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Modern society relies upon the safe and secure operation of wireless communication links

in several computing systems, from personal devices to public infrastructure. These wireless

access links utilize Bluetooth and WiFi radios, and enable users to remotely access and monitor

computing systems, conveniently and at a safe distance. For instance, equipment on the grid can

be remotely accessed, and COVID exposure information can be obtained at a safe distance using

wireless links.

Unfortunately, these wireless access links have also made our computing systems less

secure — attackers can gain unauthorized access, or remotely track these systems through these
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legitimate wireless links. Furthermore, attackers even implant their own illicit wireless links to

gain access to personal equipment and critical infrastructure alike, e.g., payment card skimmers

at gas stations.

In order to secure these wireless access links, we need to understand if attackers are

gaining unauthorized access by hiding illicit links, and if attackers are performing targeted

attacks on popular wireless access links. Wireless scanning-based auditing can be a potential

solution to develop insights about the above security and privacy problems. However, there are

several challenges to utilizing wireless scan information for this auditing, that bring to question

the feasibility of wireless scanning as a security approach. In particular, wireless scans provide

limited information and the wireless access links are extremely diverse, making targeted auditing

of particular wireless link a needle in a haystack problem. Furthermore, these links are spread

across large metropolitan areas needing us to do wardriving wireless scanning, but the existing

scanning tools are extremely slow to discover all devices, making it tough to reliably scan for all

wireless access link real-world locations.

In this dissertation, I perform several large scale field measurement studies of real-world

wireless access links, by performing wireless scanning based auditing across entire metropolitan

areas. I study actual security and privacy scenarios to demonstrate the feasibility of wireless

scanning based targeted auditing as a tool to defend against attacks on wireless access links. I

also analyze the practical challenges and limitations of performing such targeted auditing, from

the perspectives of attackers and defenders. In summary, I defend the following thesis statement:

To defend wireless access links spread across urban areas, it is feasible to: 1) use link layer

scan information to identify illicit wireless links, 2) use physical layer information in wireless

signals to attack a target wireless device, and 3) scan reliably for all wireless access links when

wardriving using low-cost commodity hardware
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Chapter 1

Introduction

Modern society relies upon the safe and secure operation of wireless communication

links that are part of many computing systems. From personal devices like smartphones, to

public infrastructure like grid equipment and streetlights, wireless access links (e.g. Bluetooth

and WiFi) are used in a myriad of applications across metropolitan areas.

The wireless access links allow users within wireless range, a connection (e.g. classic

Bluetooth connections) or a connectionless (e.g. Bluetooth LE beacons) data exchange mech-

anism to the computing systems. They are not connected onto any centralized network (e.g.

the Internet), and are similar to wireless ad-hoc links. To enable this ad-hoc link formation,

these links are typically scannable and connectable by the user device. Amongst the wireless

technologies, Bluetooth and WiFi are particularly popular for wireless access links, because

of their widespread availability on user devices (e.g. smartphones). Today these links are not

only integrated onto newer computing systems, but even being retrofitted onto legacy computing

systems (such as grid infrastructure) These are so ubiquitous that its common to see hundreds of

such links at any public location in urban areas.

These wireless access links enable remote access and passive monitoring of the computing

systems, conveniently and at a safe distance. For example, a maintenance worker no longer

needs to climb up the pole near a dangerous high voltage line to physically access a circuit

breaker; they can remotely connect to its Bluetooth interface and run diagnostics at a safe
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distance [70]. During the COVID-19 pandemic, information about exposure to COVID was

conveniently communicated through wireless links; smartphones used continuously transmitting

BLE beacons to alert users of potential exposure when they were at an unsafe distance from an

infected individual.

While integrating wireless access links has made it convenient to access computing

systems safely, it has also made them less secure and private. Attackers can now misuse these

wireless access links to gain unauthorized access, or even remotely track our computing devices;

and they can do these attacks covertly from a distance, without risk of being caught. For example,

researchers have demonstrated it is possible to remotely access and control urban infrastructure

such as traffic lights at intersections [50], and circuit breakers on power lines [41]. They have also

demonstrated covert tracking of individuals by simply listening to wireless signal transmissions

from their personal mobile devices [37]. Furthermore, attackers are exploiting the ubiquity of

wireless devices, by implanting their own illicit wireless access links to gain illegitimate access to

critical infrastructure and even unsuspecting people. For instance, criminals have been installing

Bluetooth radios in payment terminals at gas stations and ATMs to commit millions of dollars

in fraud [108]. Also, stalkers have been covertly placing AirTags onto unsuspecting victims, to

follow and track them [16]. Therefore, learning how to protect these urban scale wireless access

links has become critical to our public health and safety, economy and even national security.

Securing these wireless links requires us to have a comprehensive understanding of the

potential attack surface, across entire urban areas, and then build proactive defenses. More

specifically, we need to understand if attackers are gaining unauthorized access to computing

systems by hiding illicit wireless links, and if attackers are performing targeted attacks on popular

wireless access links. To do so, we need to perform wireless scanning-based targeted auditing of

all such wireless links across entire metropolitan areas.

Scanning based auditing is a standard mechanism for securing interconnected computing

devices on an organizational network (or even on the Internet). Network monitors run scans on a

network to enumerate information about every connected computing device. This information
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helps us identify vulnerabilities that can be targeted by attackers in legitimate network connected

devices, as well as any illegitimate devices installed by attackers on the network.

Despite its promise, its unclear whether scanning based auditing mechanisms is an

effective security approach for this non-interconnected "network" of wireless access links in

urban areas. There are multiple challenges that bring to question the feasibility of wireless scans

in understanding the threats of illicit wireless links or targeted attacks on legitimate wireless

links.

1.1 Challenges

The wireless access links spread across urban areas are extremely diverse. They are used

in a wide variety of computing devices across urban areas, from personal user smart devices

to public grid infrastructure. Also, there are a diverse set of manufacturers of the boards and

modules used in these wireless links, resulting in a diverse set of links at any public location. Not

only this, but even modules from same manufacturer can have diversity in the wireless chipsets

used, and even physical hardware architecture variations within the same module. Consequently,

it is likely to see several computing devices using the same type of wireless access link in public

place, or the same type of computing device using different types of wireless links across an

urban area.

However, unlike conventional network scanning, wireless scanning captures minimal

information at the link and physical layers. At the link layer, wireless scans reveal basic pieces

of information like MAC address, friendly names, device types and geospatial locations. At

the physical layer, a few basic device identifiers such as Carrier Frequency Offset (CFO), I/Q

imbalance/offset may also be obtained. In addition, the availability of information is unreliable —

scans may not always obtain all information such as names, and properties such as MAC address,

CFO, I/Q may change over time and with varying environmental conditions.

Consequently, the limited information in wireless scans coupled with the diversity of
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wireless access links has made targeted auditing using wireless scans of any particular wireless

link a needle in a haystack problem. For example, at a public location its unclear if we can

uniquely differentiate a Bluetooth module in an illicit gas pump skimmer, from the same module

used in a streetlight and a speed sign. In other words, wireless access links are hidden in the

noise of several other wireless devices in public places.

In addition, these wireless access links are utilized in applications that are spread across

metropolitan areas. Performing a comprehensive targeted audit of wireless links will require

us to perform data collection across entire cities and countries. This can be achieved through

wardriving-based wireless scanning field data collection campaigns

Unfortunately, existing wireless scanning tools are extremely slow to reliably discover

all wireless devices while wardriving. Wireless scan protocols are fundamentally designed for

wireless devices that send requests/receive responses and beacons across multiple scan channels

sequentially to enumerate information about surrounding devices. This sequential nature of

wireless scanning makes it extremely inefficient for wardriving applications — for example,

classic Bluetooth scans need 10 seconds to reliably discover all devices in range, and yet a

vehicle driving at 50 mph will be in a typical range of 100 m for only about 4 seconds. As a

consequence, using current wireless scanning tools for targeted auditing may miss wireless

access links in the collected scan information.

1.2 Thesis

The above challenges bring to question whether wireless scanning is a feasible approach

for defending this “network" of non-Internet connected wireless access links spread across urban

areas. We don’t know if wireless scanning provides reliable information to identify illicit links in

computing systems, or understand if attackers can perform targeted tracking of common wireless

access links.

In this dissertation, I perform several large scale field measurement studies of real-world
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wireless access links, by performing wireless scanning based auditing across entire metropolitan

areas. I study actual security and privacy scenarios to demonstrate the feasibility of wireless

scanning based targeted auditing as a tool to defend against attacks on wireless access links. I

also analyze the practical challenges and limitations of performing such targeted auditing, from

the perspectives of attackers and defenders.

In summary, I defend the following thesis statement:

To defend wireless access links spread across urban areas, it is feasible to: 1) use link

layer scan information to identify illicit wireless links, 2) use physical layer information in

wireless signals to attack a target wireless device, and 3) scan reliably for all wireless access

links when wardriving using low-cost commodity hardware

Wireless access links found in urban areas use various types of communication protocols

— WiFi, Bluetooth, Zigbee and others For this dissertation, I focus my field studies and tool

design for Bluetooth-based links — both Bluetooth Low Energy and Bluetooth Classic. Indeed,

Bluetooth is the most ubiquitous wireless ad-hoc technology in use today, across personal devices,

and public facing infrastructure. In fact, its ubiquity and ease-of-use is what even prompted

criminals to use it in gas pump skimmers. Despite the focus on Bluetooth scanning, the lessons

from my dissertation are universal across all types of wireless protocols, as scan information and

scan methods are very similar across protocols. Therefore, the described body of knowledge

applies widely to the entire “network” of non-interconnected wireless access links found in urban

areas.

1.3 Contributions and Organization

The remainder of this dissertation is organized as follows.

In Chapter 2, I present an overview of prior literature in the domain of wireless access

link auditing. I survey papers in the area aimed at wireless device identification using information

from wireless scans, at both the link-layer and physical-layer.
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In Chapter 3, I describe a field measurement study to understand the effectiveness of using

link-layer information from smartphone Bluetooth scans for the detection of Bluetooth-based

credit card skimmers at gas stations. We designed a custom Bluetooth scanning app called

Bluetana, and provided that to field investigators, who collected Bluetooth scan data across

1185 gas stations in multiple states in the US. I analyze this scan data to understand how the

scan properties of detected skimming devices look like. I also analyze whether these skimming

devices are actually “hidden in the noise” of the several legitimate Bluetooth devices seen at a

gas station. Finally, I highlight several operational lessons we learned during the course of the

study, about the benefits and challenges of using wireless scanning for detecting illicit devices.

In Chapter 4, I present another field measurement study to understand whether it’s

feasible for an attacker to use physical-layer information in wireless signals to perform targeted

tracking of a wireless personal device. I capture BLE beacon signals captured in real-world

locations like food courts, library and public facility. We do a detailed discussion of the real-

world challenges an attacker faces in using these signals to perform physical-layer tracking. I

then analyze whether the hardware properties of the BLE transmitter derived from these signals

can be used to track a particular BLE access link. Finally, I analyze if a particular wireless link

has unique imperfections or is “hidden in the noise” of the several BLE-enabled wireless links

seen in public locations.

In Chapter 5, I describe the design of a wireless scanning tool aimed at ensuring we

can reliably scan for all wireless links in range, even when performing large-scale driving

experiments in which devices are in range for only few seconds I present the design of a new

parallel Bluetooth scanning protocol, that reduces the time taken to ensure we can reliably

scan for all Bluetooth devices down to a few seconds. I then present hardware challenges with

implementing such a scanning protocol on low-cost SDR hardware, such as PAPR distortions

and limited bandwidth. Finally, I present solutions to these hardware challenges based on the

details of the classic Bluetooth scanning protocol.

Chapter 3, in part, is a reprint of the material as it appears in Usenix Security Symposium
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2019. Nishant Bhaskar, Maxwell Bland, Kirill Levchenko, and Aaron Schulman. The dissertation

author was the primary investigator and author of this paper.

Chapter 4, in part, is a reprint of the material as it appears in IEEE Symposium on Security

and Privacy 2022. Hadi Givehchian, Nishant Bhaskar, Eliana Rodriguez Herrera, Hector Rodrigo

Lopez Soto, Christian Dameff, Dinesh Bharadia, Aaron Schulman. The dissertation author was

the co-primary investigator and author of this paper.

Chapter 5, in part, is currently being prepared for submission for publication of material.

Nishant Bhaskar, Raghav Subbaraman, Sam Crow, Moein Khazraee, Dinesh Bharadia, Aaron

Schulman. The dissertation author was the primary investigator and author of this material.
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Chapter 2

Related Work

In this chapter I present prior literature in the domain of wireless access link identification.

I explore various papers aimed at targeted device identification or auditing using link layer and

physical layer information from wireless scans. While the upcoming chapters tend to focus on

Bluetooth-based wireless access link, in this chapter I look at prior work in device identification

for Bluetooth as well as WiFi links.

2.1 Wireless access link identification

The link layer and physical layer contain several pieces of information that can be used for

wireless access link identification. These can be unique device identifiers, payload of transmitted

packet or even a physical property of the transmitter/transmission. Next, I present some sources

of deriving identifying information that are used in the surveyed literature.

2.1.1 Identifying information at the Link Layer

Identifying information at the link layer is primarily due to the differences in how

manufacturers implement WiFi and Bluetooth specifications. Packet contents at link layer are

transmitted in the clear (despite authentication and encryption at higher layers). The information

available from wireless scans (obtained through device discovery packets) and link layer headers

in data packets can be utilized for identifying devices. In addition, link layer handles the actual

transmission and scheduling of all these packets, and therefore certain timing side channels exist
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which can be utilized to obtain packet timing specific properties.

Prior to authentication and forming a wireless connection, devices need to discover

each other. Devices do so by broadcasting link layer device discovery packets, containing

information to identify the device (such as MAC address, name) and the features/capabilities it

offers. Following are the device discovery packets utilized in WiFi and Bluetooth protocols, and

the information they provide for targeted auditing:

Probe beacon. Probe beacons are broadcast packets transmitted by the access point(AP). In

passive device discovery mode, stations(Wi-Fi clients) sniff for these packets and identify nearby

APs and their capabilities. These packets contain informations such as MAC address in the

header and several information elements(IE) in the payload. The various IEs can be leveraged to

create a distinct identity for an AP. In addition, beaconing interval and timestamp information

can be used to profile rate of arrival of beacon packets.

These IEs include mandatory fields like service set identifier (SSID), beaconing interval,

timestamp of transmission of packet, sequence number of frame and capability information such

as type of access point infrastructure, security protocols and type of physical layer. Additionally,

these packets may contain several optional IEs for other capabilities.

Active probe request. WiFi stations can also perform active device discovery, in which they

send probe request to specific SSID to solicit a probe response. Mobile devices in particular

use this mode, as it power saving. The directed active probe request contains MAC address

of station and SSID of destination AP, along with other mandatory IE fields. Similar to probe

beacon, IEs like sequence number and capabilities can be used to develop a device identity. In

addition, stations send out bursts of several probe requests, with each request containing a SSID

previously connected to. Therefore an eavesdropper can create a list of SSIDs, called Preferred

Network List (PNL) for every MAC address, by listening to a probe burst. Furthermore, timing

analysis based identity information can be extracted between probe bursts, and between packets

in a burst.
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Classic Bluetooth FHS responses. Classic Bluetooth scanners send inquiry requests to which

Bluetooth devices respond with Frequency Hopping Synchronization (FHS) packets. In particular,

these packets provide the MAC address and Class-of-Device of the responding device. In order

to obtain the device Bluetooth name, the scanner must send a second packet (Remote Name

Request) to which the Bluetooth access link respond with its friendly name.

Bluetooth LE advertisement. Advertisements are continuously broadcast by Bluetooth Low

Energy slave devices, so that master devices can find them. An advertisement may be directed or

undirected, and connectable or non-connectable, resulting in 4 combinations. Different types of

advertisements are used in different scenarios. An advertisement contains the advertiser Blue-

tooth address, along with a tag-length-value structure with different data types like Universally

Unique Identifier (UUID), and complete Local Name. While device address changes with MAC

randomization, the UUID can act as an identifier. Furthermore, advertisement interval can be

profiled to uniquely identify the device.

In recent times, companies like Apple and Microsoft have been using BLE undirected,

non-connectable advertisements as a conduit for transferring device event information [9]. These

advertisements contain various different data type structures used to represent different types

of events. The variety of information and frequency of transmission of these unencrypted data

packets, make these packets a serious privacy concern.

2.1.2 Identifying information at the Physical Layer

The physical layer is responsible for converting the WiFi and Bluetooth packets into the

analog signal, and then transmitting the signal over the wireless medium. This exposes several

fingerprinting features that inherently describe the behavior of the radio chipset. Importantly,

this physical layer information is independent of the type of packet and information contained in

it, making it a more lethal weapon for an adversary aiming to identify your device.

Physical layer identifying information may be retrieved by analyzing signal propagation

through the wireless medium. This can be done by measuring the received power of the
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Table 2.1. Summary of targeted device identification techniques in prior literature

Technique Citations

Link Layer
Packet Contents [49, 109, 76, 77, 101, 91, 22, 75]
Packet Timing [64, 58, 13, 56, 48, 33, 78, 47]

Physical Layer
Signal Strength [46, 21, 99, 51, 32]
Channel State [97, 113, 60, 72]
Hardware Imperfections [53, 52, 103, 28, 111, 73, 55]

signal which includes effects of attenuation during propagation (received signal strength), or

by measuring the effects of signal propagation on the wireless channel itself (channel state

information)

Physical layer identification can also be done by analyzing the received signal’s non-ideal

properties, in either the transient or the steady state part of the signal. These are caused by

inherent hardware defects in the transmitter, and are the best identifier for a particular wireless

device.

2.2 Survey of literature

Table 2.1 shows a summary of the device identification techniques we discuss in this

chapter, grouped according to the identifying information utilized. Following is an overview of

the literature across the various techniques.

2.2.1 Link Layer

Packet contents

We observe that all types of Wi-Fi and Bluetooth devices transmit link layer information

continuously. This may be data traffic, or periodic device discovery packets. In fact due to

constant availability of device discovery packets, most papers using packet contents technique

use these type of packets. By examining the contents of these packets, wireless device identifiers
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can be derived. While all packets contain a MAC address that uniquely identifies the transmitter,

MAC randomization has made it a less potent target. Instead, the following papers look at other

information fields transmitted in these packets, and use combinations of these fields for deriving

unique device identifiers.

