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Abstract

Prediction and Understanding of Functional Topological and Spintronic Materials from
First Principles

by
Sophie Frances Liss Weber
Doctor of Philosophy in Physics
University of California, Berkeley

Professor Jeffrey B. Neaton, Chair

In this thesis we use first-principles density functional theory (DFT) and related methods to
predict and understand the properties of two categories of materials with particular promise
for technological applications: topological semimetals, and antiferromagnets whose magnetic
order can be controlled by electrical current.

Topological semimetals (TSMs), a subset of topological materials which are the partic-
ular focus of the first part of this thesis, have robust band crossings in reciprocal space
protected by crystalline symmetries and characterized by mathematical invariants. They
exhibit a variety of exotic phenomena such as ultrahigh mobility of electrons, giant magne-
toresistance, and chiral anomalies. Moreover, analogously to the better known topological
insulators (TIs), the “bulk-boundary correspondence”, related to the change in topological
invariant in going from material to vacuum, implies the existence of electronic states local-
ized at the compound surface which can differ significantly from the semimetallic bulk states
in TSMs. The development of group-theoretical methods to identify TSMs and TIs have
revealed that TSMs are far more ubiquitous than initially hypothesized; to date over 10000
candidates have been identified. While this might seem to imply that the goal of harnessing
properties of TSMs for practical purposes is a solved problem, most candidate materials have
one or more features which make experimental manipulation and detection of the topolog-
ical properties difficult if not impossible. If the symmetry-protected band crossings occur
at energies far from the Fermi level, or if they are obscured by other trivial bands at the
same energy, the topological signatures will be obscured. Thus, the identification of specific
materials, structural motifs, and possible tuning parameters through which one can realize
“functional” T'SMs is highly desirable.

The first section of this thesis describes a set of studies focused on the interplay of symme-
try, orbital character and magnetism in yielding electronic structures with controllable TSM
features near the Fermi level and free from interfering trivial bands. First, we use a combina-
tion of DFT and tight-binding to examine the electronic structure of a previously synthesized



compound, TiRhAs. We find that TiRhAs hosts a topological nodal line protected by a mir-
ror plane nearly exactly at the Fermi level, with no other energetically degenerate trivial
bands. Next, in combination with experimental ARPES data which confirmed our DFT
findings, we investigate the transition metal dichalcogenide (TMD) NiTe,, and find that is a
Dirac semimetal with a bulk tilted Dirac cone and topological surface states. While previous
isostructural MX, (M = Pd, Pt: X = Te, Se) compounds have been shown to host similar
“ladders” of topologically protected bulk and surface states, the features of interest occur
at large binding energies which render their topological properties irrelevant to transport.
We show that the increased hybridization between Ni d and Te p states as compared to
the other MX, compounds is responsible for tuning the Dirac cone very close to the Fermi
level; thus substitution of the transition metal element is an effective method for designing
functional TSMs within this class of TMDs. Finally, we examine the possibility of realizing
TSM features in compounds isostructural to the multiferroic hexagonal manganites. This
was motivated by the numerous order parameters in multiferroic compounds which can be
controlled by external fields; thus, a multiferroic compound with TSM features in a partic-
ular phase would provide an opportunity to switch from nontrivial to trivial topology by
tuning of the ferroic order parameters. We find through our DFT calculations that by en-
forcing a metastable ferromagnetic order in the nonpolar centrosymmetric phase, hexagonal
YCrO3 and YVO3 become topological nodal line semimetals, in contrast to the insulating
band structures that occur with the ground state antiferromagnetic order of the transition
metal ions.

The second section of this thesis focuses on first-principles characterization of “functional
materials” in which the feature to leverage for functionality is magnetic, rather than topolog-
ical, order. We focus on antiferromagnetic (AFM) materials. There has been a recent surge
of interest in using AFMs rather than their traditional ferromagnetic (FM) counterparts for
spintronic devices whose magnetic order can be manipulated by an electrical current. The
vanishing bulk magnetization of AFMs makes them particularly robust to magnetic field
perturbations, and the limiting rate of spin dynamics (i.e. the rate at which spins can ro-
tate) in AFMs is order ~ THz as opposed to ~ GHz for FMs.

Our studies focus on one example, the iron-intercalated TMD, Fe; 3NbS,. The triangular
lattice of Fe ions has an antiferromagnetic (AFM) order which can be manipulated with elec-
trical pulses of very low current density. While numerous experimental characterizations have
been performed on this compound, ambiguities regarding the magnetic ground state, spin ex-
change constants, and the specifics of the current-induced magnetization dynamics, remain.
In one study, we calculate the nearest-neighbor Heisenberg exchange constants in Fe;/;3NbS,
and find that competition between strong nearest-neighbor interplanar and intraplanar Fe
exchange constants is responsible for an observed half-magnetization plateau. In the second
part of our first-principles characterization of Fe;/;3NbS;, we explore the working hypothesis
that the current-induced manipulation of AFM order, which is detected by changes in elec-
trical resistance, is due to a repopulation of three energetically equivalent AFM domains on
the triangular lattice. Based on calculated conductivity tensors within a constant relaxation
time approximation with experimentally proposed AFM magnetic orders, we verify that the



transport parallel to the Fe layers is anisotropic, a necessary condition for the domain repop-
ulation hypothesis. Finally, by comparing our ab-initio transport with experimental changes
in resistance for specific pulse directions, we infer the likely current-domain response for
Fe;/3NbS,, that is, which domains are favored for a given current direction.
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3.1
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Basic workflow for a DFT calculation. Figure adopted from [59]. . . . ... ..

Atomic insulator (a)-(c) versus Quantum Hall State (QHS) (d)-(f). (a) Cartoon
of atomic insulator. Large black circles indicate atomic nuclei, with electrons
(red) orbiting in closed shells. (b) Trivial insulating bandstructure with occupied
valence band in blue, unoccupied conduction band in red, and a finite energy gap
E,qp. () Response of the boundary of a trivial insulator to an electric field. Like
the bulk material, the boundary of a trivial insulator will also be insulating. (d)
Quantum Hall State (QHS) with electrons in the two-dimensional bulk undergoing
cyclotron orbits. (e) Band structure with Landau levels caused by perpendicular
magnetic field B (in this cartoon, the k dispersion is neglected.) (f) In contrast
to (c), a QHS has conducting, chiral electronic states at the edges of the material
perpendicular to the applied electric field due to the nonzero Chern number C'. .
Weyl semimetal phase (WSM) in three dimensions with broken Z symmetry (and
intact 7 symmetry.) (a) Evolution from a topological insulating QSH state to
a trivial insulator by tuning of some parameter m. Two pairs (each containing
Weyl points with opposite sign Chern numbers) of gapless Weyl points are cre-
ated/annihilated at m = m; and m = my. Between those m values the Weyl
points move apart in k-space, with the C' = +1 Weyl points (red) symmetrically
displaced from the time-reversal invariant G /2 point due to 7 symmetry, and the
C = —1 Weyl points (blue) also symmetrically displaced. Adopted from [146].
(b) The Chern invariant C' of a single Weyl point is calculated by integrating
the Berry curvature over a gapped surface S in the BZ enclosing the degenerate
point. (c) Cartoon of the Fermi surface arcs (purple lines) in WSMs that arise
as a consequence of the nonzero Chern numbers associated with individual Weyl
points. The red and blue represent a pair of bulk Weyl points displaced along
k. with Chern numbers +1 respectively (arrows denote the direction of Berry
curvature flux in each case). The Fermi arcs begin and end at the projections
of the bulk Weyl points onto the surface of interest (note that while the cartoon
depicts Fermi arcs on the x surfaces of the material, analogous Fermi arcs would
be expected on the y boundaries). Figure reproduced from [207]. . . . ... ..
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3.4

4.1
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4.3

Dirac semimetal phase (DSM) In both (a) and (b) the solid and dashed lines refer
pairs of bands which are doubly degenerate at all k due to the combination of
time-reversal and inversion symmetries. While the bands are slightly separated
for visual clarity, in reality they are completely degenerate. (a) Class I DSM.
With Z, T and a uniaxial rotation symmetry C,, a pair of fourfold degenerate
Dirac points emerge along the rotation axis k,. The pair of Dirac points is robust
for a range of tuning parameter m; < m < mgy. At the critical point m; a single
band inversion occurs, creating the symmetrically located pair of Dirac points.
At m = ms the crossings gap out due to additional band inversions which tend to
modify the rotation eigenvalues of the crossing bands, allowing hybridization. (b)
Class IT DSM. A single Dirac point locates at the center or boundary of the BZ
on the rotational symmetry axis, and is robust for all values of the mass term m.
This “symmetry-enforced” class of DSM retains the fourfold Dirac point as long
as no symmetries in the corresponding nonsymmorphic space group are broken.

Categories of nodal lines semimetals (NSLM) based on the mechanism of protec-
tion. (a) NLSM protected by a mirror plane symmetry, where bands with oppo-
site mirror eigenvalues m cross in a mirror-invariant plane of the BZ. (b) NSLM
protected by inversion and time-reversal symmetry in the absence of SOC. The
Berry connection integrating around a closed loop L encircling the nodal line is a
topological invariant. (c) Fourfold degenerate nodal line with SOC protected by
Z, T and a two-fold screw axis S.. On the k, = 7 plane, the subbands in a single
doublet have the same eigenvalues of the composite mirror symmetry M’ =7-8.,
and their crossing with another doublet is protected (left). On the k, = 0 plane
(right), subbands in a single doublet have opposite M’ eigenvalues, leading to an
anticrossing when they meet bands of like eigenvalue in the other doublet. In this
case an NSLM does not occur. (d) Two-dimensional “Drumhead” surface state
(colored turquoise), which terminates on the projection of the nodal line on the
k,surface . . . . . . e

Orthorhombic crystal structure of TiRhAs, with space group Pmnb. The prim-
itive cell consists of two mirror planes perpendicular to (100), each with two Ti
atoms (blue), two As atoms (green), and two Rh atoms (gray). . . . . . . . . ..
(a)DFET-PBE band structure without SOC. The projection of the bands onto Ti d
orbitals is shown in blue, and the projection onto Rh d orbitals is shown in orange.
The widths of the lines are proportional to the values. The mirror eigenvalues 41
of the crossing bands are also indicated. (b)DFT-PBE band structure with SOC
included, indicating that SOC opens a small gap due to hybridization of bands
with like mirror eigenvalues. . . . . . . . . ... oL L
(a) DFT-PBE calculations of the DNL in TiRhAs in the k, = 0 plane, with the
irreducible quadrant highlighted in red. (b) v, and v, as a function of 6. (c)
Ratio of tilting magnitude to isotropic velocity, R, , along the v, direction as a
function of 6. . . . . . .
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4.5
4.6

5.1

5.2

5.3

DFT-PBE tight-binding band structure (without SOC) for the (100) surface plot-
ted along the Y — ' — Z direction, showing surface states (colored red) in the
projected interior of the DNL. . . . . . . ... ... ... ..
TiRhAs band structure computed using the HSE06 hybrid functional method. .
(a)DFT-PBE-SOC tight-binding band structure for the (100) surface plotted
along the Y — I' — Z direction. Note that the flat, drumhead states on the two
surfaces shown in the main text without SOC have evolved into a shallow Dirac
cone, characteristic of a TIL. (b) Zoomed-in plot of the portion of (a) bordered by
the rectangle. . . . . . . . L

(a) Crystal structure of 1T-NiTe, (space group: P—3m1), composed of hexagonal
basal planes (ab-planes) of Ni-atom (red sphere) coordinated to the Ni-atom at
the centre and triangular layers with inequivalent Te atomic site (blue sphere)
above (Te -1) and below (Te -2) the basal plane along the (001)-direction [18].
The hopping parameters between 2-site Te p-orbitals are categorized as intra-
layer hopping (t; = t5), interlayer hopping (t3) within the unit cell and between
two unit cells (t4). (b) Brillouin zone. (c¢) Hierarchy of p-orbital derived energy
levels at T' and A-point showing the inverted band gaps (IBG), Dirac points
(BDP: circled) and topological states. The symmetry of the states are labelled
with IREPs (T';, A;, Ag) and parity (+/-). Inspired from Ref. [12, 36]. Figure
made using Adobe Hlustrator [1]. . . . . . . . .. ... ... ...
(a) Electronic DET bulk band structures with orbital character of bands. Type-II
Dirac fermion formed by crossing of band 1 and 2 near Fermi level. (b) Density
of states (DoS) showing dominant contribution of Te p-bands at the Fermi Level
compared to Ni d-bands. Above Fermi level, the DoS spectra is scaled up by
factor of 2. (c) Band dispersion along the I'-A direction with inverted band gaps
(IBG) and bulk Dirac points (BDP) marked, (d) and (e) Zoomed-in dispersion
and measured photon-energy dispersion with linear horizontal polarization along
the I'-A direction. A non-dispersive feature is marked with an arrow, which does
not match with bulk DFT calculation. Figures made using Igor [151] and Adobe
Hlustrator [1]. . . . . . o o
Spectral band dispersion along in-plane L'-A-L (a-c) and H'-A-H (d-e) direction,
probed with photon energy hv = 99 eV (a) experimental ARPES data with linear
horizontal polarization, supercell calculation integrated along k, with (b) bulk
DFT and (c) slab surface. Arrows mark the position of the topological surface
states (TSS). The overlaid dotted red lines in (a, d) represent the calculated bulk
DFT bands. Figures made using Igor [151] and Adobe Illustrator [1]. . . . . ..
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5.4

6.1

6.2

(a) In-plane dispersion of TSSO forming electron pockets labelled as ¢ and ~ and
(b) the non-dispersive behaviour of TSSO surface state close to the Fermi level
in the photon-energy dependence. (c¢) Fermi surface measured with horizontal
polarization of light and photon energy, hv = 23 eV, which corresponds to the
A-plane. The region under the red dotted box is magnified by a factor of 5
to show the electron pockets o (Band 2), € and v (TSS0) and the bulk bands.
(Inset: calculated bulk Fermi surface consisting of the circular a electron pocket
and bands forming hexagonal contour, in good agreement with measured data).
(d) and (e) Slab calculation with projected spin components of the topological
surface states. TSS2 shows finite (S5,) and (S5,) components normal to H-A-H
and L’-A-L direction, respectively. TSSO has finite spin component (5,) normal
to L’-A-L (note that TSSO is hybridized with bulk in all other regions of the
plots, so no further conclusions about surface state spin texture can be made).
Figures made using Igor [151] and Adobe Illustrator [1]. . . . . ... ... ...

