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Abstract

In integrated crop-livestock systems, livestock graze on cover crops and deposit raw

manure onto fields to improve soil health and fertility. However, enteric pathogens shed by

grazing animals may be associated with foodborne pathogen contamination of produce

influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from

sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minne-

sota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-produc-

ing Escherichia coli (STEC) or generic E. coli (gEc) in fecal and soil microbiomes. We

collected samples from field trials of three treatments (fallow, a cover crop without grazing

(non-graze CC), and a cover crop with grazing (graze CC)) grazed by sheep or goats

between 2020 and 2022. No significant differences in non-O157 STEC prevalence were

found between pre- and post-grazing fecal samples in either sheep or goats. However, gEc

was more prevalent in graze CC soils compared to fallow or non-graze CC soils. Alpha

diversity was influenced by the species of grazing animals and the region, as sheep fecal

samples and soil from the California trials had greater alpha diversity than goat fecal sam-

ples and soil from the Minnesota trials. Beta diversity in sheep fecal samples differed by the

presence or absence of non-O157 STEC, while in goat fecal samples, it differed between

pre- and post-grazing events. Actinobacteria was negatively associated with non-O157

STEC presence in sheep fecal samples and decreased in post-grazing goat fecal samples.

Grazing did not significantly affect soil microbial diversity or composition, and no interaction

was observed between post-grazing fecal samples and the graze CC soil. The results sug-

gest that soil contamination by foodborne pathogens and microbiome dynamics in ICLS are

influenced by grazing animal species and regional factors, with interactions between fecal

and soil microbial communities having minimal impact.
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Introduction

Integrated crop-livestock systems (ICLS) utilize livestock to graze on cover crops or residue

crops before a field is replanted with produce intended for human consumption [1]. In ICLS,

grazing livestock are used to fertilize the soil and manage cover crops, reducing the need for

supplemental fertilizer or labor for mowing, thereby lowering production costs [2]. Livestock

integration in ICLS provides other benefits, such as increased crop yields and improved envi-

ronmental sustainability by promoting soil microbial biomass and biodiversity, nutrient recy-

cling, and insect pest management [1–3]. However, one of the concerns with the ICLS practice

is the potential contamination of produce crops with foodborne pathogens shed by livestock.

Livestock are known to be natural reservoirs for foodborne pathogens, posing a major con-

cern in the agricultural industry as they can be entry points for pathogens into the food supply

[4,5]. Most livestock carriers are asymptomatic, frequently shedding pathogens in their feces

without showing signs of illness [6]. Among foodborne pathogens, Shiga toxin-producing E.

coli (STEC) is currently a public health concern due to its potential to cause serious health

problems, such as hemorrhagic colitis and hemolytic uremic syndrome [7]. Recently, out-

breaks caused by STEC have been reported in various types of fresh produce as the consump-

tion of vegetables increases [8,9]. Nonetheless, there is limited reseach assessing the foodborne

pathogen shed from small ruminants, such as sheep and goats [10,11].

Current literature on fecal microbiomes suggests that animal species and external factors

such as diet, husbandry, and environmental management influence pathogen shedding and

fecal microbial composition [12–14]. An experimental study in sheep reported that a diet

change from alfalfa to pasture grass affected the fecal shedding of E. coli O157:H7 [15]. More-

over, dietary differences due to husbandry management and starch-based feeding practices

affected the abundance of fecal microbial taxa in cattle [13,16]. Additionally, the taxa and

metagenome composition of cattle fecal microbial communities were associated with the onset

of shedding foodborne pathogens, such as Salmonella and E. coli O157:H7 [17,18].

The contamination of soil with foodborne pathogens through fecal deposition is relevant to

the diversity of the soil microbiome on farms [19–21]. When raw manure is applied to soil, it

is known to increase soil microbial biomass and abundance by activating underrepresented

soil-borne taxa [22,23]. Indeed, organic produce farms, which often enrich soil with biological

soil amendments of animal origin (e.g., compost or manure), have greater bacterial diversity

and higher levels of organic matter than farms with conventionally managed soils [23,24]. An

experimental study in the Netherlands showed that the survival of E. coli O157:H7 was nega-

tively associated with the diversity of the soil community [21]. Less diverse soil communities

have been found to exhibit larger changes in their resident bacterial communities when

exposed to a foreign microbe [20,25]. For instance, when foodborne pathogens such as L.

monocytogenes and Salmonella were inoculated into soils from different production systems,

soil with higher organic matter managed with cover crops and animal-based compost showed

a steeper decline in pathogen survival than conventional soil without these practices [19].

Therefore, the probability of raw manure application causing pathogen contamination in soil

may be linked to lower indigenous soil microbiome diversity. However, this aspect has not

been investigated in ICLS involving short-term grazing with small ruminants.

This study was motivated by the lack of information regarding the role of small ruminants

in enteric pathogen shedding while grazing and the intricate interplay between fecal and soil

microbiomes under ICLS practices. Specifically, we aimed to investigate the prevalence of

non-O157 STEC or generic E. coli (gEc) in fecal and grazed soil samples collected from ICLS

field trials (2020–2022) conducted in California (CA) and Minnesota (MN). Additionally, we

evaluated the associations between fecal microbiomes and the presence of non-O157 STEC in
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sheep and goats pre- and post-grazing. We expected that grazing in ICLS would increase the

diversity of the soil microbiome and influence the soil’s pathogen contamination.

