i∈Ka xi = 0 for the connected components Ka

of M∗, which are also the connected components of M . The result follows.
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(c) When M is the matroid of a linear ideal I, this claim is related to (but not implied by)
Proposition 4.10 and the fact that the matroid polytope is a state polytope of I. [Stu96,
Proposition 2.11] We proceed as follows.

We know that OM = Pn(D(I))I⊂[n] and PM = Pn(r(I))I⊂[n], where r is the rank function
of M . We claim that q(I) = D(I) − r(I) is a submodular function; it will then follow that
Q = Pn(q(I))I⊂[n] is a generalized permutahedron such that OM = PM +Q.

Let δq(S, a, b) = −q(S ∪ a∪ b) + q(S ∪ a) + q(S ∪ b)− q(S) for S ⊂ [n] and a, b ∈ [n]− S;
define δD and δr analogously. We will prove that δq is always non-negative; this property of
“local submodularity” of q(I) implies its submodularity.

Assume contrariwise that δq(S, a, b) < 0. Notice that δD is non-negative because D is
submodular, and δr equals 0 or 1 because r(S ∪ s)− r(S) = 0 or 1 for s /∈ S. Therefore, to
have δq(S, a, b) = δD(S, a, b)− δr(S, a, b) < 0, we must have

δD(S, a, b) = 0, δr(S, a, b) = 1. (4.16)

To have δr(S, a, b) = 1, we must have r(S) = s and r(S∪a) = r(S∪b) = r(S∪a∪b) = s+1
for some s. One easily checks that δD(S, a, b) = 0 is the number of cocircuits containing a
and b and not intersecting S. Since hyperplanes are the complements of cocircuits, every
hyperplane H ⊃ S must contain either a or b. If a hyperplane H ⊃ S contained a but not
b, submodularity would imply 1 = r(H ∪ b)− r(H) ≤ r(S ∪ a∪ b)− r(S ∪ a) = 0. Therefore
every hyperplane H ⊃ S must contain both a and b, and every hyperplane of M/S contains
both a and b. This is only possible if a and b are loops in M/S, which contradicts that
r(S ∪ a) = r(S) + 1.

(d) Since the normal fan of OM coarsens the braid arrangement,

{(OM)π : π is a permutation of [n]}

is a complete list of the vertices of OM , possibly with repetitions. The π-minimal vertex is

(OM)π =
∑

D cocircuit of M

(∆D)π =
∑

D cocircuit of M

eminπ(D) = (dπ1 , . . . , d
π
n)

where dπi is the number of cocircuits of M whose π-smallest element is i.
Next we observe that the support of any vertex (OM)π of OM is a basis of M ; more

specifically,
supp(OM)π = Bπ (4.17)

where B = Bπ denotes the π-minimal basis of M , which minimizes
∑

b∈B π(b). This basis
is unique by the greedy algorithm for matroids. The claim (4.17) follows from a variant of
the greedy algorithm for matroids due to Tarjan [Koz91, Theorem 2.7], called the blue rule.
To construct the π-minimum basis Bπ, one successively chooses a cocircuit with no blue
elements, and colors its smallest element blue. One does this repeatedly, in any order, until
it is no longer possible. In the end, the set of blue elements is the basis Bπ. Clearly the blue
elements are precisely those i such that dπi 6= 0.
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Finally, it remains to observe that for each π, the vertex (OM)π is determined uniquely
by M and the relative order of π(Bπ). To see this, notice that dπi is the number of cocircuits
D of M such that π(i) is the smallest element of π(Bπ ∩D). This number only depends on
the matroid M , the basis Bπ, and the relative order of π(Bπ). Since there are b choices for
Bπ and r! choices for the relative order of π(Bπ), the desired result follows.

4.4 The simplicial complex and the primary

decomposition.