(a) Primitive cell for nonpolar hexagonal YCrOg, with centrosymmetric space
group P63/mmec [194]. The primitive cell consists of two Y atoms (green), two
Cr atoms (blue), and six O atoms (red) (the structures of all other compounds
studied in this paper are qualitatively identical). (b) Depiction of the GAFM
in-plane magnetic ordering which we use as a collinear approximation to the true
noncollinear antiferromagnetism in the hexagonal manganites. Note that the
10-atom P63/mmc primitive cell is tripled to accommodate this ordering. (c)
Depiction of the nonpolar-to-polar structural transition in the hexagonal man-
ganites. Left panel: Nonpolar centrosymmetric space group P63/mmc (primitive
cell tripled for easier comparison to polar phase). Middle panel: Action of the
unstable ¢ = (1/3,1/3,0) K3 phonon on the XOj trigonal bipyramids. Outward
trimerization pulls the Y ions downwards (top), whereas inward trimerization
forces the Y ions upwards (bottom). Right panel: Polar P63cm space group.
The K3 phonon couples to a secondary order parameter, the zone-centered I';
mode (upward arrows), which further shifts the Y ions in the Z direction and
causes net polarization in the unit cell. . . . . . . .. ... ... L.
Orbital-projected DFT-GGA+U (U = 3 eV) band structures for spin up bands
in the ferromagnetic P63/mmc YXO3 compounds (X = V — Co), with spin down
bands included without projections. The bands near the Fermi energy are com-
posed of X d states (where X is the relevant transition metal ion) and O p states,
with negligible Y character. Color scale varies from dark blue for purely X d
character to yellow for purely O p character. The Fermi level is marked by the
dashed black line. Panels (a)-(e) correspond to YVO3, YCrO3, YMnOs3, YFeOs,
and YCoOg, respectively. . . . . . . . . ..
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6.3

6.4

6.5

6.6

6.7

6.8

Analysis of band crossings in Figure 6.2. (a) and (b) show zoomed-in band
structures of YVO3; and YCrOj respectively about the K and H points, with the
orbital character decomposed into planar (d,,/d,2_,2) and z-oriented (d,./d,.) d
states. (c) Isoenergy contours (specifically for £ = —0.38 eV for YCrO3) in the
hexagonal 3D Brillouin zone. . . . . . . . .. .. L oo
DFT-GGA+U band structures with SOC, using YCrOs as the example. Planar
dyy/z2—y2 character is plotted in red, while d,./,. states are plotted in dark blue.
(a) and (b) show full band structures with SOC included and spin quantization
along the [001] and [100] directions respectively. (c¢) and (d) show the zoomed-in
portions of (a) and (b) around the K where the topological NLs are centered in
the collinear spin case. In (c¢) the NL crossings are still robust with the [001]
spin orientation, whereas a very small gap forms between one of the conduction
bands and the valence band in (d) with [100] spin orientation, with the second
conduction band passing through the gap. . . . . . . .. .. ... ... .. ..
Projected band structures for the [001] surface in (a) YVO3 and (b) YCrOj from
slab geometries (see text). Color is proportional to weight of projection onto the
outermost layers of the slab, with blue being highest weight. The discernible
surface state is magnified in one inset for both cases. The insets with the shaded
circles are cartoons depicting the boundaries of the NL pairs projected onto the
[001] surface, with the region where surface states appear shaded in grey. Figures
(c) and (d) show the [001] surface polarization charge P (k) for YVO3 and YCrOs
respectively along the same high-symmetry path as (a) and (b). Note that P(k))
jumps to a nonzero value at the same momenta where the surface states are visible.
DFT-GGA+U band structures for the FM YXO3 compounds (X=V-Co) in the
polar P6zcm space group . For comparison to Figure 6.2, the spin-up bands are
again projected onto the relevant atomic orbitals and the spin-down bands are
plotted in dashed black. Panels (a)-(e) correspond to YVO3, YCrOsz, YMnOs,
YFeOgs, and YCoOg, respectively. . . . . . . . .. ..o
Phonon dispersions for YCrOj in the (a) nonpolar P63/mmc and (b) polar P63cm
phases respectively. . . . . . ...
GGA+U calculations for YVO3 and YCrOs in the orthorhombic Pnma structure
with experimental GAFM ordering. (a) and (b) use a U of 3 eV for YVOj3; and
YCrOg respectively, which is the value we use in our calculations for the hexagonal
phases in the main text. Experimental band gaps are 1.6 and 3.3 eV respectively,
so for YVO3 the choice of U exactly reproduces the experimental gap. (c) shows
the GGA structure for Pnma YCrOjz using a U of 4 eV, which overestimates
the experimental band gap by 0.1 eV. (d) shows the nonpolar P63/cmm band
structure of YCrOj3 using U = 4 eV. The band inversion necessary for the NL is
still present, implying that while U = 3eV may be slightly too low for the case of
YCrOs, the qualitative band structure should be accurate. . . . . ... ... ..
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6.9

7.1

7.2

HSEO06 band structure plots for (a) YVOg3 and (b) YCrOj in the P63/mmc space
group. Note that HSEO6 overestimates the band gaps and consequently loses the
band inversion creating the topological NLs at K with the GGA+U calculations
in the text ((c) and (d)). . . . . . . . o L

Experimental setup and mechanism of spin-transfer torque (STT) in ferromag-
nets (a) Electrical current (grey arrow) with initially non-spin polarized electrons
(small arrows) passes through FMI, with magnetization along S, (large black ar-
row). When the conduction electrons exit FM I and enter a nonmagnetic spacer
they will have acquired a polarization along S; which they maintain when they
enter FM II with magnetization along S,. The polarized spin current acts as an
effective magnetic field By, that exerts a torque on the magnetization in FMII
and can cause the localized spins to rotate and align along B4 (large blue arrow)
via transfer of angular momentum from the conduction to localized electrons. (b)
Fieldlike (FL) versus antidamping (AD) STT (left and right respectively). If the
spin lifetime of the conduction electrons is short compared to the movement of
localized moments in FM II, the conduction electrons will remain polarized along
S, and the effective field B,y is in this direction (FL). If the spin lifetime of the
conduction electrons is long compared to that of the localized moments in FM I,
the polarization of the conduction electrons becomes dependent on the direction

of magnetization, and effective magnetic field will be proportional to S, xSy (AD). 77

Spin-orbit torque (SOT). (a) depiction of SOT mechanism. A non-spin polarized
electrical current is applied directly to an FM material with magnetization M,
and via spin-orbit coupling of the conduction electrons in the FM, these electrons
acquire a nonzero spin polarization density m that can exert a torque on the
localized moments. (b) Equilibrium Fermi surface cross section (blue circle) for
conduction electrons with a Rashba-type spin orbit coupling in the absence of
current. While the individual electrons have polarization dictated by the Rashba
coupling, because the Fermi surface is centered at k = 0 the polarizations cancel
and the spin polarization density m = 0. (¢) Fermi surface in the presence of
current J || x. The distribution of electrons at the Fermi surface shifts in the
+k, direction and as a result there is a net conduction spin polarization density
along y. . ...



7.3

7.4

8.1

8.2

8.3

Magnetization states in FMs versus AFMs, and the concept of anisotropic mag-
netoresistance (AMR). (a) Different magnetization states corresponding to bits
in an FM-based device are distinguished by relative orientations of the magne-
tization M, for example along y versus %x. (b) Different magnetization states
corresponding to bits in an AFM-based device are distinguished by relative ori-
entations of the Néel vector L = Ma — Mb which is the difference between the
magnetization on sublattices a and b. (c¢) Readout of magnetic states. Detection
of different orientations of magnetization in FMs (AFMs) can be accomplished
by detecting changes in resistance depending on the relative orientation of the
current and the magnetic moment (Néel vector). An AFM is depicted here. . . .
SOT in CuMnAs compared to Fe;3NbS,. (a) CuMnAs (with only the magnetic
Mn sublattices shown), depicting a domain with the Néel vector oriented along
X. A current along x induces local effective fields in the +y directions for the
two Mn sublattices, thereby causing the Néel vector to reorient perpendicular
to the current. (b) Fe;;3NbS, (with only the magnetic Fe sublattices in one Fe
layer shown) with the stripe AFM ordering described in Chapter 9. Although
the direction of the effective fields is identical to CuMnAs for in-plane current
pulses, because the Néel vector in Fe;/3NbS, domains is oriented along ¢ (out of
the page), the SOT is unlikely to cause a redistribution of the domains unless
there is a slight in-plane canting. . . . . . . .. ... ... ... ... ... ...

(a) The crystal structure of Fe;/3NbS,. Iron atoms sit between layers of NbS,,
aligned with the niobium atoms above and below. (b) Looking along the c-axis,
the iron atoms in a given layer form a triangular lattice. These triangular lattices
are shifted from layer to layer. Arrows indicate in-plane and out-of-plane first
and second nearest neighbors, labeled by their relevant exchange constants.

(a) Curie-Weiss fits of both out of plane (H || ¢) and in plane (H L ¢) susceptibil-
ity. (b) Heat capacity measurements show two transitions, which split with the
application of field parallel to the c-axis. Curves are offset to enhance visibility.

(a) Magnetization response of Fe;;sNbSy to an out-of-plane pulsed field. (Data
from a 25T pulse is used below 15T for the 0.6K curve.) At 0.6K, the magnetiza-
tion shows two flat plateaus at 0 and 1/2 of the saturated magnetization (dashed
line). At 20K a further transition, likely to a fully saturated state, is observed
near 60T. (b) Magnetization response of the model, Eq. 8.1, computed classi-
cally. Three plateaus are clearly visible: a stripy AFM phase, a UUUD phase,
and a saturated PM phase. (c¢) Cartoons of the spin configurations in the eight
site unit cell. . . . Lo
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9.3

9.4

9.5

Experimental phase diagram of Fe; /3NbS,, as a function of temperature and field
applied along the c-axis. Calculations suggest that region I is a stripe phase while
region II (the plateau) is UUUD. The origin of the intermediate phase bridging
the stripe and UUUD phase is not known. Phase boundaries were determined
by torque magnetometry, heat capacity and pulsed field magnetization measure-
ments. Phase boundary lines are a guide to theeye. . . . . . . . ... ... ...

Left: hexagonal crystal structure of Fe; 3NbS,, with space group P6522.The prim-
itive cell contains two Fe atoms sandwiched between the layers of NbS, at ¢ = 1/4
and ¢ = 3/4. Right: c-oriented view of the two Fe layers with ions in layer ¢ = 1/4
and ¢ = 3/4 colored red and blue respectively. . . . .. ... ... L.
Experimentally proposed magnetic orderings, (a) Pr21212; (a-stripe); (b) P.212,2
(a-zigzag), with only Fe spins shown. In our DFT calculations the Néel vector is
purely out of plane; + and — symbols refer to up and down spins respectively.
Magnetic supercells are outlined in black. The orthohexagonal supercell for stripe
order in terms of the primitive hexagonal lattice vectors a and ¢ is a x v/3a x ¢
and the supercell for zigzag order is 2a x v/3a x c¢. Dashed purple circles show the
three interplanar nearest neighbors for a given ion, which determine whether the

planes are “FM” coupled or “AFM” coupled; the coupling is AFM in both cases.

Electronic structure in the k., = 0 plane of Fe;/;3NbS,, with a finite broadening
for aesthetic purposes of 10 meV for a-stripe order with U = 0.3 ((a)-(b)) and
U =10.9¢V ((e)-(f)), and 2 and 5 meV for a-zigzag order with U = 0.3 ((c)-(d))
and U = 0.9 eV ((g)-(h)) respectively. The plots are colored by either the x or y
component of band velocity, as indicated by the title. . . . . ... ... ... ..
Electrical switching. (a) Fe;/3NbS; crystal structure overlaid with directions of
applied currents and measured resistance in experiment. In the experiment, or-
thogonal pulses applied along the red and blue arrows switch Fe;/;3NbS; between
two states with different domain populations, detected by changes in the trans-

verse resistance R, . (b)-(c) Calculated AIE{{HL based on equations 9.4 (red) and 9.5

(blue) as a function of f3 for a fixed initial value of fi. fi (f3) can be viewed as
the resulting fractional population of the domain with principle axis along [100]
after Jyrite (Jyrite) . (b) corresponds to a-stripe phase, (c¢) corresponds to a-zigzag
phase. Dashed lines (same color coding as the PBE+U-derived points) indicate
the value of f; where the calculated AI%L agrees with the experimental data in
reference Maniv2021 for Fe intercalations likely corresponding to a-stripe and
a-zigzag order. . ... . L e e e e
Magnetoanisotropy constant D as a function of effective Hubbard U for Fe; ;3NbS,.
Positive values indicate an easy axis along ¢, whereas negative values indicate an
easy plane (spanned by a and b). U = 0.3 eV gives the best agreement with
experiment, with D = 4+1.09 meV/Fe. . . . ... ... ... ... ... ... .
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Chapter 1

Introduction

Condensed matter is the largest and possibly most varied branch of physics (skim through
the scientific program for any given American Physical Society March Meeting and this
quickly becomes evident). One likely reason for this is the ubiquity of solid-state materials
in our everyday lives. From the diamonds in jewelry to the silicon chips in our computers,
crystals show up everywhere. Every material (amorphous or crystalline) can be described
at its core by the same quantum mechanical Hamiltonian, described in Chapter 2, which
is simply the sum of kinetic and Coulomb energies for each electron and each nucleus. It
is quite incredible then that by simply varying the elemental species and/or changing the
geometric arrangement of atoms, an effectively infinite variety of materials can be generated.
The diversity of electronic, magnetic, and optical properties that can be realized implies that
the discovery, characterization and eventual synthesis of materials is the main bottleneck in
the development of technological applications.

Traditionally, the theoretical side of materials research has focused on understanding
phenomena using simplified, “model Hamiltonians” which, while useful for understanding
general phenomena, can lack the power to predict real materials made in a lab. In the
last few decades however, materials understanding and discovery has exploded due to the
advent of density functional theory (DFT), the formalism used in this thesis, and other elec-
tronic structure methods such as embedded cluster models, dynamical mean field theory, and
Quantum Monte Carlo to name a few [33]. These realistic, quantum mechanical modeling
methods, combined with exponential increase in computing power starting in the second
half of the 20th century, allow for the prediction and study of promising functional materials
even before their successful synthesis in a lab. This thesis focuses on DFT-based studies
of two material subcategories: topological semimetals (TSMs) and electrically controllable
antiferromagnets (AFMs). TSMs and electrically controlled AFMs hold great promise for
device applications in electronics, memory storage, magnetic sensing, quantum computing
and even catalysis [169, 77, , 164].

TSMs are materials with robust, usually linear band crossings protected by a combination
of crystalline symmetries and topology. In general a semimetal can be thought of as an “edge
case” of an insulator, for which the energy gap closes only at specific points or lines and and
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the energy disperses linearly away from the band touchings [207]. TSMs can be either zero-
dimensional (e.g. discrete band crossing points) or one-dimensional, if the band crossing
points form closed loops in reciprocal space. Analogously to the better-known topological
insulators, TSMs can be characterized by mathematical invariants that define topologically
distinct phases, in contrast to the more universal Landau theory which describes phase tran-
sitions by symmetry breaking [71]. Attractive properties of TSMs for technological purposes
include ultrahigh electron mobility due to the linear dispersions near the band crossings
[113, 77], glant magnetoresistance [1 13], and topologically protected surface states which are
insensitive to backscattering and disorder [164].

The second category of material we will study, i.e. electrically controllable compounds
with AFM magnetism, is highly promising for spintronics applications. Magnetic materials
are natural choices for memory storage and sensing devices, since distinct magnetic states
(e.g., all spins along +z versus all spins along —z) can hold information analogously to
classical bits. Traditionally, ferromagnets (FMs) have been viewed as the most attractive
spintronics candidates, as their nonzero bulk magnetization allows for relatively straight-
forward reorienting of the magnetization using magnetic fields [228]. However, in the last
decade there has been a shift of focus in spintronics towards AFMs due to several advantages
over FMs. [60]. First, their vanishing bulk magnetization means that AFMs are insensitive
to stray magnetic fields that can reorient magnetization in FM devices [201]. Secondly, the
limiting rate of spin dynamics in AFMs (i.e. the rate at which the bulk magnetic moments
can be reoriented) is several orders of magnitude higher than in FMs [153]. However, while
the zero net magnetization of AFMs affords advantages, it is also problematic because it
implies that AFMs are prohibitively difficult to purposefully manipulate using external mag-
netic fields. Much research, both experimental and theoretical, is devoted to circumventing
this by finding and/or designing AFMs whose magnetization can be manipulated by elec-
trical current [129]. These relativistic, current-induced mechanisms of spin torque can be
highly efficient in manipulating AFMs, provided that the materials have the necessary crys-
tal symmetries.

Theoretical and computational research on both TSMs and electrically switchable AFMs
comes in two broad flavors. On the one hand, a great deal of invaluable and still ongoing
work is devoted to the mathematical “ingredients” that lead to these categories of materials.
This research, mostly based on tractable model Hamiltonians, explores, just to name a few
examples: the constraints on topology and magnetism from group theory, the influence of
mass terms on band energy inversions that can lead to protected band crossings, and the
dynamical equations governing magnetization dynamics in the presence of current [115, ,

|. While this thesis touches on these more fundamental concepts, the bulk of our work
is devoted to the understanding and realization of these phenomena in realistic materials.
Specifically, we explore how nontrivial topology and controllable magnetism can emerge nat-
urally, due to orbital overlap, spin-orbit coupling, and specific magnetic orders, or can be
designed, for example by strain or elemental substitution. We also focus on materials where
the properties of interest are easily accessible in practical applications (e.g., TSMs with the
topological crossings near the Fermi energy where they will be relevant to transport proper-



CHAPTER 1. INTRODUCTION 3

ties in devices).

We mention here that with the exception of TiAsRh, a TSM material which we explore in
Chapter 4, our materials of interest fall under two subcategories that are particularly promis-
ing for realizing functional TSM and magnetic features. These two categories are hexagonal
oxides (YVO3 and YCrOj in Chapter 6) and transition metal dichalcogenides (TMDs), with
TMDs both in their pristine form (NiTe; in Chapter 5) and intercalated with magnetic ions
between the TMD layers (Fe;/3NbS, in Chapters 8 and 9). Our focus on hexagonal oxides
and TMDs is primarily experimental in motivation. First, the synthesis of these materials is
well established, both in bulk and thin-film form. Additionally, in particular for the oxides,
there has been notable success in stabilizing the hexagonal structure even when it is not the
ground state via epitaxial growth on a hexagonal substrate [(2]. Moreover, both hexagonal
oxides and TMDs (intercalated and non-intercalated) are highly tunable by external fields
and chemical substitution. The hexagonal manganites RMnOs, (R = Sc,Y,In, Dy — Lu)
for example exhibit both ferroelectric (spontaneous polarization which can be switched by
an electric field) and magnetic transitions at low temperatures, opening the possibility of
controlling magnetic and electric properties by temperature, magnetic field, electric fields,
or even strain [131]. Tuning of magnetism in particular can have significant effects on the
band structure, and subsequent topological properties, as we will see in Chapter 6. In rela-
tion to the second material category, magnetic and topological properties of intercalated and
non-intercalated TMDs can also be changed dramatically within the same material motif by
substituting different transition metal ions in the TMD, or varying the concentration and/or
species of the intercalant between the TMD layers. Overall, the tunability of the hexagonal
oxides and TMDs give us a large phase space in which to search for and manipulate materials
with TSM properties and/or switchable magnetism.