Materials and methods

Study design and sample collection

Three replicated field trials were conducted in two states (CA and MN). The CA trials were

conducted over three years (2020–2022) at the Russell Ranch Sustainable Agriculture Facility,

University of California, Davis (UC Davis) (38˚ 32’ 36.87", -121˚ 52’ 11.89"). The MN trial was

carried out over two years (2021–2022) at the University of Minnesota Southwest Research

and Outreach Center (44˚ 14’ 29.4858", -95˚ 19’ 1.5312"). A randomized complete block design

with four replicates was conducted in both states, with a random allocation of three treatments

in each block—fallow ground as a control, a cover crop tilled without grazing (non-graze CC),

and a cover crop grazed by sheep or goats (graze CC). In CA, we conducted two distinct field

trials: one with tomatoes as the produce crop (2020–2021) (CA Trial 1) and one with a spin-

ach/cucumber crop rotation (2021–2022) (CA Trial 2). In MN, the trial was conducted from

2021 to 2022 with a spinach/cucumber crop rotation (MN Trial 3), as in CA Trial 2. The cover

crop mix was adapted to each state: it consisted of cereal rye, crimson clover, and daikon rad-

ishes in CA, while the mix in MN comprised winter rye, berseem clover, and daikon radishes.

For grazing, the CA trials used a sheep flock composed of Suffolk, Hampshire, Dorset, and

crossbreeds aged from 1–5 years old, while the MN trial used a goat herd composed of Spanish

meat goat breeds aged from yearlings to 10 years old. The number of grazing animals and

duration of grazing were determined based on the quantity of cover crop biomass each year.

In the CA trials, a flock of 25–80 sheep grazed once or twice annually, with each grazing event

lasting for 1–3 days between February and April. In the MN trial, a herd of 40–170 goats

grazed twice annually for 3 days in October/November and April/May. This study was

approved by the Institutional Animal Care and Use Committee of the University of California,

Davis (IACUC #22700) and the University of Minnesota (IACUC #2008-38348A).

Fecal samples were collected pre- and post-grazing (20–28 samples each). Pre-grazing samples

were collected from the barn floor in CA or the trailer floor in MN before the animals were

moved to the grazing plots. Post-grazing samples were collected from the fields immediately after

grazing events. In the CA trials, control fecal samples (8 samples per grazing event) were collected

from sheep in the same herd that were not moved to the grazing plots and received the same pre-

trial diet as the grazing sheep. Soil samples (36–72 samples per sampling day) were collected

monthly after the last grazing event for up to 120- and 150-days post-grazing (DPG). Additional

soil samples were collected from the spinach/cucumber fields in CA and MN 7 DPG. Detailed

protocols for the grazing scheme and sample collection of soil and feces are described in Cheong

et al. (2024) [26]. Samples were processed within 48 h after collection for microbial analysis to

assess the presence of STEC or gEc. Approximately 10g of each collected sample was stored at

-20˚C before DNA extraction. DNA was extracted from all of the collected fecal samples and a

random selection of one-third of the soil samples from each block (i.e., 12–24 soil samples per

sampling day) to perform 16S rRNA gene sequencing. The total number of samples used for

DNA extraction included 347 fecal samples (187 sheep fecal samples and 160 goat fecal samples)

and 457 soil samples (306 soil samples from CA and 151 from MN).

Microbial analyses

Pre- and post-grazing fecal samples were examined for the presence of non-O157 STEC, and

soil samples were assessed for the presence of non-O157 STEC and gEc as indicators of fecal

contamination.
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Each fecal or soil sample (10 g per fecal sample and 30 g per soil sample) was enriched in a

24 oz. Whirl-Pak bag filled with 90ml or 270ml of tryptic soy broth (TSB) (BD BactoTM, Hei-

delberg, Germany), respectively, to detect non-O157 STEC or gEc. For the TSB enrichment,

samples were incubated at 25˚C for 2 h followed by 42˚C for 8 h with 50 rpm shaking, then

held at 6˚C without shaking in a Multitron programmable shaking incubator (Eppendorf,

Hauppauge, NY, United States).

To isolate non-O157 STEC, 1 mL of enriched TSB sample was put into a tube with 9mL of

modified enterohemorrhagic E. coli (mEHEC) selective media (Biocontrol, Bellevue, WA,

United States) and incubated for 12 h at 42˚C [27]. Then, mEHEC solution was streaked onto

ChromSTEC agar (CHROMagarTM, Paris, France) using a 10 μL inoculation loop and incu-

bated for 24 h at 37˚C. Presumptive positive isolates (i.e., purple colonies that fluoresced under

ultraviolet light) on ChromSTEC agar were re-streaked onto secondary and tertiary Chrom-

STEC agar. A final pure presumptive positive colony was streaked onto tryptic soy agar (TSA)

for confirmation as non-O157 STEC with a standard polymerase chain reaction (PCR) assay

targeting the stx1 and stx2 genes [28].

Ten μL from each TSB bag was streaked onto CHROMagar E. coli (ECC) (CHROMagar

Microbiology, Paris, France), followed by incubation for 24 h at 37˚C to determine the pres-

ence of gEc. After re-streaking presumptive positive colonies (i.e., blue colonies) onto second-

ary and tertiary ECC plates, the pure isolates on TSA were confirmed as gEc by PCR targeting

the uspA gene [29].

