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Abstract

Linking genomic variation to phenotypical traits remains a major challenge in evolutionary 

genetics. Here, we employ phylogenomic strategies to investigate a unique trait among mammals: 

the development of masculinizing ovotestes in female moles. Combining a chromosome-scale 

genome assembly of the Iberian mole, Talpa occidentalis, with transcriptomic, epigenetic and 

chromatin interaction datasets, we identify rearrangements altering the regulatory landscape of 

genes with distinct gonadal expression patterns. These include a tandem-triplication involving 

CYP17A1, a gene controlling androgen synthesis, and an intra-chromosomal inversion involving 

the pro-testicular factor FGF9, which is heterochronically expressed in mole ovotestes. Transgenic 

mice with a knocked-in mole CYP17A1 enhancer or overexpressing FGF9 showed phenotypes 

recapitulating mole sexual features. Our results highlight how integrative genomic approaches can 

reveal the phenotypic impact of non-coding sequence changes.

One Sentence Summary:

Phylogenomic analyses identify altered regulation at the CYP17A1 and FGF9 loci, which 

contributes to mole ovotestis formation

Phenotypic diversity across species results from differences in genome sequence and 

structure, which provide the molecular foundation for environmental adaptation. In 

evolutionary genetics, linking genomic alterations to phenotypic traits has largely relied on 

candidate gene (1) or linkage-mapping analyses (2). However, the combination of next 

generation sequencing with proximity-ligation methods, in particular Hi-C, allows the 

generation of chromosome-scale genome assemblies (3), opening ample possibilities for 

comparative genomics. More importantly, Hi-C enables the integration of 3D genome 

structure with transcriptional control. Vertebrate genomes are spatially organized into 

regulatory units, termed topologically associating domains (TADs) (4, 5). Although TADs 

are generally preserved across species (6, 7), studies of human disease highlighted that 

alterations in TAD organization can cause changes in gene expression and developmental 

phenotypes by re-wiring enhancer-promoter contacts (8-10). Thus, analytical strategies that 

consider 3D organization and regulatory potential become essential for a comprehensive 

annotation of genomes. Here, we introduce a phylogenomic strategy that combines 

comparative whole-genome, epigenomic, transcriptomic and chromatin interaction data to 

identify phenotype-associated genomic changes. We demonstrate the power of this approach 
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by elucidating the molecular underpinnings of generalized intersexuality in female moles, an 

evolutionary trait unique among mammals.

In mammals, sex is determined genetically and results in the differentiation of the bipotential 

gonad into either testicular or ovarian tissue, originating sex-specific anatomical, hormonal, 

and behavioral differences (11). A striking exception to this paradigm occurs in moles 

(Family Talpidae) where, in at least eight species, XX-genotypic females have an intersex 

phenotype (12, 13). While male moles have normal testes, genotypic females develop 

ovotestes instead of ovaries (Fig. 1A). These unusual gonads are composed of an ovarian 

part (OP) that fully supports sexual reproduction, and a testicular part (TP) that lacks fertile 

germ cells but contains typical male cell populations, such as androgen-producing Leydig 

cells (12) (fig. S1). As a consequence of increased androgen synthesis, female moles 

develop masculinized external genitalia, as well as prominent muscles and aggressive 

behavior (14), traits that likely represent adaptations to a subterranean lifestyle.

The Iberian mole genome

To investigate the molecular origins of mole ovotestes, we generated a chromosome-scale 

genome assembly for Talpa occidentalis based on long- and short-read sequencing, and 

scaffolded using Hi-C data (Fig. 1B; fig. S2). The assembly comprises 2.099 Gigabases (Gb) 

and up to 30% is made of transposable elements, with a different repeat profile to closely-

related mammals (fig. S3, Supplementary Text). Combining RNA-seq datasets and 

homology-based predictions, we identified 18,751 genes including 2,370 single-copy 

orthologues. This gene subset was used to determine 1,580 one-to-one orthologous genes in 

nine species and build a phylogenetic tree (Fig. 1C). Our analysis confirm moles as a distinct 

family in the Order Eulipotyphla, with shrews and hedgehogs being the most closely related 

species (15) (Supplementary text).