This thesis is structured as follows. After an introduction to density functional theory,
maximally localized Wannier functions, and their relevant extensions in Chapter 2, in Chap-
ter 3 we introduce the concepts, properties and varieties of topological semimetals in more
detail. The next three chapters are focused on our studies of particular examples of TSMs.

In Chapter 4, we use a combination of DF'T and Wannier function-based tight-binding to
examine the electronic structure of a previously synthesized compound TiRhAs. We show
that TiRhAs hosts a topological nodal line (a continuous loop of linear crossings in the Bril-
louin zone) nearly exactly at the Fermi level, whose band crossings are protected by a mirror
plane. At the time of this study relatively few nodal line semimetals had been experimentally
synthesized and verified, and TiRhAs is a particularly promising candidate due to having
a Fermi surface free from other trivial bands, with the nodal line right at the Fermi level.
Later ARPES measurements confirmed our findings [109].

In Chapter 5, in a collaboration with ARPES experimentalists, we study the candidate
Dirac semimetal NiTe,. Isostructural TMDs such as PdTe; and PtSes have been shown
both experimentally and through DFT calculations to host so-called “topological ladders”:
a series of band crossings along the k, direction within the chalcogen p manifold of the
TMD that arise due to k,-dependent bonding-antibonding splitting [36]. Depending on the
irreducible representations of the bands, the multiple crossings manifest either as bulk Dirac
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cones or parity-inverted band gaps hosting topological surface states. Unfortunately, these
topological ladders occur far below the Fermi level for both PdTe; and PtSe;,. Our DFT
calculations demonstrate enhanced hybridization between Ni d states and the Te p states
forming the topological ladder as compared to the previously studied 1T TMDs with other
transition metal elements. The increased d-p hybridization has the effect of raising the en-
ergy of the ladder without destroying the k.-dependent band inversions within the chalcogen
manifold. The hybridization in NiTe, is at a “sweet spot” such that a tilted bulk Dirac cone
and a spin-polarized topological surface state appear almost exactly at the Fermi level, mak-
ing their topological properties highly relevant in transport. Our findings suggest a generic
mechanism for designing functional topological materials within this class of TMDs: modi-
fying the transition metal element to tune the hybridization between the transition metal d
and topological chalcogen p states.

In Chapter 6, in a fully first-principles study, we investigate the possibility of realiz-
ing TSMs in multiferroic materials, specifically, compounds isostructural to the multiferroic
hexagonal manganite YMnQOgs. Multiferroics are highly tunable by virtue of their multiple
order parameters which can be controlled via electric and magnetic fields, strain, and tem-
perature. A multiferroic compound with TSM features in a particular phase would provide
an opportunity to switch from nontrivial to trivial topology by tuning of the ferroic order
parameters. We find that by enforcing ferromagnetic (FM) order on the Mn ions, the band
structure of YMnOg3 changes from insulating to metallic in the centrosymmetric, nonpo-
lar phase. Tuning the Fermi level by substituting Mn for other 3d transition metals, we
show that hexagonal YCrO3 and YVO3; are topological nodal line semimetals in the nonpo-
lar P63/mmc phase with FM magnetic order. By computing the phonon spectra in both
nonpolar and polar hexagonal phases, we demonstrate that YCrO3 and YVO3 undergo a
structural phase transition to the polar P6zcm space group, analogous to the ferroelectric
transition in YMnOgs. In the polar phase both compounds become topologically trivial.
Thus, provided that one can synthesize these materials in the P63/mmc and P63cm phases
by epitaxial growth on a hexagonal substrate and stabilize FM order, YCrO3z and YMnO3
can be switched between TSM and trivial band structures by tuning temperature through
the nonpolar-polar phase transition.

Chapters 7-9 we transition to electrically switchable AFMs. After some background
information on relevant concepts and recent progress in the electric control of magnetic
compounds in Chapter 7, we turn to our material of interest, the AFM Fe; 3NbS,. It was
recently shown by Analytis et al. that the intercalated TMD Fe;/;3NbS, can be switched
between states of high and low electrical resistance by applying orthogonal current pulses in
the plane of the Fe layers (“in-plane”) [1158, 132]. The different resistance states are thought
to be caused by current-induced repopulation of AFM domains, indicating that Fe;/;3NbS,
is a promising spintronics candidate meriting further characterization.

In Chapter 8, in collaboration with other theorists, we calculate the isotropic spin ex-
change constants and magnetoanisotropy energy (MAE) of Fe;/3sNbS, in order to develop
a model Hamiltonian to explain a half-magnetization plateau observed at a wide range of
magnetic fields in Fe;/3sNbS, [69]. We find that the plateau arises due to a competition
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between strong interplanar (where planes of Fe atoms are stacked along the ¢ axis) and
intraplanar exchange of the Fe spins. This is in contrast to the intuitive assumption that
an intercalated TMD will have quasi two-dimensional behavior and hence negligible out-of-
plane spin exchange. The relative values of the spin interactions that are responsible for the
magnetization plateau are also presumably connected to some of the unusual aspects of the
electrical switching, such as the unusually low current density required, and the fact that
the Fe spins are nearly perpendicular to the current pulses.

In Chapter 9, we explicitly investigate the magnetism and transport of Fe;;3sNbS, as it
pertains to the current-induced electrical switching. We first calculate the relative energet-
ics of two different experimentally proposed AFM ground states, corresponding to in-plane
“stripe” and “zigzag” orderings of the Fe spins. Our DFT calculations with Hubbard U cor-
rections indicate that these two AFM states are nearly degenerate, consistent with neutron
studies indicating that the preferred ground state can switch between stripe and zigzag or-
dering for minuscule deviations in Fe concentration [197, , ]. Secondly, the hypothesis
that the resistance switching is caused by current-induced repopulating of magnetic domains
relies on the assumption that the electric structure and corresponding in-plane resistance of
Fe;/3NbS; is anisotropic, which has yet to be confirmed by ARPES or other first-principles
studies. Hence, we compute the in-plane electronic structure of Fe;/;3NbS, with both stripe
and zigzag AFM order, and calculate the corresponding resistivity tensors using a constant
relaxation time approximation within the Kubo linear-response formalism. We confirm the
in-plane transport anisotropy for both stripe and zigzag order. Finally by comparing the
directional anisotropy of our computed resistivity tensors to the signs of resistance changes
in experiment, we provide new insight into the specifics of the current domain response, that
is, which domains are stabilized for a given current pulse direction.

In Chapter 10, we provide a summary of the thesis and outlook for possible future direc-
tions.



Chapter 2

Computational methods: DFT,
Wannier functions and some offshoots

2.1 Density Functional Theory: the basics

The Many-Body Hamiltonian

The most general time-independent Schrodinger equation for an atomic solid composed of
many electrons and many nuclei may be written in Hartree atomic units as [59]

HVU = [T6+Tn+x7en+%e+‘7nn}\lf

YAV
Z__ZZMI Z|r—RI Z|rz—rj| Z|R[——R]| V= EinV,

I#J

(2.1)

where U(ry, rs...ry; Ry, Ro...Ry/) is the many-body wavefunction which is dependent on the
coordinates r; of all N electrons and R; of all M nuclei in the material. The first two terms
T. and T, in equation 2.1 give the kinetic energy of the electrons and nuclei respectively,
Ven gives the Coulomb interaction between the negatively charged electrons and positively
charged nuclei, and Vee and Vnn give the Coulomb interactions between the electrons and
between the nuclei respectively. M; and Z; refer to the masses and atomic numbers of indi-
vidual nuclei.

Of course, given the number 3(N + M) of independent coordinates, solving equation 2.1
as it stands is impossible for more than a few degrees of freedom; to make any headway we
must employ several approximations and assumptions. Before getting to some of the approx-
imations unique to density functional theory, or DFT, we first use the Born-Oppenheimer
approximation, a consequence of which being that the nuclear positions {R} are considered
to be fixed in space, i.e. M; = oo. With the assumption that the nuclear positions can be
treated as parameters, the nuclear kinetic energy T, goes to zero and the nuclear-nuclear
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repulsion V,,,, is simply a constant energy shift. Then the above Schrodinger equation can
be written as

HY = [Te—i_‘?en—i_f/ee]@:

Vi V ! ! U =Fv 2.2

where now U(ry, ry...ry) is a function of the dynamical electronic coordinates only, with the
nuclear coordinates treated as external parameters and

Vo (r) = — ZI: T _fo{i’ (2.3)

is the external Coulomb potential of the nuclei experienced by the electrons. Equation 2.2
is the fundamental “electronic structure” Hamiltonian for the electronic degrees of freedom
in a material on which all subsequent approximations we discuss will be based.

The Hohenberg-Kohn theorem, mean-field theory, and the
Kohn-Sham equations

While the Born-Oppenheimer approximation allows us to to simplify the general solid-state
Hamiltonian by neglecting the motion of the nuclei, contending with 3N ~ 10% electronic
degrees of freedom in equation 2.2 is still intractable. The most fundamental tenet of density
functional theory (DFT), the Hohenberg-Kohn theorem [59, 75], dramatically simplifies the
problem. The gist of the Hohenberg-Kohn theorem is that the total energy E of the electronic
many-body ground state (and we should emphasize that this is only true for the ground state,

not excited states) is uniquely determined by the electronic density n(r), where
Zé(r —1;) \I/(rl...rN)> = N/drg..drN\Il*(r,rg...rN)\I/(r,rg...rN).
(2.4)

Note that by going from the wavefunction W(rj...ry) to the electronic density n(r) the
number of independent variables on which our ground state energy depends goes from 3N
to 3. In proving that the ground state energy is determined by the ground-state electronic
density alone, three initial facts are required which we state here (the last two are intuitive,
and the first may be proven by reductio ad absurdum [75]).

n(r) = <\I/(r1...rN)

1. In the ground state, the electronic density uniquely determines the external potential
from the nuclei: n(r) — V,(r).

2. In any state, the external potential from the nuclei uniquely determines the many-body
electron wavefunction: V,(r) — W.

3. In any state the total energy E is a functional of the many-body wavefunction through
E = (V|H|¥). Thus ¥ — E.
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These three facts together imply n(r) — V,,(r) = ¥ — E| i.e. the ground state energy Egs
is indeed uniquely a functional of the ground-state density, as the theory states. Mathemat-
ically, the Hohenberg-Kohn theorem may be written as

Eos — min E [n(r)] = / Vo (e)n(x)dr + (U [n] [T + Ve |0 [n]) | (2.5)

n(r)

where V,, is the external potential created by the nuclei defined in equation 2.3 and 7. and
V,. are the electronic kinetic and potential energies also defined earlier. Equation 2.5 states
that the ground state energy of the many-body electronic Schrodinger equation is found by
minimizing the functional F [n| with respect to the density n(r), which in turn also yields the
true ground-state electronic density ng(r) related to the many-body wavefunction through
equation 2.4. Thus, if we had a practical way to construct and evaluate the energy func-
tional, our work in evaluating the ground-state properties of our material of interest would
be basically done.

The fact that the 3-component electronic density, rather than the 3N-component elec-
tron wavefunction, is sufficient to determine the ground state energy of a solid, is a major
simplification. However, the functional is unknown. To make progress, Kohn and Sham
first wrote the exact functional in terms of the functional for a system of noninteracting
electrons plus a correction term, the so-called exchange-correlation functional. Minimizing
this functional with respect to a density expressed in terms of single-particle states leads to
the “Kohn-Sham” equations [101, 59]. The Kohn-Sham approach is motivated by the goal
of recasting the many-body Schrodinger equation in section 2.1 into the sum of kinetic and
Coulomb energies of independent electrons, plus a term which accounts for deviations due
to electron-electron interactions (i.e. correlation and exchange). The Kohn-Sham equations
are an example of a “mean-field” approximation, in which we assume that each electron ex-
periences an average potential created by the sum of contributions from all other electrons,
as well as the nuclei [39, 59]. In fact, the Kohn-Sham approach represents a mapping of the
fully interacting N electron system onto a set of N noninteracting, single-electron orbitals
¢; that yield the true, many-bodied electron density via n(r) = 37, |¢:(r)|>. Now the energy
E [n] in equation 2.5 may be rewritten in the following way:

En(r)] = /Vn(r)n(r)dr—z/draﬁ(r)%@(r)—i—%//drdr'%—l—]@m [n(r)]. (2.6)

Here, the first term is again the electronic energy contribution due to the external po-
tential of the fixed nuclei. The second term is the kinetic energy of the noninteracting
electrons, the third is the mean-field electron-electron Coulomb interaction, and the fourth
term is the infamous “exchange-correlation” energy which accounts for contributions to the
(U [n] | T, + Vie|¥ [n]) term in equation 2.5 which are not included in the independent elec-
tron approximation (terms two and three in equation 2.6). While equation 2.6 is formally
exact, the specific form of E,.[n(r)] is unknown, and finding reasonable approximations to
this exchange-correlation energy is the subject of much ongoing research.
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In practice, to find the ground-state density no(r) and corresponding ground state en-

ergy, we minimize the energy functional F [n] by requiring ‘S?T[Z”] ln, = 0. This yields a set of

Euler-Lagrange equations for the single-particle fictitious orbitals ¢;(r) [39]:

2 lr — 1| on 2

(2.7)
Note that the equations 2.7 are single-particle Hamiltonians for the orbitals {¢;(r)} with an
effective potential, Vo = Vi, + Vee + Vie. These are the so-called Kohn-Sham equations,
and with them at last we have covered the basic components of a DFT calculation workflow.
Figure 2.1 shows a schematic of the steps required to reach the most fundamental output of
DFT, the ground-state energy. The fact that the exchange-correlation potential V.. and the
electron-electron potential Vie depend on the density n, and the fact that the density depends
on the single-particle Kohn-Sham orbitals ¢;, together imply that the set of equations 2.7
must be solved self-consistently. We start with the external nuclear potential V,,(r), which
can be constructed from knowledge of the atomic species and crystallographic coordinates
in the unit cell of a material. We then construct an ansatz for the the initial Kohn-Sham
orbitals and from these we generate a starting density. From the starting guess for the
density we construct the potentials \A/Ic and Vee. With these potentials plus the nuclear
potential we then solve the set of eigenvalue equations , generating a new set of Kohn-Sham
orbitals. With these Kohn-Sham-orbitals we construct a new density n(r) = 3, |¢i(r)|>.
We take this new, improved density, construct new potentials, and iterate the steps self-
consistently until the density generated from solving the Kohn-Sham equations is equal to
our initial input density. Finally, having obtained the ground state electron density ng(r)
we plug it back into the full many-bodied energy functional 2.6 to evaluate the ground state
energy of our material. From derivatives of Fgg, many additional ground state properties
such as polarizability, elastic constants, and Born charges can also be obtained from a DFT
calculation [39].

Exchange-Correlation functional

As mentioned in section 2.1, the exchange-correlation energy functional E,.[n(r)] is gen-
erally unknown and we must treat it with some approximations. The two most common
approximations are the “Local Density Approximation” (LDA) [101] and the “Generalized
Gradient Approximation” (GGA) [L60]. In the LDA, E,. [n(r)] is given by

ELPA — /d?’rn(r)exc(n(r)), (2.8)

where €,.(nr) is the exchange correlation energy per particle corresponding to that of a ho-
mogenous electron gas (HEG) of density n(r) at point r. Thus each infinitesimal volume
element dr is associated with an idealized electron gas having a locally uniform density. The
exchange energy (arising from the Pauli exclusion principle) for a HEG for given density

[_Vj e+ [ n(r) | OE. W] bi(r) = [_22 V() + Vielr) + mr)] 6i(r) =

€¢i(r)
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Figure 2.1: Basic workflow for a DFT calculation. Figure adopted from [59].

n(r) has an exact solution, while the correlation energy for an HEG is generally obtained by
solving the full many-bodied Schrédinger equation with stochastic methods [59].

The GGA approximation improves upon the LDA by accounting for local spatial varia-
tions in the electron density. In this approximation F,. is given by

FOGA _ / Prf(n(r), Va(r)), (2.9)

where the form of the function f depends on the implementation of GGA used. Perhaps
the most common GGA implementation was developed by Perdew, Burke, and Ernzerhof
(PBE) [157], and we shall use this functional throughout the thesis.