Wi-Fi. Freudiger et al. [49] captured probe requests from iOS 8.1.3 and Android 5.0.1 devices

and analyzed the MAC addresses. They observed that probe requests from several randomly

generated private MAC addresses can be linked together because sequence number increments

at a known rate. Further on, they saw these mobile devices reveal their unique actual MAC

address in probe requests that are transmitted when the phone screen is active. Therefore on

observing over a long period of time, and using sequence number information, an entire set of

random MAC addresses can be associated to the actual MAC address. Lastly, they observed that

vendor specific information (such as aggregation process used in packet linkage at receiver) is

manufacturer dependent, and can also be exploited as an identifier.

Vanhoef et al. [109] analyzed the effectiveness of using WiFi probe IEs as a device

identifying feature. By analyzing the Sapienza dataset [19] (dataset of probe requests with actual

MAC addresses), they observed most (93.8%) devices don’t change the IE fields over time,

thereby making it a feasible feature to exploit. However, the level of separation was limited to

device models (as IEs from same model are similar). For similar device separation the authors

relied upon using sequence numbers and probe arrival times as features.

Further on, they noticed some implementation flaws in WiFi stacks, which can be misused

for device tracking. Firstly, for 75% of probe requests, the WPS UUID was derived from the

actual MAC address and a fixed salt using SHA256 which meant the actual MAC address can

easily be reverse engineered. Secondly, the scrambling mechanism is used to ensure an even

spread of 1s and 0s across the OFDM spectrum. This scrambling is done based on a seed value

that should be pseudorandom but instead is highly predictable, and can be reversed to be used as

a device identifier.
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While the techniques introduced in [109] are expected to work despite MAC random-

ization, they never actually performed analysis on a dataset have randomized MAC addresses

in the probe requests. Martin et al. [76] performed a 2 year probe request data collection from

multiple phones, and attempted to verify the observations in [109]. They observed that the WPS

IE field is not readily available in most devices and therefore UUID derivation is not possible.

Instead, they proposed using the IEEE company identifier (the private random MAC addresses

are derived from those) to identify the manufacturer, following which sequence numbers can be

used to separate similar devices. An important observation was that association/authentication

frames increment the same sequence number as probe requests, and also reveal the actual MAC

address, making them an important tool in revealing the device identity.

In another paper, Martin et al. [77] derived and analyzed their actual MAC addresses

for the devices in the above dataset which had a WPS IE field. They observed that for a given

manufacturer, the pattern of assigning MAC addresses is related to the specific model of the

wireless device. Therefore, by decomposing actual MAC addresses, a device’s manufacturer and

specific model can also be figured out. Following this, techniques similar to [76] can be used to

separate similar devices.

Bluetooth. Unlike WiFi, Bluetooth classic device discovery packets contain very few informa-

tion fields for deriving identifiers. In certain specific cases, device identification works well if

the goal is to identify a particular class of devices [24].

For classic Bluetooth data packets, Spill et al. [101] solved the master device identification

problem, by quite literally extracting packet contents and other Bluetooth properties. By reverse

engineering Bluetooth packet contents in real time, they were able to obtain the MAC address,

clock bits (and therefore the hopping sequence) and the whitening sequence for the Bluetooth

device. Ryan et al. [91] further extended this work to be able to identify and track BLE devices.

They also made an interesting observation that BLE devices follow a simple channel hopping

mechanism (increment by fixed number) unlike classic Bluetooth, and easily reversible whitening,
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making their Bluetooth properties easily derivable and identification straightforward.

In recent times the use of BLE advertisements for inter-device message passing has

become the norm [112, 9]. All major hardware vendors use a combination of advertisements to

provide a seamless experience to the user. But all they end up doing is providing a huge number

of packets for the passive eavesdropper to exploit.

Becker et al. [22] observed that major operating systems like iOS, MacOS, Windows 10

and several smartwatch/fitness trackers OSes, continuously send BLE advertisements. While they

use periodically changing MAC addresses the payload doesn’t change or changes asynchronously

to the MAC address. This allowing us to continuously identify and track these devices by

observing MAC address and payload identifiers at the same time. In the most egregious case,

Windows 10 devices can be tracked indefinitely using this algorithm.

Looking specifically at Apple devices, these continuous BLE advertisements can be

attributed to Apple’s Continuity Protocol [9]. This protocol enables synchronization between

multiple Apple devices using different BLE advertisement messages. In fact, [22] used the Nearby

and Handoff messages in particular for the analysis in their paper. Martin et al. [75] performed a

detailed analysis of the Continuity Protocol, and found several features across different packets of

the protocol, that can be used for tracking of not only the device, but also reveal user information.

For example, device tracking is possible with Handoff messages as they use a sequence number

that increments independent of MAC address randomization. Also, Nearby messages never stop

transmitting and have a 4-byte data field that remains constant for one or two frames after MAC

randomization.

Packet Timing

The link layer is also responsible for deciding the specific time scheduling properties

of the various transmissions. For example, device discovery packets are scheduled at certain

intervals of time, and the exact time instants are decided by link layer based on channel conditions;

Bluetooth data transmit/receive is performed in tightly defined time slots, and is affected by the
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transmitter clock drift etc.

Packet timing techniques measure these specific timing properties, and use the timing

information as features for identifying particular transmitters. In particular the papers I surveyed

measure two types of transmitter identifying properties — the drift of the transmitter source

clock, time between periodic packet transmissions. Again due to their continuous and periodic

nature, device discovery packets feature in most of the literature.

In terms of taxonomy, clock skew measurement has only been shown to work for master

devices whereas inter-arrival time has been shown to work primarily for slave devices. Packet

timing techniques offer similar environmental stability and practicality as packet contents based

techniques, i.e., they are stable to environment changes, and data collection is practically possible

outdoors and using low-cost commodity radios. Finally, clock skew methods are immune to

software upgrades, but inter-arrival time based techniques are not.

Clock Skew. Physical clocks are not ideal and have imperfections. Therefore, the use of a clock

source for link layer timing will result in drift from ideal timing values. Clock skew is a measure

of that drift, defined as the rate of change of clock offset over time [85].

Kohno et al. [64] were among the earliest to identify the opportunity with using clock

skew as a device fingerprint. They observed that network stacks attach TCP timestamps to

TCP/ICMP packets at time of sending a packet. Using these timestamps, and measuring the

packet receive time they computed the clock skew fingerprint.

Drawing inspiration from this work, Jana et al. [58] explored 802.11 network stacks for

timing based identification. They observed that AP beacon/probe response packets contain a

Time Synchronization Function (TSF) timestamp. They used this timestamp, and measured

receive time using the do_gettimeofday Linux function, to obtain the clock skew. They estimated

the variation in skews of multiple APs in a residential setting.

Using link layer timestamp was advantageous because TCP timestamping [64] requires

AP to be associated with some stations. Additionally, APs (whether associated or not) are always
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sending probe beacon/request responses, and therefore continuous tracking is possible.

However, the skew measurement in [58] is limited by the accuracy of receive time

measurement. Arackparambil et al. [13] suggested the use of TSF timestamp (microsecond

resolution) on the receive side as well. This provides a 5x lower variance on offset measurements

as compared to using the Linux function. They also suggested that line fitting error must be

included, to handle fabricated skews (A scenario which Jana et al. had not anticipated).

However, all these methods relied on values reported by the transmitter. Not only are

these limited by several transmitter factors (network stack, OS etc.). Bluetooth does not provide

such timestamps, so a different approach was needed for skew measurement. Huang et al. [56]

observed that Bluetooth defines transmit/receive slot boundaries, and skew will manifest as a

drift from these boundaries. They clustered the arrival times of the preambles to generate a

fingerprint for a device, and then checked statistical distance of any new cluster to verify if the

same.

Huang et al. observed that real Bluetooth radios follow clock skew bounds (≤ 20 ppm),

whereas noise is randomly distributed in a short time period. This can be used to filter out

noise from legitimate preambles. The linear relation of clock offset over time also meant that

they didn’t need any knowledge of transmit time, or even time slot boundaries to perform the

clustering of preambles.

Inter-packet arrival time. The periodic and continuous nature of device discovery mechanisms

exposed another feature – inter-packet arrival time This feature exists because wireless transmit-

ters schedule the probe/advertisement packets at different rates, depending on the wireless stack

implementation. This implementation difference can provide fine-grained separation between

transmitters.

Franklin et al. [48] fingerprinted Wi-Fi device drivers by binning frequency of probe

request arrival times for different (NIC drivers,host OS) combinations. Accuracy of fingerprinting

was verified by comparing signatures of 30 minute traces against the database. The intuition was
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that a particular driver will have defining probe transmit times signature when observed over a

long time (in their case 12 hours).

Corbett et al. [33] used frequency domain analysis to differentiate between different

NICs, by considering inter-arrival time series data and computing power spectral density They

observed that the 50 frequencies with highest power is a defining identifier for classifying NICs.

The advantage with frequency domain analysis was that minute timing variations can be captured

even with a short trace(e.g.,variation due to rate switching).

However, for similar devices (use the same driver and OS), very high resolution time mea-

surements are required for measuring inter-arrival time differences. Instead, Loh et al. [42] pro-

posed to use the bursty nature of probes, by using inter-probe burst arrival time for identification.

By clustering together bursts using a variance threshold, they were able to even able to differenti-

ate similar transmitters with high accuracy. They also observed that inter-burst intervals reduce

measurement requirement (resolution of minute-order required), but increase data collection

time.

These papers, though either don’t explicitly address MAC randomization, or just assume

each transmitter has a unique constant MAC address [48]. Matte et al. [78] presented a technique

that works with minimal number of packets, and demonstrated proper functioning even with

randomization. They combined information from both inter-probe arrival time and inter-burst

arrival time to create burst sets grouped using nearest neighbors methods. With this method, they

required only 4 groups of bursts per transmitter to achieve high accuracy in device identification.

This means that the fingerprint can be derived in the time duration in which a device has a

constant MAC address, making this method practical.

In the world of BLE advertisements, Fawaz et al. [47] quantified exact absolute time

instants when specific BLE devices would advertise. They used this knowledge to jam ad-

vertisements from BLE transmitters, to prevent adversarial tracking. Because devices sense

channel and random backoff before choosing to advertise, the likelihood of blocking inocuous

advertisements is low. For example, in the common case of advertising time of 1.024 s, less
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than 30% of inocuous advertisements were blocked, while achieving 100% success in jamming

advertisements of upto 10 target devices.

2.2.2 Physical Layer

Signal strength

Signal propagation through the medium has several effects such as attenuation, scattering,

fading etc. Received Signal strength (RSS) is a measure of the received signal power of a

wireless transmission. It is a function of the transmitter’s distance to receiver as well as channel

conditions. A number of papers have attempted to use a series of signal strength measurements

indoors, to identify individual transmitters at specific locations.

In terms of taxonomy, signal strength based techniques are universal in all device roles.

Being a physical medium based technique, signal strength is stable to changes in software but is

heavily influenced by environmental changes. Finally, while data collection can be done using

commodity radios, this technique has only been practically proven to work effectively for indoor

or enclosed environments.

Faria et al. [46] combined RSS readings for the same transmitter from multiple 802.11

receivers. They used differential values (with respect to the highest RSS for a transmitter) to

improve robustness to varying transmission levels. The intuition was that differential RSS reading

from closely located transmitters differ by atmost a maximum threshold, whereas different

physically separated transmitters differ by atleast a minimum threshold. By varying threshold

values and applying different matching rules, they obtained high accuracy in differentiating

transmitters separated by 7m, using a network of only 12 receivers.

RSS readings from a stationary transmitter are environment depedent, therefore using

absolute values can lead to erroneous results. RSS clustering approaches [32, 21] can be used to

solve this problem. Bauer et al.[21] attempted to cluster the signalprint vector for a transmitter

use a k-means clustering approach, to combat the noisy environment sources. Requiring just 3

receivers, they were able to obtain upto 77% accuracy in differentiating transmitters separated
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by 3.5m, even if there were upto 25 transmitters. They observed that even if transmitters were

operating at different power levels, the reduction in accuracy was minimal.

Sheng et al. [99] later observed that most 802.11 APs implement antennae diversity.

Because of this RSS distributions following a Gaussian Multi-Modal pattern ([46, 32, 21] as-

sumed a simple Gaussian distribution). This GMM nature of RSS can provide more fine-grained

features for fingerprinting APs. By using a mixture model to cluster per-frame signalprints, they

achieved high detection accuracies using just 7 monitors. Additionally, they observed that the

RSS distributions thus modeled are stable over time, despite changing multi-path effects.

Unfortunately, RSS based fingerprinting doesn’t work in the presence of mobile trans-

mitters, as signal strength values change drastically. In specific scenarios though, if we had a

good estimation of the motion of transmitter/receiver, the device identification can be used to

distinguish from transmitters with a different relative motion. Ghose et al.[51] exploited this

aspect to design a RSS based authneticater for 802.11 networks. By using a helper device as

a wand waved around the device to be authenticated, they observed definite RSS fluctuations

Even if the MAC address was spoofed, spoofing the relative motion to the helper is not possible.

Additionally, because of close relative proximity to the device, the variation in RSS had a higher

roll-off rate, as compared to a snooper that was further away.

Channel State

The major drawback with RSS measurements is variations due to multipath shadowing.

These variations are not only over distance but also over time, even over a relatively stable link

condition. Comparitively, channel state information (CSI) can separate multipath components,

and therefore provide a more fine grained fingerprint based on wireless medium conditions. In

the case of WiFi networks, presence of multiple subcarriers results in a large feature set for CSI

based device identification. Majority of the work in this area is aimed at Wi-Fi transmitters.

These channel state measurements can be performed in the time domain (Channel Impulse

Response) or in the frequency domain (Channel Frequency Response).
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In terms of our taxonomy, channel state exhibits the same tradeoffs as RSS, i.e., works for

all device roles, stable to changes in software but not to environmental changes, can be collected

using low-cost radios but impractical to use in an outdoor environment.

[113, 97] used CFR measurements to localize a WiFi transmitter in an indoor setting.

Sen et al. [97] used channel frequency response (CFR) measurements from multiple WiFi

subcarriers to perform localization. They observed that CFRs vary significatly temporally and

with environment changes, but were relatively immune to human movement. Further on CFR

reported by different APs for same physical location are diverse and that can be exploited to

improve classification. For training, they created a CFR cluster based map of individual 1m x 1m

location. For inference, the CFR of packets received from closest AP are checked for similarity

distance and then group to a certain CFR cluster (and thereby to a location spot). By receiving

beacon packets for 1s at a location, they were able to localize to 1m x 1m spot upto 85%, even if

beacons were received from only AP.

[60, 72] utilized CIR measurements to localize Wi-Fi transmitters in an indoor environ-

ment instead. Fundamentally CIR is time domain representation of CFR, and provides more

spatial information Jin et al. [60] derived CIR by taking inverse fourier transform (IFT) on the

receiver’s channel estimation (CFR vector), and then reducing number of samples based on

system bandwidth required. They utilized non-parametric kernel regression for localization using

a logarithmic scale for the approximated CIR vector. The log scale ensures that large delay ACIR

elements also contribure fairly to location estimation. They obtained high accuracy in classifying

positions even with increased bandwidth. Most importantly, they obtained higher accuracy with

just two APs, than a RSS based scheme with 4 APs. Additionally, even with 7 people in the

environment, they saw minimal degradation in accuracy performance, which was seen with CFR

based studies.
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Hardware imperfections

The hardware components of RF signal chain typically have certain manufacturing

imperfections, which in turn introduce non-idealities in the transmitted signal. These non-

idealities may manifest themselves through transients in the signal, or through an error/offset in

the steady state signal itself. Measuring these hardware imperfections can be used to identify the

individual transmitters. As these features represent the hardware design of the radio itself, they

are the most ideal representation of a transmitter.

In terms of taxonomy, hardware imperfection based techniques can be used universally for

any device role. Hardware imperfections are also completely stable in value to both environmental

changes and changes to the software. The biggest problem with hardware imperfections as a

device identifier is that data collection requires the use of costly SDR or VSA, which makes it

less practical to deploy at scale. As perhaps a consequence of this, there exist no work which

demonstrates these methods to work outdoors.

Transient signal. When a radio is turned on, there is a short tranient phase before the control

loops in the power amplifier and phase locked loop settle. The characteristics of the signal

generated at this stage, can identify the hardware components of the transmitter uniquely.

Hall et al. [53] used phase characteristics to detect and record transients from Bluetooth

radios, unlike previous approaches that used signal amplitude. Phase characteristics are pre-

ferrable because they are less susceptible to noise. Also, the slope of phase becomes linear at

start of transient, making detection easier. The difference in phase variance for each portion of

the unwrapped phase signal was used to create a fingerprint for classification of radios.

Hall et al. [52] further used the same detection mechanism as [53] to retrieve transients

for WiFi radios. They measured amplitude, phase and frequency component (using Discrete

Wavelet Transform). Using statistical measures on these properties, they obtained a series of 10

properties as a feature vector for fingerprinting using a Bayesian Filter. They achieved 94-100%

accuracy in classifying radios, including those from same manufacturer.
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Suski II et al. [103] analyzed the effectiveness of amplitude and phase transient detec-

tion mechanisms. By computing variance in transiert start estimation error, they realized that

amplitude-based methods provide better noise resistance. This observation was in contrast to

previous work [53, 52]. To create a classification fingerprint, they used the power spectral desnity

sequence. This fingerprint was matched to a cluster using cross-correlation, with a threshold.

With these methods they achieved upto 80% accuracy, even with SNR down to 6 dB.

Steady-state signal. Once the control loops in the transmitter hardware have settled, the signal

is in steady state, and actual packet reception can begin. A number of papers have attempted to

analyze the non-idealities of the received steady state signal.

Some initial papers attempted to do a comprehensive evaluation of various hardware

imperfection induced properties [28, 31]. Brik et al. [28] analyzed the properties of frequency

error, SYNC correlation, I/Q offset, magnitude and phase error from several 802.11 NICs. Using

values averaged over 20 frames, they created a feature vector and used SVM classifier to bin

the signals. They achieved phenomenal accuracy of ≥ 99% accuracy in classification, and worst

case-similarity at 17%. Additionally, the values were stable to changes in channel conditions and

distance from receivers.

Unfortunately, such high accuracy results have not been repeatable since. Vo-Huu et

al. [111] hypothesize this was due to a very stable test environment and the use of vector

signal analyzer instead of SDR. They attempted to perform classification of modulation features

using SDRs. They used a combination of carrier frequency offset, sampling frequency offset,

transient and scrambler seed measurements in a short time duration (to ensure MAC address

randomization doesn’t kick in) and compute similarity distance. While they achieved high

accuracy for comparing two different make of radios, classification accuracy was low when

testing similar make devices. However the measurements were stable across several days of

observation.