Epigenetic and transcriptional landscape of mole gonadal development

We generated epigenetic and transcriptomic profiles of mole gonads at 7 days post-partum 
(P7), processing TP and OP separately (fig. S2). Specifically, we produced ChIP-seq 

datasets against histone modifications (H3K4me1, H3K4me3, H3K27ac and H3K27me3) to 

segment the mole genome into functional states for each tissue. Additionally, we performed 

assays for transposase-accessible chromatin using sequencing (ATAC-seq; fig. S2) and 

intersected both datasets to predict active enhancers in each tissue (22,105 in total; Fig 1D, 

data S1). While the TP and testis shared a higher number of putative enhancers than TP and 

OP, the large number of TP-specific putative enhancers (2,726) indicates a distinct molecular 

profile from testis and OP. Principal component analysis of RNA-seq data further confirmed 

the unique nature of the TP (Fig. 1E).

An analytical framework for evolutionary analyses

We combined our functional datasets with comparative genomics analyses and focused on 

three distinct layers: genes, regulatory elements and 3D chromatin organization (fig. S4). We 

reasoned that phenotype-relevant mutations affecting these layers should be shared by the 
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Iberian mole and the American star-nosed mole (Condylura cristata), whose females also 

develop ovotestes. We first searched for gene families that underwent expansion/contraction 

in the mole lineage, as well as genes under positive selection (Supplementary Text, data S2-

S3). GO enrichment analyses revealed signatures in metabolic, immunological processes and 

the olfactory receptor repertoire. By filtering with GO terms related to sex differentiation 

(“sex, gonad”, data S4), we identified eight positively-selected genes that could affect mole 

gonadal development (table S1). To gain a functional insight into these genes, we searched 

for mouse- and human-reported mutations. Although some mutations led to reduced fertility, 

none was reported to induce sex reversal, thus making a contribution to the mole intersex 

phenotype unlikely (data S3).

Next, we focused on regulatory elements by identifying mole-accelerated regions, defined as 

genomic segments that are highly conserved during mammalian evolution but strikingly 

diverged in moles (Supplementary Text, data S5). We identified 3,560 mole-accelerated 

regions that were subsequently filtered for overlap with our predicted gonadal enhancers 

(129 regions). Instead of associating the accelerated enhancers to the nearest gene, we 

employed TAD predictions from Hi-C data to delimit a genomic range of interaction for 

each element and assign them to the genes within such regions. Of note, TADs are well 

conserved across tissues (fig. S5), consistent with previous findings (4). The assigned genes 

were further filtered with GO terms related to sex differentiation, which revealed two 

candidates: the transcription factor Osr1 and the cell-cycle regulator Cdk2 (table S1). 

Although both genes are essential for gonadogenesis (16, 17), they show a similar 

expression pattern in moles and mice and are likely not relevant for mole ovotestis formation 

(fig. S6).

Since no relevant candidates were found, we searched for changes in 3D chromatin 

organization, based on the hypothesis that rearrangements can alter regulatory domains and 

affect gene expression (8, 9). Rearrangements can be identified in genome comparisons as 

synteny breaks, defined here as alterations on the conserved co-linear order of loci between 

species. To identify mole-specific rearrangements, we compared the mole genomes (T. 
occidentalis and C. cristata) with full-chromosome assemblies from human, mouse and from 

shrew, as the closest taxonomical outgroup with normal ovarian development (Fig. 2A). We 

employed our Hi-C domain predictions to identify genes located within TADs affected by a 

synteny break, for a total of 2,595 candidate genes considered to be susceptible to altered 

regulation (data S6). We filtered these candidates according to GO terms related to sex 

differentiation, restricting the list to 39 genes (table S1, data S4).

Using our functional datasets, we then searched for footprints of altered gene regulation that 

might be the consequence of mole-specific rearrangements. We considered the nature of 

each rearrangement (Fig. 2B, Supplementary text) and our TAD predictions, to delimit a 

potential region of novel interactions for each candidate gene and determine the number of 

active regulatory elements contained within. Of the 39 candidate genes, only 17 were 

predicted to gain de novo interaction with regions containing active enhancers. Furthermore, 

we ranked the candidate genes by correlating the number of active elements with the 

expression levels for each tissue, as an indicative parameter of potential effects of the 

rearrangement on transcription (Fig. 2C, fig. S7, data S7). A positive correlation between 
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active enhancers and gene expression was found for 10 genes. Among the top-ranked 

candidates, we selected those displaying higher expression for subsequent functional 

validation: the androgen-related gene CYP17A1 and the pro-testicular factor FGF9.