DNA extraction and 16s rRNA gene sequencing

DNA was extracted from fecal (� 0.15g) and soil (� 0.25g) samples using the Quick-DNA

Fecal/Soil Microbe Miniprep Kit #D6010 (Zymo Research, Irvine, CA), following the manu-

facturer’s instructions. The extracted DNA’s concentration and purity (A260/280 as 1.8–2.0)

were quantified using a NanoDrop (Thermo Fisher Scientific, Wilmington, DE). Fecal samples

with DNA concentrations of less than 10 ng/uL and soil samples with DNA concentrations of

less than 4.5 ng/uL after DNA extraction were excluded from further steps. The V4 region of

bacterial 16S rRNA genes was amplified using a unique 8 bp barcode attached to each forward

primer per sample. The forward and reverse primers used were F515 (50- GTGTGCCAGCMG
CCGCGGTAA- 30) and R806 (50 - GGACTACHVGGGTWTCTAAT- 30) [30]. Each sample was

amplified by PCR in triplicate (25ul each) using GoTaq Hot Start Colorless Master Mix 2X

(Promega, Madison, WI). PCR was run with the following conditions to amplify the DNA: ini-

tial denaturation at 94˚C for 3 mins, 30 or 35 cycles of denaturation at 94˚C for 45 secs (30

cycles for feces and 35 cycles for soil), annealing at 55˚C or 50˚C for 1 min (55˚C for feces and

50˚C for soil), elongation at 72˚C for 90 secs, and final extension at 72˚C for 10 min. The bar-

coded amplified triplicates were combined and visualized via electrophoresis using a 2% aga-

rose gel. All samples were pooled based on the density of gel bands, which was determined

using VisionWorks software. The pooled samples were purified using QIAquick1 Gel Extrac-

tion Kit (Qiagen, Valencia, CA) and assessed by a bioanalyzer for quality. Sequencing of the

pooled samples was performed on the Illumina MiSeq PE250 platform at the University of Cal-

ifornia Davis Genome Center DNA Technologies Core. The total number of samples submit-

ted for sequencing was 306 fecal and 423 soil samples, run as three different batches.

Library processing, taxonomy assignment, and filtering

Raw sequence data processing and taxonomy assignment were performed using QIIME2

(v.2023.9) [31]. Raw paired-end reads were demultiplexed, and then linkers and barcodes were

trimmed. The first 20 bases of the reads were trimmed off and truncated at 200 bp for each
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forward and reverse sequence and then merged for denoising with the DADA2 pipeline [32].

An amplicon sequence variant (ASV) table was created after removing chimeras. Taxonomy

was assigned with naïve Bayes classifiers trained on the SILVA reference database v.138 [33].

Phylogenetic trees were generated using FastTree and MAFFT alignment after merging taxon-

omy data and ASV tables for each type of sample (fecal and soil) as the raw sequence data of all

samples were sequenced in three lanes. The ASV tables, phylogenetic trees, taxonomy data

generated by QIIME2, and metadata were imported into R software (v.4.2) using the phyloseq

package (v.1.42) [34]. Samples with sequencing depth under 10 reads, taxonomy classified as

non-bacterial (i.e., Archaea or Eukarya), and mitochondria or chloroplasts were removed

before assessing the microbial communities. After filtering, the final feature tables used for fur-

ther statistical analyses had 3,022 ASVs for the 300 fecal samples (148 sheep and 152 goat sam-

ples) and 5,361 ASVs for the 415 soil samples (272 soil samples from CA and 143 from MN).

Statistical analysis

Descriptive statistics were used to summarize the prevalence (by proportion) of fecal and soil

samples positive for non-O157 STEC or gEc by sample type, treatment, type of grazing animal,

and year. A two-proportion t-test was used to compare the proportions between groups (e.g.,

post-grazing fecal samples from sheep and goats).

We investigated the following factors in fecal samples to further evaluate their effects on

microbial composition: the type of grazing animal (sheep or goats), year, pre- and post-grazing

status, and presence of non-O157 STEC. Additionally, fecal samples from the CA trials’ graz-

ing and control groups were compared. For the soil samples, we investigated the effects of

treatment (fallow, non-graze CC, and graze CC), the sampling day (DPG), state, and the pres-

ence of non-O157 STEC and gEc. The soil dataset was split into two groups for the analysis

according to the type of produce crop(s): tomatoes (2020–2021)—CA Trial 1, and spinach/

cucumbers (2021–2022)—CA Trial 2 and MN Trial 3.

Alpha and beta diversity were used to assess the microbiome composition in fecal and soil

samples separately. Four types of alpha-diversity metrics were calculated to describe within-

sample diversity: the Chao1, Shannon, Simpson, and Faith’s phylogenetic diversity (PD) indi-

ces. The alpha-diversity metrics were compared using a t-test between two groups or ANOVA

for more than three groups. The Bonferroni pairwise t-test was used as a post-hoc test for sig-

nificant ANOVA results [35]. Two types of beta-diversity metrics were used to assess the dif-

ferences in microbial community composition between samples: Bray-Curtis dissimilarity

takes into account abundances (count data), whereas unweighted UniFrac considers the phy-

logenetic distances (presence/absence) of the microbes in samples. Visualization was per-

formed with Bray-Curtis dissimilarity using principal coordinate analysis (PCoA) after

aggregating the rare taxa at the genus level with a detection threshold of 0.1% and a prevalence

greater than 5%. In addition to Bray-Curtis dissimilarity, we used unweighted UniFrac at the

ASV level without filtering for prevalence to observe the effects of explanatory variables on

changes in microbial communities using permutational multivariate ANOVA (PERMA-

NOVA) in the vegan package of R software (v.4.2) [36]. A p-value of< 0.05 was considered

significant, and pairwise comparisons were performed for significant results in

PERMANOVA.

We analyzed microbiome compositions with Bias Correction 2 (ANCOM-BC2) to deter-

mine differentially abundant taxa between groups based on the considered effects, using the

ANCOM package (v. 2.5.0) in R software. The analysis applied linear regression models after

(natural) log transformation of the observed counts of taxa, adding a series of pseudo-counts

(0.01–0.5) to zero counts of each taxon for sensitivity analysis to prevent inflated false positive
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rates [37,38]. All differential abundance analyses were performed at the phylum and family lev-

els after agglomerating the phyloseq data at the genus level. Taxa with a prevalence of less than

10% were excluded by default. The Benjamini-Hochberg adjustment was used to calculate

adjusted p-values, and an adjusted p-value < 0.05 was considered significant.