Recent work has also attempted in extracting environment independent modulation
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properties from the channel state information itself [55, 73]. Liu et al. [73] extracted the

phase error due to I/Q imbalance from the channel state information. Their filtering was

based on the intuition that variance of phase gradients is lower for actual signals even with a

varying environment. Modulation properties extracted thus, exhibit similar time and environment

invariance.

Work in Bluetooth modulation feature extraction has been limited to detection of presence

of wireless transmitters in a noisy environment Sun et al. [102] designed CV-Track to observe

variation in CFO values, to detect presence of a BLE signal. The idea was that a BLE packet,

even if partially corrected, will result in constant CFO values, if there are overall equal number

of 1s and 0s. To distinguish transmissions from multiple beacons, they combined packet CFO

values with the inter-arrival time of beacons. The intuition was that frequency mismatch between

two transmitters remains constant for a time period longer than a single packet duration.

23



Chapter 3

Link-Layer Wireless Scan Information for
Identifying Illicit Wireless Links

The ubiquity of wireless access links has made it easier for attackers to attack public

infrastructure. Today, criminals are implanting illicit wireless links to gain covert unauthorized

access to gas pumps [14, 15]. These illicit wireless links are "hidden in the noise" of tens

of others such links at public locations. In this chapter, I describe the results of a 19-month

metropolitan scale field measurement study to understand the feasibility of using link-layer

information from smartphone Bluetooth scans to identify these illicit links. In particular, this

field study was aimed at defending against a type of illicit link — Bluetooth-based payment card

skimmers.

Payment card skimming attacks at gas pumps have reached alarming levels. In 2018,

law enforcement officials recovered 972 skimmers from gas pumps in Florida [15] and 148

skimmers from Arizona [14] alone. Based on industry estimates, a single skimmer can capture

30–100 credit cards per day [5] and each card, based on estimates from law enforcement officials,

nets the criminal an estimated $500 [6], resulting in a daily loss of $15,000–50,000 per day of

operation for each skimmer.1 Less is known about how long a skimmer remains in operation,

but allowing for even one day of operation per skimmer, 2018 losses exceed $16 million across

these two states.
1In Section 3.1.2, we compare these quoted estimates to other sources, and find them to be in agreement.
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Gas pumps are an ideal skimming target. Gas pumps have relatively weak security: their

payment circuitry can be accessed with universal keys or crowbars, and reading payment data is

as easy as tapping into a ribbon cable (Section 3.1.1). Gas pump skimmers can be hidden inside

of a gas pump enclosure, making them difficult to detect. As a result, inspectors have resorted

to manually opening the pumps to inspect their wiring for skimmers. Gas pump skimming

has become so pervasive that the Arizona Department of Agriculture, Weights and Measures

Division (AZWMSD) now checks for skimmers while doing routine inspections.2 From 2016 to

2018, the AZWMSD looked for skimmers in 7,325 gas station inspections. Inspectors found

skimmers in only 1.5% of these inspections.

Unfortunately, Law Enforcement (LE) rarely catch criminals while they are collecting

payment data from gas pump skimmers. The reason is, many gas pump skimmers are equipped

with Bluetooth connectivity [65, 66, 67, 68]. This allows criminals to remain in their car while

wirelessly retrieving card payment data. While Bluetooth is a vital tool for criminals to exfiltrate

data from gas pumps, it also could be an opportunity to make it easier to detect skimmers.

In this measurement study, we evaluate the effectiveness of using Bluetooth scans from

a smartphone to detect these payment card skimmers. Indeed, if a skimmer can be detected

with a smartphone, then authorities can discover and remove skimmers passively and quickly

while they visit a gas station for other reasons. We built a smartphone application to perform

this study, called Bluetana. Bluetana collects all Bluetooth scan data that is available via the

Android Bluetooth APIs. We equipped 44 volunteers in six U.S. states with smartphones running

Bluetana. Our volunteers have collected wireless scans at 1,185 gas stations, where they observed

a total of 2,214 Bluetooth devices. In these scans, Bluetana detected a total of 64 skimmers

installed at gas stations in Arizona, California, Nevada, and Maryland, and it was the sole source

of information that led law enforcement to find 33 skimmers.

Our study is the first comprehensive look at how skimmers can appear in Bluetooth scans.

Namely, we observe that it is feasible to differentiate skimmers from other common Bluetooth

2For example, the “Vapor Recovery Inspection Pre-Test Checklist” has a checkbox for “Checked for Skimmers”.
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devices that appear in Bluetooth scans at gas stations (e.g., vehicle telemetry collectors). Using

a combination of Bluetooth scan link-layer information fields such as Class-of-device, MAC

address and Device name, we were able to uniquely identify skimmers at gas stations. We also

find that signal strength is a reliable way to determine if a Bluetooth device is located near a gas

pump, and thus could be a skimmer.

Our study reveals several problems with consumer Bluetooth-based skimmer detection

applications [93, 2, 100]: (1) there are many legitimate products that appear at gas stations that

use the same Bluetooth modules as known skimmers; therefore, MAC address-prefix based

detection may lead to false positives, (2) there are many Bluetooth modules used in skimmers

that do not comply with IEEE MAC assignment requirements. We also debunk advice on how

to find skimmers with Bluetooth scans from authorities [4] and viral information from social

media [74]. For instance, none of the skimmers we found using Bluetooth scans have a name

that is a long string of letters and numbers.

Performing this in-depth study brought to light several important operational lessons

learned about the importance of detecting skimmers with Bluetooth. Using Bluetooth scans,

officials detected skimmers while driving by gas stations that they otherwise would not have

inspected. We also witnessed several instances where an inspector tried to find a skimmer, but

could not find it on their first pass looking inside a gas pump. However they persisted and

found it based on the knowledge that a suspected skimmer had appeared in Bluetooth scans.

Surprisingly, we observed that there are skimmers installed in the same gas station, or city, that

have very similar MAC addresses—indicating their source is a single criminal entity. We even

found skimmers installed hundreds of miles away that had surprisingly close MAC addresses.

The rest of the chapter is organized as follows: Section 2 provides background on

internal gas pump skimming: their construction, monetary incentive, and prevalence in the wild.

Section 3 is an overview of our large-scale Bluetooth scan collection methodology. In Section 4,

we present the results of our study: what the skimmers we detected look like, how they compare

to skimmers recovered independently by Law Enforcement, and whether they are well hidden in
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Figure 3.1. An internal Bluetooth-based skimmer wrapped in gray tubing to blend in with the
cabling inside the fuel pump. This skimmer was detected by Bluetana in Tempe, AZ.

the Bluetooth environment. In Section 5, we present possible counter measures to the Bluetooth

detection. In Section 6 we present the operational lessons we learned about skimming and

criminal investigation procedure, while performing our large scale measurement study. Section 7

is related work, and we conclude in Section 8.

3.1 Background

Skimmers are illicit devices that capture credit card magnetic stripe data when a card is

used at a point-of-sale (PoS) terminal or automatic teller machine (ATM). External skimmers

use a magnetic head concealed in a false faceplate to read the magnetic stripe of a card as it

is inserted into the real card reader. However, this paper is concerned with a newer class of

skimmers, called internal skimmers, that are installed entirely inside a PoS terminal or ATM,

leaving no visual evidence of its presence [94]. Internal skimmers are attached inline to the

cable that connects the card reader to the main circuit board of the PoS terminal, tapping into

the data and drawing power. To make data collection easier, many internal skimmers include a

Bluetooth-to-serial module that allows the perpetrator to covertly collect the “skimmed” card

data from a safe distance. These skimmers are built using commodity hardware with a total unit

cost of $20 or less.

Fuel pumps with a built-in PoS terminal have become a very popular target for such

internal skimmers: they are unattended, easy to access, and have poor physical security, which
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Figure 3.2. Parts of a typical internal Bluetooth-based fuel pump skimmer. This skimmer was
detected by Bluetana.

make it easy to install a skimmer without being noticed. In a typical installation scenario, an

attacker positions a van at a fuel station to block the station attendant’s view of the target pump

(Excerpt in A.2), opens the fuel pump using a common master key or crowbar, and clips a

discreet gumstick-sized skimmer to the ribbon cable between reader and main circuit board

using a vampire clip (Figure 3.1). The entire process to install skimmer can take less than 10

seconds [1]. The perpetrator can then return to the station with a smartphone, and without leaving

their vehicle, connect to the skimmer using Bluetooth and download the card data.

3.1.1 Internal Bluetooth Skimmers

The subject of our study are internal, Bluetooth-based skimmers that are installed in

fuel pump PoS terminals. Figure 3.2 shows a typical Bluetooth skimmer, recovered from a fuel

station in Southern California. This skimmer consists of a “Teensy” development board with an

ARM Cortex-M4F microcontroller and a Roving Networks RN-42 Bluetooth-to-serial module.

It also includes connectors for tapping into the wiring inside the pump (not shown).
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Connections. In the figure, the ribbon cable on the left intercepts or replaces the ribbon cable

that connects the magnetic stripe reader to the PoS terminal main board. The skimmer also uses

this connection for power: the power and ground pins of the Teensy (on far left of board, not

visible in Figure 3.2) are connected to power and ground on the card reader cable. The ribbon

cable on the right intercepts or replaces the ribbon cable from the PoS keypad. This allows the

perpetrator to capture additional card verification data, namely the debit card PIN or credit card

billing ZIP Code. Availability of a PIN code with a stolen debit card in particular, can increase

its value five-fold on the black market (Table 3.1). However, not all skimmers capture keypad

data.

Most gas station skimmers read the unencrypted data pulled from magnetic stripe readers.

Card issuers feel that removing sensitive data from the magnetic stripe on cards will help to solve

the problem [86]. Newer literature has demonstrated attacks on chip payment systems [18, 26],

and law enforcement in Latin America have begun to find EMV skimmers that are Bluetooth

enabled [69, 3].

Controller board. The skimmer pictured in Figure 3.2 used a Teensy microcontroller develop-

ment board equipped with a 120 MHz ARM Cortex-M4F microcontroller made by Freescale

Semiconductor. By using a development board, a skimmer requires only rudimentary electronic

assembly: soldering wires to the development board.

However, skimmers have also been found using what appeared to be fully custom-

designed boards. These are compact, making them better for hiding in the dispenser. Examples

of micro-controllers used in recovered skimmers include Microchip PIC18F4550 [2] and Atmel

XMEGA128A4U [3].

Storage. The Teensy board also has a microSD card slot for additional data storage. Skimmers

built on custom PCBs have also used flash and EEPROM ICs for storage. The storage capacities

vary across designs, with examples using the PCT25VF032B (32-Mbit) [3] and M25P16VP

(16-Mbit) [2].
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Bluetooth module. The skimmer shown in Figure 3.2 uses a Roving Networks RN-42 module,

an inexpensive Bluetooth-to-serial module found in many skimmers. In Section 3.2.1 we

describe characteristics of popular Bluetooth-to-serial modules used in recovered skimmers for

wireless data exfiltration. On the Bluetooth side, a Bluetooth-to-serial module provides a Serial

Port Peripheral interface, which most operating systems recognize as a Bluetooth modem and

instantiate a serial device for it. Operating systems will create a corresponding serial device,

allowing user-space applications, namely a criminal’s card dumping application, to communicate

with the module. On the hardware side, a Bluetooth-to-serial module provides a TTL-level

receive and transmit pin, allowing it to interface to any microcontroller UART. The module this

allows even the simplest microcontroller to communicate via Bluetooth with a host device. The

2.4GHz Bluetooth antenna is included on the module’s circuit board (exposed area to the left of

the metal shield for the module shown in Figure 3.2), so the antenna is also hidden.

Bluetooth-to-serial modules generally require no configuration, however, most can be

reconfigured using Hayes-style modem AT commands. In Section 3.3.1 we describe the configu-

ration capabilities of popular modules. Notably, all of the Bluetooth-to-serial modules we found

in skimmers support changing the device MAC address, Bluetooth device name, changing the

pairing password, and the ability to become non-discoverable once paired.

3.1.2 Economics of Carding

Stealing and monetizing stolen credit and debit card data, called carding by its practition-

ers, is a well-studied form of financial fraud, however, reliable estimates of losses resulting from

a single skimmer are difficult to find. To the criminal operating a skimmer, the expected revenue

per skimmer breaks down as:

W = (card value)× (cards per day)× (days deployed).

Of these, we found published estimates for only the first two quantities, and very little
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about skimmer lifetimes. Here, we summarize the available data with the goal of estimating the

losses incurred by a single skimmer.

Card value. To monetize stolen credit card data, skimmer installers have two options: sell the

data on the black market, or cash out the cards on themselves. Based on our survey of sites

selling stolen card data, black market prices for stolen cards fall in the $10–220 range, depending

on whether the card is a debit or credit card, and whether it comes with a PIN (for debit) or

billing ZIP code (for credit). Table 3.1 provides a summary of these prices with references.

Criminals can also cash out the cards themselves. Debit cards with a PIN are often cashed

out by withdrawing money from an ATM, while credit cards are often cashed out by purchasing

high-value merchandise (e.g. iPhones) and re-selling them. Reported cash-out values for debit

and credit cards range between $400 and $1,000, depending on credit limit associated with the

card. We also conducted a survey of cash-out values reported in court documents involving

skimmers.3 Several cases reported specific cash-out values, rather than ranges. The debit card

cash-out values were $1132 [80], $444 [34] $665 [8], $1354 [7]. The credit card cash-out values

were $362 [98] and $400 [12].

Losses due to credit and debit card fraud are borne largely by banks and merchants. This

is likely because consumer liability for fraud in the U.S. is limited to $50 for credit cards, and

$50 or more for debit cards (depending on how quickly the consumer reports the fraud). Industry

estimates for losses per-card incurred by banks are $650 for debit cards and, $1,003 for credit

cards [1, 17]. The U.S. Sentencing Commission estimates per-card losses at $500 or more.

Cards per day. The number of cards a skimmer captures each day depends on the number of

transactions at that pump, which will vary by station. Rippleshot, a payment fraud prevention

service, states: “a single compromised pump can capture data from roughly 30–100 cards per

day” [5]. The lower end Rippleshot’s estimate agrees with the estimate of 20–50 cards per day

we received from U.S. law enforcement agents. In addition, we found two court documents

3We surveyed only documents available without fee from Court Listener.
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Table 3.1. Value of stolen credit and debit cards.

Scheme Value Reference

Black market price
Debit, no PIN $20–30 [79, 96, 44, 88]
Debit with PIN $110–220 [71, 96, 88]
Credit, no ZIP $10–25 [79, 96, 44, 88]
Credit with ZIP $25–60 [79, 96, 44, 88]

Cash-out value
Credit or Debit (standard) $400–800 [40, 83, 39, 110]
Credit (premium) $1,000 [83, 92, 43]

Bank and merchant loss
Credit $1,003 [1]
Debit $650 [17]

Consumer liability
Debit (> 60 days) unlimited 15 USC 1693g
Debit (< 60 days) max $500 15 USC 1693g
Debit (< 2 days) max $50 15 USC 1693g
Credit max $50 15 USC 1643

Prosecuted loss
Credit or debit $500 [6]

Court documents
Credit $362–400 [80, 34, 8, 7]
Debit $665–1132 [12, 98]

that report criminals captured 25 [12] and 30 [8] cards per day. We also studied 10 skimmers

recovered from the field, which we were told were used and wiped daily. We found an average

of 20 cards per skimmer, divided evenly between debit and credit cards.4

Days deployed. Internal skimmers are not limited by battery life and can remain in operational

indefinitely, because they draw power from the PoS circuitry, Skimmer lifetime, then, is limited

only by how long they can remain undetected. Unfortunately, there is little reliable data on this.

Our only direct experience is our discovery of a pair of skimmers that remained undetected for

six months (Section 3.2.1). However, LE informed us that criminals may leave skimmers in gas

pumps after only a few days of retrieving card data and moving on to another location. Given the

4These skimmers were provided to us because they were removed by the station owner, rather than LE, making
them unsuitable for use as evidence.
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Table 3.2. Prevalence of skimming in three regions of the U.S.

Location
& Year

Recovered
skimmers

Skimmed
stations

Skimmers
/

station

Skimmers
/

106 people

San Diego
FY 2018 42 11 3.2 11.9

Arizona
2016 88 54 1.6 4.3
2017 57 46 1.2 2.7
2018 148 86 1.7 6.9
All 293 134 2.2 14.0

Florida
2016 207 162 1.3 10.0
2017 650 432 1.5 31.1
2018 972 524 1.8 45.6
All 1,829 1,029 1.7 87.4

very limited data available on skimmer lifetimes, we instead consider skimmer value per day of

operation.

Cashout success rate. Our analysis of court documents revealed that criminals are often unsuc-

cessful when trying to cash out a skimmed card. This may be due to a variety of reasons, such as

the following: incorrectly reading card data, hitting daily withdrawal limits, and activating fraud

alerts. Several cases mentioned that criminals were not successful in cashing all skimmed cards.

One case mentions a specific cashout success rate of 47% [7].

Total skimmer value. Finally, we estimate the range of per-day revenue from a skimmer based

on the prior figures. Our low-end estimate is $4,253 (25 cards per day, cashout of $362 per card,

and 47% cashout success rate), and our high-end estimate is $63,638 (100 cards per day, $1,354

cashout per card, and cashout success rate of 47%).

3.1.3 Skimmers Recovered in the Wild

To understand the prevalence of skimmers in the wild, we obtained data on recovered

skimmers from three regions in the United States: San Diego and Imperial counties of California,

33



with a combined population of 3.5 million; the state of Arizona, with a population of 7 million

inhabitants; and the state of Florida, with a population of 21 million inhabitants. Table 3.2

summarizes the statistics. We note that these numbers do not represent all recovered skimmers.

For San Diego and Imperial counties, our statistics represent the number of skimmers found by

or reported to a U.S. federal law enforcement agency. For Arizona and Florida, our statistics

represent skimmers found by or reported to the AZWMSD and the Florida Department of

Agriculture and Consumer Services.

The number of recovered skimmers has increased from 2016 to 2018 in both Florida and

Arizona. The total number of skimmers recovered in 2018 across the three geographic regions is

significant: if each skimmer operated for just one day, we estimate their total monetary impact

would be $17.43 million. Yet, as the skimmers-per-million people number shows, the possibility

of an average consumer encountering a skimmer at a gas station is quite small.

3.2 Data Collection Methodology

Driven by the observation that skimmers are hard to find—few pumps in San Diego,

Arizona, and Florida have been found to have skimmers installed in them (Table 3.2)—we created

a tool, called Bluetana, to evaluate the effectiveness of Bluetooth-based skimmer detection. We

begin by presenting an overview of the tool and the data it collects. Then we describe how

Bluetana identifies suspicious devices and directs users to collect additional data. Finally, we

discuss how we retroactively inspect data to find skimmers.