A tandem triplication at the CYP17A1 locus is linked to increased androgen 

production and strength

We detected an intra-TAD tandem triplication at the mole CYP17A1 locus that creates two 

additional copies of the gene. Through comparative genomics analysis, we confirmed the 

exclusive presence of the rearrangement in the mole lineage, and its absence in other 

mammals (Fig. 3A, fig. S8). CYP17A1 encodes a key enzyme controlling androgen 

synthesis (18), suggesting a role in female mole masculinization. The triplication was 

associated with high CYP17A1 expression in testis and TP, both substantially exceeding the 

expression levels in mice (Fig. 3B, data S8). Searching for other genes of the steroidogenic 

pathway, we observed that CYP19A1, located downstream of CYP17A1, is not expressed in 

the TP (fig. S9). CYP19A1 encodes for aromatase, an enzyme that converts androgens to 

estrogens (18) and is expressed exclusively in the OP (fig. S9). It is thus expected that the 

high levels of CYP17A1 in the OP do not impede estrogen production and reproductive 

function, due to the protective effect of aromatase in degrading androgens locally. The 

absence of CYP19A1 expression in the TP, in combination with high CYP17A1 expression, 

provide a plausible explanation for the masculinization observed in female moles. We used 

gas chromatography-mass-spectrometry to quantify serum levels of male hormones and 

found high levels of circulating androgens in female moles. Androgen levels were similar as 

in male individuals (fig. S9), contrary to the general pattern among mammals where males 

display higher levels than females.

To examine the contributions of the additional CYP17A1 alleles to increased androgen 

production, we analyzed RNA-seq data from mole testes and TP. The three CYP17A1 
paralogues have sufficiently diverged to enable unambiguous mapping of RNA-seq reads. 

Unexpectedly, the two newly emerged CYP17A1-2 and CYP17A1-3 jointly contribute less 

than 5% of CYP17A1 transcript (Fig. 3C). Furthermore, sequence conservation analyses 

revealed that they diverge more from the human sequence than CYP17A1-1 (fig. S10). 

These findings suggest that the triplication of the CYP17A1 gene itself does not explain the 

increased androgen levels in moles. Instead, the triplication also caused the duplication and 

fusion of two predicted enhancer elements, termed “enhancer A” and “enhancer B” (Fig. 

3C). As the triplication does not affect any TAD boundary, the duplicated enhancers and 

CYP17A1 genes locate within the same regulatory domain (fig. S11). The duplicated fusion 

element, “enhancer A-B”, shows a high degree of sequence conservation with the original 

elements (84 and 90%, respectively) and high abundance of active enhancer marks (Fig. 3C). 

Computational predictions of binding affinities showed that enhancer A-B maintains 

significant binding affinities for transcription factors (TFs) found in the original enhancer A, 

as well as novel binding affinities for TFs that are expressed in the TP (data S9). Together, 

these observations suggest that duplication and functional changes in regulatory sequences, 

rather than amplification of coding sequence, cause the observed phenotypic adaptations.
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To confirm this hypothesis, we inserted the mole enhancer A-B sequence into the Cyp17a1 
murine locus (Fig. 3D). Adult knock-in mice carrying the additional mole enhancer 

displayed a three and two-fold upregulation of Cyp17a1 expression in females and males, 

respectively. The increased expression occurs in the same cell type (steroidogenic cells) as in 

wildtype controls (fig. S12). A similar effect was observed at embryonic stages (fig. S12), 

thus confirming the increased in vivo activity of the mole-specific fusion enhancer in 

gonadal tissue. The upregulation of Cyp17a1 expression was accompanied by an increase in 

circulating testosterone in females and males (two and three-fold respectively, Fig. 3E). 

Since androgens have potent anabolic effects in muscle, we performed a strength grip test 

that revealed a significant increase in muscle strength in mutants compared to wildtype 

controls (Fig. 3F). Thus, the regulatory nature of the CYP17A1 rearrangement offers a 

plausible molecular mechanism for the observed shift in hormone levels and the 

corresponding phenotype.

An inversion at the FGF9 locus is associated to delayed meiosis and 

gonadal masculinization

We identified a rearrangement at the FGF9 locus which is exclusive to the mole lineage and 

not present in any other mammals examined (Fig. 4A, fig. S13-S14). FGF9 is a known 

testis-determining gene that functions in positive feedback with SOX9 and inhibits the 

ovary-determining WNT4/β-catenin pathway (19) (fig. S15). Consequently, loss of Fgf9 in 

XY gonads results in downregulation of testicular markers and male-to-female sex reversal. 