Lastly, we evaluated the core microbiomes and the correlation between post-grazing fecal

samples and soil samples collected from the graze CC treatment plots. Core microbiota analy-

sis was conducted with a detection threshold of 0.1% and a prevalence greater than 50% within

each sample at the ASV level using the “core” function in the microbiome package (v.1.20.0)

[39]. Sparse estimation of linear correlations among microbiomes (SECOM) was performed

with the ANCOM package’s (v. 2.5.0) “secom_linear” function in R software. Pearson correla-

tion was examined at the phylum level, with a threshold of pairwise correlation set at 0.3.

Based on the matrix result of the taxon-to-taxon co-occurrence pattern, pairs of taxa where the

number of nonzero samples was less than 10 were excluded from the correlation calculation.

Results

Fecal samples

Prevalence of non-O157 STEC in fecal samples. Table 1 summarizes the prevalence of

non-O157 STEC in fecal samples collected from sheep and goats from the CA and MN trials.

There was no statistically significant difference (p = 0.8) between the non-O157 STEC preva-

lence in the post-grazing fecal samples from sheep (26.5%, 18/68) and goats (23.4%, 18/77).

Additionally, there was no significant difference in the non-O157 STEC prevalence between

the control (35.0%, 14/40) and the grazing group (i.e., the sum of the pre- and post-grazing

groups; 26.9%, 29/108) in sheep, nor between pre- and post-grazing groups in either sheep and

goats.

Diversity of fecal microbiome compositions. All four alpha-diversity metrics (Chao1,

Shannon, Simpson, and PD) showed significant differences between sheep (CA) and goat

(MN) fecal samples (p< 0.01). The sheep fecal samples showed higher alpha diversity than the

goat fecal samples (Fig 1A). Within sheep fecal samples, the year (2020–2022) and non-O157

STEC presence showed significant associations with Chao1 (p = 0.02) and PD (p = 0.03) indi-

vidually. However, when considering both effects simultaneously, only the effect of the year

remained significant, with 2022 showing significantly higher Chao1 and PD values than 2020

(p = 0.02) (Fig 1B). On the other hand, within goat fecal samples, the year (2021–2022) and

pre- and post-grazing status showed significant associations with all four alpha-diversity met-

rics (p< 0.01). When both effects were considered together, the difference in abundance was

mostly attributed to pre- and post-grazing status (p< 0.001) (Fig 1C).

The beta diversity of sheep and goat fecal samples was significantly different according to

both Bray-Curtis dissimilarity (p< 0.01) (Fig 2A) and unweighted UniFrac at the ASV level

(p< 0.01) (S1A Fig). Within sheep fecal samples, both Bray-Curtis dissimilarity (Fig 2B) and

unweighted UniFrac significantly differed by year (S1B Fig) (p< 0.01). Additionally,

unweighted UniFrac was significantly different between samples with and without non-O157

Table 1. Prevalence of non-O157 STEC in pre- and post-grazing fecal samples from sheep (CA) and goats (MN) collected from field trials of integrated crop-live-

stock systems (2020–2022).

Pathogen in fecal samples Sheep (CA) Goats (MN)

Pre-graze Post-graze Control Pre-graze Post-graze

non-O157 STEC 27.5%

(11/40)

26.5%

(18/68)

35.0%

(14/40)

14.7%

(11/75)

23.4%

(18/77)

https://doi.org/10.1371/journal.pone.0316616.t001
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STEC and between the grazing and control groups (p< 0.01). Notably, the year effect predom-

inantly explained the variance (R2 = 0.05, p = 0.001) in the multivariable model when evaluat-

ing unweighted UniFrac, with all three variables in the model showing significant differences

(p< 0.01). Within goat fecal samples, significant differences were observed in both Bray-Cur-

tis and unweighted UniFrac (p< 0.05) for the variables of year, pre- and post-grazing status,

and the presence of non-O157 STEC. Particularly, the effect of pre- and post-grazing status

highly explained the variance in the univariable model (R2 = 0.26, p< 0.01) with Bray-Curtis

dissimilarity (Fig 2C). Interestingly, this effect explained less variance with the unweighted

UniFrac (R2 = 0.12, p< 0.01) (S1C Fig). In the multivariable model with all three variables, the

presence of non-O157 STEC became non-significant with the unweighted UniFrac.

Differential abundance analysis of fecal samples. Of the 3,022 ASVs observed in fecal

samples, 1,013 were shared between sheep and goat fecal samples. Goat fecal samples had a

notably higher relative abundance of Actinobacteria (41.7%) than sheep fecal samples (11.7%),

which was consistent with the ANCOM-BC2 results showing significantly more Actinobac-

teria in goat fecal samples (p< 0.01). In contrast, Fibrobacteres and Spirochaetes were less

commonly observed in goat fecal samples (<0.1% and 3.1%, respectively) than in sheep fecal

samples (2.6% and 8.9%, respectively) (ANCOM-BC2, p< 0.01) (Fig 3).

Fig 1. Alpha diversity (Chao1, Shannon, Simpson, and Faith’s phylogenetic diversity (PD)) in fecal samples collected from field trials of integrated crop-

livestock systems in California (CA) and Minnesota (MN). Comparisons between (A) sheep (CA) and goat (MN) fecal samples, (B) years (2020–2022) and

the presence of non-O157 STEC in sheep feces, and (C) years (2021–2022) and pre- and post-grazing status in goat feces (**p< 0.01, * p<0.05).

https://doi.org/10.1371/journal.pone.0316616.g001
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When evaluating sheep fecal samples after adjusting for the effect of year, the non-O157

positive fecal samples had a significantly lower abundance of Actinobacteria (log fold changes

(LFC) = -1.54, adjusted p = 0.01) compared to the non-O157 STEC negative samples (Fig 4A).