Let M be a matroid and let < be a linear order on the ground set E. We will build a
simplicial complex on the 2|E|-element set {xe, ye : e ∈ E}. We will identify subsets and
monomials, and write

xAyB := {xa : a ∈ A} ∪ {yb : b ∈ B}.

Theorem 4.18. There is a simplicial complex B<(M) on {xe, ye : e ∈ E} such that

1. The facets of B<(M) are the sets xB∪EP (B)yB∪EA(B) for each basis B.

2. The minimal non-faces are xminCyC−minC for each circuit C.

Proof. We need to prove that, for S, T ⊆ E

xSyT ⊆ xB∪EP (B)yB∪EA(B) for some basis B

if and only if
xSyT 6⊇ xminCyC−minC for all circuits C.

First we prove the forward direction. Assume, contrariwise, that xSyT ⊆ xB∪EP (B)yB∪EA(B)

for some basis B and xSyT ⊇ xminC ∪ yC−minC for some circuit C. Then

xminCyC−minC ⊆ xB∪EP (B)yB∪EA(B).

Let minC = c. Since c ∈ B ∪ EP (B), there are two cases:
If c ∈ B: Let D = D(B, c) be the fundamental cocircuit. Then c ∈ C ∩ D and, since

|C∩D| 6= 1, we can find another element d ∈ C∩D. Since d ∈ D(B, c), we have c ∈ C(B, d);
and c < d, so d is not externally active in B. Also, d ∈ D(B, c) implies that d /∈ B. Therefore
d /∈ B ∪ EA(B). This contradicts that C −minC ⊆ B ∪ EA(B).

If c ∈ EP (B): We can find an element d ∈ C(B, c) with d < c. Now d ∈ C(B, c) implies
c ∈ D(B, d) =: D, so c ∈ C ∩D. Again, this means we can find another e ∈ C ∩D. Since
e ∈ C and c = minC, we have c < e, and therefore d < e. Now, e ∈ D implies that
e /∈ B. Also e ∈ D(B, d) implies that d ∈ C(B, e); and d < e then implies that e /∈ EA(B).
Therefore e /∈ B ∪ EA(B). Again, this contradicts that C − minC ⊆ B ∪ EA(B). This
completes the proof of the forward direction.
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To prove the backward direction, assume that xSyT 6⊆ xB∪EP (B)yB∪EA(B) for all bases B.
We need to show that xSyT ⊇ xminCyC−minC for some circuit C.

By 4.12 we can write T = B ∪ E − I for some basis B, some subset E ⊆ EA(B), and
some subset I ⊆ IA(B). Then T ⊆ B ∪EA(B), so S 6⊆ B ∪EP (B). Therefore we can find
s ∈ S with s /∈ B ∪ EP (B); that is, s ∈ EA(B).

Let C = C(B, s). We claim that xSyT ⊇ xminCyC−minC . Since s ∈ EA(B), s = minC,
so S ⊇ minC. It remains to show that T ⊇ C − minC. Assume, contrariwise, that
d ∈ C − minC but d /∈ T . Since d ∈ C − minC, d ∈ B. Since d /∈ T = B ∪ E − I,
this implies that d ∈ I, so d is internally active in B. Therefore d is the smallest element
in D(B, d). But d ∈ C(B, s) implies that s ∈ D(B, d), which implies that s > d. This
contradicts that s = minC. The desired result follows.

Theorem 4.19. The primary decomposition of the ideal

C(M,<) =
〈
xc1yc2yc3 · · · yck : C = {c1, . . . , ck} is a circuit of M and c1 = min

<
C
〉

is
C(M,<) =

⋂
B basis of M

〈xe : e ∈ EA<(B) , ye : e ∈ EP<(B)〉

Proof. By Theorem 4.18.1, C(M,<) is the Stanley-Reisner ideal of the simplicial complex
B<(M) of Theorem 4.18. Theorem 4.18.2 then implies the desired primary ideal decompo-
sition.