Both LDA and GGA have inherent shortcomings; for example, LDA tends to underes-
timate lattice parameters by up to a few percent in a geometry optimization (overbind)
whereas GGA tends to overestimate lattice parameters by up to a few percent (underbind)
[13]. Moreover, numerical values for band gaps (and more importantly for this thesis, band
inversions) can be severely underestimated (overestimated) with both functionals [199]; we
note that the band gap is not a ground state property, and therefore good agreement with
experiment is not expected. We will discuss some improvements on these methods such as
LDA(GGA)+U and hybrid functionals, later in the chapter. However, the relative computa-
tional cheapness of LDA and GGA as well as their reasonable accuracy for many materials
of interest make them broadly used in DFT research to this day.
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Basis functions and Pseudopotentials

When constructing the Kohn-Sham orbitals in a DFT calculation, a choice of basis is re-
quired. In this thesis, and in most modern DFT codes employing periodic boundary condi-
tions, a plane-wave basis is used in which the Kohn-Sham orbital ¢ with crystal momentum
k is expanded in the following manner:

Gis(r) = <> Cige'ST, (2.10)
G

where G are the reciprocal lattice vectors and C' are the coefficients in the expansion. Note
that equation 2.10 is in the Bloch form 9,3 (r) = e®Tu, (r), where u,(r) in a function with
the periodicity of the crystal lattice. In practice the basis has to be truncated at some point
due to computational limitations, and the cutoff wavevector ,,., is usually specified by
choosing a cutoff energy defined by E.,; = % where m, is the electron mass.

Another practical concern is the question of how to treat core electrons, which are chem-
ically inert and irrelevant for many material properties. A common method is to use pseu-
dopotentials, which lump the core electrons together with the nuclear potential V,,(r), al-
lowing us to solve the Kohn-Sham equations for the outer valence electrons only [2306, 39].
This reduces computational expense significantly because the requirement that all electronic
orbitals are orthogonal means that the tightly bound core electrons must have highly oscilla-
tory wavefunctions, thus mandating a huge plane wave cutoff in equation 2.10 if we include
these electrons explicitly. Computation time is also cut due to the fact that eliminating the
core electrons reduces the number of Kohn-Sham equations we need to solve in our DFT
calculation, and the computational time scales as ~ N3 where N is the number of electrons.

In practice, a pseudopotential for a specific atomic element is constructed by first solv-
ing the all-electron Kohn-Sham equations for that element to obtain Kohn-Sham orbitals
and eigenvalues for the valence electrons with all electrons included. We then construct
“pseudowavefunctions” by splicing the exact form of the valence electrons far away from the
nucleus with a smooth, node-less function at distances close to the nucleus. We can then in-
vert the Schrodinger equation for that pseudowavefunction to obtain a corresponding smooth
pseudopotential that combines the exact nuclear potential with screening effects from the
core electrons [39)].

2.2 d and f electrons: capturing localization and
strong correlations in DFT

DFT4U

While the LDA and GGA (or specifically, PBE) functionals are excellent for describing a wide
variety of systems, they can fail catastrophically for materials containing transition metal or
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rare-earth ions, which usually have unfilled d and f shells respectively. A well-known example
is found in many of the transition metal oxides, which LDA predicts as metallic, although
they are experimentally known to be insulators [15]. These and other failures are in part
because LDA and PBE fail to take into account the orbital dependence of the Coulomb and
exchange interactions, thereby over-delocalizing the unpaired d and f electrons [5]. Many
different improvements on LDA (PBE) for the treatment of strongly correlated materials
have been proposed and implemented within DF'T, but the most computationally inexpensive
is almost certainly the so-called LDA (PBE)+U method [7]. This formalism separates the
electrons into two types; those in s or p orbitals which are relatively delocalized, and localized
electrons in d and f shells. The former are treated in the normal LDA (PBE) formalism.
For the d (or f) electrons however, a repulsive Hubbard potential EY = %U > 4 lilj, where
l; and [; are density matrices for the specific d orbitals ¢ and j, is added. The modification
to the LDA (PBE) energy functional EXPAPBE) [p(r)] in equation 2.5 is then [114]

ELDA(PBE)+U n(r),l] = [ LDA(PBE) [n(r)] + EY [I)] — B[], (2.11)

where n(r) is again the total electron density. F|[l] is a term subtracted to partially mitigate
double counting from the Coulomb energy of the d or f electrons as calculated within plain
LDA (PBE).

In practical terms, EY and E% are constructed using the ad hoc Hubbard U and Hund’s
exchange J parameters, the values of which are specified as input at the beginning of the
LDA (PBE)+4U calculation. The specific values, in units of energy, of U and J must be
proposed on a case-by-case basis for each material of interest; sometimes, this can be done
self-consistently within a linear response approach [38], or else by empirical matching of the
DFT outputs to experimental data. The necessarily ad-hoc nature of LDA(PBE)+U is a
downside to the method, and as will become abundantly clear in Chapters 8 and 9, there
are some materials for which no single set of values for U and J can satisfactorily describe
all properties of interest.

Hybrid functionals

Hybrid functionals are in general a more robust way to treat strongly correlated d and f
electrons than DFT+U. Rather than using the LDA or PBE approximations for the exchange
part of the exchange-correlation functional E,., hybrids incorporate some amount of exact
Hartree-Fock exchange, given by [39]

e Y R

v —r'|

ik,jq

where the ¢; and ¢;q are different Kohn-Sham orbitals, and the quantum numbers corre-
sponding to their crystal momenta k and q are included. Correlation on the other hand is
still treated in the LDA or PBE formalism. The most straightforward implementation of a
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Hybrid functional is PBEO [158], where the total exchange-correlation energy is given by

EJI;CBEO :i fF_{_z fBE—FEfBE, (213)

where EFPE is the correlation energy from standard PBE. However, the computational

expense of the nonlocal Hartree-Fock calculation in PBEO can be reduced, while still get-
ting comparable results, by using a range-separated hybrid functional; variations of these
are known as Heyd-Scuseria-Ernzerhof, or HSE functionals [73]. In HSE functionals, the
Hartree-Fock treatment for a fraction of the exchange energy is applied only at short ranges,
whereas 100% of the exchange energy at long ranges is treated with PBE or LDA. The range
separation is controlled by a parameter u that defines the short and long range portions of
the Coulomb operator. The exchange energy within HSE is

BISP = TBUPSN ) + SEDPESR ) + BLPEIRG) + B, (21
where SR and LR refer to short-range and long-range respectively. In spite of the computa-
tional speedup of HSE as compared to PBEQ, for even moderately large systems HSE can
still be prohibitively expensive. Thus, throughout this thesis we use PBE or PBE+U for the
majority of our calculations, and use HSE calculations sparingly, as necessary.

2.3 Wannier Functions

Basic idea

Bloch’s theorem postulates that the one-electron eigenstates for an infinite periodic crystal
can be written as ¢,k (r) = X Tu,(r), where u,(r) is a function with the periodicity of
the lattice and k is the crystal momentum with units of inverse length. Thus, crystals are
naturally described in terms of “Bloch waves” ¢, (r) which are delocalized in real space and
localized in reciprocal space. Plane-wave DFT calculations correspondingly cast the Kohn-
Sham orbitals in the Bloch format (equation 2.10). However, there are many applications
for which a basis localized in real space and delocalized in k-space is preferable to the
Bloch form. Wannier functions, which are essentially Fourier transforms of Bloch functions,
are a natural choice for such a basis within a DFT formalism [137, 138]. From a qualitative
standpoint, WFs have many similarities with molecular orbitals and can thus provide insight
into the details of chemical bonding for molecules or amorphous solids. More quantitatively,
the modern theory of electric polarization, formulated by Vanderbilt et al. [98] recasts
the electric polarization in an extended periodic solid in terms of either a Berry phase
calculated in the Bloch basis, or equivalently and perhaps more intuitively, in terms of the
positions of the WFs in the unit cell in a Wannier basis. Finally, and most relevantly to
this thesis, WFs can serve as a very accurate tight-binding basis which can be used to
transform back to reciprocal space and interpolate quantities on an extremely dense k-grid
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with massively reduced computational expense as compared to a plane-wave DFT calculation
on an equivalent grid [138].

We briefly outline the basic concepts for constructing localized WFs starting from a DFT
calculation; this procedure is implemented in the Wannier90 code [111] which interfaces with
many popular DFT codes. In Dirac notation, a WF |nR) localized in cell R and associated
with band n is defined as

v
(27)?

where V' is the volume of the real-space primitive cell. The inverse equation defines the
Bloch state, or Kohn-Sham orbital, in terms of WFs:

by = > _ ™ FnR). (2.16)

R

nR) = oo [ ke R o). (2.15)

However, WF's are not unique due to a gauge freedom in the Bloch states which propagates
nontrivially into the integral in equation 2.15. Concretely, in the case of a single Bloch state
|6nk), the gauge freedom amounts to an arbitrary choice of phase that does not change any
physical observables:

|Gnk) = €% | (2.17)

where 6,(k) is a real function of k. If we now consider an isolated manifold of N bands
in reciprocal space (isolated here means that while there can be degeneracies among the N
bands at certain k points, this set is energetically separated from all other bands everywhere
in the Brillouin zone), this gauge freedom generalizes to a unitary transformation that mixes
the bands at a given k point:

where U® is an N x N unitary matrix. The propagation of equation 2.18 to the definition
of WF's leads to a set of N generalized Wannier functions given by

14 —ik-R (k)
InR) = G >/dk ZU |Drmic) - (2.19)

The shapes and spreads of the WFs depend on our choice for the unitary matrix U®). The
question then becomes how to choose U™ such that the resulting WFs have the properties
we desire. Because the motivation for using WFs over the Bloch eigenstates is usually the
need for a localized basis set, the most common criterion is to choose the unitary matrix such
that the spatial spread of the WFs is minimized. This is the approach developed by Marzari
and Vanderbilt and taken within the Wannier90 code developed by Mostofi, Vanderbilt et
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al. and the resulting “Maximally localized Wannier Functions” or MLWFs are the most
common choice in DFT applications. The spread of the manifold of N WF's is defined as

Mz

N
Q=" [(0n|r*|On) — (On|r|0n)] (2.20)
n=1

n=1

where the Oth unit cell is chosen arbitrarily as the origin. MLWF's are constructed such that
equation 2.20 is minimized. This is done by calculating the gradient of {2 with respect to
infinitesimal changes in the unitary matrix, U® — U® 4§U®  The gradient is then used to
minimize the spread by a steepest-descent or conjugate-gradient algorithm. It can be shown
[137] that the only ingredients required to calculate the gradient using finite differences are
the overlaps of the cell-periodic parts of the Kohn-Sham Bloch orbitals:

MEP = (U [tiniern) (2.21)

where b are vectors connecting the k point to its nearest neighbors in the reciprocal lattice.
The one other quantity required in the construction of MLWFs is a set of initial guesses
|gn) for the final forms of the localized Wannier functions (generally, the best procedure is
to select atomic orbitals which have significant weight in the Bloch bands of interest, e.g.
copper d states). The initial guesses are projected onto the N Bloch states in the isolated
manifold, as

AR = (Smlgn) (2.22)

These projection matrices are then used to construct from the original Bloch orbitals a new
reference set which should be closer to the ideal, generalized Bloch states (equation 2.18)
that yield the MLWFs. These modified Bloch orbitals are the actual states which go into
the overlaps in equation 2.21.

Thus, everything needed to generate MLWF's is contained in the output of a DF'T calcu-
lation. In practice, the basic steps in the “Wannierization” process are the following:

1. Perform a self-consistent DFT calculation to generate a set of Bloch-like Kohn-Sham
orbitals.

2. Choose a subset of N isolated energy bands which we wish to wannierize; in general,
these will be bands close to the Fermi level, which are the most relevant for material
properties.

3. In Wannier90, specify initial guesses for the MLWF's; the original Kohn-Sham orbitals
will be projected onto these localized states to generate a gauge-transformed set of
Bloch states that will be the starting point for the minimization procedure.

4. Using the overlaps MEP) of neighboring Bloch states in the Brillouin zone, calculate
the gradient of the spread €2 of the WFs with respect to changes in the unitary matrix
in equations 2.18 and 2.19. Minimize € using the gradient to update the matrices U®)
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5. Once €2 is minimized, use the resulting unitary matrices to construct a manifold of N
maximally localized Wannier functions using equation 2.19.

We should mention that is possible to extend the formalism of MLWFs to the case where
the bands of interest are not isolated, but instead become degenerate with other bands at
higher or lower energies at points in reciprocal space. This is often the case for metallic
or semimetallic materials on which this thesis primarily focuses. In this case one can use
a “disentanglement” procedure developed by Souza, Marzari and Vanderbilt [180]. Very
generally, the idea is to choose an energy window that encompasses at minimum the N
bands of interest and at some points in the Brillouin zone may contain some number M > N
bands. At each point k with more than N bands, the optimal subspace of N bands is
extracted by a unitary mixing of all M Bloch states at this k point. The “optimal subspace”
is defined by minimization of the part of 2 which is gauge-invariant for a given subspace.

Uses of WFs in this thesis: tight-binding, surface states, and
transport tensors

Before concluding this chapter, we briefly discuss the main applications of MLWFs in this
thesis. As mentioned in 2.3, MLWFs can serve as a localized basis from which to construct
tight-binding Hamiltonians. Given the matrix elements of the Hamiltonian in the Wannier
basis, which are given as output in the Wannier90 code,

H,(R) = (Om|H|Rn) (2.23)

where the notation for the Wannier functions is defined in the previous section, the tight-
binding Hamiltonian in reciprocal space may be obtain via a computationally efficient Fourier
transformation:

Hyp(K) = > e™®H,,,(R). (2.24)

R

An extremely useful extension is using MLWFs to construct “slab” tight-binding models
where we are interested in looking at topological states localized at the material surface.
In principle it is possible to generate a surface state band structure directly from a DFT
calculation using a supercell with vacuum in one direction to model a surface; in fact, we use
this direct method in Chapter 5. However, the supercell must be large enough to contain
a bulk-like region in the middle of the supercell; otherwise, hybridization between the top
and bottom surfaces will generally obscure topological surface states. The minimal accept-
able supercell size is dependent on the material, and in some cases (as in TiAsRh which we
describe in Chapter 4) this can be tens or even hundreds of primitive unit cells, which is
computationally infeasible for a direct DF'T calculation. Thus, a tight-binding calculation is
sometimes the only way to go. We emphasize that in constructing a tight-binding Hamilto-
nian for a supercell with surfaces, we still use the primitive cell in the DFT calculation from
which we generate the Hamiltonian matrix elements in the Wannier basis. The construction
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of a slab tight-binding Hamiltonian is completely analogous to the case of bulk, with the
modification that the reciprocal lattice vector in the direction perpendicular to the surface
is no longer a good quantum number (due to the periodicity of the crystal being broken in
this direction). Instead, we can index the S layers of the slab in real space to distinguish
matrix elements for lattice vectors R that connect cells in different layers. Explicitly, the
elements of the slab tight-binding Hamiltonian (of size (N x S) x (N x S) for N Wannier
functions in a primitive unit cell) may be written as [213]

Hmn,z'j(k”) = Z eik\l'RHmn(R). (2.25)
R=(R1,R2,(i—j)R3)

Here, k; is the component of crystal momentum parallel to the surface (defined here as
perpendicular to the Rj lattice vector), i and j refer to the layer indices and the lattice
vector R is restricted to the subspace which connect cells in layers ¢« and j, and m and n as
usual refer to the band indices of the WF's in the primitive cell.

Finally, we mention that formulas involving expectation values of the velocity operator, v,
which feature heavily in studies of transport, can be evaluated very naturally in the Wannier

basis. This is because 0 = [H , f‘} can be written using the Wannier basis Hamiltonian matrix

elements as [231]

Bl = %eik'R(R 41 — ) Hon (R), (2.26)

where r,, = (Om|r|Om) is the center of WF m, and the matrix elements H,,,(R) are de-
fined in equation 2.23. The Kubo linear response conductivity formula which we discuss
in connection to the spintronics candidate Fe;;3sNbS; in Chapter 9 is evaluated by Fourier
transforming to a dense k-grid from a Wannier basis and constructing the velocity operator
in this manner.
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Chapter 3

Topological Semimetals

3.1 Some Background on Topological Materials and
Topological Phase Transitions

Introduction: the Quantum Hall state and Topological invariants

A significant portion of condensed matter physics from both a theoretical and experimental
standpoint involves the exploration of distinct phases of matter. For most of the twentieth
century, Landau theory, which describes phase transitions in terms of spontaneously bro-
ken symmetries, was thought to successfully characterize all possible cases. However, with
the discovery of the Quantum Hall effect 40 years ago [99], scientists realized that two or
more phases of matter could exhibit distinct observable properties while being described by
identical structural symmetries [71, 80]. This led to the development of an entirely new for-
malism for phase transitions whereby the distinct phases are characterized by different values
of mathematical invariants rather than different global symmetries; these invariants change
when the phases cannot be connected by a smooth or adiabatic evolution of the Hamiltonian
through tuning of some order parameter, implying that they are topologically distinct. The
specific form of the topological invariant of interest depends on the material’s symmetries
and band structure (i.e, whether it is a semimetal or insulator), but very broadly, these
invariants involve integrating properties of occupied Bloch states over the crystal Brillouin
zone (BZ). While the papers in the following sections, as well as the remainder of this in-
troductory chapter, focus on topological materials with three-dimensional semimetallic band
structures (topological semimetals, or TSMs), following [71] we will use the example of the
two dimensional insulating quantum hall state (QHS) to introduce topological phases, as it
the most conceptually straightforward case.