Comparative analyses against human, representative of the ancestral organization at the 

locus, revealed a large inversion that relocates a distant genomic region (26 Mb away in the 

human genome) to the mole FGF9 locus (Fig. 4B). Hi-C data showed that the synteny break 

occurs within the human FGF9 TAD, disrupting its 3D organization. Thus, the mole locus is 

reorganized, with most of the FGF9 TAD remaining conserved, but extending beyond the 

synteny breakpoint on the centromeric side. This new interaction domain is delimited by the 

presence of two CTCF binding sites with divergent orientation, a genomic signature 

associated to TAD boundaries (7) (Fig. 4B). A closer examination of the newly interacting 

region revealed several elements enriched for active epigenetic marks, some of them specific 

for the mole ovotestis (fig. S16). This novel interaction pattern was also validated through 

independent 4C-seq experiments (Fig. 4B), which confirmed the association of the FGF9 
gene with the region containing the putative tissue-specific enhancers. We tested one 

element (fig. S16) in mouse LacZ reporter assays. Although this element displayed enhancer 

activity in tissues like the eye (fig. S17), we did not observe gonadal staining, which could 

be due to specific requirements for additional trans-acting factors in the mole. Alternatively, 

it may reflect known limitations of the reporter assay that might be intensified by the inter-

species nature of the experiment (20).

We then explored possible alterations on the dimorphic FGF9 expression pattern observed in 

other mammals, which is essential for suppressing germ cell meiosis (21). In mice, Fgf9 is 

first expressed in the bipotential gonad of both sexes and becomes progressively restricted to 

the testis and turned off in ovaries, allowing the initiation of female meiosis at E13.5. In 

mole gonads, however, FGF9 expression is maintained after sex determination in both sexes 
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and becomes restricted to the OP at later stages (Fig. 4C). Immunostaining analyses showed 

that FGF9 expression persists in the OP across the entire prenatal period, and becomes 

confined to a thin rim at postnatal stages (P7). The spatial reduction in FGF9 expression is 

concomitant with the initiation of meiosis (Fig. 5A and fig. S18) which is considerably 

delayed in female moles until birth, an exceptional feature among mammals (22). 

Consequently, the observed heterochrony on mole FGF9 expression, compared to mouse, 

and its potential effects are suggestive of a contribution to the masculinization of female 

mole gonads.

We hypothesized that FGF9 expression during early XX mole gonadogenesis might prevent 

germ cells from entering meiosis in the OP, allowing the TP to develop further. To test this 

hypothesis, we engineered a BAC construct to overexpress Fgf9 in somatic ovarian 

populations and generated transgenic mice through PiggyBac transgenesis and morula 

aggregation. Highly-chimeric animals displayed early embryonic lethality, likely due to Fgf9 
misexpression in other organs, an effect that precluded their study in later stages. 

Nevertheless, RNA-seq analysis of E13.5 ovaries demonstrated an inhibition of the meiotic 

process, manifested by downregulation of meiosis markers (Fig. 5B, data S10). In contrast, 

low-chimaera individuals composed of XX wild-type and XX mutant cells were viable and 

displayed Fgf9 expression during the entire ovarian development. These animals showed a 

complete female-to-male sex reversal, defined by gonadal morphology and expression of 

male-specific genes like SOX9 (Figure 5C). These results directly confirm the potential of 

altered FGF9 expression to induce masculinization in mammalian XX females.

Discussion

Vertebrate sex determination is controlled by a limited set of key regulators whose hierarchy 

has evolved dynamically (11). Most of these genes display pleiotropic effects, controlling 

regulatory networks in several tissues, often making them indispensable for embryonic 

viability (23, 24). It is thus plausible that variations in sex determination derive from 

regulatory changes that alter gene expression patterns but preserve essential functions, as 

suggested for other evolutionary adaptations (1, 2). These genomic changes appear to be 

linked to the evolutionary success of moles and demonstrate that regulatory innovation can 

overcome a priori seemingly incompatible situations such as female fertility in the presence 

of high androgen levels. But how could an intersex phenotype evolve and what is its 

adaptive significance? One potential explanation is the anabolic effects of androgens on 

muscle mass. Mole ovotestes may have evolved to equalize muscular strength among sexes, 

by increasing androgens in females. Such an advantage, combined with other androgen-

derived effects such as aggressive behavior, might have been key for the adaptation to the 

demanding requirements of a burrowing underground lifestyle (14).