This simplicial complex which is closely related to two important simplicial complexes
from matroid theory. If we set yi = xi, the above ideal is the Stanley-Reisner ideal of the
independence complex of M , whose facets are the bases of M . If we set xi = 1, we get the
Stanley-Reisner ideal of the broken circuit complex of M , whose facets are the “nbc-bases”
of M .

4.5 Proofs of our Main Theorems

Having built up the necessary combinatorial background, we now use algebraic and geometric
tools to complete the proof of our main theorems.

One of our goals is to show that the set G = {fhC} of homogenized circuits is a universal

Gröbner basis (UGB); that is, a Gröbner basis for Ĩ with respect to any term order. One key
tool is the following: If two ideals share the same codimension and degree and one contains
the other, then under suitably nice conditions we can say they are equal.

Theorem 4.20. Let L ⊂ An be a d-dimensional linear space and let L̃ ⊂ (P1)n be the closure
of L induced by the embedding An ⊂ (P1)n. Let M be the matroid of L; it has rank r = n−d.
Then:



CHAPTER 4. CLOSURES OF LINEAR SPACES 52

(a) The homogenized cocircuits of I(L) minimally generate the ideal I(L̃).

(b) The homogenized cocircuits of I(L) form a universal Gröbner basis for I(L̃), which is
reduced under any term order.

(c) The Zn-multi-degree of L̃ is
∑
B

tb1 · · · tbr summing over all bases B = {b1, . . . , br}.

(d) There are at most r! · b distinct initial ideals of I(L̃), where b is the number of bases.

(e) The primary decomposition of an initial ideal I< := in< I(L̃) is given by:

I< =
⋂

B basis

〈xe : e ∈ IA<(B) , ye : e ∈ IP<(B)〉

where B = IA<(B) t IP<(B) is the partition of B into internally active and passive
elements with respect to <.

Proof of (c). We compute the multi-degree of L̃ using a geometric argument. Let ∆ ⊂ [n]
be of cardinality r = n − d, where d = dimL. Consider the linear subspace Z∆ ⊂ (P1)n =∏n

i=1(P1)i (where we give subindices to the various P1s to distinguish them) given by

Z∆ =
∏
i∈∆

(P1)i ×
∏
i/∈∆

qi

where qi ∈ (P1)i is a general point. If X is a subvariety of (P1)n of codimension r then
denote by m(Z∆, X) the intersection multiplicity of X with Z∆. By the genericity of Z∆

this will simply be the number of points in the intersection counted with multiplicity. Then
the multi-degree of X is defined to be the sum

mdeg X =
∑

m(Z∆, X)t∆1 · · · t∆r ,

where ∆ = {∆1, . . . ,∆r} ranges over all subsets of [n] of size r. We will prove that the
intersection multiplicities are

m(Z∆, L̃) =

{
1 if ∆ is a basis of M , and

0 otherwise.
(4.21)

Notice that the n lines in (P1)n have self-intersection zero, so the multidegree of L̃ is a
squarefree polynomial of degree r in Z[t1, . . . , tn]. Thus when we prove (4.21), our formula

for mdeg L̃ will follow.
So let ∆ be a basis, and without loss of generality, say ∆ = {1, . . . , r}. In the affine

patch where no coordinate yi equals zero, we are working in the original affine space, so it
is clear that Z∆ ∩ L̃ = Z∆ ∩ L is a single point. Since the points qi in Z∆ are general, we
may suppose that they lie in the affine patch, so we can assume the coordinate yi 6= 0 for
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i > r. Now let i ≤ k. Notice that since ∆ is a basis, there is a cocircuit D containing i
whose support is contained in {i} ∪ {r + 1, . . . , n}; in fact, this is the fundamental cocircuit
D(∆, i). If yi were equal to zero, then the equation fhD = 0 would force xi = 0, which is

impossible. Hence all intersections must occur in the affine patch, and m(Z∆, L̃) = 1.
On the other hand, if ∆ = {i1, . . . , ir} is not a basis, then there is a cocircuit D which is

disjoint from ∆. This means that Z∆ does not meet the hypersurface defined by fD. Hence
L̃ does not meet Z∆ and therefore m(Z∆, L̃) = 0. The desired result follows.