Figures 3.1a-3.1c show a cartoon of the simplest insulating system, an atomic insulator: a
structure of periodically arranged atoms with electrons bound to the atoms in closed shells.
The translational invariance of the material implies that the energy eigenstates can be writ-
ten as Bloch states 1(n,k) = 7 |u,(k)), with k the crystal momentum, n indexing the
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Figure 3.1: Atomic insulator (a)-(c) versus Quantum Hall State (QHS) (d)-(f). (a) Cartoon
of atomic insulator. Large black circles indicate atomic nuclei, with electrons (red) orbiting
in closed shells. (b) Trivial insulating bandstructure with occupied valence band in blue,
unoccupied conduction band in red, and a finite energy gap E,q,. (c) Response of the
boundary of a trivial insulator to an electric field. Like the bulk material, the boundary of
a trivial insulator will also be insulating. (d) Quantum Hall State (QHS) with electrons in
the two-dimensional bulk undergoing cyclotron orbits. (e) Band structure with Landau
levels caused by perpendicular magnetic field B (in this cartoon, the k dispersion is
neglected.) (f) In contrast to (c), a QHS has conducting, chiral electronic states at the
edges of the material perpendicular to the applied electric field due to the nonzero Chern
number C.

energy level, and |u,(k)) a periodic function in the BZ. The eigenvalues FE, (k) form the
energy bands and in the case of the atomic insulator the occupied and unoccupied bands are
separated by an energy gap at all points k in the BZ. The atomic insulator is topologically
equivalent to vacuum.

The integer quantum hall state (QHS) (Figure 3.1d-3.1f), which manifests when elec-
trons are confined to two dimensions in the presence of a strong perpendicular magnetic
field, also has an insulating band structure with Landau levels separated by hw,. with w, the
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cyclotron frequency. In the presence of a periodic potential the Landau levels will disperse
with crystal momentum k, identically to the trivial insulator. However, unlike the trivial
atomic insulator, the application of an electric field along one direction of the quantum hall
state induces a transverse, quantized electrical current known as the hall conductivity:

0y = Ne*/h. (3.1)

The fundamental distinction between the QHS and the trivial insulator lies in a topolog-
ical invariant known as the Chern number, which can be expressed in terms of the Berry
connection of the cell-periodic part of the Bloch wavefunctions, |u,(k)). Given the Berry
connection, defined as

An(k) = i (unk| Vi [unk) (3.2)

and Berry curvature, which is the wedge product of A,,(k), which is the normal cross product
in three dimensions and in two dimensions is simply F,, = aszﬁy — 8ky Afﬁ, the Chern invari-

ant is the Berry curvature integrated over the two-dimensional BZ, summed over occupied

bands [71, 63]: )
C= > /koFn. (3.3)

n,occ

For the case of a trivial insulator, C' = 0, while C' = 1 for the QHS. In spite of their qual-
itatively similar band structures, the different values of the Chern invariant imply highly
distinct physical properties, perhaps the most striking of which is the existence in the QHS
of conducting, chiral states localized on the edges of the material which are perpendicular
to the Hall current, and are insensitive to disorder and backscattering [55] (Figure 3.1 (f)).
Robust surface states occur in most topological materials as a consequence of the change of
topological invariant in going from vacuum to bulk. This is simplest to visualize in the case
of insulators. Imagine slowly tuning the Hamiltonian of a QHS material by changing the
distance y from an interface. As we mentioned previously, topologically distinct objects with
different topological invariants cannot be connected without closing the energy gap. Thus,
at the boundary between the QHS (C' = 1) and vacuum (C' = 0), where the Chern invariant
changes value, there must exist low-energy electron states localized at the surface where the
energy gap closes.

The QHS only exists under specific experimental conditions (i.e. two-dimensional system,
externally applied magnetic field). However, following the discovery of the Integer Quan-
tum Hall effect, the concept of topological invariants as descriptors for phases of matter has
been extended to a broad variety of insulating materials. In addition to three-dimensional
variants of the QHS with an applied magnetic field [100], seminal papers in the early 2000’s
revealed that, in both two and three dimensions, materials with time-reversal symmetry 7
can be characterized by a class of so-called Z; invariants [91, 110]. Nontrivial Z, insulators
(also sometimes referred to as Quantum spin hall, or QSH insulators in the literature) can
be thought of as a superposition of two QHS systems with effective magnetic fields in oppo-
site directions; these effective magnetic fields are created by the the spin-orbit coupling of
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electrons in the material, where electrons with up and down spins generate opposite effective
fields [71]. Both copies of the QHS state contribute a single chiral edge state. Due to the
T symmetry these two edge states form Kramer’s pairs with opposite spins and opposite
crystal momenta k and —k, meaning they are counter-propagating. It is notable that due
to the spin-orbit coupling, the Z, insulators have topological properties that are intrinsic to
the material, and unlike the QHS do not require an external magnetic field to be realized.

Extending topology to semimetals

While a topological classification for three-dimensional normal metals, which have two-
dimensional Fermi surfaces, is still unclear, the concept of topologically nontrivial materials
has been extended to include semimetals; these topological semimetals (TSMs) will be the
focus of the following chapters. Semimetallic band structures have discrete band touchings
where the highest occupied and lowest unoccupied bands are exactly degenerate, which may
either occur at singular k points (as for Weyl and Dirac semimetals) or for one-dimensional
loops in the BZ (nodal line semimetals). The existence of gapless materials with topological
properties was first demonstrated theoretically in 2007 by Suichi Murakami [115]. Below,
we repeat the main points of his paper and discuss the resulting topological Weyl semimetal
(WSM) phase, as it is the historical and conceptual precedent for other TSM variants, such
as the nodal line semimetal (NSLM) which we focus on later in this thesis.

Murakami studied the effect of varying a single parameter m to induce the phase transi-
tion between a T-symmetric, QSH state (discussed above), and a trivial insulator. Because
the value of the Z, invariant changes at the phase transition, the energy gap between occu-
pied and unoccupied states must close for some crystal momentum k. 7 symmetry implies
that for any band n, E, (k) = E,(—k). Thus, if for some value of the parameter m = mg a
band crossing occurs at k, a crossing must also occur at —k. For materials without inversion
symmetry, these band crossings are separated in reciprocal space at generic BZ points £kj.
In two dimensions, this semimetallic band structure is a critical point which occurs for a
single value of the parameter m; any infinitesimal deviation from m = mg will gap out the
crossing points and drive the material to either the QSH or trivial insulating phase. The
situation changes fundamentally when one considers three-dimensional systems. Specifically,
for three-dimensional materials with 7 symmetry but no Z symmetry, there is no longer a
phase transition between the QQSH and the trivial insulator at single value of m. Instead,
there is a finite range of the parameter m; < m < ms for which the material’s band structure
remains gapless (see Figure 3.2a). The difference in nature of the phase transition in two
and three dimensions can be seen simply from a codimension argument. For an arbitrary
point k, a band touching, up to an overall constant proportional to the identity matrix, can
be minimally described by a 2 x 2 Hamiltonian,

H = fi(m,k)o® + fo(m,k)o? + f3(m, k)o?, (3.4)

where fi, f> and f3 are functions of (m, k,, k) or (m, k,, ky, k.) in two and three dimensions
respectively, and the o are the x, y and z Pauli matrices. The codimension of equation 3.4,
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namely the number of conditions required to enforce the eigenvalues to be degenerate, is
three (fi = fo = f3 = 0). In two dimensions this is equal to the number of independent
variables (m and the two components of k), meaning that band crossings can occur at only
a single point in the (m, k,, k,) phase space. But in three dimensions, the codimension is
one less than the number of independent parameters (m, k,, ky, k), such that the possible
solutions form a curve in the four-dimensional parameter space. This means that as m is
varied there is a range of k values at which band crossings exist at ky and —ky. Thus, in
three dimensions a semimetallic phase which is distinct from the insulating QSH or trivial
phases emerges for a finite range of parameters. We will now see that this gapless phase
(known as a Weyl semimetal, or WSM phase) is itself topologically nontrivial.

Topological nature of the gapless state: the Weyl semimetal

Murakami showed that the gapless phase discussed above is topological in the sense that
the pair of band touchings, or Weyl points, cannot be destroyed individually by tuning of
the Hamiltonian, or introduction of disorder. While tuning the parameter m causes the
band crossings to move around in reciprocal space, they can only be created or annihilated
in pairs, at the points m = m; and m = msy when they overlap in reciprocal space. The
robustness of the Weyl points is due to the fact that each gapless point carries a topological
invariant. The topological invariants for insulators which we have discussed thus far involve
integrating properties of occupied Bloch states over the entire BZ. Because the manifold
of occupied states is ill-defined at the band touching points in semimetals, at first glance
the application of a topological description might seem untenable. However, this difficulty
can be overcome by defining topological invariants along closed loops or surfaces in the BZ
for which any gapless points are excluded [I10]. In the case of the zero-dimensional Weyl
points, the invariant associated with a single crossing is the integral of the Berry curvature
flux through a gapped surface S in the BZ which encloses the degeneracy, as depicted in
Figure 3.2h:

= % 3 /S(vk % A, (K)) - ndS, (3.5)

n,0cc

where n is a vector normal to S. Note that Equation 3.5 is just an extension to three dimen-
sions of the Chern formula 3.3 for the insulating QHS. The Chern number for an individual
Weyl point is quantized to 1. In the case described here in which the QSH/WSM system
has broken Z symmetry but preserved 7, the transformation of the Berry curvature under
T symmetry dictates that Weyl points at k = £k, have the same sign of the Chern number,
C(ko) = C(—ko). However, the net Chern number, or Berry flux, in the three-dimensional
BZ must be zero (this is evident by noting that if we expand the surface S in equation 3.5
to encompass the entire BZ rather than a single band crossing, by periodicity this surface is
equivalent to a point, and thus cannot have a net flux of Berry curvature [207].) Therefore in
the gapless m; < m < my region, in order to enforce zero net Berry flux in the BZ there must
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be an additional pair of Weyl points both with opposite Chern sign located at a different
set of points k = £k;. This implies that the minimum number of Weyl points in a system
with 7 symmetry (but no Z symmetry) is four. At the end points m; and msy of the WSM
phase, Weyl points with opposite Chern numbers meet in the BZ (at points k = G/2 + k,
with G/2 a time-reversal invariant BZ center or boundary, such that the Weyl points with
identical Chern numbers still respect 7 symmetry) and are annihilated (Figure 3.2a).

The conceptual demonstration of the WSM phase by Murakami as well as the first ex-
perimentally and theoretically verified WSM materials such as TaAs, TaP, NbAs and NbP
[124, | focused on nonmagnetic 7-symmetric compounds with broken inversion symme-
try.  We note here that the WSM phase can also occur in materials with intact inversion
symmetry but broken 7 symmetry [207] (magnetic Heusler alloys are one verified example
[206, 31]). In this case, Z symmetry implies that C'(ky) = —C'(—kg). Therefore for WSMs
with Z symmetry (but no 7 symmetry), the minimum number of Weyl points is two rather
than four.

Finally, we point out that in addition to ensuring the robustness of the bulk band crossings
provided they do not overlap in reciprocal space, the topological Chern numbers associated
with individual Weyl points imply the existence of exotic surface states in the WSM phase,
analogously to the surface states in topological insulating phases. The presence of surface
states, and their functional form in the WSM phase, can be understood by the following
argument [207]. Consider a single pair of Weyl points with Chern numbers £1 on the k, axis
of the BZ at k, = k. We define the gapped surface S in equation 3.5 which encloses the
Weyl point at k, = —kg as the box formed by four two-dimensional side planes at k, = £&F,
k, = ig—;, a bottom plane at k, = —%3, and a top plane at some k, value —ky < k, < ko
(81,23 refer to the reciprocal lattice vectors in the z, y, and z directions which define the
boundaries of the BZ). Because the BZ is gapped everywhere except the location of the Weyl
points, each of these two-dimensional planes has a well-defined Chern number. If we keep
the locations of the five planes at the BZ boundaries constant and move the plane between
the two Weyl points along the k, axis, the Chern number defined by S must change from
C =1for —ky < k, < ko to C =0 for k, > ko (at which point the net Berry flux piercing S
is zero because the surface encloses both Weyl points). Therefore all two-dimensional planes
at fixed k, between the Weyl points must have Chern number C' = 1 (i.e. it is equivalent
to a QHS insulator), and all planes below k, = —ko and above k, = ko must have C = 0.
Each of these C' = 1 planes at constant k, will have chiral edge states at x and y boundaries
of the material. Going back to the three-dimensional WSM, this implies that there will be
continuous topological edge states (or “Fermi arcs”) on the side surfaces of the WSM which
must begin at the projection of one Weyl point and terminate at the projection of a Weyl
point of opposite Chern number (see Figure 3.2¢). Note that because the projections of the
Weyl points with opposite Chern numbers overlap on the k, = 0 boundary, no such Fermi
arcs are implied on surfaces perpendicular to the z direction [202].

Before closing out this chapter with a discussion of practical applications of TSMs, we will
briefly introduce two other TSMs which we discuss in more detail in the following chapters;
the Dirac semimetal and the Nodal Line semimetal. While these TSMs differ in several ways
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from the Weyl semimetal, their bulk and surface properties can similarly be described and
understood from the standpoint of topological invariants, and changes in these invariants as
one moves about the Brillouin zone.

3.2 Beyond the Weyl semimetal: other TSMs

Dirac Semimetals

In Section 3.1 we emphasized that WSMs must have either time-reversal symmetry 7T or
inversion symmetry Z, but not both. It is natural to ask what happens when a material has
both of these symmetries, and whether a semimetal phase with topological features can exist
in this case. At the very least, Weyl-like points involving the crossing of a single valence
and single conduction band are not possible in the presence of both 7 and Z symmetry.
This is clear by noting that in addition to reversing the direction of crystal momentum, 7~
symmetry also flips an electron spin, implying that ET(k) = E}(—k). On the other hand,
T symmetry reverses the direction of k but does not flip spin, i.e. E¥(k) = E¥(—k). These
two conditions together imply El(k) = E}(k); thus with Z and 7 symmetry all bands
are doubly spin degenerate at each k point. This also means that any crossing of bands
at a single k point will necessarily be fourfold, rather than doubly degenerate as in the
WSM. Furthermore, the coexistence of Z and T symmetries forces the Berry curvature to
vanish at every point in the BZ. Thus, unlike a singular Weyl point, a fourfold degenerate
crossing in this case does mot carry a topological invariant; in this sense, compounds with
7 and T symmetry that have fourfold-degenerate, zero-dimensional crossings are not as
topologically robust as their WSM counterparts. Nevertheless, this TSM variant (known
as a “Dirac semimetal”, or DSM) can be stabilized in three dimensions for a finite range
of Hamiltonian tuning parameters, provided there exists an additional rotational symmetry
that protects that bands from mixing and gapping out at the crossing [9]. Moreover, while
the absence of finite Chern number for the fourfold crossings in a DSM means that surface
Fermi arcs terminating at the band crossings are not guaranteed, for one of the two classes
of DSM which we shall discuss in this section, we can define a nontrivial Z, invariant on a
gapped two-dimensional plane in the three-dimensional BZ. This invariant does imply the
existence of topological surface states on the boundaries of the 2D plane, although they are
not intimately connected to a topological nature of the Dirac points as is the case for Fermi
arcs in the WSM phase [9].

There are two ways in which a stable DSM phase can arise in a material with Z, T,
and uniaxial rotation symmetries, which can be understood from considering the minimal
Hamiltonian in three dimensions for a 4 x 4 band crossing [207, 218]:

HE) = " fiylke, by ey m)or; = (Zggiﬂmlg }’:S((E%U (3.6)

4,7=0
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Figure 3.2: Weyl semimetal phase (WSM) in three dimensions with broken Z symmetry
(and intact 7 symmetry.) (a) Evolution from a topological insulating QSH state to a
trivial insulator by tuning of some parameter m. Two pairs (each containing Weyl points
with opposite sign Chern numbers) of gapless Weyl points are created/annihilated at

m = m, and m = my. Between those m values the Weyl points move apart in k-space,
with the C'= +1 Weyl points (red) symmetrically displaced from the time-reversal
invariant G/2 point due to 7 symmetry, and the C' = —1 Weyl points (blue) also
symmetrically displaced. Adopted from [116]. (b) The Chern invariant C' of a single Weyl
point is calculated by integrating the Berry curvature over a gapped surface S in the BZ
enclosing the degenerate point. (c) Cartoon of the Fermi surface arcs (purple lines) in
WSMs that arise as a consequence of the nonzero Chern numbers associated with
individual Weyl points. The red and blue represent a pair of bulk Weyl points displaced
along k, with Chern numbers +1 respectively (arrows denote the direction of Berry
curvature flux in each case). The Fermi arcs begin and end at the projections of the bulk
Weyl points onto the surface of interest (note that while the cartoon depicts Fermi arcs on
the x surfaces of the material, analogous Fermi arcs would be expected on the y
boundaries). Figure reproduced from [207].