At the family level, Corynebacteriaceae was significantly less frequent in the grazing group

than in the control group (LFC = -1.68, adjusted p< 0.01) (Fig 4B). Within the grazing group,

excluding the samples from the control group, non-O157 STEC-positive fecal samples also

showed a significantly lower abundance of Actinobacteria (LFC = -1.68, adjusted p< 0.01).

After adjusting for the effect of year, post-grazing goat fecal samples had a significantly

lower relative abundance of Actinobacteria (LFC = -2.5) and Proteobacteria (LFC = -1.8) and

significantly more Bacteroidetes (LFC = 2.0) and Spirochaetes (LFC = 1.5) than pre-grazing

goat fecal samples (adjusted p< 0.01) (Fig 4C). The observed relative abundance of Actinobac-

teria in pre-grazing samples was as high as 60%. However, the abundance in post-grazing sam-

ples decreased to 24%, with Bacteroidetes (38%) becoming the predominant phylum. Unlike

sheep fecal samples, the abundance of several taxa at the family level (i.e., 12 taxa) significantly

differed between the pre- and post-grazing groups (Fig 4D). Among them, the abundance of

Corynebacteriaceae (LFC = -5.34) decreased the most after grazing, aligning with the findings

for the grazing sheep and control sheep (Fig 4B). Unlike sheep fecal samples, no taxa showed

significant associations with the presence of non-O157 STEC in goat fecal samples.

Soil samples

Presence of generic E. coli (gEc) and non-O157 STEC in soil samples. The presence of

gEc (%) in each treatment (i.e., one-third of randomly selected samples from each treatment)

is summarized in Table 2. Over three years (2020–2022) of trials in both CA and MN, soil sam-

ples from the graze CC treatment were more likely to be gEc positive (65.8%, 98/149) than

samples from the fallow (29.0%, 38/131) or non-graze CC treatments (30.4%, 41/135). Fifteen

soil samples (3.6%, 15/415) tested positive for non-O157 STEC, with the majority (66.7%, 10/

15) being from the graze CC treatment. All the non-O157 STEC-positive isolates were found

in the spinach/cucumber fields (CA Trial 2 and MN Trial 3).

Diversity of soil microbiome compositions. The soil samples’ alpha diversity metrics

(Chao1, Shannon, Simpson, and PD) differed significantly by sampling days (i.e., DPG) in CA

Trial 1. However, the diversity in soil samples from CA Trial 2 and MN Trial 3 varied

Fig 2. Beta diversity with Bray-Curtis dissimilarity using principal coordinate analysis (PCoA) of fecal samples collected from field trials of integrated

crop-livestock systems in California (CA) and Minnesota (MN). Comparisons between (A) sheep (CA) and goat (MN) fecal samples, (B) sheep feces from

different years (2020–2022), and (C) pre- and post-grazing status in goat feces.

https://doi.org/10.1371/journal.pone.0316616.g002
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depending on year, state, and the presence of non-O157 STEC. Specifically, in CA Trial 1, soil

samples collected on 0 DPG (i.e., right before the grazing events) showed significantly lower

alpha diversities compared to other sampling days (p< 0.01), except according to the Simpson

index by pairwise comparison (Fig 5A). Alpha diversities from CA Trial 2 and MN Trial 3

were higher in soils from 2021 (compared to 2022) and CA (compared to MN), with no inter-

action between year and state (Fig 5B). Non-O157 STEC-positive soil samples had lower PD

values than negative soil samples (p = 0.04). Additionally, none of the alpha-diversity metrics

were associated with treatment groups or the presence of gEc for any of the three years (2020–

2022).

In the beta-diversity analysis, significant differences were observed among sampling days

(i.e., DPG) in CA Trial 1 for both Bray-Curtis dissimilarity (R2 = 0.25, p< 0.01) (Fig 6A) and

unweighted UniFrac at the ASV-level (R2 = 0.14, p< 0.01) (S2A Fig). Microbial composition

at 0 DPG significantly differed from all other sampling days based on pairwise comparison

(adjusted p = 0.01) with both metrics. Additionally, unweighted UniFrac was significantly

associated with the year (R2 = 0.03, p< 0.01) effect. On the other hand, in CA Trial 2 and MN

Trial 3, both Bray-Curtis dissimilarity and unweighted UniFrac significantly differed by year

(p< 0.01), state (p< 0.01), and the presence of non-O157 STEC (p = 0.02) in univariable

models. However, in the multivariable model including all three variables, the presence of

Fig 3. Differential abundance analysis between sheep and goat fecal samples collected from field trials of integrated crop-livestock systems in California

(CA) and Minnesota (MN). (A) Observed relative abundance at the phylum level, (B) log fold changes in differential abundance at the phylum level using

ANCOM-BC2. (Bar plots highlighted in green indicate significant differences between two groups with a significance level of p< 0.05).

https://doi.org/10.1371/journal.pone.0316616.g003
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non-O157 STEC became non-significant, while state explained the most variance in the model

(R2 = 0.15 with Bray-Curtis and R2 = 0.14 with unweighted UniFrac) (Figs 6B and S2B).

Differential abundance analysis of soil samples. In CA Trial 1, Actinobacteria at the

phylum level showed significantly lower log-fold change on 0 DPG (adjusted p< 0.001) than

on other sampling days (i.e., 30, 60, 90, and 120 DPG) in pairwise comparisons. At the family

level, Streptomycetaceae and Pseudonocardiaceae were significantly fewer in the soil collected

on 0 DPG than on all the other sampling days (adjusted p< 0.001). No taxa showed significant

differences between treatment groups at the phylum and family level.