Proof of (e). Let < be a monomial term order on k[x1, . . . , xn, y1, . . . , yn]. We begin with a
remark:

Remark 4.22. If < is a monomial term order, it is sufficient for Gröbner computations to
assume that < is given by a weight order w on the 2n variables x1, . . . , xn, y1, . . . , yn. Since
all of the polynomials in I(L̃) are multi-homogeneous, the term order w′ given by

w′(xi) = w(xi)− w(yi)
w′(yi) = 0

will pick out the same initial terms on I(X̃) as w. Thus we can assume that the weights on
the y variables are all zero.

Let G = {fhC} denote the set of homogenized cocircuits of M , and let D(M,<) = in<G
denote the ideal generated by the leading terms of the polynomials in G = {fhC}. Notice
that each term of a given fhC has degree one in the x-variables and is homogeneous. Thus
by the remark, to determine the leading term of fhC it is sufficient to know only the linear
order on the xis. Therefore

in<G =
〈
xd1yd2yd3 · · · ydk : D = {d1, . . . , dk} is a cocircuit of M and d1 = min

<
D
〉
.

When applied to the dual matroid M∗, Theorem 4.19 says that

in<G =
⋂

B basis of M

〈xe : e ∈ IA<(B) , ye : e ∈ IP<(B)〉 . (4.23)

which implies that

mdeg in<G =
∑
B basis

tb1 · · · tbr = mdeg I(L̃).

We also have that
mdeg I(L̃) = mdeg in< I(L̃).

since multi-degree is preserved by flat degenerations. Therefore we have an inclusion

in<G ⊂ in< I(L̃)

where both ideals have the same multidegree. Since the smaller ideal is reduced and equidi-
mensional, it follows that they are equal.
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Proof of (a) and (b). Since in<G = in< I(L̃) for any <, G = {fhC} is a universal Gröbner

basis for I(L̃). To see it is reduced for each term order, just notice that no term divides
another, because no cocircuit contains another. Since no term of G divides any other, the
element of G are linearly independent over k, so they minimally generate 〈G〉 = I(L̃). This
proves (a) and (b).

Proof of (d). Now we prove part (d) - that the number of distinct initial ideals of in< I(L̃)
is at most r! · b where r is the codimension of I(L) and b is the number of bases of M . Let

< be a term order, and consider the initial ideal J = in< I(L̃). Since the cocircuits form a
Gröbner basis, and they are linear in the y-variables, < is determined by the linear order on
the yi. The y-support of the generators of J is precisely YB := {yb : b ∈ B} for some basis
B. We claim that for each B there are at most r! ideals J whose y-support is the set YB. A
term order yielding an initial ideal with y-support YB can only depend on the relative order
of the elements of YB since no other terms are ever selected as leading terms. There are at
most r! ways to order these r elements.

Theorem 4.3. The non-zero multigraded Betti numbers of S/I(L̃) are precisely:

βi,~a(S/I(L̃)) = |µ(F, 1̂)|

for each flat F of M , where i = r − r(F ), and ~a = e[n]−F . They are also equal to the

multigraded Betti numbers of S/ in< I(L̃) for any <. Here µ is the Möbius function of the
lattice of flats of M .