CHAPTER 3. TOPOLOGICAL SEMIMETALS 26

where 01 23 and 7y 9 3 are Pauli matrices denoting spin and orbital degrees of freedom, respec-
tively, and oy and 7y are 2 x 2 identity matrices. While the presence of 7 and Z symmetries
constrains several of the f;; in equation 3.6 to be zero, these two symmetries only reduce the
codimension of the above equation to five, greater than the number of independent variables
((kg, ky, k., m) = 4); thus, in general it is not possible to tune the four parameters to realize a
band crossing. However, if the material also has a rotational symmetry C,,, (n-fold rotation
about a principle axis), [C,, H(k)] = 0 for k along that rotational axis (from now on we
take the axis to lie along k, without loss of generality). Therefore, if we restrict ourselves
to k values on the k, axis (such that k, = k, = 0), the Hamiltonian 3.6 can be further
constrained by using a basis in which C,, and H(k,) are both diagonal. Specifically, it can
be shown [215] that the Hamiltonian now takes the form

H = fo(k’z, m)UoTQ + fl(kzy m)F, (37)

where I' can either be oy73 or o373. The codimension of equation 3.7 is now one, whereas
the number of independent variables is two (k, and the mass term m). Thus, analogously
to the stable WSM phase described in section 3.1, we expect a finite range of values of m
for which we have semimetallic DSM crossings located on the k, axis.

The two distinct classes of DSM phases mentioned above depend on whether fi(k,,m) in
equation 3.7 is an even or odd function of k,. This in turn is dictated by the matrix repre-
sentation of inversion symmetry Z in the space group in question. In the case of symmorphic
space groups (space groups for which all symmetries, apart from lattice translations, leave
at least one common point fixed), Z takes on a diagonal representation Z = 7y or Z = 73
(depending on whether the orbitals in question have same or opposite parities). For non-
symmorphic space groups (space groups which contain either screw axes or glide planes,
operations that combine point group symmetries with a fractional lattice translation), the
matrix representation of Z is off-diagonal, i.e. Z = 7;. “Class [” DSMs occur in symmorphic
space groups where fi(k,,m) is even, meaning that to leading order f; ~ m + %ck‘g Since
fi(k,,m) is proportional to the energy gap between the two pairs of degenerate bands in
equation 3.7, a necessary condition to have fourfold degenerate crossings is a band inversion
(reversal of energy ordering), which can be achieved if mc < 0; for me > 0 the pair of doubly
degenerate bands is gapped at all k£, and the material is a trivial insulator. Once the band
inversion is achieved at some critical value of m = my, a pair of Dirac points will locate

symmetrically about the k, axis at k, = 4, /2|T”|l. These fourfold crossings are protected from

mixing and reentering an insulating state provided they have different rotational eigenvalues
under the C,, operation. As the parameter m is varied, the Dirac points will move along
the k, axis but will not disappear so long as the band inversion condition is maintained.
Generally, at some higher value m = my, two or more band inversions will occur simul-
taneously at different high-symmetry points and this tends to drive the material into an
insulating state again [207] (see Figure 3.3a). Class I DSMs are the only experimentally
verified DSMs to date, with NagBi and CdzAs, perhaps the best known examples [1 18, ].
This type of DSM, as we mentioned before, can in general host topological surface states on
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the boundaries parallel to the rotation symmetry axis provided the gapped two-dimensional
plane k., = 0 has a nontrivial Z, invariant. However, these surface states are not intrinsically
connected to topological invariants of the individual bulk Dirac points as was the case for
WSMs, and indeed, are not required to terminate at the surface projections of the Dirac
crossings.

“Class II” DSMs occur in the situation where fi(k,,m) is an odd function of k,, which is
the case in space groups with nonsymmorphic symmetries. f;(k.,m) = —fi(—k,, m) implies
that f; must vanish at the center and end points (k, = 0 and k, = m) of the BZ along
the rotational axis, due to the periodicity of the BZ. Therefore, in contrast to class I DSMs
where a pair of Dirac points locate symmetrically from the BZ center along k., in class II
DSMs a single Dirac point locates at the center or boundary of the BZ along the rotational
axis. Furthermore, because fi(k,,m) ~ ak, to leading order in this case, the stability of
the Dirac point is independent of the tuning parameter m and will be robust as long as the
crystalline space group symmetries are not broken [218] (see Figure 3.3b). Although this
“symmetry-enforced” class of DSMs is in some ways more robust than the class I DSMs,
and has been proposed theoretically in several classes of compounds such as BiO, as well
as distorted spinels [223, ], these compounds have yet to be experimentally synthesized.
Moreover, class I DSMs do not have a topological invariant associated with them, and do
not in general support surface states. The two classes of DSMs and their evolution as a
function of tuning parameter m are shown in Figure 3.3.

Nodal Line Semimetals

Because we will discuss nodal line semimetals, or NLSMs, in some detail in two of the
following chapters, we will give only a brief, high-level overview here. Whereas the Dirac
and Weyl semimetals described previously consist of band crossings at discrete points in
the BZ, NLSMs in three dimensional materials have band crossings that form closed loops
in reciprocal space (see Figure 3.4). NLSMs may be grouped into three broad categories
based on the symmetries which protect the one-dimensional loops of crossings: NLSMS
protected by a mirror symmetry, NLSMs protected by the combination of inversion and
time reversal symmetry, and NLSMs with strong spin orbit coupling protected by inversion,
time-reversal, and a nonsymmorphic screw axis symmetry [16, 17]. We should emphasize
that in the first two categories, the NLSMs are only stable when spin-orbit coupling (SOC),
is neglected. Briefly, this is because SOC mixes orbital and spin degrees of freedom, and thus
fundamentally changes the form of space group symmetry operators. This can cause bands
whose crossings were protected without SOC by having different symmetry eigenvalues to
hybridize and gap out due to having the same symmetry eigenvalues with the inclusion of
SOC (The effect of SOC on NLSMs in the first two categories will be discussed further in
Chapters 4 and 6). Thus, the first two mechanisms of protection for nodal lines are only
relevant in materials with elements light enough such that SOC is negligible.

Type A NLSMs are protected in the absence of SOC by a mirror reflection symmetry,
M which acts in real space as (z,y, 2) = (z,y, —2) and in reciprocal space as (ky, ky, k.) —
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Figure 3.3: Dirac semimetal phase (DSM) In both (a) and (b) the solid and dashed lines
refer pairs of bands which are doubly degenerate at all k due to the combination of
time-reversal and inversion symmetries. While the bands are slightly separated for visual
clarity, in reality they are completely degenerate. (a) Class I DSM. With Z, 7 and a
uniaxial rotation symmetry C,,, a pair of fourfold degenerate Dirac points emerge along the
rotation axis k,. The pair of Dirac points is robust for a range of tuning parameter

m1 < m < mo. At the critical point m; a single band inversion occurs, creating the
symmetrically located pair of Dirac points. At m = my the crossings gap out due to
additional band inversions which tend to modify the rotation eigenvalues of the crossing
bands, allowing hybridization. (b) Class IT DSM. A single Dirac point locates at the center
or boundary of the BZ on the rotational symmetry axis, and is robust for all values of the
mass term m. This “symmetry-enforced” class of DSM retains the fourfold Dirac point as
long as no symmetries in the corresponding nonsymmorphic space group are broken.
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(ky, ky, —k,) for the example of a mirror plane perpendicular to the z axis. Because the
Hamiltonian H (k) is invariant under M on the k, = 0 and k, = 7 planes, the energy bands
may be labeled by the eigenvalues of M, meaning that as long as the mirror eigenvalues
of the crossing bands are not the same, the bands are prevented from hybridizing and the
crossing is protected. This can be represented quantitatively by a topological invariant equal
to the difference in occupied bands with a given M eigenvalue, say m = +1, at two points

on the inside and outside of the nodal line [30] (see Figure 3.4a):
n= fo:]fh - Nfzzzlfﬁh (3-8)

where we have picked k; and ko as arbitrary points on the mirror-invariant plane on the
outside and inside respectively of the nodal line. Recall that we since we are assuming
that the energy spectrum is gapped everywhere except the one-dimensional nodal line, the
manifold of occupied states at k; and ks is well defined, as well as the subset N,,—.; with a
specific mirror eigenvalue. In the case that n # 0, the crossing is between bands of opposite
mirror eigenvalues and the nodal line is protected provided the mirror symmetry is not
broken.

The second category of NLSM is protected by a combination of inversion and time-
reversal symmetries Z and 7, in the absence of spin-orbit coupling (when SOC is strong, the
NLSM will normally evolve into either a topological insulator or DSM [96].) The protection
of a nodal line with Z and 7 symmetries and no SOC is apparent from a codimension
argument similar to those outlined in previous sections [32]. When SOC is absent, the
time-reversal symmetry 7 acts simply as a complex conjugation operator. In this case it
can be shown that the minimal Hamiltonian for a two-band crossing H (k) = f1(m,k)o, +
fa(m,k)o, + f3(m,k)o, is real-valued, H,,,(k) = Hp,(k). This means that fy(k) = 0 and
the codimension of the Hamiltonian is two. This is two less than the number of independent
variables ((m, ky, ky, k) = 4) as opposed to one less as in the arguments above with WSMs
and DSMs. Thus, assuming the parameter m is tuned to some value mg such that there
is a band inversion, the set of points (k,, k,, k.) that yield degenerate eigenvalues (band
crossings) form a one-dimensional line, rather than zero-dimensional points, in reciprocal
space. Unless there is an additional mirror plane symmetry, the topological invariant n
defined above cannot be applied to this class of NSLM. However, a Z, invariant can be
defined for NSLMs with Z, 7" and no SOC as the integral of Berry connection A, (k)(equation
3.2) around a closed loop L encircling the nodal line [96, 17] (see Figure 3.4b):

o=> ?éAn(k) - dk. (3.9)

n,occ

7 and T symmetries quantize ¢ to be either 0 or 7. If ¢ = 7, the loop L cannot be shrunk
to a point (since an infinitesimally small loop must necessarily have zero Berry phase), and
therefore must enclose a protected degeneracy (i.e. the nodal line).

The final class of NSLMs is unique in that the nodal lines are not gapped out by SOC.
With both Z and 7 symmetries, when spin degrees of freedom and/or SOC are included all
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bands are doubly degenerate (for the reasons outlined in the section on DSMs). Thus, the
crossings of valence and conduction bands making up the nodal line are fourfold degenerate
and made up of two crossing “doublet” bands. These fourfold crossings are robust if the
material has an additional nonsymmorphic symmetry, specifically a twofold screw symmetry
S. (twofold rotation followed by half a lattice translation along the rotation axis, where
again we have chosen the z axis for concreteness). This is because the product of screw
axis with inversion symmetry generates a new symmetry operator M’ = 7 - S, that is
equivalent to a mirror plane shifted by half a lattice vector from k, = 0 for the normal
mirror symmetry M described earlier to k, = 7 in this case. On the k, = 7 plane we can
now label the four bands in a nodal line by their M’ eigenvalues. Crucially, for this shifted
mirror symmetry the mirror eigenvalues of the bands in a given doublet are the same. Thus,
if a doubly degenerate conduction band whose subbands have M’ eigenvalues +m’ crosses
with a doubly degenerate valence band whose subbands have mirror eigenvalues —m/, the
two doublets form a symmetry-protected fourfold degenerate nodal line. This is in contrast
to the normal mirror symmetry M on the k, = 0 plane, for which the subbands related by
Z - T have opposite mirror eigenvalues; in this case, a subband in the conduction doublet
will mix with a subband having the same mirror eigenvalue in the valence band, leading to
an anticrossing or gapping out of the nodal line [17, 10] (see 3.4c). These NLSMs can be
classified by a topological invariant very similar to the ) defined in equation 3.8 for NSLMs
with a mirror plane symmetry but no SOC, i.e. the difference in number of occupied states
with a certain eigenvalue of M’ inside and outside the NL [10].

Finally, we mention that all classes of bulk NSLMs described above host an exotic form of
surface state known as a “drumhead” state: a two-dimensional, usually dispersionless band
which terminates on the surface projection of the bulk nodal line and can locate either inside
or outside the area subtended by the nodal line [30, 96, 82, 10] (see Figure 3.4d). The nature
of this drumhead state is also topological in origin and specifically can be inferred from a
one-dimensional variant of the Berry phase defined in equation 3.9 [30]. We will discuss
these unique surface states further in the following chapters.

3.3 Technical applications of TSMs

This thesis focuses on the design and characterization of “functional” TSM materials (and
later, functional spintronic materials). Thus, in this introductory chapter it seems relevant
to mention, at least in passing, some of the technical applications and fundamental physics
questions that can be realized by functional TSMs whose topological features are easily acces-
sible. Specific examples are too numerous to list so we will just give a few broad concepts.
First, the linear dispersion of energy bands in the proximity of the band crossings in
WSMs, DSMs and NSLMs implies ultrahigh carrier mobility in these TSMs, making them
highly desirable for efficient, dissipationless electronic devices [77, ]. Connected to the
high carrier mobility is usually an extremely large magnetoresistance (change in resistance
with application of a magnetic field), that can be leveraged for magnetic sensing applications
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Figure 3.4: Categories of nodal lines semimetals (NSLM) based on the mechanism of
protection. (a) NLSM protected by a mirror plane symmetry, where bands with opposite
mirror eigenvalues m cross in a mirror-invariant plane of the BZ. (b) NSLM protected by
inversion and time-reversal symmetry in the absence of SOC. The Berry connection
integrating around a closed loop L encircling the nodal line is a topological invariant. (c)
Fourfold degenerate nodal line with SOC protected by Z, T and a two-fold screw axis S..
On the k, = 7 plane, the subbands in a single doublet have the same eigenvalues of the
composite mirror symmetry M’ =7 - S,, and their crossing with another doublet is
protected (left). On the k, = 0 plane (right), subbands in a single doublet have opposite
M’ eigenvalues, leading to an anticrossing when they meet bands of like eigenvalue in the
other doublet. In this case an NSLM does not occur. (d) Two-dimensional “Drumhead”
surface state (colored turquoise), which terminates on the projection of the nodal line on
the k, surface
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[113, 77, 169].

A second possible application of TSMs is in optoelectronics. The linear dispersions in
TSMs imply that they can absorb photons of arbitrarily long wavelength, making them use-
ful in devices such such as infrared photodetectors [169]. While in TSMs with symmetrical
dispersion (i.e., the slopes of the linearly crossing bands are identical), the net photocurrent
generated will be zero, this can be circumvented by using DSMs or WSMs with a “tilted”
dispersion, in which the slopes of the crossing bands are asymmetric [169, 28] (The DSM
NiTey which we discuss in chapter 4 is an example of such a “Type II” asymmetric Dirac
system).

In the last few years there has also been a surge of interest in using TSMs in catalytic
chemistry [169, ]. High carrier mobilities, intrinsic to the TSMs, are important for ef-
ficient charge separation and diffusion, and the robust surface states in TSMs can reduce
surface contamination, one of the limiting factors in catalytic processes. As a proof of princi-
ple in a study by Rajamathi et al., several known WSMs (NbP, TaP, NbAs, and TaAs) were
tested for dye-sensitized hydrogen evolution reaction (HER), a catalytic process in which
solar light is absorbed to produce hydrogen from water. All four compounds were found
to have strong activity for HER. Moreover, whereas a topologically trivial transition metal
dichalcogenide (TMD) compound TaS, was inactive for HER, the WSM MoTe, with similar
metallicity and Gibbs free energy for hydrogen absorption showed significant HER activity
[164], strongly suggesting that topology has a strong influence on catalytic activity at least
for this particular reaction.

In connection to the second half of this thesis, in which we discuss a magnetic material
with promising spintronics applications, we mention here that there is both a fundamental
and applied interested in finding magnetic TSM materials whose topological features can be
manipulated by using the material’s spin degrees of freedom [170, ]. Because magnetic
order affects electronic structure, magnetism acts a natural order parameter by which one
can tune the band structure of a material between a certain TSM phase and another TSM
variant, or an insulating phase. This was demonstrated theoretically by Smejkal et al. in the
case of the antiferromagnetic compound CuMnAs, which evolves from a topological DSM
to a trivial semiconductor depending on the direction of the magnetization (or Néel vector)
[176]. We discuss the connection between magnetism and topological order further in Chap-
ter ©.