3.2.1 Crowdsourcing Bluetooth Scanning

We developed Bluetana, an Android-based measurement tool that officials and volunteers

use to scan for skimmers at gas stations. Bluetana scans for nearby Bluetooth—both Classic

and Bluetooth Low Energy (BLE)—devices every 5 seconds using Android’s Bluetooth API.

It collects the Bluetooth scans and geolocation data, and uploads this data to a secure database

over a cellular link. Bluetana collects all the Bluetooth scan data that Android makes available,
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Figure 3.3. The Bluetana user interface. Bluetana highlights suspicious devices, inspiring users
to collect more signal strength samples, and even perform inspections.

including Device name, MAC Address, Class-of-Device5, and signal strength (RSSI).

How we visited 1200 gas stations. We outfitted 44 volunteers and inspectors in six U.S. states

(CA, AZ, MD, NC, NV, IL) with low-end smartphones running Bluetana in kiosk mode (they

could not close the application). We selected officials who frequent gas stations as part of their

daily job duties. Primarily, they were Weights and Measures inspectors.

Indicating suspicious devices to inspire data collection

The Bluetana display shows a list of Bluetooth devices detected during scanning. When

Bluetana detects a potential skimmer, it indicates this to the user by highlighting the device

record (Figure 3.3). The Bluetooth scan profile of the modules that have been found in skimmers

inform which devices we highlight in Bluetana.

Skimmers recovered by LE are often found to use CSR (Qualcomm) chip-set-based

Bluetooth modules. Our highlighting procedure primarily looks for the default Bluetooth profile

of these modules—with the exception of the Device Name which can be missing due to poor

signal strength, and modified by criminals in an attempt to hide the device (Section 3.3). The

5Class-of-Device is twenty four bits indicating the device’s intended use, such as smartphone or speaker.
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factory default Bluetooth scan profile (i.e., MAC prefix, Device Name, and Class-of-Device) of

these modules are as follows:

Mod. MAC Prefix Dev. Name Class of Dev.

RN 00:06:66 “RBNT-*” Uncategorized

HC Various “HC-05/06” Uncategorized

Bluetana chooses a highlight color via a three-step decision process, depicted in Fig-

ure 3.4. First, the app checks the device’s class. All skimmers studied within this work, whether

discovered by Bluetana or not, had a device class of Uncategorized. If the device class is not

uncategorized, the data is saved for later analysis. The device’s MAC prefix is then compared

against a “hitlist” of prefixes used in skimming devices recovered by law enforcement. If the

device has a MAC that is not on this hitlist, it is unlikely to be a skimmer, and the app highlights

the record yellow. Next, if the device name matches a common product using the same MAC

prefix, the record highlights in orange. If all three fields (MAC prefix, Class-of-Device, and

Device Name) indicate the device is likely to be a skimmer, Bluetana highlights the record in

red. The highlighting procedure is the result of a year of refinements based on our experience

finding skimmers in the field, and Bluetana includes a remote update procedure to account for

these incremental changes.

Does MAC prefix 
match skimmers?

Is Class-of-Device 
uncategorized?

Is Device Name 
default, unknown, or

unnamed?

Yes Yes

No No

Possible skimmer
(highlight in Red)

New device seen in 
Bluetooth scan

Unlikely skimmer
(highlight in Yellow)

Yes

Known product
(highlight in Orange)

No

Save for later 
analysis

Figure 3.4. The procedure Bluetana uses for highlighting suspicious devices.

This simple highlighting proved to be vital to our data collection. Red serves as a cue

to perform signal strength localization: it directed our users to collect more samples of signal

strength to determine if a device is located in the gas pump area—and is therefore likely to be a

skimmer. In several cases, Bluetana highlighting a device in red was the only reason officials
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performed manual skimmer inspections: out of the 64 skimmers we found, 33 were recovered

because an official started an inspection only after noticing a device was highlighted in red in

Bluetana.

In one instance, an Arizona Weights and Measures inspector was driving by a gas station

when two red highlighted devices appeared in Bluetana. He made an unscheduled stop at the

gas station, performed a skimmer inspection, and discovered two skimmers. Figure 3.5 shows a

portion of the official Arizona inspection report documenting this incident.

Figure 3.5. Bluetooth scanning helps inspectors find more skimmers because they detect
skimmers when driving by a gas station.

Bluetana’s highlighting procedure is more comprehensive than other skimmer detection

apps on the Play Store. Scaife et al. [93] investigated the behavior of these apps and found

that they flag skimmers based on either MAC prefix or Device Name. These apps would

miss skimmers with non-standard MAC prefixes or customized (missing) device names which

Bluetana was able to find (Section 3.3.1). Bluetana also found legitimate devices that would be

considered skimmers by these apps (Section 3.3.2).

Identifying skimmers after data collection

During the study, we manually examined every Classic Bluetooth device observed at a

gas station visit in real time (as Bluetana users upload their scan data). At the beginning of our

study, we relied primarily on the signal strength of the device to determine if it was a suspected

skimmer. By the nature of being installed inside a gas pump, the Bluetooth signal of a skimmer

is strongest in the pump area. Other devices that we suspected to be skimmers all had a low

signal strength in the pump area, because aside from the cars parked at the pumps, the only
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Figure 3.6. RSSI data overlaid on satellite view of a gas pump. Device on left has high RSSI
near the gas pump and is likely a skimmer, device on the right is not.

places where a Bluetooth device would be located in the pump area would be inside the pump.

Combining the signal strength and geolocation with satellite imagery of the gas station, we were

able to easily detect when the signal was emanating from inside a gas pump (example shown in

Figure 3.6). While at a gas station, Bluetana users also noticed this by moving toward the pump

area to see if the device’s signal strength increases.

If we saw any suspicious devices in the dataset, we alerted officials that they should

inspect the pumps at the station in question. Initially, we did not know which of these devices

were skimmers: many initial inspections we requested turned up empty-handed. However, as the

study progressed, we improved our understanding of the profile of skimmers.

A natural experiment observing deployment duration

Having a database of all prior scans made it possible for us to look for skimmers that we

may have missed in the past. In particular, looking back in at the database led to us to discover

two skimmers that we had initially missed. A retroactive analysis of two stations discovered

skimmers that were still operating even though we first detected them six months earlier. This

natural experiment is likely the first concrete data on how long skimmers can be installed without
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being found in a routine or complaint-induced pump inspection.

3.2.2 Limitations

Selection bias

We designed our data collection to look for a specific type of gas pump skimmer: one

that uses a Classic Bluetooth module, and is discoverable in Bluetooth scans. Our contacts in LE

confirmed that this type of skimmer has been found in gas stations across the entire U.S. They

also reported that these skimmers are particularly common in Arizona and California; therefore,

these states were the focus of our study.

The results of our study may not be representative of the nature of gas pump skimming

across the country. Criminals in other regions may evade Bluetooth-based detection by using

alternate exfiltration methods (e.g., Bluetooth Low Energy and SMS), or configurations (e.g.,

non-discoverable mode). We outline these countermeasures in Section 3.4.

Bluetana does not connect to devices

We could collect more data about Bluetooth devices by trying to connect to them. This

could be useful for conclusively detecting a skimmer or collecting information about the type

of Bluetooth device. By sending commands that skimmers are known to respond to, Bluetana

would be able to see if the device responds equivalently to known skimmers. This is precisely

what one of the current Bluetooth skimmer scanning applications on the Play Store does.

This practice may seem innocuous, but our discussions with law enforcement indicate

that this could overwrite information critical to future investigations. The problem is, internal

registers in many skimmer Bluetooth modules records the last-paired MAC address. This

information can be used to link a suspect possessing a smartphone or laptop with their skimmers.

The typical forensic evidence collection performed by law enforcement on skimmers includes

collecting the last-paired MAC address [95].
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3.3 Results

In this section, we present the results of our 19 month study of Bluetooth devices observed

with Bluetana at 1,185 gas stations across six U.S. states (CA, AZ, NV, MD, IL, NC). During

the course of this study, Bluetana detected 64 skimmers operating in 34 gas stations; all of the

skimmers were removed from the pumps by local and federal law enforcement agents. Bluetooth

scanning is a surprisingly effective way of detecting skimmers: in Arizona, Bluetana has detected

skimmers at 1.58% of the 491 stations it scanned, and routine inspections by state inspectors had

a similar detection rate of 1.5% from 2016 to 2018.

The primary result of this study is as follows: there are distinct characteristics of the

64 internal skimmers detected by Bluetana that differentiate them from the 2,562 other Bluetooth

devices that Bluetana found at gas stations (e.g., car stereos). Namely, these skimmers were

predominately using the default Bluetooth module configuration. Additionally, we discovered

that some criminals use a custom Device Name in an apparent attempt to hide their skimmers

from Bluetooth scans. These custom Device Names stand out, making them easier to differentiate

from other devices.

3.3.1 What Do Skimmers Look Like in Scans?

We begin by presenting how skimmers we observed appear in Bluetooth scans. We

describe the properties of two sets of skimmers: 64 skimmers that we detected in the field during

the course of this study, as well as 23 skimmers that were independently recovered by two

LE agencies. The 23 skimmers recovered independently by LE have similar characteristics to

the 64 that Bluetana detected in the field. The Bluetooth characteristics of these skimmers are

detailed in Table 3.3. We now analyze the following properties: Class-of-Device, MAC prefix,

and Device Name.
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Table 3.3. Bluetooth scan properties of skimmers observed during our study. The exact Device
Names are not shown, instead we describe the names we found.

# of skimmers

Bluetooth Scan Property Bluetana LE
Class-of-Device

Uncategorized 64 23
Manufacturer (MAC prefix)

Roving Networks
00:06:66 45 13

Shenzhen Bolutek
98:D3:31 1

Unknown
20:13:04 1
20:17:11 1
20:18:01 2
20:18:04 1
20:18:07 1
20:18:08 4 10
20:18:09 4
20:18:10 1
20:18:11 2
98:D3:35 1

Device Name
Default 36 23
[Law enforcement] 2
[Mobile phone] 4
[Indescript object] 2
[Numerical] 2
Unnamed 18

Total 64 23

All of the skimmers are “Uncategorized” Class-of-Device

Class-of-Device is primarily used to select the icon that indicates the category of a

device in a Bluetooth scan (e.g., Headphones). Bluetooth modules used in skimmers analyzed

in this study (i.e., HC and RN), have an “Uncategorized” Class-of-Device assigned by default.

Changing Class-of-Device on these modules is trivial: the modules provide a serial command to

set it. Despite this, criminals do not appear to be modifying the Class-of-Device on any of the
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skimmers we observed: all of the 87 skimmers detected by Bluetana and recovered independently

by LE used the default “Uncategorized” device class.

MAC prefixes are often manufacturer defaults

Bluetooth module manufacturers burn a MAC address into the module’s EEPROM.

Although it is possible to change the MAC with a SPI-based reprogramming of the CSR chip’s

EEPROM, we have not observed any skimmers that have a modified MAC. The first three bytes

(prefix) of the MAC address typically correspond to the manufacturer of the device.

Although MAC address prefixes are often assigned by IEEE (e.g., all of the RN Bluetooth

modules have the same manufacturer MAC prefix) the HC modules have a wide variety of MAC

prefixes. Of the HC modules we observed, only one has a MAC prefix assigned by the IEEE.

This could make it significantly more difficult to detect an HC-equipped skimmer. However,

looking at of the MAC prefixes of the skimmers that we observed, a clear pattern emerges:

manufacturers appear to be burning module manufacture date into the first four bytes of the

MAC address in the following format: YY:YY:MM:(DD).

Device names are often default, occasionally customized

Device Names allow users to identify their devices in Bluetooth scans. They are assigned

a factory default value by the manufacturers, and are modifiable by users. Most of the skimmers

we observed had a default Device Name: namely, all of the skimmers provided by LE, and more

than half the skimmers we detected in with Bluetana. A skimmer with a default Device Name

looks innocuous, because some legitimate products using the same modules are also shipped

with the default module name (Section 3.3.3). Occasionally, we found that criminals set a custom

device name on their skimmers. This appears to be an attempt to make the skimmer look less

suspicious. Bluetana detected custom-named skimmers with a variety of names. The custom

names of skimmers discovered by Bluetana had variety: some were random strings of numbers,

and others masqueraded as LE.
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Figure 3.7. Skimmers are detected within a minute of passing near a gas station.

Bluetana did not detect a Device Name for several skimmers. This is expected because

the device sends its MAC and Class-of-Device in the first scan response packet; it sends the

device name in a subsequent packet (that may be missed).

Skimmers are detected within one minute

Bluetooth scanning has the benefit of detecting some skimmers without manually in-

specting each of the pumps. However, attenuation from a gas pump’s metal enclosure, may

limit the range that Bluetooth scans are effective. We analyzed the scans from Bluetana to see

how long an official had to spend at a gas station before they detected the skimmers installed

there (Figure 3.7). The median time to detection was 3 seconds, and 80% of the skimmers were

detected within one minute. This is a 99% decrease in search time compared to the average of

30 minutes that inspectors take to check a gas station for skimmers.6, This result indicates that

inspectors can quickly stop at gas stations to check for Bluetooth-detectable internal skimmers.
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Table 3.4. On average there are two Classic Bluetooth devices seen at each gas station;
infrequently, there are skimmers.

Devices Observed

State Stations # Avg. Std. Days Skimmers

CA 571 1148 2.01 1.94 152 22
AZ 491 1140 2.32 2.03 130 36
NV 38 93 2.45 3.44 21 4
MD 23 42 1.83 1.86 14 2
IL 18 37 2.06 2.01 13 0
NC 10 20 2 1.67 10 0

3.3.2 Are Skimmers Distinguishable in Scans?

Next, we evaluate if the skimmers detected by Bluetana were clearly distinguishable

from the other devices observed at gas stations. The primary result of this study is that these

skimmers were not hidden well. Many of these skimmers use the default configuration of their

Bluetooth modules. Legitimate devices using the same Bluetooth modules may have some

default parameters, and a few have all of parameters set to the default. We conclude that by

combining multiple characteristics: MAC prefix, Class-of-Device, and Device Name, there are

only a small number of devices that could be confused with skimmers.

This study also reveals that when criminals creatively modify their skimmer’s Device

Name, it makes detection easier. We also found that criminals could improve how they hide

skimmers in Bluetooth scans. For example, they could change the Class-of-Device to hide as a

more popular device (e.g., a smartphone).

Dataset Overview

Over the course of the 19 month study, Bluetana users visited 1,185 gas stations across

six states (Table 3.4). During these visits, Bluetana detected a total of 64 skimmers—all of

which were recovered by officials. These skimmers were in the presence of 2,214 other devices.

On average, Bluetana saw 2.2 devices per station (σ = 2.05). Given that there are only a small

6Source: discussions with inspectors.
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number of Bluetooth devices seen per station, it may seem likely that these devices are all

skimmers. However, only a small fraction (3.98%) of these devices matched the characteristics

of the skimmers we observed during the course of our study.

We performed this study on Classic Bluetooth devices only. We did not include BLE

because we are not aware of any internal gas station skimmers using BLE modules. However,

we observed a large number of BLE devices at gas stations; therefore, switching skimmers

to BLE modules may make them more difficult to detect with scanning tools like Bluetana

(Section 3.4.1).

For this analysis, we only include the scan data that is collected the first time a Bluetana

user visits a station. Restricting the dataset in this way ensures fairness in our results. Analyzing

all inspections may bias our observation of what Bluetooth devices tend to be found at gas

stations to those that were visited multiple times. Specifically, we only analyze scans performed

the first time Bluetana is near a gas station (within 150 feet) for at least 30 seconds and up to 5

minutes. 22 out of 64 of the skimmers were detected on subsequent visits to gas stations, so they

are not included in this analysis.
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Figure 3.8. Skimmers appear in the third most common class of Bluetooth devices.
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Skimmers are Uncategorized, but so are other devices

The only Bluetooth property that is common among all skimmers we observed is that

they have an Uncategorized Class-of-Device. Figure 3.8 shows the distribution of Bluetooth

device classes at gas stations. Uncategorized devices are the third most common Class-of-Device

found by Bluetana (8.4% of devices). Although, out of the 1,185 gas stations that Bluetana users

visited, Uncategorized devices were only observed at 143 gas stations (12.1%).

Other devices use the same modules as skimmers

Within the set of Uncategorized devices, we next look at the distribution of their MAC

prefixes (Figure 3.9). We find that the Bluetooth modules used in skimmers are also used in many

other legitimate devices. Specifically, more than half of the RN modules seen at gas stations

were in skimmers, but there were many other devices that had RN modules. This is an important

observation because a popular detection application, SkimPlus [100], only flags skimmers based

on a hitlist of MAC prefixes [93]; it may incorrectly flag legitimate devices as skimmers.
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Figure 3.9. Many other devices appear to be using the same Bluetooth modules as skimmers.

The devices observed with MAC prefixes that were in the YY:YY:MM:DD format (likely

HC modules) were mostly skimmers. There were many devices that had IEEE assigned MAC
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prefixes that were infrequently seen at gas stations (< 5 Devices). Only one of these devices

was a skimmer. Also, there were many devices with MAC prefixes unknown to the IEEE, but

not in the date format, only one of these devices was a skimmer. Overall, 102 devices out of

187 Uncategorized devices matched the MAC prefixes of Bluetana-observed skimmers. This

reduces the number of stations where Bluetana detected skimmers to 79 out of the 143 stations

where it found Uncategorized devices.
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Figure 3.10. Default and custom names distinguish skimmers from legitimate devices.

Default- and custom-named modules are often skimmers

Finally, we investigate if skimmers can be differentiated from other devices by their

Device Name. The remaining 102 devices are Uncategorized and their MAC prefixes are either:

Roving Networks, YY:YY:MM:DD, Unknown, or seen on less than five devices. Only 42 of these

devices were confirmed to be skimmers.7 In Figure 3.10, we divide the remaining devices by their

category of Device Name, including: unnamed, manufacturer default, known legitimate product,

and customized. Devices observed by Bluetana with default names were often skimmers. Custom

named devices were not common at gas stations but had a higher probability of being skimmers.

7We do not include 22 of the Bluetana-detected skimmers in this analysis because they were not detected on the
first visit to a gas station.
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Three skimmers were disguised as products, however all three were distinguishable because their

names were popular smartphones, which should not have the MAC prefix of Bluetooth-to-Serial

modules. Bluetana missed capturing the Device Name for many of the skimmers, as well as

other devices that it detected.

3.3.3 Accuracy of Bluetooth-based Detection

To evaluate the accuracy of Bluetooth-based detection, we analyze Bluetana scan data

collected during inspections in Arizona. Specifically, there was a 7-month time period in which

Bluetana was used by many of the Arizona inspectors (October 7, 2018 – May 7, 2019), and we

compare the reports filed during these inspections with the scan data that Bluetana collected.