Proof. As we already remarked, the initial ideal

in< I(L̃) =
〈
xd1yd2yd3 · · · ydk : D = {d1, . . . , dk} is a cocircuit of M and d1 = min

<
D
〉

is closely related to the Stanley-Reisner ideal

IIN(M∗) = 〈xd1xd2 · · ·xdk : D = {d1, . . . , dk} is a cocircuit of M〉

of the independence complex IN(M∗) of the dual matroid M∗. More precisely, the second
is obtained from the first by setting yi = xi. In fact, this substitution is equivalent to
taking Ic(M,<) modulo a regular sequence. This follows immediately from the primary

decomposition of in< I(L̃) given by Theorem 4.19, together with the following lemma:

Lemma 4.24. Let I be a squarefree monomial ideal in S = k[x1, . . . , xn, y1, . . . , yn] satisfying

(P1) For each i, no associated prime of I contains both xi and yi, and

(P2) No minimal generator of I contains a product of the form xiyi.

Then
{x1 − y1, . . . , xn − yn}

is a regular sequence on S/I.
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Proof. Notice that (P1) implies that x1 − y1 is a regular element on S/I. We now form the
ideal

I ′ = I ⊗ S/(x1 − y1)

which we realize as an ideal in the polynomial ring S/(x1) via the substitution x1 7→ y1. We
claim that I ′ has properties (P1), (P2) and then the proof will be complete by induction.

First, the minimal generators of I ′ are precisely the generators of I after the substitution
x1 7→ y1. Thus (P2) is satisfied.

Now denote the primary decomposition of I as I = ∩Pi. By P ′i we will denote the ideal
Pi after the substitution x1 7→ y1. We claim that

I ′ = ∩P ′i .

Since substitution is just a ring map, the inclusion I ′ ⊂ ∩P ′i holds.
Conversely, suppose that f is a minimal generator of ∩(P ′i ). Notice that f does not

involve x1. We have two cases:
Case 1: y1 does not divide f . In this case, f is actually in I and hence membership of

f in (Pi) guarantees membership in (P ′i ) since the factors of f relevant to ideal membership
do not change under our substitution.

Case 2: y1 divides f , say f = y1g. Consider the element h = x1f . Since h is divisible
by both x1 and y1, and since f is in ∩(P ′i ), we know h is in fact in each ideal Pi. Thus
h = x1y1g ∈ I. But since I has no minimal generators by (P1) divisible by x1y1 we know
that either x1g or y1g must be in I. Under the substitution, both of these elements will be
sent to f , so that f ∈ I ′.

Now I ′ satisfies (P1) by construction and the proof is complete.

With Lemma 4.24 at hand, we are now ready to prove Theorem 4.3. As taking initial
ideals is a flat degeneration we have:

βi,~a(S/I(L̃)) ≤ βi,~a(S/(in< I(L̃))).

The only way that this inequality can be strict, however, is if βi,~a(S/(in< I(L̃))) is nonzero for
some ~a and for two successive values of i. In this case, it is possible that these Betti numbers
form a successive cancellation and do not appear in the resolution of S/I(L̃). However, since
{x1− y1, . . . , xn− yn} is a regular sequence by the previous Lemma, we know that the Betti

numbers of S/(in< I(L̃)) are equal to those of the independence ideal IIN(M∗). By Theorem
4.15, we see that no such successive cancellations are possible.

4.6 On Homogeneity

Throughout, we assumed that the linear space L was actually a vector subspace of kn.
This is a minor assumption, but nonetheless, the nonhomogeneous case has some interesting
applications.
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In this section, suppose that L is defined by the matrix equation

A · ~x = ~b.

As before we associate to A a matroid M = M(L). This matroid has a set of cocircuits D
which we will identify with the (unique up to scalar multiple) linear equations f ∈ I(L) with
minimal support. It will also be useful to consider the matroid Mhom associated to the matrix
(A | (−b)). We denote its set of cocircuits as Dhom and identify these with homogeneous
linear polynomials in the variables x1, . . . , xn, x0.

The degree and generators

The proof of Theorem 4.2(c) carries through unchanged to show that

Proposition 4.25.

mdeg L̃ =
∑
b∈B

tb1 · · · tbk

where the sum is taken over all bases b = {b1, . . . , bk} of M(L).