Finally, on a more fundamental note, because two of the next three chapters focus on
NSLMs, we mention a couple properties of NSLMs in particular. First, the unique dimen-
sionality of the Fermi surface (one-dimensional as opposed to zero-dimensional for WSMs
and DSMs) means that NSLMs may exhibit effects from long-range Coulomb interactions
due to reduced screening [$5]. Secondly, the flat “drumhead” surface states provide an ex-
citing platform for the study of exotic correlation physics, due the high localization of the
surface state, and may even provide a route for high-temperature superconductivity because
of the flat band’s high density of states [30, 102].
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3.4 Conclusion

In this chapter we have introduced the concept of characterizing phases of matter by their
topological invariants rather than by the Landau formalism of broken symmetries. We have
applied this idea to materials with semimetallic band structures and have described three
cases of TSMs, or semimetals with topologically protected bulk and surface states (Weyl
semimetals, Dirac semimetals, and nodal line semimetals). Finally, we have given a broad
overview of some important applications which can be realized using TSMs. However, in
order for the unique features of the TSMs to be efficiently leveraged in any application, the
topological band structures should fulfill a subset of criteria including proximity of the band
crossings to the Fermi energy, lack of trivial bands at nearby energies, and general tunability.
The following chapters will focus on three material examples in which we have character-
ized functional TSMs and explored methods and parameters (e.g. elemental substitution,
manipulation of magnetic order) by which these criteria can be realized.
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Chapter 4

Prediction of TiRhAs as a Dirac nodal
line semimetal via first-principles
calculations

The material was previously published as

e Sophie F. Weber, Ru Chen, Qiman Yan, and Jeffrey B. Neaton, Prediction of TiRhAs
as a Dirac nodal line semimetal via first-principles calculations, Physical Review B 96,
235145 (2017).
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4.1 Introduction

A recent development in the field of condensed matter physics is the discovery of topological
semimetals (TSMs) [208, 145]. These materials have robust, symmetry-protected crossings
in reciprocal space, and can be characterized by topological invariants, analogous to the
topological insulators (TIs). Three types of TSMs which have been studied in detail both
theoretically and experimentally are [208] Weyl semimetals, hosting pairs of massless twofold
degenerate nodal points with opposite chirality in the three-dimensional (3D) Brillouin zone
(BZ) [216, , , 210]; Dirac semimetals, with fourfold degenerate nodal points consisting
of overlapping Weyl points [1 17, , 205]; and Dirac nodal line semimetals (DNLs), in which
the valence and conduction bands touch in a closed loop in momentum space [76, 18, ,

|. All three categories are expected to display unusual and intriguing properties, such as
ultrahigh mobility, giant magnetoresistance, chiral anomalies, and surface states [1 13, ].

DNLs are unique from other types of TSMs by virtue of having a one-dimensional Fermi
surface, in contrast to the zero-dimensional Fermi surfaces of Weyl and Dirac semimetals.
This implies that the density of states (DOS) of low-energy bulk excitations is quadratic
in |E — Ey|, where E; is the Fermi energy, rather than linear [18]. The larger DOS means
that interaction-induced instabilities which are predicted for Weyl semimetals can be even
more pronounced in DNLs [19]. The one-dimensional nature of the Fermi surface also sug-
gests that such compounds may exhibit effects from long-range Coulumb interactions due
to reduced screening [30]. Finally, the topological surface states of DNLs, which take the
form of a two-dimensional ”drumhead” terminating on the projection of the nodal line onto
the surface BZ, have been suggested to provide a platform for exotic physics arising from
electronic correlations [30].

In spite of their numerous desirable properties, less than ten DNL compounds have been
identified or verified experimentally thus far [27, 76]. This might seem surprising given the
fact that there are many different crystalline symmetries that that can stabilize a DNL. But
a challenge to experimental realization is that the majority of these protecting mechanisms
are only robust when spin-orbit coupling (SOC) is ignored [1(]; the nodal line degeneracies
are often lifted to a significant degree by SOC unless an additional nonsymmorphic sym-
metry, such as a screw axis, is present [17, 33]. Another experimental difficulty for DNL
compounds, including those synthesized thus far is that there are often trivial bulk bands
near the Fermi level coexisting and interfering with the nontrivial nodal line, making a defini-
tive experimental study of the topological properties challenging [150].

Here, we use first-principles calculations to predict that TiRhAs, which has been synthe-
sized in the past [166] but whose electronic properties have thus far remained unexamined, is
a DNL semimetal with a nodal line around the Fermi energy which lies in the k, = 0 plane,
pinned to the plane by a mirror symmetry. Our study of TiRhAs is motivated by several
factors. First, its nonsymmorphic space group possesses several of the symmetry elements
known to protect nodal lines. Second, the effect of SOC, given the elements involved, is
likely small, and the lifting of degeneracy is expected to be nearly negligible. Lastly, because
TiRhAs has an even number of electrons per unit cell, the Kohn-Luttinger theorem suggests
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Figure 4.1: Orthorhombic crystal structure of TiRhAs, with space group Pmnb. The
primitive cell consists of two mirror planes perpendicular to (100), each with two Ti atoms
(blue), two As atoms (green), and two Rh atoms (gray).

any DNL might be fixed near the Fermi energy [123, 203], which is desirable for further
experimental study and for applications.

4.2 Crystal structure and methodology

Prior experimental work has shown that TiRhAs crystallizes in an orthorhombic lattice with
the nonsymmorphic centrosymmetric space group Pmnb [62] [166]. The primitive cell is
shown in Figure 9.1. It is composed of two layers with six atoms each in the (%, y,z) and
(%,y,z) planes. Each Ti atom is five-fold coordinated by As in the shape of ”distorted”
edge-sharing square pyramids; the Rh atoms are tetragonally-coordinated by As.

For our first-principles density functional theory (DFT) calculations on TiRhAs, we use
the Vienna ab initio simulation package (VASP) [103]with generalized gradient approx-
imation (GGA) using the Perdew-Burke-Ernzerhof (PBE) functional [157] and projector
augmented-wave method (PAW) [21]. The PAW-PBE pseudopotentials of Ti, Rh and As
treat 3d?4s%, 4d®5s' and 4s?4p? electrons as valence states. We employ an energy cutoff
of 300 eV for our plane wave basis set and a Monkhorst-Pack k-point mesh of 8 x 6 x 6.
Brillouin zone integrations are performed with a Gaussian broadening of 0.05 eV during all
calculations citeElsasser1994. These parameters lead to total energies converged to within a
few meV. We fully relax the lattice parameters starting from the experimental values. Our
GGA lattice constants agree with the experimental results to within 1% (see Table 6.1). We
use the optimized lattice parameters for all band structure calculations. For calculations
with SOC, we include SOC self-consistently [189].
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Table 4.1: Comparison between experimental lattice parameters and Wyckoff positions, and
values obtained after full optimization with DFT-PBE.

Experiment[166] | DFT-PBE
a (A) 3.816 3.841
b (A) 6.334 6.366
c (A) 7.388 7.434
Rh (4c) y 0.855 0.857
Rh (4c) z 0.064 0.063
Ti (4c) y 0.972 0.968
Ti (4¢) z 0.684 0.682
As (4¢) y 0.243 0.252
As (4¢) z 0.122 0.122

4.3 Band structure and symmetries

The GGA band structure of TiRhAs without SOC is plotted in Figure 4.2a. The band
crossings along the high symmetry lines Y — I' and I' — Z indicate the presence of a nodal
line in the k, = 0 plane encircling I'. From an analysis of the site and angular momentum-
projected band character, we find that the bands near the crossings are a mixture of Rh
4d and Ti 3d states. Because GGA is known to overestimate band inversion[199], we also
compute bulk band structures using the hybrid density functional HSE06 [73]. The HSE06
result reproduces the DNL and yields an even cleaner Fermi surface than GGA, as the lone
trivial band at I" is pushed down relative to Ey to lower energies (see Appendix 4.7).

The DNL in TiRhAs is protected by two different symmetries: (a) the combination of
inversion and time reversal symmetries P and T in the absence of SOC, and (b) a mirror

plane at x = ¢. The protection of DNLs by P and 7, provided that SOC is ignored, has

been discussed extensively in the literature [30, 96, 17, , , , 82]. Here we briefly
motivate why the generic solution for a band crossing in such a system is a closed nodal line
(rather than discrete crossings) using a codimension argument [32]. The Bloch Hamiltonian

H (k) for a spinless system near a generic band crossing may always be written as a linear
combination of the identity and the three Pauli matrices, with k-dependent coefficients. The
combination of P and 7 allow us to choose a gauge for the cell-periodic part w,,(r) of the
Bloch eigenfunctions in which u*, (r) = w,(—7). From this fact it trivially follows that H (k)
is real-valued. Consequently we can always express H (k) in terms of only two of the three
Pauli matrices, giving our band crossing a codimension of two. Since this is one less than the
number of independent variables (k,k,,k.), the generic solution E(k) is a line node, which
will always be stable in the presence of P and 7.

We now discuss the consequences of the mirror symmetry R, in the absence of SOC. The
explicit form of the operator in real space is

R (z,y,2) = (—x + g,y,z). (4.1)
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It is clear from equation 4.1 that R2 = +1. Thus the eigenvalues of R, in the absence of
SOC are £1. Moreover, the action of R, in reciprocal space is

Rt (ko by k) — (—ko, by, k). (4.2)

Therefore, all Bloch functions 1,y (r) = %% u, (r) in the k, = 0 plane are invariant under R,
meaning that the bands in this plane may be labeled by the mirror eigenvalues +£1. Bands
with the same mirror eigenvalue can hybridize, leading to a band gap. However, bands
with opposite eigenvalues are symmetry-forbidden from mixing and thus their crossing is
protected. We check the R, eigenvalues of the valence and conduction bands along Y —I'—Z7
using wavefunctions obtained with the all-electron WIEN2k code [20] and confirm that the
crossing bands have opposite eigenvalues, as shown in Figure 4.2a (details of our WIEN2k
calculations appear in the Supplementary Material). It should be noted that even if the
mirror symmetry is broken in TiRhAs, the DNL will still be protected as long as P and T
symmetries persist; it will merely be unpinned from the k, = 0 plane.

The self-consistent inclusion of SOC opens a small gap (Figure 4.6). The DFT-PBE-SOC
gap varies depending on position along the DNL from less than 1 meV to a maximum of 40
meV. SOC gaps the nodal line by coupling spin and spatial degrees of freedom. Thus, R,
not only maps = to % — x, but also maps s, , to —s, ., i.e, the effect of R, on spin space is
to perform a 7 rotation about the # axis (The difference in the effect of R, on real space
and spin space is due to the fact that spin is a pseudovector). Now, with SOC included,
squaring R, amounts to a 27 rotation in spin space which gives a minus sign for a spin—%
system, meaning that the eigenvalues of R, become +i. Thus, each band with eigenvalue
+1 in the non-SOC system becomes doubly degenerate with mirror eigenvalues +¢ in the
SOC system. Conduction and valence bands with the same eigenvalues can now hybridize,
leading to an anticrossing (Figure 4.6). We wish to emphasize that while absence of SOC
is necessary to keep conduction and valence bands completely degenerate along the DNL,
TiRhAs maintains its nontrivial Z, indices even with SOC[90].

Finally, we check the DFT-PBE band structure upon several isovalent substitutions for
TiRhAs, specifically TiCoAs, TiRhP and ZrRhAs. We start with the optimized lattice
parameters of TiRhAs and relax these substituted structures within the Pmnb space group.
The resulting lattice parameters in all three cases deviate from the starting values by 0.4A
at most. The band structures are qualitatively identical to TiRhAs; in particular, they all
have a DNL in the k, = 0 plane. This implies that as long as the valence electron count
is preserved, partial or full isovalent substitution may be attempted in order to reduce or
enhance the effect of SOC.

4.4 k- p analysis of band velocities

A detailed analysis of band velocities at various points along the DNL (where the band

velocity v,y is given by %% at the crossing point of interest), is crucial for understanding
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Figure 4.2: (a)DFT-PBE band structure without SOC. The projection of the bands onto
Ti d orbitals is shown in blue, and the projection onto Rh d orbitals is shown in orange.
The widths of the lines are proportional to the values. The mirror eigenvalues +1 of the
crossing bands are also indicated. (b)DFT-PBE band structure with SOC included,
indicating that SOC opens a small gap due to hybridization of bands with like mirror
ei%envalues.
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Figure 4.3: (a) DFT-PBE calculations of the DNL in TiRhAs in the k, = 0 plane, with
the irreducible quadrant highlighted in red. (b) v, and v, as a function of §. (c¢) Ratio of
tilting magnitude to isotropic velocity, R, , along the v, direction as a function of .

transport experiments. We employ a k - p analysis to ascertain the symmetry constraints in
TiRhAs that determine the k-dependent band velocities along the nodal line. The generators
of the space group Pmnb are two mutually perpendicular two-fold screw axes and inversion
P. Since TiAsRh is nonmagnetic, 7 is also a symmetry as discussed above. The Bloch Dirac
Hamiltonian (without SOC) may be expanded around any point k on the DNL as

H(k + 0k) = E(k) + hi,(K)o"5k; + O(6k?), (4.3)

where 6k = (0k,, 0ky, 6k.) is the deviation from a point k in the Brillouin zone, o* are the
Pauli matrices with € 0,1,2,3 and 7 € z,y, z and hL(k) are real, k-dependent coefficients.
We now restrict our discussion to the k, = 0 plane in which the DNL lies. For a generic
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point on this plane the only remaining space group symmetry is the mirror symmetry R.,.
The product of inversion and time reversal, P7T, is also a symmetry. If we choose the two
crossing bands with +1 and —1 R, eigenvalues as pseudospin up and down, respectively, the
symmetries for the nodal line may be expressed as

R, = 0" PT = o'K, (4.4)
where K denotes complex conjugation. These symmetries place constraints on the allowed
h (k)

RoH (ke by, k)R, = H(—ka, by, k) (4.5)

and

(PTYH (ky, by, k) (PT) ™ = Hka, Ky, K2). (4.6)

It follows from Equations 4.5 and 4.6 that the only nonzero h!,(k) values are h*(k), h§*(k),
and h7(k). The band dispersion at each point k on the nodal line can then be expressed as

5 Ercesic & WY ()5k, + B (K)o, & [ (B(0)0k, + h3(k)ok)2 + (W (00K, )2, (4.7)

where 6Ek+5k = Ek+5k — Ek.

We fit Equation 4.7 to our DFT calculations at each point on the nodal line in the
irreducible quadrant of the BZ. The coefficients outside the square root, hf(k) and hf(k),
are symmetry-allowed "tilting” terms which characterize the tilting of the Dirac cone along
k, and k, respectively [179, 29, ]. The terms inside the square root can be written as
Zf’ =1 A;;j0k;0k; where A;; is a real symmetric matrix. The square root of the eigenvalues of
A éorrespond to the principle components of v, when the tilt terms are neglected, i.e the
splitting of the Dirac cone; they are (0, \/(hj(k))? + (h3(k))?, hi(k)) o (v (k), v (k), v, (k)),
where v is tangential to the DNL, v, is perpendicular to the DNL in the k, = 0 plane, and
v, is along k,. The zero v corresponds to the "soft” direction where the dispersion scales at
least as O(0k?). We parametrize points along the DNL by the polar angle 6 = tan™! k, /k,,
and plot v, and v, as a function of € in Figure 4.3b. As shown, our computed DFT-PBE
vy is between 1.2 — 2.8 x 10° m/s, on the same order of magnitude as reported values for
NagBi and CdzAss [118, ]. v, is computed to be smaller at all # and more anisotropic,
between 3 x 10% and 2.3 x 10° m/s.

From an experimental perspective, while both tilt and relative magnitudes of the velocities
given by A affect directional dependence of conductance in transport experiments, tilt also
has an effect on the Fano factor (the ratio of shot noise to current) [195]; thus, quantitative
characterization is important. The relative degree of tilting at the point k on the DNL in the
direction (6k,, 0k, 0k.) is given by the ratio of the magnitude of the tilting to the magnitude
of the "isotropic” velocity, which for TiRhAs is

|2 (K)3ky + hi(K)OK. |

= Tk, + 15005%,)2 + (b (05k.)2]

(4.8)
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Values greater than 1 indicate a switch in the sign of the the dispersion, analogous to the the
type-II Weyl semimetals [179]. For concreteness, we choose the direction (0, hj(k)/h3(k), 1)
parallel to v, and plot R, as a function of € in Figure 4.3c. We see that amount of tilting
along v, varies greatly, ranging from nearly 0 to .56 at % ~ 0.3, at the same point where v
has a prominent dip.