Missed skimmers

During this time period, there were 27 inspections where skimmers were found while an

inspector was running Bluetana. A total of 42 skimmers were recovered during these inspections,

of which Bluetana was able to detect 36. Therefore, Bluetana missed detecting 14.3% of the

total skimmers recovered during these inspections.

We do not know exactly why Bluetooth-based scanning missed these skimmers. Half of

the missed skimmers were from inspections where Bluetana detected other skimmers at the gas

station. It is likely that these missed skimmers were not powered on due to improper installation.

The remaining missing skimmers may have been built with alternate exfiltration methods, such

as SMS [93], or even require physical recovery [94].

Incorrectly detected skimmers

Bluetana highlighted a device in red during 45 Arizona inspections where no skimmer

was found. There were 757 total inspections where inspectors used Bluetana8, Bluetana may

have incorrectly detect skimmers in 5.9% of inspections.

8This includes both routine and complaint/prior knowledge triggered inspections
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Incorrectly identifying skimmers is likely due to the fact that RN and HC modules are

used in a variety of legitimate products, some of which are seen in and around gas stations. We

found RN and HC modules in radar-based speed limit signs, weather sensors [82] automotive

diagnostic scanners, scales [81] and fleet tracking systems [106]. Some of these devices have

Device Names that clearly indicate what product they are, but would be confused with skimmers

if the Device Name is missing. Unfortunately, several of these products also use the default

Device Names on their Bluetooth modules (RNBT-xxxx or HC-05). These legitimate devices will

look exactly like skimmers. In such cases, inspectors will need to rely on RSSI localization to

determine if these devices are located inside a gas pump.

3.4 Countermeasures and Responses

This work is a single snapshot in an evolving landscape of attacks on payment systems.

While Bluetana has proven effective at finding Bluetooth skimmers, it by no means represents the

last move in the cat-and-mouse game. In the remainder of this section, we discuss what the next

few steps in this arms race might look like. That is, given that inspectors and volunteers are using

Bluetana, what can be the skimmer installers’ next move, its cost, and what our response might

be. It is possible for a determined and resourceful criminal to implement the countermeasures

that we will be describing (particularly non-discoverable mode).

3.4.1 Switching to Bluetooth Low Energy

We have observed that by switching to BLE, criminals have many more places to hide.

Figure 3.11 shows the cumulative distribution of the number of BLE and Bluetooth devices we

saw at each fuel station. Under the filtering of Section 3.3, over 8,000 unique BLE devices were

seen, making the ratio of Classic to BLE approximately 1:4.

Cost to attacker. There is almost no cost to criminals in switching their Bluetooth modules

to BLE. In fact, newer EMV skimmers discovered in other countries are BLE enabled [69].
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Figure 3.11. BLE devices are more common than Classic.

However, none of our contacts in law enforcement have encountered BLE-based gas station

skimmers. It is possible that there is simply no incentive to switch: the same reason criminals

have not yet adapted to masking their Bluetooth device class.

Response. BLE devices may be harder to differentiate due to the higher number of devices

at each gas station and a lack of distinguishing features. With more sophisticated filtering

techniques, it may still be possible to isolate BLE skimmers within this larger set of devices.

One possibility is automated RSSI localization to the fuel dispenser location, a possible subject

of future research.

3.4.2 Non-Discoverable Skimmers

The most natural way to evade discovery via Bluetooth would be to put the module in

non-discoverable mode. When a Bluetooth device is non-discoverable, it does not respond to

normal Bluetooth scans. Instead, it only responds to paging packets specifically addressed to its

MAC address.

Cost to attacker. Non-discoverability would make exfiltration more difficult for criminals. One

possibility is creating a pre-paired data collection device. However, we have been informed

by law enforcement that the individual who installs the skimmer is often independent from the
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individual responsible for data recovery (called a “mule”). The criminal would not be able to

send a mule to recover card data without first delivering them the device. Alternately the criminal

could record the MAC address of the skimmer Bluetooth module. This would require careful

bookkeeping and the use of tools that support the creation of a non-discoverable connection.

Response. It is still possible to discover a non-discoverable device. For a small set of target

address ranges, e.g., 00:06:66 used by Roving Networks modules, we believe it would be

practical to attempt to guess all 16.8 million possible addresses. Prior work has shown that it

is possible to discover any non-discoverable device via brute force in 18.64 hours; knowledge

of OUI would ideally allow us to reduce this search time [35]. Unfortunately, this requires

specialized hardware, rather than an inexpensive Android phone.

3.4.3 Impersonating Common Benign Devices

Another natural response to Bluetana would be to change the MAC address and name of

the device to that of a common benign device, such as a mobile phone or a Bluetooth-enabled

car entertainment system. This would make the skimmer appear innocuous to Bluetana.

Cost to attacker. Reprogramming the MAC address on the CSR-based Bluetooth modules,

which include the Roving Networks and HC-05 and HC-06 modules, cannot be done using the

AT commands used to change device name and pairing. Instead, the skimmer installer would

need to re-flash the CSR firmware using a special programming cable. While, in principle, not

difficult, it would require an additional degree of sophistication than programming a simple

micro-controller development board. The skimmer installer could also change the device name

but not the MAC address, say, to one of the known benign devices using the same module,

something that us possible to do by issuing AT commands from the micro-controller to the

module. While this may cause Bluetana to detect these as a skimmer, signal strength can still be

used to identify location of the module.
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Response. Because Bluetana collects all Bluetooth data, we can identify skimmers retroactively

when we learn of a new MAC address and name used by known skimmers. Thus, if attacks

switch to impersonating benign devices, we can update the Bluetana highlighting mechanism to

identify those devices as suspicious. This would result in additional inspections, but would still

provide significant gain over the state of the art.

3.4.4 Using Non-Bluetooth Communications

During discussions with law enforcement agencies tasked with identifying skimmers, we

were told about skimmers that use GSM modems or WiFi as an alternative to Bluetooth. In the

case of WiFi, we believe that the Bluetana methodology will still be effective. GSM poses a

more serious challenge for detection.

Cost to attacker. While using GSM would avoid detection using Bluetana, it creates an addi-

tional trail of evidence linking the perpetrator to the skimmer. Law enforcement officers could

obtain information about the SMS recipient through subpoenas, so receiving the SMS messages

on another phone on a US carrier, for example, would be easy to trace.The perpetrator would

need to use an SMS service that would not expose his/her identity.

Response. In addition to legal tools available to law enforcement to trace SMS messages, a

GSM modem could be detected using a Software-Defined Radio.

3.4.5 Attacker Bottlenecks

The attacker (skimmer installer) has several practical ways to evade detection using

Bluetana. Each of these, however , has an additional cost in terms of effort, risk exposure, or

expertise. We do not yet have a strong understanding to which of these costs attackers are most

sensitive. Indeed, the very low price of stolen credit card numbers, compared to their potential

cash out value (Table 3.1) suggests that the bottleneck in the carding value chain is not getting

card information but cashing out cards. Thus, while Bluetana may raise the cost for attackers,

we do not believe that it will raise it so much as to make fuel dispenser skimming unprofitable.
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3.5 Operational Lessons Learned

While performing the Bluetana study, we learned several lessons about the operational

use of Bluetooth scanning for skimmer detection. In this section, we provide an overview of two

most important lessons we learned.

3.5.1 Bluetooth Helps During Inspections

Criminals hide skimmers in the crevices of gas pumps to avoid detection during inspec-

tions. We witnessed several instances where investigators were unable to locate skimmers via

physical inspection alone. In one incident, Bluetana flagged four devices at a station; however,

no skimmers were located. This result led officials more experienced in skimmer recovery to

perform a second thorough inspection of the station. These officials located all four skimmers.

The evidence provided by Bluetana forced them to continue the inspection, instead of abandoning

it and leaving the devices in the field.
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Figure 3.12. Opening of the gas pump enclosure results in a significant jump in observed
Bluetooth signal strength from a skimmer.

Figure 3.12 demonstrates an instance of how the signal strength measurements helped

inspectors determine which pump had a skimmer. When the gas pump’s metal door was opened,

the signal strength increased significantly, prompting inspectors to look carefully for the skimmer

in that pump.
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3.5.2 MAC Addresses May Indicate the Source

Network equipment vendors (e.g., Bluetooth module manufacturers) tend to allocate

MAC addresses sequentially by production time [77]. Therefore, if two devices have similar

MAC addresses, they are likely part of the same batch of devices sold. This information can be

used to associate skimmer Bluetooth modules to the same board designer or crew.

Table 3.5. Several geographically separated skimmers had similar MAC addresses.

Group

1 2 3 4 5
Skimmers 3 5 6 4 3
Gas stations 2 2 5 4 2
Min. difference in MACs 1 4 9 10 4
Closest MAC distance (in miles) 0 17 59 203 448

We group the skimmers found by Bluetana with the same first 5 bytes of MAC address.

Table 3.5 shows five such groups. We list the difference in MAC address and the geographic

distance between the closest MACs in each group. Skimmers in group 1 and 2 were recovered

at gas stations in the same county, separated by at most 17 miles. From LE sources, we know

that criminals often plant skimmers across multiple stations in a given city/county, and the MAC

address data collected indicates this. Groups 3-5 are the most interesting, as the closest MACs

in the same group are in stations across different counties. The closest MACs in group 5 are

at stations separated by 448 miles. This may seem surprising, but LE informs us that skimmer

crews avoid detection by migrating from city to city.

3.6 Future Work and Conclusion

As new skimmer detection tools gain popularity, criminals will adapt skimming designs to

evade detection. We expect future skimmers will use techniques such those described in Section

3.4. Similar to Bluetana, future work in this area should emphasize designing easy-to-deploy

systems for detecting skimmers, and evaluating their effectiveness with large-scale studies.
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Push-back from banks and card issuers has led to wide-scale adoption of EMV in retail

PoS systems. However, EMV adoption in gas stations across the U.S. has been slow due to

high costs. Therefore, Visa and Mastercard have pushed the EMV adoption deadline for gas

stations from 2017 to October 2020 [45]. As gas stations begin migrating to EMV, skimmers

targeting EMV will become more common. Future research should focus on the detection of

EMV “shimmers” that are gaining in popularity.

Finally, we believe gas pump skimming is the harbinger of an era of attacks using illicit

wireless access links. For example, there is an internal Bluetooth-based implant for unlocking

door access control systems [20]. Future work should also identify other systems that are

vulnerable to using such illicit links.

In this chapter, we presented results of a 19-month-long measurement study of Bluetooth

scanning as a mechanism to detect illicit internal gas pump skimmers. Our evaluation showed that

link layer characteristics of Bluetooth-based internal skimmers can be distinguished from other

Bluetooth devices commonly seen at gas stations. We detected, and LE recovered, 64 skimmers

at 34 gas stations across four states in the U.S. For 33 of the detected skimmers, Bluetana was the

only source of information that prompted investigators to conduct an inspection. In conclusion,

link-layer information revealed in Bluetooth scans is effective at detection of illicit wireless

access links at public locations, even in the presence of tens of other Bluetooth devices.

Chapter 3, in part, is a reprint of the material as it appears in Usenix Security Symposium

2019. Nishant Bhaskar, Maxwell Bland, Kirill Levchenko, and Aaron Schulman. The dissertation

author was the primary investigator and author of this paper.
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Chapter 4

Physical-Layer Wireless Signal Informa-
tion for Tracking a Mobile Device

Wireless scans also reveal physical-layer information from the wireless signal, that can

uniquely identify a wireless transmitter [29, 59] Attackers can misuse these wireless transmitter

properties to perform targeted tracking of wireless devices. In this chapter, I describe the results

of a field measurement study to understand the feasibility of such a targeted tracking attack

in real-world public locations, when the target wireless access link is “hidden in the noise” of

hundreds of other wireless devices. In particular, the field study was aimed at demonstrative

effectiveness of a tracking attack on a specific type of wireless access link — Bluetooth LE

enabled personal mobile devices.

The mobile devices we carry every day, such as smartphones and smartwatches, increas-

ingly function as wireless tracking beacons. These devices continuously transmit short-range

wireless messages using the Bluetooth Low Energy (BLE) protocol. These beacons are used to

indicate proximity to any passive receiver within range. Popular examples of such beacons in-

clude the COVID-19 electronic contact tracing provided on Apple and Google Smartphones [30]

as well as Apple’s intrinsic Continuity protocol, used for automated device hand-off and other

proximity features [9].

However, by their nature, BLE wireless tracking beacons have the potential to introduce

significant privacy risks. For example, an adversary might stalk a user by placing BLE receivers
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near locations they might visit and then record the presence of the user’s beacons [11, 107]. To

address these issues, common BLE proximity applications cryptographically anonymize and

periodically rotate the identity of a mobile device in their beacons. For instance, BLE devices

periodically re-encrypt their MAC address, while still allowing trusted devices to determine if

these addresses match the device’s true MAC address [25]. Similarly, COVID-19 contact tracing

applications regularly rotate identifiers to ensure that receivers cannot link beacons from the

same device over time [10].

While these mechanisms can foreclose the use of beacon content as a stable identifier,

attackers can bypass these countermeasures by fingerprinting the device at a lower layer. Specifi-

cally, prior work has demonstrated that wireless transmitters have imperfections introduced in

manufacturing that produce a unique physical-layer fingerprint for that device (e.g., Carrier Fre-

quency Offset and I/Q Offset). Physical-layer fingerprints can reliably differentiate many kinds

of wireless chipsets [38, 29, 54, 104, 87, 62, 84, 27], including a recent attempt to distinguish

10,000 WiFi [59] chipsets.

However, no prior work has evaluated the practicality of such physical-layer identification

attacks in a real-world environment. Indeed, prior to BLE tracking beacons, no mobile device

wireless protocol transmitted frequently enough—especially when idle—to make such an attack

feasible. In contrast, today it is common to find tens and hundreds of personal devices transmitting

these BLE beacons at all public locations – office buildings, public library, coffee shops and

others. For an attacker, even with a precise fingerprint, locating one target device in such

public locations is a needle in a haystack problem — we don’t know the limitations to uniquely

differentiating one BLE device in this "noise" of several other BLE devices.

In this chapter, we take an empirical measurement approach to understanding the practi-

cality of this tracking threat. We develop a technique to estimate high precision fingerprints from

BLE beacons. We then perform BLE beacon data collection in lab on devices that we control,

and also uncontrolled data collection of BLE beacons from mobile devices seen at a variety of

public locations. Using our fingerprint technique, we analyze these beacons from real-world
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devices to understand the scope of this privacy threat, and how likely is an attacker at being

successful in locating their target. In particular the contributions of our work are as below:

1. Using lab-bench experiments on BLE devices we own, we identify four primary challenges

to identifying BLE devices in the field: (1) BLE devices have a variety of chipsets that

have different hardware implementations, (2) applications can configure the BLE transmit

power level, resulting in some devices having lower SNR BLE transmissions, (3) the

temperature range that mobile devices encounter in the field can introduce significant

changes to physical-layer impairments, and (4) the low-cost receivers that an attacker can

use in the wild for RF fingerprinting may be significantly less accurate than the tools used

in prior studies [29].

2. We perform an empirical study through a set of field experiments to evaluate how signifi-

cantly these challenges diminish an attacker’s ability to identify mobile devices in the field.

We leverage the fact that BLE tracking beacons are already used on many mobile devices

to perform an uncontrolled field study where we evaluate the feasibility of tracking BLE

devices when they are operating in public spaces where there are hundreds of other nearby

devices. To the best of our knowledge, our work is the first to evaluate the feasibility of an

RF fingerprinting attack in real-world scenarios.

Through these empirical studies, we show that even when there are hundreds of devices

we encountered in the field, it is still feasible to uniquely identify a specific mobile device by its

physical-layer fingerprint. However, we also observe that certain devices have similar fingerprints

to others, and temperature variations can change a device’s metrics. Both of these issues can

lead to significant confusion in distinguishing mobile devices. In summary, we find that physical

layer tracking of BLE devices is indeed feasible, but it is only reliable under limited conditions,

and for specific devices with extremely unique fingerprints, and when the target device has a

relatively stable temperature.
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4.1 Background

In this section, we define the threat model for a tracking attack on a BLE based mobile

device. Following that we provide details on how extensive the threat is by exploring how all

popular personal mobile devices are continuously and frequently transmitting BLE beacons.

4.1.1 Threat model: Passive fingerprinting of BLE mobile devices

We consider an attacker that intends to detect when the target – a particular user possessing

the target mobile device — is at a specific location (e.g. a room in a building or a crowded public

place). The attacker must possess a software-defined radio (SDR) to capture the raw I/Q data

of the BLE beacons transmitted by nearby mobile devices. Even though a lot of SDR tools are

expensive, we show in Section 4.3.4 that a modest hobbyist-level SDR (∼$150) is sufficient for

the attacker.

The attacker first captures a fingerprint of their target’s mobile device. They do so by

getting close to them and capturing BLE beacons from their mobile device. Then they use these

BLE beacons to estimate unique physical-layer properties of the BLE transmitter hardware, such

as CFO and I/Q offset – these define the fingerprint of the target mobile device.

Armed with the fingerprint of their target, the attacker sets up the receiver at the eventual

attack location where they want to track the target. The attacker captures beacon packets from

all mobile devices at the location, estimates the physical-layer properties and compares it to

the target fingerprint. If the fingerprint matches, the attacker knows that the target is at the

location. The more frequently the BLE device transmits, the more likely the attacker is to receive

a transmission if a user passes by. Also, the more accurate the fingerprinting technique is, the

better the attacker can differentiate the target from other nearby devices.
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Table 4.1. BLE beaconing behavior of popular mobile devices.

Product OS # of adverts/minute

iPhone 10 iOS 872
Thinkpad X1 Carbon Windows 864
MacBook Pro 2016 OSX 576
Apple Watch 4 iOS 598
Google Pixel 5∗ Android 510
Bose QC35 Unknown 77
∗Only beacons with COVID-19 contact tracing enabled.

4.1.2 Extent of threat: Popular mobile devices are vulnerable

Increasingly, mobile devices are adding BLE beacons to provide new features. Most

notably, during the COVID-19 pandemic, governments have installed software on iPhones

and Android phones to send constant BLE advertisements for digital contact tracing: devices

listen for nearby transmissions to determine if and for how long another device was nearby.

Also, Apple and Microsoft operating systems have recently added BLE beaconing to their

devices for two inter-device communication features: lost device tracking, and seamless user

switching between devices (e.g., Apple’s Continuity Protocol, Microsoft’s Universal Windows

Platform) [23]. Therefore, BLE beacons are now common on many mobile platforms, including:

phones, laptops, and smartwatches.