It is again the case that the set

Dh = {fh | f ∈ D}.

is a minimal generating set for I(L̃). To see this, we only need to notice that under the
lexicographic monomial order x1 > · · · > xn > y1 > · · · > yn, the initial terms of each
element of Dh are independent of ~b. In fact, they are the same as the leading terms in the
case when ~b = 0. Hence the ideal these monomials generate has a primary decomposition
given by Theorem 4.19. Thus we can conclude via the argument in Theorem 4.2(ab) that Dh
is indeed a minimal generating set (and a Gröbner basis under this term order) for I(L̃). It

is still true that D is also a universal Gröbner basis for I(L̃) as we show in the next section.

The initial ideals

In the homogeneous case, an initial ideal of I(L̃) is determined by the linear order on the
original x-variables. This is no longer true in the non-homogeneous setting. The difference
is that we now have terms which do not involve any x’s. An example is illustrative:

Example 4.26. Consider the linear ideal

I = 〈x1 − x2 + x6 + a, x2 + x3 − x5 + b, x3 − x4 + c〉 .

where a, b, c are parameters. For any choice of parameters, the closure I(L̃) is generated
by the homogenization of the six co-circuits with support in {126, 1356, 1456, 235, 245, 34}.
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The multidegree of L̃ is given by the thirteen bases of the matroid determined by A. For
comparison we introduce the ideal

Ihom = 〈x1 − x2 + x6 + a · x0, x2 + x3 − x5 + b · x0, x3 − x4 + c · x0〉 .

in seven variables. This ideal defines a linear space Lhom. The initial ideals of I(L̃hom)) are

closely related to those of I(L̃). The following table gives some numbers:

(a, b, c) number of initial ideals number of initial ideals

of I(L̃) of I(L̃hom)
(0,0,0) 72 72
(1,1,1) 111 150
(1,1,2) 114 156

Table 4.1: Number of initial ideals

For homogeneous spaces, we proved that the number of initial ideals of I(L̃) is at most
r! · b where r = n − d was the codimension of L and b was the number of bases of M(L).
This bound is visibly false in the non-homogeneous case as shown in Table 4.1. The correct
bound if r! · bhom where bhom is the number of bases for Mhom. In fact, we have the following.

Proposition 4.27. If L is a non-homogeneous space, then each initial ideal of I(L̃) is a

localization of an initial ideal of I(L̃hom). In particular the number of initial ideals of I(L̃)

is at most the number of initial ideals of I(L̃hom).

Proof. Let < be a monomial term order on k[x1, . . . , xn, y1, . . . , yn]. By homogeneity we can
assume this order comes from a weight vector w with

w(x1) > w(x2) > · · · > w(xn), w(yi) = 0 for all i.

We extend < to a term order on k[x0, . . . , xn, y0, . . . , yn] by assigning w(x0) = w(y0) = 0. This
essentially ensures that these new variables do not affect any leading term computations.

We will now compare D to Dhom. If f ∈ D has a nonzero constant term, then there is a
linear polynomial f ′ ∈ Dhom with support equal to supp(f)∪{x0}. Since Dhom is a universal
Gröbner basis by Theorem 4.2, its initial ideal with respect to < is generated by the leading
terms of each element of Dhom. Call this ideal J . Our claim is that

in< I(L̃) = J(x0 = 1, y0 = 1).

First notice that the equality
in< f = in< f

′|x0=y0=1

shows that that in< I(L̃) ⊂ J(x0 = 1, y0 = 1). To show the other inclusion it suffices to

show that that the multi-degree of J(x0 = 1, y0 = 1) is equal to that of I(L̃). That is, that
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its primary components correspond to the bases of M . The decomposition of J is given by
Theorem 4.19, and setting x0, y0 to 1 is equivalent to ignoring those components that contain
x0 or y0. These correspond to the bases of Mhom that contain 0. Thus the only components
that survive are those that correspond to bases of M .
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