This study also highlights the evolutionary importance of genomic rearrangements, and their 

potential to modulate developmental gene expression. In most cases, genomic 

rearrangements would have limited effects as they preserve whole regulatory units and do 

not disrupt enhancer-promoter interactions (6, 25). However, as shown here, they can also 

alter the regulatory potential within the local environment of a TAD, as for the CYP17A1 
locus, or shuffle the functional content of distant TAD units, exemplified by the FGF9 locus. 
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Interestingly, similar effects have been observed in human genetic diseases for enhancer 

duplications (26) and for inversions (8, 9). Therefore, regulation of genes by enhancer 

elements and their organization in TADs might constitute a mechanism of “evolvability” 

resulting from a modular system with vast flexibility and enormous evolutionary potential 

for the origin of novelties. Based on this modularity, genomic rearrangements can easily 

change and reconstitute complex expression patterns, thereby contributing to the saltatory 

nature of phenotypic innovation observed in many phylogenetic lineages. We expect that 

approaches considering these important aspects will eventually reveal the evolutionary basis 

of many other traits and substantially enhance the toolbox for unlocking the secrets of 

phenotypic variation and adaptation across the animal kingdom.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Mole genome and epigenetic and transcriptional study of ovotestis development.
(A) An Iberian mole (Talpa occidentalis) and an adult mole ovotestis. Scale bar represents 

500 μm. (B) Genome assembly of T. occidentalis and gene annotation statistics. (C) 
Phylogenetic tree, based on four-fold degenerate sites, between selected species. (D) Venn 

diagram of active enhancers (data S1). (E) PC analysis of RNA-seq datasets of P7 mole 

gonads.
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Fig. 2. Identification of genes with altered 3D chromatin regulatory landscapes.
(A) Strategy used to identify genes with altered 3D chromatin organization as a result of 

species-specific rearrangements. (B) Strategy used to assign regulatory elements to 

candidate genes. Number of active enhancers are correlated to gene expression levels for 

each tissue. (C) Correlation between the percentage of active enhancers and gene expression 

per tissue (orange=ovary part, green=testis part, blue=male testis) for selected candidates 

(full gene dataset in fig. S4 and data S7). STRA6, FGF9 and CYP17A1 display the highest 

positive correlation, ATM shows negative correlation.
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Fig. 3. Duplication of regulatory elements at the CYP17A1 locus and associated increase in 
androgen production and strength.
(A) Comparative genomics at the CYP17A1 locus. (B) CYP17A1 expression (RNA-seq) in 

mole and mouse adult gonads (n=2). (C) Expression profile (RNA-seq, top), enhancer marks 

(H3K27Ac, center) and open chromatin (ATAC-seq, bottom) for testis part and testis at P7 

gonads. Segmentation for active enhancers for testis part (green bars) and testis (blue bars). 

BLAT Sequence homology is represented in gray boxes. Duplicated enhancer (A-B) results 

from fusion of enhancer A and B. (D) Up: Integration of the mole CYP17A1 duplicated 

enhancer into the mouse Cyp17a1 locus. Down: Expression analysis of Cyp17a1 (RT-qPCR) 

in adult mouse mutant gonads and wild-type controls (n ≥ 5). (E) Circulating testosterone 

levels in adult mouse mutants and wild-type controls (n=7). (F) Grip strength test in adult 

mouse mutants and wild-type controls (n=7). Bars represent mean and SD. Two-sided 

Student’s t-test, n.s = non-significant, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.
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Fig. 4. An inversion altering the regulatory landscape of the FGF9 mole locus.
(A) Comparative genomics at the FGF9 locus. (B) Hi-C maps for human and mole 

displaying synteny break (discontinuous line) and TAD prediction. Below, CTCF ChIP-seq 

(mole P7 gonads) with peak orientation. 4C-seq using mole FGF9 promoter as viewpoint 

shows contact extension beyond synteny break. Zoom of FGF9 interacting region shows 

active ovarian enhancers (asterisks). H3K27Ac, ATAC-seq and segmentation for active 

enhancer tracks are displayed in orange. (C) FGF9 expression (RNA-seq) in mice and moles 

at different timepoints. Bars represent mean and SD (n ≥ 2). Two-sided Student's t-test, n.s = 

non-significant, *P ≤ 0.05, **P ≤ 0.01.
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Fig. 5. FGF9 sustained expression delays meiosis and promotes XX gonadal masculinization.
(A) Spatio-temporal expression of FGF9 and the meiotic marker SYCP3 (immunostaining, 

green, DAPI in blue). Insets display zoomed regions from OP. Scale bars represent 100 μm. 

(B) Volcano plot from RNA-seq of XX mutant versus wild-type gonads (E13.5) and gene 

ontology analysis. (C) Hematoxylin and Eosin staining of XX gonads of adult mutants and 

wild-type controls. Cord-like structures in mutants denote XX-to-XY sex reversal. Inset 

shows SOX9 expression (immunostaining, green, DAPI in blue). Scale bars represent 200 

μm.
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