Fig 4. Differential abundance analysis within sheep and goat fecal samples collected from field trials of integrated crop-livestock systems in California

(CA) and Minnesota (MN). Log fold changes in differential abundance using ANOCM-BC2 (A) at the phylum level comparing non-O157 STEC positive and

negative groups in sheep, (B) at the family level comparing grazing and control groups in sheep, (C) at the phylum level, and (D) at the family level comparing

pre- and post-grazing groups in goats. (Blue-colored and green-colored bar plots depict taxa showing significantly different abundance between the compared

groups, p< 0.05).

https://doi.org/10.1371/journal.pone.0316616.g004

Table 2. Presence (%) of generic E. coli in soil samples+ in each treatment group (fallow, non-graze CC, and graze CC) collected from field trials of integrated crop-

livestock systems in California (CA) and Minnesota (MN) (2020–2022).

Trial Year Cash Crop Treatment

Fallow Non-graze CC Graze CC

CA Trial 1* 2020 Tomato 43.6% (7/16) 52.9% (9/17) 56.5% (13/23)

2021 Tomato 20.0% (4/20) 12.5% (3/24) 92.0% (23/25)

CA Trial 2* 2021 Spinach 34.8% (8/23) 38.1% (8/21) 63.3% (14/22)

2022 Cucumber 33.3% (9/27) 25.9% (7/27) 66.7% (18/27)

MN Trial 3 2021 Spinach 19.0% (4/21) 14.3% (3/21) 52.4% (11/21)

2022 Cucumber 25.0% (6/24) 44.0% (11/25) 61.3% (19/31)

Total 29.0% (38/131) 30.4% (41/135) 65.8% (98/149)

*CA Trial 1—tomato field (2020–2021) and CA Trial 2—spinach/cucumber field (2021–2022) were in the same facility but planted in different plots.
+ One-third of collected soil samples were randomly selected from each treatment group.

https://doi.org/10.1371/journal.pone.0316616.t002
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Fig 5. Alpha diversity (Chao1, Shannon, Simpson, and Faith’s phylogenetic diversity (PD)) in soil samples collected from field trials of integrated crop-

livestock systems in California (CA) and Minnesota (MN). (A) Sampling day (i.e., day post-grazing (DPG)) effect in the CA Trial 1 tomato field, (B) State

effect in spinach/cucumber fields (CA Trial 2 and MN Trial 3) (2021–2022) (**p< 0.01, * p<0.05).

https://doi.org/10.1371/journal.pone.0316616.g005

Fig 6. Beta-diversity with Bray-Curtis dissimilarity using principal coordinate analysis (PCoA) of soil samples collected from field trials of integrated

crop-livestock systems in California (CA) and Minnesota (MN). (A) Sampling day (i.e., day post-grazing (DPG)) effect in the CA Trial 1 tomato field (2020–

2021), (B) state and year effects in spinach/cucumber fields (CA Trial 2 and MN Trial 3, 2021–2022).

https://doi.org/10.1371/journal.pone.0316616.g006
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In CA Trial 2 and MN Trial 3, 16.3% (599/3,683) of ASVs from the soil microbiomes were

commonly observed in both states. Between the graze CC treatments in CA and MN, 21.5%

(372/1,730) of ASVs were shared, with no differences in observed relative abundance among

the three treatments within each state (Fig 7A). Interestingly, the number of ASVs observed in

each CA treatment group did not significantly differ (fallow—1,132, non-graze CC—1,167,

graze CC—1,428), but in MN, the numbers of ASVs observed in the graze CC and fallow sam-

ples were much lower than in the non-graze CC samples (fallow—506, non-graze CC—1,876,

graze CC—674). The state had an effect on the differential abundance in the ANCOM-BC2

models, as soil samples from MN exhibited significantly lower levels of Bacteroidetes (LFC =

-2.39) and Proteobacteria (LFC = -0.93) at the phylum level than samples from CA (Fig 7B).

Fig 7C depicts taxa at the family level that differed significantly between the two states. Treat-

ment had no effect on the differential abundance of the soil microbiome in CA Trial 2 and

MN Trial 3.

Interactions between post-grazing fecal and graze CC soil samples. The core micro-

biomes and correlation between post-grazing fecal (n = 145) and graze CC soil samples

(n = 141) were evaluated using all data from the field trials in CA and MN (2020–2022). Sheep

and goat post-grazing fecal samples consistently contained 9 and 11 ASVs from Bacteroidetes,

respectively (Table 3A). Additionally, certain ASVs from Proteobacteria (Campylobacteraceae
and Enterobacteriaceae) were shared among goat post-grazing fecal samples, while the sheep

post-grazing fecal samples shared ASVs from Fibrobacteres and Verrucomicrobia. The core

microbiome identified in the graze CC soil samples comprised ASVs from Actinobacteria and

Proteobacteria. However, the family-level taxonomic classification of shared ASVs in the graze

CC soil did not match any observed in the post-grazing fecal samples, except for Micrococca-
ceae (Table 3B). The number of ASVs identified in the core microbiome in graze CC soil col-

lected from CA was 40, whereas in MN, it was 12. None of the taxa at the phylum level were

correlated between soil and fecal samples. However, Proteobacteria and Actinobacteria

Fig 7. Observed relative abundance and differential abundance analysis of soil samples collected from spinach/cucumber field trials (CA Trial 2 and MN

Trial 3) (2021–2022) of integrated crop-livestock systems between California (CA) and Minnesota (MN). (A) The observed relative abundance at the

phylum level by treatment group in each state; (B) log fold changes in differential abundance using ANOCM-BC2 at the phylum level; and (C) the family level

comparing two states. (Bar plots highlighted in orange indicate significant differences between the two groups, p< 0.05). *Relative abundance less than 1% is

not depicted in the bar plots.

https://doi.org/10.1371/journal.pone.0316616.g007
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showed positive correlations within fecal samples (ρ = 0.62). In the graze CC soil samples, Bac-

teroidetes had a strong positive correlation with Actinobacteria (ρ = 0.87) and Proteobacteria

(ρ = 0.63), despite the ASVs belonging to Bacteroidetes not being identified as part of the core

microbiome in the soil.