Fingerprinting and tracking a BLE device requires the device to act like a tracking

beacon: it must transmit continuously and frequently. We observed the BLE behavior of popular

devices to determine if they transmit continuously, and how frequently they transmit if they do.

Specifically, we isolated six popular devices in a Faraday cage—ensuring they were the source

of the transmissions—and we used an SDR sniffer to collect all BLE advertisements (i.e., BLE

beacons) transmitted on any of the three advertising channels. We observed the following:

1. Mobile devices send BLE beacons continuously: We observed continuous BLE bea-

coning from all the six mobile devices shown in Table 4.1. Even when all of these mobile

devices have their screens off (e.g., they are in their user’s pocket), they continuously
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transmit BLE beacons. Indeed, this is a feature that is necessary for the proper function of

the beacon applications such as contact tracing. Continuous beaconing is a significant new

threat compared to the behavior of other protocols on mobile devices that only transmit

intermittently (e.g., periodic WiFi scanning).

2. Mobile devices send hundreds of BLE beacons per minute:

Table 4.1 also shows the average number of BLE beacons (i.e., BLE advertisements) we

observed per minute from each device. We observe that all of these devices transmit

frequently—hundreds of packets per minute—even when the device is otherwise idle

(e.g., screen off). Transmitting hundreds of advertisements per minute makes it feasible to

produce a physical-layer fingerprint quickly: even if the device is in range of the sniffer

for a few seconds (Section 4.4).

4.2 BLE Tracking Toolkit

In this section I present a high-level overview of the algorithm we use in this work to

estimate the physical-layer properties of the BLE transmitters. The details of the algorithm are

outside the scope of this dissertation, and therefore I only present the high level intuition to

obtaining high-precision fingerprints from BLE beacons.

The hardware imperfections that lead to the fingerprint arise from the underlying man-

ufacturing variations in BLE transmitter hardware. These manufacturing variations lead to

non-idealities in the received BLE beacon signals, which we can measure to derive the finger-

print. In particular, most mobile devices feature an integrated single-chip WiFi+ BLE transmitter,

which has a shared I/Q frontend. Therefore, the BLE transmissions are impacted by the same

hardware imperfections as the WiFi transmitter. For our work, we explore the following specific

hardware imperfections:

1. CFO: The Carrier Frequency Offset (CFO) is a shift in the carrier frequency from the

61



Digital to
Analog

Digital to 
Analog

Oscillator

cos

sin

Real

Imag

RF
out

WiFi 
baseband
generator

BT/BLE 
baseband
generator

packet bits 
in

CFOIQ Imbalance

IQ Offset

Figure 4.1. Architecture of WiFi/BLE combo chipsets

ideal channel value. This arises due to the frequency error of the crystal oscillator that is

used to generate the carrier signal that feeds into the mixer in the RF frontend.

2. I/Q imperfections : I/Q Offset happens due either the leakage of the carrier signal onto

the transmitter output due to non-idealities of the mixer hardware, or due to an DC offset on

the baseband signals. I/Q Imbalance is a deviation in amplitude and phase of transmitted

signal, due to the mismatch between similar analog components on the in-phase and

quadrature-phase paths.

Figure 4.1 shows the architecture of a typical BLE transmitter, and the sources of the imperfec-

tions described above.

Unfortunately, we can’t reuse techniques from prior work on WiFi physical-layer finger-

printing to measure these properties precisely for Bluetooth LE. Prior techniques rely on the

presence of a long known sequence or preamble as a reference to measure the signal distortions

due to CFO and I/Q imperfections accurately BLE has a very short preamble and that leads to

extremely inaccurate estimates of CFO and I/Q from prior techniques.

However, a key insight about BLE decoding helps us. Unlike WiFi, BLE uses simpler

GFSK modulation and does not require us to compensate CFO and I/Q imperfections before

decoding. Consequently, we can decode the entire BLE beacon packet and obtain the full bit

sequence correctly. This bit sequence can be used to create a reference signal which is much

longer (packet length), and that can provide us improved estimates for our fingerprint.
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With a longer reference signal available as a starting point, the fingerprint estimation al-

gorithm estimates the hardware imperfections. Starting with the initial pure signal, the algorithm

iteratively adds CFO and I/Q imperfections until our pure starting signal looks similar to the

received signal. To do so it models the imperfection estimation as an optimization problem, with

the BLE signal modelled under impact of the imperfections. Using this approach, we were able to

achieve high precision estimates as compared to using just 8 bits of preamble. Furthermore, the

estimates over a packet are obtained as an average across all the raw samples in the packet, which

minimizes impact of SNR changes, resulting in robust estimates of CFO and I/Q imperfections.

Finally, for the actual tracking attack the attacker estimates CFO and I/Q from multiple

beacon packets from the same device. The actual fingerprint is represented as a distribution

of CFO and I/Q across multiple packets. When actually tracking the target at the destination,

the statistical distance of the distributions of a newly observed device and target are compared

against a threshold.

4.3 Real-world challenges to physical-layer identification

Using our high-precision fingerprint technique, we perform an empirical analysis in

lab conditions to understand the limitations of this physical layer identification. There are five

primary challenges that limit the effectiveness of tracking BLE devices based on their physical-

layer fingerprint. For each challenge, we perform controlled experiments or theoretical analysis

to investigate how significantly they affect fingerprinting accuracy in practice, and in turn the

ability of an attacker to uniquely identify their target. We found that BLE tracking attacks are

likely to be feasible in practice. However, the attacker’s ability to identify a specific device

reliably will vary depending on several factors that are out of their control.

4.3.1 Uniqueness of BLE fingerprints

BLE transmitters must have unique imperfections if an attacker wants to differentiate their

target from other nearby devices. To evaluate how similar BLE fingerprints are in practice, we

63



-30 -20 -10 0 10 20
CFO (KHz)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

IQ
O

ffs
et

M
ag

ni
tu

de

iPhone
ESP32-Combo Chipset
TI-BLE only Chipset

Figure 4.2. Comparing the fingerprints of 48 BLE chipsets

compare the fingerprint of many devices across three different popular BLE chipsets. Specifically,

we captured the fingerprint of eight recent iPhones with WiFi+BLE combo chipsets, 20 ESP32

WiFi+BLE microcontroller chipsets, and 20 TI CC2640 BLE-only chipsets used in low-power

devices (e.g., fitness trackers). We captured 100 packets using a high-quality SDR (USRP N210)

from each of these devices in a controlled environment (i.e., an RF isolation chamber). We

computed the fingerprint of each device across all 100 packets using the methodology described

in the previous section.

Figure 4.2 shows the mean of the fingerprint metrics for each of the 48 devices. We

plot only the CFO and I/Q offset metrics to simplify the visualization, adding I/Q imbalance

does not change the conclusions of the experiment. Overall, most of the 48 devices have unique

fingerprints. However, there are a few devices that have similar fingerprints, making them more

difficult to uniquely identify. The distribution of device fingerprints also appears to be dependent

on the chipset. Namely, there are striking differences in how the I/Q offset metric is distributed

between different chipsets. For instance, the ESP32 devices have a much larger range of I/Q

offsets than the iPhones, which may be because ESP32s are low-end chipsets compared to the

high-performance WiFi+BLE combo chipsets used in iPhones.

Surprisingly, the TI BLE-only chipsets all have negligible I/Q offset. Recall in Section 4.2,
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we described how unlike WiFi, BLE is not an inherently I/Q modulated protocol; therefore,

the TI’s BLE-only chipset may have I/Q offset because it may not use an I/Q modulator. We

confirmed this suspicion by finding a technical report that describes the TI BLE chipset radio

architecture: it uses a PLL-based (non-I/Q) modulator [105].

Summary

An attacker’s ability to uniquely identify a target device’s fingerprint depends on the BLE

chipset it is using, as well as the chipsets of the other devices nearby. Distinguishing devices

with the same chipset is likely more difficult than distinguishing devices with different chipsets.

This may make tracking attacks difficult in practice because targets are likely to use the same

popular devices (e.g., iPhone).

4.3.2 Temperature stability of BLE fingerprints

A device’s BLE fingerprint must be stable to track over time across multiple locations.

However, a device’s CFO may drift when the temperature of the device changes. CFO is a product

of imperfections in the crystal oscillator used to generate the transmitter’s center frequency (e.g.,

2.480 GHz), and the frequency error of a crystal oscillator has a well-defined relationship with

its temperature called the “Bechmann curve”. The relationship between temperature changes

and I/Q imperfections is not as well understood as with CFO.
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Smartphones are particularly exposed to temperature variations. Their internal tempera-

ture can significantly change due to internal components heating up (and cooling down) when

activity changes, and they also experience a variety of ambient temperatures [61]. However, it

is possible that smartphones do not have instability in their BLE transmissions. The impact of

temperature on CFO is dependent on the cut angle and face of the crystal [36], and smartphones

may use high-quality crystals that have less frequency drift due to temperature changes. Also,

smartphones may use temperature compensated crystals as they may be required for high-data

rate cellular communication chipsets.

We performed controlled experiments to observe how temperature affects CFO and I/Q

offset of a typical smartphone. We tested the effects of internal components changing temperature

by playing a graphics-heavy game (Asphalt 9), and the effects of ambient temperature by putting

an idle phone into a user’s pants pocket. Our test device was a common smartphone, a Moto G6,

and it was running a COVID–19 contact tracing app to generate BLE transmissions. Each test

ran for 15 minutes. During the tests we captured the fingerprint metrics from each BLE packet

with a USRP N210. Simultaneously, we also captured readings from all the internal temperature

sensors of the device. We only present the temperature sensor data that most closely correlated

with the changes in CFO, which was the Power Management Integrated Circuit’s temperature

sensor.

Figure 4.4 shows the per-packet variation in CFO and IQ offset during the 15-minute

tests. We do not show the variation in I/Q imbalance as it as we found it has a similar relationship

to temperature as I/Q offset. For the game experiment, we observe that the CFO has a linear

relationship to the changes in temperature. When the game begins, the CFO increases, and

when the game ends, it decreases. At the peak internal temperature (+10°C above baseline), we

observe a significant CFO deviation (7 kHz). For the in-pocket experiment, the peak change

in CFO is much less than the game experiment (2 kHz). However, it is still significant enough

to introduce confusion with other devices that have similar I/Q metrics (Figure 4.2). Finally,

figure 4.4 show that I/Q offset (and I/Q imbalance which is not shown) does not correlate with
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Figure 4.4. Stability of CFO and I/Q offset when (a) playing a GPU-intensive game and (b)
putting the phone in a pocket

temperature in both the cases.

Summary

Device temperature changes significantly change the CFO a smartphone, but not the I/Q

imperfections. If an attacker tries to track a device when it is under heavy use, it will need to

allow for significant differences in CFO from the initial fingerprint, which may result in increased

confusion with other nearby devices. Also, putting an idle device in a user’s pocket changes

the CFO significantly enough to cause confusion as well. Ideally, an attacker would both get

an initial fingerprint, and try to identify the device, in the of the most common use case for the

device: idle in the user’s pocket.

4.3.3 Differences in BLE transmitter power

BLE transmit power affects how far away an attacker can track a target. If some devices

have lower transmit power, it is more difficult for an attacker to capture their beacons. One may

assume that all similar devices (e.g., smartphones) would use similar transmit power—especially

when they are running the same popular app. In particular, we would expect similar transmit

power for the same contact tracing apps, where transmit power correlates with distance where
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the contact occurred. However, transmit power is configurable: BLE APIs on mobile devices

allow applications to set their beacon transmit power to match the needs of the application.

We measured the received SNR of BLE beacons from several popular smartphones while

they were running the Apple/Google COVID–19 contact tracing app. The measurement was

performed with a USRP N210, and all the phones were placed at the same distance (15 feet)

from the USRP. We performed this measurement on five different phones, running latest version

of iOS and different versions of Android. We installed the same official California COVID–19

contact tracing app on all the devices. Then, we averaged the SNR over 100 received packets

from each of the devices.

Figure 4.5 shows that the iPhone 8 has an SNR 10 dB higher than all other Android

phones we tested. Therefore, the iPhone’s BLE beacons are likely to be received considerably

farther away than the other devices. Anecdotally, we observed that an iPhone’s COVID–19

contact tracing beacons 7 meters farther than any of the Android devices we tested1.

Summary

There can be significant differences in BLE transmit power across devices, and even

across apps running on devices. We observed that iPhones transmit COVID–19 contact tracing

beacons with significantly higher power than Android devices. Consequently, attackers may be

able to track iPhones from a farther distance than Android devices.

4.3.4 Quality of an attacker’s sniffer radio

Physical-layer fingerprinting attacks can require an expensive high-quality Software-

Defined Radio (SDR) to execute. The problem is, an SDR’s receiver chain adds signal imper-

fections to the transmitted signals. If the SDR’s imperfections are unstable, they can make it

difficult to identify a device based on its previously captured fingerprint. On the other hand, the

more expensive the required SDR is, the fewer locations an attacker can deploy them to track

1Including other versions of the iPhone available at the time (e.g., Xr).
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their target.

Recently, several low-cost SDRs have become popular among hobbyists. However, the

stability of their receivers’ imperfections are unknown. We evaluate if one of the least expensive

SDRs has sufficient imperfection stability for BLE device tracking.

We compared the fingerprinting metrics captured by a high-end SDR, USRP N210

($3,400), and a low-end SDR, LimeSDR-Mini ($179). To make the comparison fair, we sent

BLE packets from a single iPhone device to both SDRs simultaneously. We computed the

average and standard deviation of our metrics to evaluate if the two devices observe the same

absolute imperfections, and if they have similar metric stability. Similar to prior experiments, we

captured 100 beacons to compute these distributions.

CFO

The USRP observed a mean of -4.78 kHz and a standard deviation of 102 Hz, while

the Lime-SDR observed a lower mean of -8.07 kHz but with a similar standard deviation of

114 Hz. The difference is in the mean CFO is likely due to manufacturing variations in the

SDR’s crystal oscillators. Both radios however use a TCXO-based oscillator, therefore their

CFO measurements will be stable even if the SDR’s temperature changes.
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I/Q metrics

A similar conclusion can be drawn about the differences between the observed I/Q

metrics. The USRP observed an average I/Q offset magnitude of 0.0145 and standard deviation

of 0.0017. While the Lime-SDR observed an average of 0.0203 but with a similar standard

deviation 0.0030. The I/Q imbalance was surprisingly similar across both devices, with a mean

amplitude of 0.991 for the USRP and 0.987 for the Lime-SDR, the corresponding standard

deviations were similar too (0.0016 and 0.0021).

Summary

Attackers can use lower-cost ($179) hobbyist-grade SDRs to do physical-layer attacks,

but they will likely have to calibrate the differences between their SDRs before they deploy them.

4.3.5 Mobility of target device

Physical-layer tracking would be impossible if the BLE fingerprint of BLE device changes

as it moves from one physical location to another. Specifically, fingerprints may change due to

differences in the target’s physical environment (e.g., multipath in one room vs. another), and

differences in motion of the target (e.g., walking vs. driving).

Physical environment

A change in the physical location of the target can alter the received signal’s SNR due to

changes multipath conditions. However, we observed that this appears to have an insignificant

impact on BLE fingerprinting metrics. We have observed through experiments that above a

certain minimum SNR (∼10 dB), changes in SNR do not impact identification accuracy.

Speed of Motion

A moving BLE device may experience a velocity-dependent frequency offset due to the

Doppler effect [114]. While this may cause a slight drift in the CFO of the BLE target device,

the impact is not significant for the frequencies that BLE operates at.
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For example, if a BLE device is moving at a velocity of 80 kilometers per hour, and the

receiver is stationary, the Doppler frequency offset at 2.4 GHz is about 180 Hz. This is only 5̃0%

of the median of standard deviation of CFO for BLE devices we observed in the field. Therefore,

even at relatively high speed motion, the Doppler shift doesn’t impact an attacker’s ability to

track devices.

Summary

Changing location, or speed, of BLE device has an insignificant impact on the attacker’s

ability to accurately fingerprint and identify a target device.

4.4 Field Evaluation

Several of the challenges described in the previous section raise the possibility that

there are realistic scenarios where an attacker may not be successful in identifying their target

device. Determining how often these errors happen in practice requires us to do a field study in

real-world locations. Fortunately, BLE devices constantly beacon, and these beacons contain

an anonymous identifier that is stable for 15-minutes. We leverage these properties of BLE to

perform a large-scale uncontrolled field study of how likely is it for an attacker to be confused

when searching for a target device.

To begin with, we assess how well our BLE tracking toolkit works, even though devices

may not have unique fingerprints, and their fingerprint can be affected by temperature variations.

We then provide a multi-day uncontrolled field study that shows the uniqueness of CFO and

I/Q offset for mobile devices when observing several hundreds of mobile devices. To the best

of our knowledge, this is the first uncontrolled experiment to evaluate the effectiveness of a

physical-layer tracking attack in practice.
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Data Collection

We collected two datasets of BLE beacons from uncontrolled mobile devices. The first

dataset was collected in public places that were likely to contain many stationary BLE-enabled

mobile devices, including: six coffee shops, a university library, a food court. We set up a USRP

N210 in each of these locations for approximately one hour, and opportunistically collected BLE

beacons. We observed hundreds of packets from 162 unique devices across all the locations.

We used this dataset to evaluate the false positive (and false negative) rate of our BLE tracking

toolkit. The second dataset was collected in a facility where many unique devices passed briefly

within range of our USRP N210. We observed dozens of packets from 647 unique devices over

the course of 20 hours of data collection. We used this dataset to evaluate the uniqueness of BLE

physical-layer fingerprints across a large number of devices.

Ethical Considerations

Our data collection is completely passive, and we only capture BLE advertisement packets

(i.e., beacons) that devices already broadcast indiscriminately with the intention of being received

by any nearby device. Many of these packets originated from pervasive BLE applications like

contact tracing and device discovery. To ensure we only capture BLE advertisement packets,

we configured our SDR to only capture BLE advertisement frequencies and mask off non-

advertisement channels [63]. Furthermore, we ensure that in the decoding stage only undirected

advertising packets are passed on to the analysis phase.

The device fingerprints we produce as part of the analysis in this work cannot be directly

linked to individual people. Moreover, the BLE advertising packets from which we produce

these fingerprints do not reveal any personally identifiable information about the user of the

transmitting device. We only performed full identification and tracking on 17 devices that we

controlled. According to our university’s IRB office, this work does not qualify as human

subjects research.
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Data Analysis

We fingerprint and identify devices using our BLE tracking toolkit described in Sec-

tion 4.2. We first determined how many packets from one device are needed in order to obtain

the fingerprint and then identification. To do this, we performed controlled experiments using

off-the-shelf ESP32 devices at different SNR values and different number of packets observed.