Discussion

In this study, grazing had no observable effect on the prevalence of non-O157 STEC in pre-

and post-grazing fecal samples in either sheep or goats. Goat fecal samples exhibited significant

changes in alpha diversity with differential abundances in specific taxa (e.g., Actinobacteria,

Table 3. Core microbiomes in (A) post-grazing fecal samples and (B) graze CC soil collected from field trials of integrated crop-livestock systems in California

(CA) and Minnesota (MN) (2020–2022).

(A) Core microbiomes of sheep and goat post-grazing fecal samples. The taxa in the gray-colored rows represent the core microbiomes commonly observed in both

sheep and goats.

Phylum Class Order Family Genus

Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Unassigned

Arthrobacter*
Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae 5-7N15

Rikenellaceae Unassigned

Bacteroidaceae Unassigned

Unassigned Unassigned

p-2534-18B5 Unassigned**
Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

Lachnospiraceae Butyrivibrio**
Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter*

Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unassigned*
Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter**
Verrucomicrobia Verruco-5 WCHB1-41 WCHB1-25 Unassigned**
(B) Core microbiomes of graze CC soil samples. The taxon in the gray-colored row represents the core microbiomes of both post-grazing fecal and graze CC soil

samples.

Phylum Class Order Family Genus

Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Unassigned

Geodermatophilaceae Unassigned

Nocardioidaceae Unassigned

Thermoleophilia Solirubrobacterales Solirubrobacteraceae Solirubrobacter

Unassigned Unassigned

Rubrobacteria Rubrobacterales Rubrobacteraceae Unassigned

Proteobacteria Gammaproteobacteria Chromatiales Unassigned Unassigned

Sinobacteraceae Steroidobacter

Unassigned

Betaproteobacteria Burkholderiales Comamonadaceae Unassigned

Oxalobacteraceae Unassigned

Deltaproteobacteria Myxococcales Cystobacteraceae Cystobacter

Unassigned

Alphaproteobacteria Rhodospirillales Unassigned Unassigned

Rhodospirillaceae Unassigned

Chloroflexi Thermomicrobia JG30-KF-CM45 Unassigned Unassigned

*Core microbiota only found in goat fecal samples.

** Core microbiota only found in sheep fecal samples.

https://doi.org/10.1371/journal.pone.0316616.t003
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Bacteroidetes, and Proteobacteria) between the post-grazing and pre-grazing groups. How-

ever, sheep fecal microbial composition did not significantly differ between the grazing and

control groups. The presence of non-O157 STEC in sheep fecal samples was associated with a

lower abundance of Actinobacteria. A regional difference was observed between soil microbial

compositions in CA and MN fields. When the microbial compositions of the post-grazing

fecal samples and the graze CC soil were compared, distinct microbial compositions were

observed depending on the type of sample, although no interactions were observed between

the fecal and soil samples.

Sheep fecal samples had more taxa than goat fecal samples for all four alpha-diversity met-

rics (Chao1, Shannon, Simpson, and PD). Shabana et al. (2021) also observed higher microbial

complexity in sheep compared to goat fecal samples [40]. Such differences may be associated

with dietary preference and foraging behaviors, as goats are known to favor browsing while

sheep are primarily grazers [41]. Within sheep, the Chao1 and PD metrics were associated

with the effects of the year or non-O157 STEC isolation in feces. However, the Shannon or

Simpson metrics did not show significant differences due to year or the presence of STEC, sug-

gesting that the diversity difference was primarily driven by changes in species richness rather

than distribution or evenness. Within goats, post-grazing fecal samples showed higher alpha

diversity than pre-grazing fecal samples, whereas no change was observed within sheep sam-

ples. A positive association between a forage-based diet and increased microbial diversity in

fecal or ruminal samples has been found in studies in goats, sheep, and cattle [42–44]. Given

that grazing periods for goats (an average of 3 days per grazing event, twice a year) were longer

than those for sheep (less than 2 days per grazing event, once a year) in this study, the duration

of grazing may have contributed to the lack of observed changes in sheep fecal microbial

diversity.

A significant difference in fecal microbial composition was observed between sheep and

goats in this study. Firmicutes (31.7%) and Actinobacteria (41.7%) were the dominant phyla in

sheep and goat samples, respectively. This observation contrasts with other studies in which

Firmicutes were the predominant phylum regardless of animal species [16,40,45–47]. In a

study comparing fecal microbiota in sheep and goats of the same ages, no significant differ-

ences in bacteria abundance were observed [40]. The authors concluded that the similarity was

due to both animals being offered the same diet (pellet feed and alfalfa hay) at the same farm.

Similarly, cattle and goats from the same farm with similar diets (pasture and hay) had similar

microbial compositions in feces [46]. The observed difference in the predominant relative

abundance of phylum between sheep and goat fecal samples in this study may be attributed to

variations in diet composition and geographical location (the sheep came from a university’s

flock in CA, while the goats were from a rental company in MN) before grazing. Indeed, post-

grazing fecal microbial composition became similar, as goats showed a slight increase in Firmi-

cutes after grazing events, while sheep from the grazing group exhibited a higher relative abun-

dance of Firmicutes.

In this study, the relative abundance of Actinobacteria in goat fecal samples significantly

decreased after grazing on cover crops. A study investigating the fecal bacterial community dif-

ference between domestic and feral goats found that the bacterial families overrepresented in

domestic goats mostly belonged to Actinobacteria [48]. It concluded that diet might be an

important determinant of bacterial community differences, as feral goats browsed 86 species

of plants, whereas domestic goats were fed hay and animal feed. Similarly, a higher proportion

of dietary concentrates to forage (C:F) contributed to an increased abundance of Actinobac-

teria, as seen when the differences in ruminal microbiota of goats were investigated under dif-

ferent dietary C:F ratios [49]. A common finding in both sheep and goat fecal samples in this

study was that Corynebacteriaceae, a family in the Actinobacteria phylum, decreased after the
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grazing events in goats and was less observed in the grazing group in sheep. However, the

function of Corynebacteriaceae in small ruminants has not been well documented.

Within sheep fecal samples, the presence of non-O157 STEC was significantly associated

with lower Actinobacteria abundance without significant differences in other taxa. Vasco et al.

(2021) reported that dairy cattle farms with a higher prevalence of STEC had a lower abun-

dance of Proteobacteria and a greater abundance of Firmicutes [50]. On the other hand, when

fecal microbial composition between E. coli O157-shedding and non-shedding cows were

compared on one single farm, the microbial community did not differ by shedding status [17].

Additionally, it has been reported that alpha diversity is associated with the presence of STEC

in fecal samples, but the direction and significance of the association varied. Cattle with a

higher prevalence of STEC shedding showed a positive association with alpha diversity

[50,51], whereas some studies found a negative association or no association [17,52,53]. The

present study showed no difference in alpha diversity between non-O157 STEC-positive and

negative feces, with the year having a greater effect. However, in the soil microbiome, non-

O157 STEC-positive soils from spinach/cucumber fields (CA Trial 2 and MN Trial 3) showed

significantly lower PD. Given that only 15 soil samples were non-O157 STEC positive and con-

sidering the contradictory results from previous studies, further investigation is needed to

determine the microbial composition factors contributing to the presence of STEC. Shedding

of non-O157 STEC may vary depending on various factors such as animal species, diet, and

intricate interactions among commensal microbial populations in the feces and soil.

The present study showed no significant soil microbial composition changes induced spe-

cifically by the graze CC treatment. Similarly, in studies investigating microbial composition

changes in soil after manure application, only a few taxa were altered shortly afterward, with

no changes in the overall community compositions [22,54]. Similarly, Heuer et al. (2008)

found that bacteria introduced with swine manure do not become prominent in the soil [55].

In ICLS farms in Maryland, the relative abundance in the soil bacterial microbiome composi-

tions before and after manure application differed slightly by proportion, with no changes in

the ranks of taxa [56]. Rather, soil microbial communities appear to be influenced more by

regional differences than by short-term implementation of grazing or manure application.

Soils collected from the CA fields showed higher alpha diversity than those from MN fields,

and spinach/cucumber fields in MN had lower levels of Bacteroidetes and Proteobacteria than

those in CA (CA Trial 2 and MN Trial 3). As such, soil type, including soil pH and texture, is

the most important factor in the composition of bacterial communities in soils [57–59].

The core soil microbiome present across the graze CC treatment was dominated by Actino-

bacteria and Proteobacteria, which is in agreement with other studies [56,60,61]. Only one

taxon, Micrococcaceae, was common between the graze CC soils and post-grazing fecal sam-

ples, with no observed correlations between the fecal and soil microbiomes. Similarly, a study

in which feces from concentrated animal feeding operations was applied to fields and the

manure-associated taxa in the soil tracked concluded that manure was a minor driver of soil

microbiome shifts [60]. Several studies suggest that manure-derived bacteria are not well

adapted to survive in the soil and consequently have only a temporary effect on the soil micro-

bial composition [55,62,63].

The present study had some limitations. We implemented relatively short-term grazing

events with 1–3-day cycles, determined by the quantity of cover crop biomass in each trial,

which varied from year to year given the agricultural conditions (e.g., weather and cover crop

maturity). Longer grazing periods may have induced more changes in fecal microbial compo-

sition than what we observed. Recent studies have shown that feeding style, age, and geography

have significant impacts on the intestinal and rumen microbiota, feeding styles being one of

the most influential factors influencing microbiota taxa in goats [64,65]. The period required
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to see significant changes in gut/rumen microbiota composition by diet change varies from

study to study, with an average of 7–20 days in small ruminants [65–67]. Nonetheless, we

observed some changes in taxa in goat fecal samples after grazing events, as well as differences

in the grazing group compared to the control group in sheep fecal samples. Additionally, we

collected fresh fecal samples immediately upon the animals’ arrival in the fields or right after

the grazing events due to logistical constraints in restraining the animals in open fields. We

have conducted several studies following this protocol [11,26,68]. However, there may be a

risk for environmental contamination and changes in the microbial population with exposure

to environmental conditions (e.g., temperature, solar radiation, and moisture) [64].

Conclusion

A few changes in microbial composition due to grazing and the presence of non-O157 STEC

were observed in this study. However, no interactions were observed between the post-grazing

fecal samples and the graze CC treatment soil, with distinct microbial compositions depending

on sample type. While short-term grazing by sheep or goats in ICLS fields has minimal effects

on fecal or soil microbiome diversity and composition, the species of grazing animal and

regional differences have a significant effect on microbiome dynamics. This indicates that soil

contamination by foodborne pathogens and microbiome dynamics is more likely to be influ-

enced by regional and environmental management factors rather than by the agricultural sys-

tem (i.e., ICLS) itself. To better understand the long-term effects of grazing on diversity and

microbial dynamics, longer implementation of grazing under ICLS systems is needed over sev-

eral years.

Supporting information
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