The observation was that to establish a fingerprint the attacker need only 50 packets from the

target BLE device, and this is sufficient even at low SNR values. We also observed that once

the fingerprint is established, a device can be identified or tracked by observing only 10 packets.

Considering that most mobile devices transmit several hundreds of BLE beacon packets per

minute, an attacker doesn’t need a lot of time to perform high-precision identification.

4.4.1 False Positives and False Negatives

In the following experiments, we evaluate the likelihood that our BLE tracking toolkit

confuses a device that is not a target with a target (False Positive), and the likelihood that it does

not identify a target when it is present (False Negative).

Given the absence of ground truth of device identities in our dataset, we relied upon the

fact that BLE devices have stable MAC addresses for ∼15 minutes (after with they re-randomize

the MAC address). Therefore, we used the MAC as ground truth that multiple packets received

were from the same device. However, a device’s MAC address can be randomized during our

data collection, causing us to incorrectly treat the same physical-layer fingerprint as two devices.

We mitigated this problem by only considering devices that we observed during one contiguous

period of time in each location where we did not observe any new devices, nor any devices that

appear to stop transmitting. This filtering left us with 162 devices to use for our false positive

and false negative evaluation.

We consider every device (MAC address) i ∈ {1,2,3, ...,162} as a target, and we train

our classifier to find that device’s fingerprint (Section ??). Then, for each of the other devices,
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we run the classifier to see if it identifies them as the target (i) device. If it does, then that is

considered a false positive. The number of false positives for target device i divided by the total

number of devices is the False Positive Rate (FPR) for device i. Next, we fingerprint each target

i and run the classifier to see if it fails to identify each device as itself. Each instance of this is a

false negative. We repeat this process for all the 162 devices (each time one of them is selected

as the target), and divide the result by the total number of devices to compute the total False

Negative Rate (FNR). We observe our classifier achieves a 2.5% FNR across all 162 devices.

Figure 4.6 shows the distribution of FPR for each of the 162 devices. The median FPR of

a device is only 0.62%. Moreover, 40% of the devices were not confused with any other device

(zero FPR), which implies many devices seen in the field have unique physical-layer fingerprints.

Owning a device with unique imperfections makes someone particularly vulnerable to BLE

tracking attacks. We also observed a small fraction of devices had an FPR as high as 10%.

Effect of temperature

The temperature of the devices we observe in the field were unlikely to experience

significant temperature changes during the course of our data collection. Therefore, we perform

a model-based simulation to evaluate the effect of temperature changes on FPR and FNR. Recall
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that temperature changes affect CFO because of the well-documented relationship between

frequency drift of crystal oscillators and their temperature (Section 4.3.1). Using the curves

in [36], we calculate the change in CFO (∆ f ) as temperature drifts further from the temperature

baseline when the device was fingerprinted (∆T ◦C). To ensure the target is not missed even if

the temperature changes are as large as ∆T ◦C, we modified the classifier to accept the device

as the target even if the CFO of the device is ∆ f away from the fingerprinted CFO of the target.

The consequence of increasing the range of acceptable CFO values is that it increases the chance

of observing a device whose CFO falls in the acceptable range, resulting in an increase in FPR.
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Figure 4.7. How oscillator temperature changes affect FPR.

Figure 4.7 presents the FPR as the change in temperature increases. We present the results

for both high-quality and low-quality crystals (i.e., different cutting accuracies), as the type of

crystal depends on the specific device being targeted. Temperature change causes significantly

less change in CFO (and thus less increase in FPR) for high-quality crystals (0 minute cutting

accuracy) compared to low quality crystals (8 minute cutting accuracy). For low-quality crystals,

FPR increases rapidly as the temperature increases. If the change in temperature is too significant

(25◦C), CFO becomes useless for identification: the FPR is the same as if we only used IQ offset

and IQ imbalance. In summary, temperature changes can severely limit an attacker’s ability to
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track a target device.

4.4.2 Uniqueness of imperfections

Recall that across the 162 devices observed in our first field evaluation dataset, we found

∼40% of the devices to be uniquely identifiable. However, is natural to ask, is the same true at

large scale? If the attacker were to observe several hundred devices over multiple days, will we

see a similar fraction of devices that are uniquely identifiable?

To answer this question, we performed a larger-scale field data collection. We placed an

SDR at the exit of a room where hundreds of different devices passed by each day. We recorded

the Apple/Google COVID–19 Exposure Notification BLE beacons transmitted by those devices

over the course of l0 hours on two days, separated by one week to limit the number of duplicate

devices. We computed the mean CFO and mean I/Q offset magnitude for each BLE MAC

address we observed in the beacons. The mean hardware imperfections are representative of the

fingerprint of the BLE device. To reduce the chance that we observed the same device with two

or more different MAC addresses, we filtered out devices which were observed for a duration

longer than three minutes2.

We observed 647 unique MAC addresses across the two 20 hours of data collection.

Figure 4.8 shows the 2-Dimensional histogram of the fingerprints of these devices, namely their

CFO and I/Q offset magnitude. The number of histogram bins were chosen so that the number

of bins (2500) is significantly larger than the total BLE devices observed. Each bin represents a

CFO range of ∼1.3 kHz, and an I/Q offset magnitude range of 0.00516. Devices that fall in the

same bin are considered to have indistinguishable hardware imperfections. We also show the

bounds of the 2D histogram that cover 36% (∼σ ) and 67% (∼2σ ) of the devices (σ because

imperfections tend to be normally distributed).

We found that 47.1% (305) of the devices were unique. This confirms that even in a

larger data set, ∼40% of devices are uniquely distinguishable. We also observed that devices

2Apple rotates addresses every 15 mins and Android every 10 mins.
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Figure 4.8. Histogram of imperfections across 647 BLE devices.

with overlaps did not overlap with many other devices. For instance, 15% (97) of the devices

had similar imperfections with only one other device.

4.5 Conclusion

In this chapter, we empirically evaluated the feasibility of physical-layer tracking attacks

on BLE-enabled mobile devices. We found that many popular mobile devices are essentially

operating as tracking beacons for their users, transmitting hundreds of BLE beacons per second.

We discovered that it is indeed feasible to get fingerprints of the transmitters of BLE devices,

even though their signal modulation does not allow for discovering of these imperfections at

decoding time.

We then performed a series of lab experiments to determine what challenges an attacker

would face in using BLE to track a target in the wild. We found that attackers can use low-cost

SDRs to capture physical-layer fingerprints, but those identities may not be easy to capture due

to differences in devices’ transmission power, they may not be stable due to temperate variations,
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and they may be similar to other devices of the same make and model. Or, they may not even

have certain identifying features if they are developed with low power radio architectures. By

evaluating the practicality of this attack in the field, particularly in busy settings such as coffee

shops, we found that certain devices have unique fingerprints, and therefore are particularly

vulnerable to tracking attacks, others have common fingerprints, they will often be misidentified.

Overall, we found that BLE does present a location tracking threat for mobile devices. However,

an attacker’s ability to track a particular target is essentially a matter of luck.

Chapter 4, in part, is a reprint of the material as it appears in IEEE Symposium on Security

and Privacy 2022. Hadi Givehchian, Nishant Bhaskar, Eliana Rodriguez Herrera, Hector Rodrigo

Lopez Soto, Christian Dameff, Dinesh Bharadia, Aaron Schulman. The dissertation author was

the co-primary investigator and author of this paper.
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Chapter 5

Reliable Scanning of Wireless Links Using
Low-cost Commodity Radios

5.1 Introduction

In Chapters 3 and 4, I demonstrated that information from wireless scans, at the link and

physical layers, can be used to perform targeted auditing of wireless access links, even in the

presence of several other such links at public places. However, this targeted auditing requires

that we actually have the tools to reliably obtain wireless scan data for every single wireless

link in range. This is a challenge because auditing entire metropolitan areas requires wardriving

data collection, but that means scanners will be in range for only a few seconds. In this chapter,

I explore whether we can design tools that make it feasible to scan reliably for all wireless

links, using just low-cost commodity hardware. In particular, the designed tool perform efficient

scanning of classic Bluetooth wireless access links.

Classic Bluetooth access links are distributed throughout large urban areas. Performing

a comprehensive security audit of this "network" of non-Internet connected links requires us

to perform wireless scanning over large geographic areas. Unfortunately conventional classic

Bluetooth scanning is a slow process[89]. Bluetooth scanning requires us to sequentially send

device discovery (inquiry) packets on certain frequency channels and then wait for responses in

a time slotted ALOHA manner [90]. This process has to be done for 32 inquiry request/response

channels spread across a bandwidth of 76 MHz in the 2.4 GHz ISM band. Additionally, Bluetooth
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devices turn on their receivers for only short durations periodically (10 ms every 1.24 sec) to save

power. This requires that the scanning must be sequentially repeated several times across all the

32 channels, to ensure that every device sends a response. Consequently, it takes at least 10.24

seconds to scan for every classic Bluetooth device within wireless range. In noisy environments,

this duration can get even longer (upto 40.96 seconds).

The slow speed of single-channel Bluetooth scanning makes existing scanning tools like

smartphones infeasible for reliably auditing all wireless links when wardriving. For example, at

a driving speed of 50 mph, scanning for Bluetooth devices within a typical urban range of 100

meters requires us to finish the scan in less than 4 seconds. Since current single-channel scanners

need ∼ 10 seconds to finish a scan, they will likely end up missing several devices in the scan

data. Consequently, we are left with an impossible choice – we cover an entire metro area while

continuously wardriving but miss Bluetooth devices, or we discover all Bluetooth devices in a

smaller geographic area by doing stop-and-go scanning.

Modern software-defined radios can be used to design faster Bluetooth scanning tools,

but they are limited by their cost and portability. Indeed, a portable low-cost scanning tool lets

us deploy hundreds of them to cover an entire urban area. SDRs speed up the scan process by

transmitting inquiry requests and receiving responses in parallel across multiple narrowband

classic Bluetooth channels. The received raw response signals can be backhauled to the host

computer, where they can be decoded to retrieve the information about the devices being queried.

There also exist several low-cost portable SDR options such as PlutoSDR that provide an

on-board processor and don’t need a separate host computer.

Unfortunately, the bandwidth requirements of a parallel multi-channel Bluetooth scanning

limit the choice of SDR hardware. Classic Bluetooth scanning requires us to send multiple

inquiry requests and receive inquiry responses across channels spread over an analog bandwidth

of 76 MHz in the 2.4 GHz band. This further requires a network backhaul rate of ∼2.5 Gbps,

which can only be supported using a 10G ethernet link. This makes low-cost SDR options such

as PlutoSDR unsuitable for a parallel multi-channel Bluetooth scanning application Higher end
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SDRs can be used for this purpose, but they are often neither portable nor low-cost.

In this chapter, we present an initial exploration into the design of a low-cost multi-

channel Bluetooth scanning tool, aimed at performing fast wireless audits across urban areas.

The key insight that helps us in the design of this tool is that classic Bluetooth uses separate

request and response channels. There are 32 inquiry request channels, and corresponding one-to-

one mapped (but different) 32 response channels. We can therefore send inquiry packets rapidly

across all channels, and responses will arrive at defined independent response frequencies after a

Bluetooth protocol defined time period (time slot). The specific contributions of this work are:

1. We present a Bluetooth-protocol compliant multi-channel scan algorithm to reduce the

scan time to under 10 seconds.

2. We present a novel technique for enabling low analog bandwidth SDRs (61.44 MHz) to

access Bluetooth channels outside of their receive bandwidth

The rest of the chapter is organized as follows: Section 5.2 provides a background on

the Bluetooth device discovery process, and prior work in speeding up Bluetooth scans. Section

5.3 presents the design of the multi-channel scan algorithm, resolving hardware issues with

multi-channel scan, and enabling out-of-band channel access for low-cost PlutoSDR. Section

5.4 provides initial testing results on the speed-up provided by the new scanning algorithm, and

we conclude in Section 5.5.

5.2 Background

5.2.1 Classic Bluetooth device discovery

This section describes the Bluetooth scanning approach as described in the Bluetooth

specification. This is the process used by current protocol-compliant scanning tools such as

smartphone apps. Classic Bluetooth device discovery follows a time-slotted ALOHA approach.

The scanner sends inquiry request packets on certain frequency channels and then listens for
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Figure 5.1. Classic Bluetooth device discovery process

responses in alternating 625µs time slots. Every request time slot, the scanner sends two inquiry

(ID) requests on two different channels, switching to a different pair of channels in the next

request time slot. Devices hear for ID packets and then respond with inquiry response (FHS)

packets that contain information that we intend to collect for device auditing (MAC address,

device type and other fields). Devices respond back with the FHS packets exactly 625 µs after

they hear the ID packet, on the corresponding response channels.

There are 64 non-overlapping 1 MHz channels used for discovery – 32 request channels,

and corresponding 32 response channels with a one-to-one mapping. This ensures the scanner

and device both know exactly which channels to receive/transmit ID/FHS packets on. Figure 5.2

shows the mapping of request and response channels. The scanner sequentially cycles through

16 of the 32 channels, sending ID packets on two channels every request time slot. This full set

of 16 channels comprises one inquiry train.

Bluetooth scanning is slow

The Bluetooth inquiry process was designed for low-power devices, and for avoiding

interference in the 2.4 GHz band. A Bluetooth device doesn’t listen constantly for ID packets; a

typical device will only listen for ID packets on one frequency channel for 11.25 ms in a 1.28

second interval. At the end of 1.28s interval, the device switches the frequency channel in order
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Figure 5.2. Mapping of inquiry request and response frequency channels for classic Bluetooth

to minimize impact of potential interference. Consequently, scanners need to repeat the inquiry

train several times to ensure that when a device actually wakes up it receives an ID packet. In

particular, scanners repeat an inquiry train of 16 channels 256 times (2.56s in total), and then

move onto the other train of 16 channels. In order to minimize collisions, the trains also swap

one frequency member every 1.28s. Consequently, the specification mentions that the inquiry

process must run for at least 10.24s in a noise-free environment, and at least 40.96s in a noisy

environment to guarantee we receive FHS packet from every device. This scan speed is very

slow, resulting in likely missed devices when driving around with a mobile scanner.

5.3 Designing a multi-channel BT scanner

5.3.1 A multi-channel Bluetooth scanning protocol

As discussed in section 5.2, conventional Bluetooth scanning using narrowband scanner

(e.g. smartphone) can take from 10.96s – 40.96s, which is very slow for wardriving applications.

This slow speed is a consequence of the sequential nature of transmitting ID packets, and the

fact that the Bluetooth devices are sleeping for majority of their time.

We define a new fast multi-channel scanning protocol, that can be implemented on

wideband SDRs. The following key insights help us define this faster scanning protocol:
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1. If a Bluetooth device is awake and hears an ID packet, it will reliably respond with a FHS

packet exactly 625µs later.

2. A Bluetooth device will listen for ID packets for 11.25ms in a 1.28s duration.

Instead of a train of ID packets spread over 10ms, we transmit ID packets on all channels

in a burst at the start of every request time slot, using the TX chain of the SDR. Figure 5.3

shows the packet transmissions and timing for this new scanning process. We ensure tight timing

control to ensure that the next burst is transmitted exactly two slots later (1.25ms later). Every

Bluetooth device that is listening, will respond back with a FHS packet at the start of the response

time slot. These packet signals can be received by the wideband RX chain of our SDR, and

decoded to obtain the relevant auditing information.

We need to repeat this burst a certain number of times to ensure every sleeping device

wakes up and responds. Since typical Bluetooth devices wake up once in a 1.28s interval (for

11.25ms interval), repeating the bursts for a duration of 1.28s should ensure we are able to get
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responses from every surrounding device. In a noisy environment, we may need to repeat these

bursts for double the time, or 2.56s. This is significant theoretical improvement over the scanning

speed possible with conventional scanning tools.

Handling PAPR issues

While our ID packet burst strategy improves the scanning speed, we cannot use this

packet burst directly on SDR hardware. In particular, ID packets have the exact same packet

contents, resulting in the same waveform being transmitted on all frequency channels at the exact

same time instant. This results in the overall wideband signal having pulses in the time domain,

which is problematic for the analog hardware of our SDR. These pulses result in a very high

Peak-to-Average-Power-Ratio (PAPR), and these get significantly distorted due to non-linearities

of the programmable amplifier (PA). In addition, high PAPR signals are difficult to represent

using the limited resolution of the DACs. This PAPR problem is commonly encountered with

radios transmitting OFDM signals, which is very similar to the multi-channel ID packets burst

for our scenario.

To reduce the PAPR of the overall wideband signal, we stagger the ID packets on

consecutive frequency channels by a small time duration. This breaks the frequency repetition,

and prevents formation of pulses in time domain. We offset each channel’s packet in time by a

N ∗ tstaggerµs, where N is the frequency channel index. Figure 5.4 qualitatively shows how our

staggering the ID packets reduces the peak power of the signal, making it more amenable to

transmission without distortion.

The value of tstagger is chosen with a few considerations. Firstly, most radios are designed

to handle PAPR of 15dB. We choose a stagger time to bring the PAPR of the signal below 15 dB

and ensure that the quantization noise is minimized. Secondly, the value of time offset should

be such that we can maintain the tight request and response slot boundaries. FHS responses

are received exactly 625µs after ID packets and a typical FHS packet is 366µs in length. In

order to ensure that we can receive this FHS response within the 625µs response slot boundaries,
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Figure 5.4. Reducing PAPR by staggering ID packets. Subfigures (a) and (c) show the time
domain wideband signal with and without the stagger, and (b) and (d) are the spectral plots

showing the time shift of consecutive ID packets. The peak power is significantly reduced with
the stagger.

our stagger time must be so that the last ID packet is transmitted ≤ 259µs. This can be done

for a tstagger ≤ 8.35µs. In Figure 5.5, we show the relationship between tstagger and the PAPR.

tstagger = 8.2µs is chosen for our system, as it gives the lowest PAPR within the constraints

mentioned above.
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Figure 5.5. Variation of PAPR with the stagger time offset of ID packet burst. Dotted line shows
the chosen stagger value for our system

5.3.2 Multi-channel scanning on low-end commodity SDR

Implementation of the multi-channel scanning protocol requires a hardware platform that

supports a wide analog bandwidth to cover the entire 76 MHz band, on both transmit and receive

sides. It also should have processing capability to process raw FHS signals at any response

frequency, decode and extract information from the FHS packets. There are several commodity

SDR platforms, e.g. USRP x300, that support a wide analog bandwidth (upto 160 MHz), and a

large network bandwidth (10Gbps ethernet link) to offload processing on a separate computer.

But such platforms costs several thousand dollars and need a separate computer for processing

and decoding, making them not portable or scalable and therefore unsuitable for large scale

empirical wireless auditing.

Instead, we chose to implement our system on the Analog Devices ADALM-PLUTO

(PlutoSDR) software radio. The PlutoSDR is a popular example of a new class of modern SDRs

– low-cost, standalone units with on-board processing capability. It costs only $230 and includes

analog front-end(filter, amplifiers), ADCs, DACs, FPGA as well as an ARM processor (667
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MHz dual-core) and 512 MB memory. The processor on the Pluto runs Linux and can support

on-board custom signal processing and packet decoding. The PlutoSDR is an ideal platform in

terms of cost and portability to implement our wardriving scanning tool.

However, there are certain hardware challenges that we have to overcome for using the

PlutoSDR for our multi-channel Bluetooth scanning tool. Firstly, the Pluto has a limited analog

bandwidth of 56 MHz on the receive side and 40 MHz on the transmit side. Since the Bluetooth

request and response channels are spread across a 76 MHz band, the PlutoSDR will be unable to

send ID packets and receives FHS packets across the entire Bluetooth band. Second, even for the

response channels it can sense, PlutoSDR’s sampling rate of 61.44 million samples per second

results in 245 MB of sample data per second on the receive side. The built-in processor is not

powerful enough to filter and decode in real-time this large amount of data. In the following

subsections, we provide some initial ideas on overcoming these hardware design challenges.

Extending the analog bandwidth

Classic Bluetooth has request channels spread across 76 MHz (2.402 GHz – 2.477 GHz),

and response channels spread across 63 MHz (2.414 GHz – 2.476 GHz). However, PlutoSDR

only supports an analog bandwidth of 56 MHz on transmit side, and 40 MHz on receive side,

resulting in some Bluetooth channels being out-of-band. As a consequence, the PlutoSDR won’t

be able to query and listen on all channels which will result in an unwanted increase in scan time.

To extend the analog bandwidth of the Pluto, a key insight comes from how request/re-

sponse channels are distributed in the 2.4GHz band. Request and response channels are inter-

spersed across the band, and the time slotted ALOHA nature of Bluetooth scanning means that

request channels are free during response time slots and vice-versa. Therefore, during response

slot if we can create an image of the out-of-band channels onto the free in-band channels,

we can easily receive those responses. Similarly, in inquiry slot we can transmit on the free

in-band channels and create images onto the necessary out-of-band inquiry channels. Figure 5.7
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Figure 5.6. Map of request/response channels showing out-of-band channels for PlutoSDR. The
dotted lines represent the analog bandwidth limits of the Pluto.

demonstrates this idea.
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Figure 5.7. Utilizing unused request and response channels for moving out-of-band channels
in-band and vice versa

To create these images, we can use an analog frequency mixer. However, that would

require us to generate the appropriate frequency shifts using an additional voltage controlled

oscillator, increasing the system cost and complexity. Instead, for our design we utilized an RF

switch as a mixer [115, 116] and generate the necessary TX and RX shifting frequencies (switch

control input) directly from the PlutoSDR’s FPGA. We use a shift frequency fT X = 40MHz for
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ID packets, and fRX = 25MHz for FHS packets. On the transmit side, the use of a square wave

as a switch input will generate harmonics even outside the 2.4GHz. We use a 2.4 GHz band

filter to remove these unwanted images. Figure 5.8 shows our system block diagram and the

remapped inquiry and response channels in our final system hardware.
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Figure 5.8. Extending the analog bandwidth of PlutoSDR. (a) shows the system block diagram
and (b) shows the new map of request/response channels with shifted images

Minimizing data backhaul using SparSDR

The PlutoSDR needs to listen for responses on channels spread across a wideband (56

MHz). Typically, this is done by running the analog to digital converters at a very high sampling

rate (61.44 Msps), receive the raw signal samples, and then decode them per channel to obtain

the Bluetooth device information (MAC address, device type). Unfortunately, this high sampling

rate will result in almost 245 MB of raw sample data that needs to be processed. The PlutoSDR

processor is not powerful enough to this in real-time, nor does it have sufficient on-board memory

to store this temporarily. Worse, the majority of this compute is unnecessary because (1) the

response channels only occupy 32 MHz of the total receive bandwidth, and (2) FHS packets are

not received all the time, most of the time we only get useless signals or noise.

To solve this problem, we utilized our previous project SparSDR [63]. SparSDR provides

the ability to compress the spectrum in both frequency and time. It lets us channelize the
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spectrum by masking out the frequency channels which are unused, allowing us to only receive

signals in the 32 MHz of actual response channels. Additionally, it lets us threshold the signal

level in the individual channels, ensuring that we only need to spend time processing signals that

are above a certain power level, and not waste resources processing noise samples. Coupled with

the fact that actual spectrum occupancy is very low even in noisy environments, SparSDR helps

us drastically reduce the amount of data the processor needs to handle. The processor now only

needs to process when there are valid signals above a certain power on the response channels.

5.4 Evaluation

We perform an initial experiment to evaluate the speedup in discovering classic Bluetooth

devices of our new multi-channel scanning protocol and bandwidth extension, over a conventional

smartphone scanner. For our target we chose the HC-05, a popular commodity off-the-shelf

Bluetooth module used in several applications in an urban area. In fact this module is so popular

that we even criminals use it to build credit card skimmers We took 8 HC-05 devices and put

them in an RF isolation box, isolating them from WiFi and other wireless signals. We connected

a USRP x300 in the box to sense all the requests transmitted by our tools, and the responses sent

by the HC-05 devices. The USRP constantly records the entire 80 MHz Bluetooth band to a

computer, capturing every single packet that is sent by any device in the setup. We first put a

smartphone with a Bluetooth scanning Android app (we used Bluetana from chapter) in the box

to use as the scanning tool. We run scanning app in constant scanning mode (with default scan

time settings) to discover all the eight HC-05 devices. We record all classic Bluetooth packets

using the x300 for 41 seconds (> 40.96s), and then process and decode the recorded requests

and responses. We then perform the same experiment using a PlutoSDR with our bandwidth

extension hardware, and running our multi-channel scanning protocol using a simple onboard

software.

Figure 5.9 shows the distribution of time to receive a response from each of the eight
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Figure 5.9. Empirical observations of Bluetooth device discovery time for (a) smartphone-based
scanning tool and (b) our improved low-cost scanning tool. Our tool significantly improves scan

time, making it more effective for wardriving.

devices, across 10 tries of the experiment for both the smartphone scanner and our low-cost

scanning tool. We observe that the average time of discovery across the 8 devices improves from

4.88s to 0.71s for our low-cost scanner. The variation in scan time from one trie to the next is

significantly lower for our fast scanning tool. Furthermore, we observe that the worst case scan

time for any Bluetooth device goes down from 9.93s to 2.03s, making this tool extremely reliable

and effective for wardriving data collection.

5.5 Conclusion

In this chapter, we presented the design of a low-cost multi-channel fast Bluetooth

scanning tool. We developed a multi-channel scanning protocol and resolved hardware challenges

of PAPR and analog bandwidth limitations of PlutoSDR. These measures allowed us to perform

this wideband multi-channel scanning on a low-cost commodity tool such as the PlutoSDR.

The new scanner significantly speeds up classic Bluetooth device discovery over conventional

single-channel smartphone scanners. By finding Bluetooth devices faster and more reliably, our

tool significantly reduces the chances of missing devices in Bluetooth scans during wardriving.

Our scanner therefore enables truly comprehensive urban scale audits of our distributed network

of "wireless ad-hoc" links.

92



Chapter 5, in part, is currently being prepared for submission for publication of material.
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Schulman. The dissertation author was the primary investigator and author of this material.
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Chapter 6

Conclusion

Wireless access links are an important component of various electronic computing

systems in urban areas. Securing these critical wireless links against attackers is crucial to the

safe operation of our computing systems. In this dissertation, I explored real-world security

and privacy problems associated with these wireless access links, by utilizing information

collected from wireless scans. In particular, through targeted auditing of wireless access links, I

investigated if attackers are hiding illicit wireless links in public computing infrastructure, and if

attackers are carrying out targeted attacks on popular personal wireless links. During the course

of multiple large-scale field measurement studies across urban areas, I demonstrated that indeed

we can reliably perform targeted auditing of wireless access links in public places even with

limited information in wireless scans, and that we can reliably scan for all observable wireless

devices while wardriving by using low-cost commodity hardware. I defended the following

thesis: To defend wireless access links spread across urban areas, it is feasible to: 1) use link

layer scan information to identify illicit wireless links, 2) use physical layer information in

wireless signals to attack a target wireless device, and 3) scan reliably for all wireless access

links when wardriving using low-cost commodity hardware

By utilizing link layer information from wireless scans, I demonstrated that defend-

ers can detect illicit wireless links in public infrastructure. In Chapter 3, I performed a field

measurement study over multiple states in the US to investigate the problem of illegal Bluetooth-
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based payment card skimmers at gas stations. We built a Bluetooth scanning app (Bluetana), that

was used by investigators to collect scan data across 1185 gas stations, and detect and recover

64 skimmers over a 19-month period. I observed that link layer characteristics of Bluetooth

devices in skimmers can distinguish them from other benign devices at gas stations. In particular,

predominately criminals utilize popular commodity modules with default Bluetooth properties.

Interestingly, I observed that criminals changing link-layer properties to hide the skimmers had a

counter effect, as the skimmers became more conspicuous. Finally, there are benign computing

systems in and around gas stations that utilize similar Bluetooth modules as skimmers, that may

cause confusion in detection. Overall though, Bluetooth scanning based detection is an effective

means of defending against the threat of these illicit wireless links.

By utilizing physical layer information from wireless signals, I demonstrated that

attackers can perform targeted tracking of wireless personal devices. In Chapter 4, I per-

formed multi-day field measurement studies across several real-world public locations, to

investigate the possibility of physical-layer tracking attack on BLE-enabled wireless access links.

Specifically, I examined the scenario in which an attacker uses the unique hardware imperfections

of the BLE radio obtained through Bluetooth scanning, to perform targeted identification of

a victim’s personal device (e.g. smartphone). I observed that a number of BLE access links

have very distinguishable hardware fingerprints, that makes it feasible to track them even in the

presence of hundreds of other devices in public locations. As an example, I observed that 47.1%

of the 657 BLE-enabled smartphones that were seen at a public facility were distinguishable

from the other devices. However, I also observed that several real-world factors that limit an

attacker’s effectiveness of such physical-layer tracking. For instance, certain devices may have

common fingerprints and can be easily confused; device and ambient temperature may impact

the measurement of these hardware fingerprints. Overall, physical layer information derived

from Bluetooth scans can be used by an attacker to target a particular wireless access link, but

their effectiveness is limited by several real-world constraints.

By performing multichannel scanning on commodity radio receiver, I demonstrate
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that it is feasible to reliably scan all wireless access links even when wardriving. Finally,

in Chapter 5, I presented a new Bluetooth scanner design, that enables faster enumeration

of classic Bluetooth access links compared to a smartphone-based scanner. Specifically, we

implement a scanning tool on a low-cost SDR platform that reduces theoretical maximum

Bluetooth scan time, ensuring reliable auditing of Bluetooth access links. To do this, I designed

a multichannel Bluetooth scan protocol that sends/receives Bluetooth inquiry requests in parallel

on all channels. I also resolved hardware limitations of low-cost PlutoSDR to perform this

parallel request/response, namely reducing the PAPR by staggering transmitted inquiry packets,

and using unused response channels with an RF switch to transmit inquiry request packets on

channels out-of-band for PlutoSDR. I observed that compared to a smartphone scanning app, our

implementation reduced the average scan time for real-world commodity Bluetooth devices by a

factor of 7x, allowing reliable scanning of access links even if in range for short time. Overall, we

can reliably scan for all wireless access links even while wardriving, by performing multichannel

scanning using a low-cost commodity radio receiver.

In summary, in the course of all this work, I have demonstrated that wireless scanning

based auditing is a feasible and reliable mechanism for securing diverse wireless access links

spread across urban areas.

6.1 Future Directions

The work in this dissertation is an initial foray into the vast but relatively unexplored

attack surface of wireless access links in urban areas. These wireless links are used in critical

computing systems unknown to us, and are potential targets or even under attack unbeknownst

to us. Through my work I have shown that wireless scanning based auditing is a practical and

insightful mechanism to reason about the security and privacy of these links. Furthermore, I have

shown that tools for performing effective wardriving-based auditing, can be made low-cost and

therefore accessible to the community at large. Beyond the tools and techniques themselves, the
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field measurement campaigns I undertook provided immense insights into attacker behavior and

their limitations and brought to light real-world threats that plague urban wireless access links.

This dissertation has laid the groundwork for several possible directions for future work.

Credit card skimmers and wireless personal devices are just a couple of examples of wireless

access links. In reality, wireless access links are utilized in many types of public infrastructure

all throughout urban areas. It is necessary for public utility and safety that this infrastructure be

operated safely. And yet despite their criticality, these wireless links are often undocumented.

This makes it difficult to reason about the potential security problems such as unauthorized

access, or even illicit links. A potential direction for future work can involve performing a field

measurement study similar to Chapter 3, albeit at a much bigger scale and targeting all types of

wireless access links (Bluetooth, WiFi, Zigbee) A metropolitan scale wireless scanning-based

auditing of all wireless access links in public infrastructure can help reveal potential weak links

for unauthorized access and also reveal illicit wireless links that have implanted inside the

equipment. This enumeration can be followed by security analysis of the potential weak wireless

access links, and then designing proactive defenses to prevent such misuse of the wireless links.

Another research direction that can be greatly beneficial is auditing of non-discoverable

devices. Indeed, during this work I targeted wireless access links that could be scanned for and

enumerated. While this represents the vast majority of wireless access links in use, there are

other devices which are set to be non-scannable or non-discoverable. This feature is a common

security mechanism provided by all wireless protocols, to ensure that once a device is associated

with a trusted device — e.g., Bluetooth access links is paired to a smartphone — it should be

not be visible in scans to any other scanners. This ensures that only trusted devices attempt a

connection to the device. While this feature has not been in use for licit wireless access links,

because of the additional burden of always maintaining the one device that is associated with the

non-scannable link, this feature has been used by criminals to hide their illicit wireless access

links from being detected. We don’t currently have reliable techniques (other than brute force) to

detect such non-discoverable devices. However, this problem has a different dimension that we
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must take into account — the ethical dimension. Indeed, if we were to design a technique to

bypass non-discoverability, we will be bypassing a key security feature used by a lot of legitimate

devices. Therefore, we need to design techniques that help us perform auditing of these links,

while at the same time maintain anonymity of legitimate wireless access links.

Finally, in Chapter 5 I demonstrated the design of a multichannel Bluetooth scanner

that can perform fast and reliable scanning of all Bluetooth links around. Another research

direction can be to extend this scanner to support multiple wireless protocols such as WiFi and

Zigbee. Indeed, WiFi, Zigbee and Bluetooth all share the 2.4 GHz ISM band, and therefore

wireless signals received at our SDR can capture packets from all these protocols. Furthermore,

a multi-protocol scanner will be immensely useful for comprehensive auditing of all possible

wireless links seen across urban areas. However, with the additional burden of backhauling and

processing additional packets from multiple protocols, it is possible that we may overwhelm

the PlutoSDR processor resulting in packet losses. Furthermore, it is tricky to perform timed

ALOHA style transmit and receive for certain protocols, when we must also schedule other

protocols. That said, the benefits of such a multi-protocol scanner make this an attractive research

direction to investigate into.
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Appendix A

Payment Card Skimmer Court Cases

The appendix contains excerpts from various public court documents related to cases of

credit card skimming. These excerpts provide anecdotal data about the monetary impact of the

skimmer problem.

A.1 Cashout Value

USA v. Hristov et al [80]

". . . Bank of America suffered a loss of $33,000 with 36 compromised customer accounts.

Citizens Bank suffered a loss of $91,580 with 74 compromised customer accounts . . . "

USA v. Cristea et al [34]

". . . Altogether, on February 21,2016, FBI surveillance observed Cristea, Co-conspirator

#1, and Co-conspirator #2 go to approximately 12 different locations, where, according to

CardTronic’s records, they withdrew at least $7,000 from at least 18 First National Bank accounts

. . . "

USA v. Khasanov et al [7]

". . . USPS agents thereafter conducted record checks on the purchased USPS money

orders and discovered that 10 of the 57 money orders had been purchased with 5 payment

numbers issued by Citibank . . . "
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Date Location of USPS Amount

Aug 4 2017 Waldorf, MD $2,904.80

Aug 7 2017 Washington, DC $1,492.80

Aug 7 2017 McLean, VA $1,400.00

Aug 7 2017 Washington, DC $1,803.20

Aug 7 2017 Hyattsville, MD $792.05

USA v. Aqel [98]

". . . the Probation Officer also notes that the actual loss to victims was $8,327.58. Id.

Similarly, the Probation Officer notes that while Mr. Aqel possessed 120 stolen credit card

numbers, only 23 of those numbers were used to make purchases . . . "

USA v. Rodriguez et al [57]

". . . Between on or about July 7, 2016, and on or about July 20, 2016, Defendant ...

attempted to conduct approximately 133 retail transactions totaling in excess of $27,000 ... using

approximately 90 counterfeit access devices re-encoded with credit/debit account information

that were obtained by a skimming device placed on the point of sale terminal of a gas pump . . . "

Application for Search Warrant, 2:18mj1277[12]

". . . On April 14, 2016, a man (later identified as Estrada) used a fraudulent Visa credit

card and a fraudulent MasterCard to purchase two $300.00 gift cards from the Kohl’s store . . . "

USA v. Konstantinov et al [8]

". . . In total, the defendants compromised approximately 524 debit card accounts and

made approximately 779 fraudulent withdrawals, totaling $348,376.80 . . . "
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A.2 Credit/Debit cards per skimmer per day

Application for Search Warrant, 2:18mj1277 [12]

". . . On September 9, 2016, an employee at Jilly’s Mobil . . . reported to Detective Craig

Meyer that he had found what appeared to be a skimmer on pump #8 . . . Detective Meyer

downloaded and exported the data stored on the skimmer taken from Jilly’s Mobil pump #8. The

results showed data for 221 victim credit card accounts . . .

. . . Detective Meyer reviewed the video surveillance footage for Jilly’s Mobil from

September 1, 2016. At 1:38 PM on September 1st, a red Ford Explorer drove to pump 8. The

Ford Explorer was positioned in a manner whereby the opened passenger door blocked the view

of the gas pump by the store employee inside the Jilly’s Mobil . . . "
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