Z-> invariant

In order to confirm the topological nature of TiRhAs and its robustness, we calculate Z,
invariants analogous to those used to characterize three-dimensional topological insulators
(TIs) for systems with inversion symmetry as formulated by Fu and Kane[55]. The authors
showed that in a compound with P and 7 symmetries (and SOC which drives the topological
gapping), the topological invariants (vg; v11515) can be computed via the parity eigenvalues
e, of the occupied Bloch states at the eight time-reversal invariant momenta (TRIM) in the
3D BZ, defined by I'; = (n1by + n2bs + nsbsz)/2, where n; = 0,1 and the b denote the
primitive reciprocal lattice vectors. Defining ¢; =[], €,(I';), i.e. the product of the parity
eigenvalues of all occupied bands at the TRIM point I';, the "strong” topological index vy is

given by
8

(=" =]]e (4.9)
i=1
where the product is over the eight TRIM points. The "weak” indices 193 are given by
products of four ¢; which lie in the same plane:

(2= [ €mninons (4.10)

n;=1;n;-2;=0,1

vo = 1 indicates that the TI is topologically nontrivial. One can imagine slowly turning off
the SOC, thereby closing the bulk gap. At the critical point between a topological and trivial
insulator, the gap closes and a DNL forms, hosting the same topological indices as the TTI.
Moreover, Kim et al. [96] showed that one can determine the number of DNLs intersecting
any of the six invariant surfaces Syp.q bounded by the four TRIM a, b, ¢ and d by multiplying
the ¢; at those four points:

(—1)NGaved) — ¢ epe.e4. (4.11)

If the product is —1, N(Sgpeq) = 1 and an odd number of DNLs must pierce Sgpq. For the
trivial case N(Sueqa) = 0 an even (including zero) number of DNLs pierce the surface.
Using wavefunctions calculated with WIEN2k, we determine the parity eigenvalues at the
eight TRIM in TiRhAs (a table is given in the supplementary material). The only TRIM
point with ¢, = —1is I". Thus from Equations 4.9 and 4.10 we see that the topological indices
for TiRhAs are (vo; 11513) = (1;000), and that TiRhAs is topologically robust. Additionally,
the parities imply that the three invariant surfaces containing I', namely k, = 0, k, = 0,
and k., = 0, are intersected by an odd number of DNLs, whereas the surfaces on the edge of
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0.5

Figure 4.4: DFT-PBE tight-binding band structure (without SOC) for the (100) surface
plotted along the Y —I' — Z direction, showing surface states (colored red) in the projected
interior of the DNL.

the BZ are intersected by an even number of DNLs. This is completely consistent with our
finding of the single DNL lying in the &k, = 0 plane surrounding I.

4.5 Topological surface states

Topologically robust nodal lines are predicted to host nearly flat, two dimensional drumhead
surface states [30]. To study the surface states in TiRhAs we construct a tight-binding model
from our DFT-PBE calculations using maximally localized Wannier functions (MLWFs)
[137, 143] as our basis states. We use 40 MLWF's derived from Ti d and Rh d bands around
the Fermi level using a disentanglement procedure implemented in the open-source code
Wannier90. [180] Our model for a 100 unit cell thick slab in the [100] direction is plotted
for the (100) surface in Figure 4.4. Large slabs are required to recover the bulk DNL in our
calculations. Since our tight-binding model has two identical surfaces we see two completely
degenerate surface states in the interior of the projected nodal line. The states have a slight
dispersion due to the particle-hole asymmetry [224].

We also construct a tight-binding model for the case where SOC is included. Because
the effect of SOC is very slight in TiRhAs, the qualitative band structure is very similar to
Figure 4.4. However, since SOC introduces a continuous gap in the DNL the surface spectrum
evolves from a nearly flat, drumhead state to a very shallow Dirac cone characteristic of TIs
(see Appendix 4.8).

4.6 Conclusion

In summary we have performed extensive first-principles calculations on the previously syn-
thesized compound TiRhAs and identify it as a new Dirac nodal line semimetal. The nodal
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Figure 4.5: TiRhAs band structure computed using the HSE06 hybrid functional method.

line is topologically protected by both reflection symmetry and composite inversion and time-
reversal symmetry; hence TiRhAs is particularly robust to local crystalline defects. We have
performed a k- p analysis to determine the magnitude and tilting of band velocities along the
DNL. We have calculated the Z, invariants and have confirmed the presence of drumhead
surface states. Moreover, the Fermi surface in TiRhAs is remarkably clean, and although
SOC introduces gaps in the DNL, the effect is small. We therefore believe that further
experimental studies on this compound should yield results consistent with our calculations.

4.7 Appendix I: HSE06 band structures

As mentioned in the main text, GGA is expected to overestimate the inversion of conduction
and valence bands necessary for a nodal line compound [199]. To confirm our prediction of
TiRhAs as a DNL system we repeat our bulk calculations using the hybrid density functional
HSE06, which uses a fraction of screened Hartree-Fock (HF) exchange to correct for self-
energy errors inherent in GGA [73]. Our energy cutoff and reciprocal grid are identical to
our GGA parameters (300 eV and 8 x 6 x 6 respectively). The result is shown in Figure 4.5,
confirming that the DNL persists and is not a false positive of the GGA functional. HSE06
yields an even more attractive result than GGA in terms of experimental implications. While
the GGA band structure is overall free from trivial bands near the Fermi surface, there is one
band located at I' which is almost exactly at E¢. Such a feature is potentially problematic
because it makes experimental probing and manipulation of the DNL itself difficult, an
issue explicitly mentioned for the recent example of synthesized PbTaSes [150]. However,
we see in Figure 6.9 that the HSEO6 functional pushes this band down away from the
DNL, suggesting that experimental studies of the topological properties in TiAsRh should
be relatively straightforward to implement and interpret.
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Figure 4.6: (a)DFT-PBE-SOC tight-binding band structure for the (100) surface plotted
along the Y — T' — Z direction. Note that the flat, drumhead states on the two surfaces
shown in the main text without SOC have evolved into a shallow Dirac cone, characteristic
of a TI. (b) Zoomed-in plot of the portion of (a) bordered by the rectangle.

4.8 Appendix II: Surface states with SOC

With the inclusion of SOC, the DNL in TiRhAs develops a continuous gap. The compound
with SOC has topological indices (vy; vy, vor3) = (1;000), equivalent to those for the DNL
compound with no SOC. To study the effect of SOC on the surface spectrum we construct
a tight-binding model from DFT-PBE-SOC calculations, again using MLWFs as our basis
states. The band structure along the Y — I' — Z direction is plotted in Figure 4.6a. Overall
the band structure is nearly identical to the case with no SOC as in Figure 4 of the main
text. This is not surprising given that the gap induced by SOC is very small. However,
the key difference is that the nearly flat, completely degenerate drumhead states on the two
surfaces of the DNL compound without SOC have evolved into an extremely shallow Dirac
cone at I, characteristic of a topological insulator (TI) with band inversion at I' [232]. The
two branches of the cone from I' — Z are very nearly degenerate; we provide a zoomed-in plot
around I" in Figure 4.6b. The surface state does not cross the Fermi level, unlike the general
case for a TI, merely because the DNL without SOC is not pinned to the Fermi energy, and
thus the gap, upon inclusion of SOC, does not cut through the Fermi level everywhere in
the BZ.
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Chapter 5

Fermi-crossing Type-II Dirac fermions
and topological surface states in NiTey

The material was previously published as

e Saumya Mukherjee, SungWon Jung, Sophie F. Weber et al., Fermi-crossing Type-11
Dirac fermions and topological surface states in NiTey, Scientific Reports 10, 12957
(2020).

ARPES experiments were performed by collaborators using methods described in Section
9.2 in this chapter.
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5.1 Introduction

Topologically protected electronic states hold great promise for the development of next-
generation electronic and spintronic devices [117, , 20]. For topological insulators (TI),
such as the well-known case of Bi2Se3 [71], the carriers associated with the topologically-
protected surface states have the unique properties of spin-momentum locking and sup-
pression of backscattering, making the surfaces of such TIs highly attractive platform for
spin-transport applications. In the case of topological semimetals, topologically protected
crossings occur in the bulk band structure, leading to the formation of bulk Dirac points. In
the vicinity of these points, the electronic bands cross linearly, opening up the potential for
carriers with ultrahigh-mobility, such as are found in CdzAsy [119].

The class of transition metal dichalcogenides (TMDs), already well-known for hosting an
array of correlated electronic phenomena, has recently been identified as a materials system
which also hosts topologically-protected states [37, 12, 81, , 36, ]. Density functional
theory (DFT) calculations for a wide range of compounds predict a set of bulk Dirac points
and band inversions (associated with topological surface states, TSS), as the chalcogen or-
bital symmetries combined with a natural hierarchy of energy scales ensure that these states
exist rather generically. However, the energies at which they occur is not guaranteed by any
physical constraint, and many are predicted to exist in the unoccupied states, where they are
hard to verify experimentally. On the other hand, topological states below the Fermi level
(Er) can be readily verified and scrutinized by angular resolved photoemission spectroscopy
(ARPES) and spin-ARPES. When these states lie at high binding energies however, they do
not affect the transport properties, limiting any potential applications.

Given that TMDs are being increasingly incorporated into device structures [191, , 16,

, , 35], it is highly desirable to identify a candidate material whose transport prop-
erties might be predominantly derived from topologically protected states. An intriguing
candidate in this regard is NiTey;. Recent transport measurements have confirmed a sub-
stantial magnetoresistance effect, the response becoming large and linear in magnetic field,
a characteristic feature of topological semimetals [215]. The Berry phase of the observed
quantum oscillations is close to 7, often interpreted as a signature of the contribution of a
topologically non-trivial state. Moreover, DFT calculations have suggested that one of the
bulk Dirac points of NiTe; may indeed lie much closer to the Fermi level than in other mem-
bers of the family where the equivalent states are much further away and thus less relevant to
transport (or superconductivity) [37]. These calculations strongly motivate an experimental
survey of the electronic structure of NiTe; using ARPES.

In this chapter, we demonstrate with a combination of ARPES and comprehensive DFT
calculations that the band structure of NiTey shows the formation of type-II Dirac fermions
near the Fermi level and a set of spin polarised topological surface states. A Fermi surface
consisting of electron pockets associated with type-II Dirac fermions and topological surface
states is predicted. The band crossing leading to type-II Dirac fermions is dominated by
Te p-orbitals, consistent with the mechanism of band inversion from the chalcogen p-orbital
manifold shown in other TMDs [37, 12]. Our ARPES study shows the formation of electron
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pockets hosting Dirac carriers at the Fermi level. Topological surface states observed through
ARPES agree well with our DFT calculations. One of the surface states is found to intersect
the Fermi level, forming electron pockets. The measured Fermi surface map matches well
with our calculations and the observation of electron pockets implies finite contribution of
Dirac and surface carriers to the transport properties.

5.2 Methods

ARPES measurements

High quality single crystals of NiTe, were grown by chemical vapour transport as discussed
elsewhere [215]. We used the high-resolution vacuum ultraviolet (VUV) ARPES branch of
105 beam line at Diamond Light Source, UK [58]. The samples were cleaved at 10 K, in
ultra-high vacuum chamber of 105. Linear horizontal and vertical polarization of photon at
energies between hr = 20 and 120 eV is used. The inner potential V; = 16 eV of NiTe,
is determined from the k, dispersion from photon-energy-dependent ARPES studies using
a free electron final state model. We want to point out that the final state induced matrix
element effect can lead to suppression of the spectral intensity. This might give an impression
of asymmetric spectra in the experimental data.

First principle calculations

Our calculations were performed within density functional theory (DFT) with room-temperature
lattice parameters (details on lattice parameters is discussed elsewhere [215]. We employ the
Vienna ab-initio simulation package (VASP) [103] with generalized gradient approximation
(GGA) using the Perdew-Burke-Ernzerhof (PBE) functional [157] and projector augmented-
wave (PAW) method [21]. We treat 3p, 3d, and 4s, and 5s and 5p electrons as valence for Ni
and Te, respectively. We use an energy cut off of 550 eV for our plane-wave basis set, with a
I'-centred k-point mesh of 14x14x14 for the primitive unit cell. For surface state features, we
perform full self-consistent DF'T calculations using a Te-terminated supercell with a slab of
ten primitive unit cells of NiTe, stacked along the [001] direction, with 15 A of vacuum. We
conducted calculations with U-parameter related to Ni-d orbitals and found that the best
agreement with experimental data occurs at U = 0. Here, we do not show DFT calculations
using GGA + U # 0, since they fail to improve the agreement with the experimental data.

5.3 Results and discussion

In what follows, we adopt the tight-binding-based analysis introduced in Refs [37, 12] for un-
derstanding the band structure of NiTey, which is distinct from previously known cases of iso-
valent and isostructural transition-metal dichalcogenides TMX, (TM = Pd, Pt; X = Te, Se).
Our tight-binding model incorporates two chalcogen sites (Fig 5.1a), and captures the manner
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in which the chalcogenide p orbital manifold develops into dispersive bands which generi-
cally possess topological characteristics: bulk Dirac points, inverted band gaps (IBGs), and
topologically protected surface states (TSS).

In NiTe,, the triply degenerate energy levels of the Te py y ,-orbitals split into p, (upper-
state) and py, (lower-state) manifolds due to crystal-field splitting (CFS) (Fig. 5.1c). Addi-
tionally, spin-orbit coupling (SOC) causes the pyy orbitals to split into singlets (Ry and R ¢
levels) and modifies the energetic separation between p, and pyy. The p, orbital transforms
according to the irreducible representation (IREP) R4 [12]. The two Te sites in the unit cell
imply that the p-orbitals are split into bonding (B) and antibonding (AB) levels at the T’
(k = (0,0,0)) and the A (k = (0,0, 7/c))-points of the Brillouin zone [12, 36]. Symmetry
wise, the p-bands associated with B and AB levels at I' and A points transform as the
IREPs of the double space groups T's (Ag), T4['s (A4A5) and Ty (Ag) [11, 10]. Because
of the phase introduced, the B-AB splitting of the p,-states decreases from the I" to the A
point [188]. This induces strong k. dispersion and a large bandwidth for p,-derived bands as
compared to planar py, orbitals. For TMDs, the approximation of p,-derived bands having
larger bandwidth is valid considering the expected large inter-layer-hopping (t3, t4 in Fig.
5.1a) along the c-axis for p, states as compared to the pyy states.

When the bandwidth of p,-derived states become greater than the combination of CFS
and SOC, a crossing between the p, andpy/, states occurs as a function of k., resulting in
band inversion. The states formed due to the B-AB splitting of p-orbitals pick up even (+)
or odd (-) parity since the Te-atom sites at the I" and A points are located across the crystal
inversion point. Therefore, k,-dispersion of a single orbital (p) manifold leads to band parity
inversion. Fig. 1c, shows the symmetry correspondence between IREPs of the double group
at the I' and A point, and along the A symmetry line for all the k = (0,0, k,) points with
0 <k, <m/c. A crossing between Ry (£) and R4 (F) causes hybridization as seen from the
identical IREP, A4 , for these two levels along the A point. This leads to a parity inverted
band gap (IBG) (See Fig. 5.1c). In addition, the opposite parity of Ry (+) and Ry (F)
suggests that the IBG will have a Z, topological order and are capable of hosting topological
surface states [12]. On the other hand, R, (£) and Rs6 (£) have different symmetry prop-
erties along the A line, as they transform differently under 3-fold rotation. This allows band
crossing between and and leads to the formation of the bulk Dirac points (BDPs) along the
k. direction (valid for 0 < k, < w/c). The location of the BDP in k-space is determined by
the band width of R, (+£)-derived bands and the strength of CFS.

The discussion above is based on symmetry, yielding a generic and phenomenological
viewpoint. To obtain a more quantitative prediction of the location of the expected bulk
Dirac points and IBGs, we turn to ab-initio DFT calculations. Our calculated band structure
showing band dispersion and the orbital character of bands is shown in Fig. 5.2a. The den-
sity of states (DoS) confirms that the bands close to the Fermi level, Er, are dominated by
Te p-orbitals. Ni d-orbital derived bands appear away from the Fermi level at £ — Ep ~ —2
eV (Fig. 5.2b). The py/, bands show significantly stronger dispersion along the in-plane
high symmetry directions I'(A)-M (L) and I'(A)-K (H), compared to the out-of-plane I'-A
direction. However, consistent with the tight-binding analysis, the p, bands have a large



CHAPTER 5. FERMI-CROSSING TYPE-II DIRAC FERMIONS AND TOPOLOGICAL
SURFACE STATES IN NiTe, 49

dispersion along I'-A with wide band width and cross the py/, bands as a function of k..

Our DFT calculations indicate several important differences between NiTe; and the other
TMX, compounds. Weakly dispersive bands of predominantly d-character are found at
E — Ep ~ =2 ¢V (Fig. 5.2a, ¢). The location of these bands is almost 1.5 eV closer to
the Fermi level compared to PdTey, a significant difference on replacing Pd with Ni. In
addition, at K close to the Fermi level (E — Er ~ 0 to —250 meV), the electron pockets are
predominantly formed by bands derived from d-orbitals.

The large shift of TM-derived bands towards the Fermi level in NiTe, increases the hy-
bridization between Ni-d and the Te-p bands. For example, the crossing of Te p, and pyy
bands occurs near the A point around ¥ — Er ~ —1 eV, but the p, bands in this energy
range show a significant hybridization with Ni d-orbitals, unlike in other TMX, compounds.
However, this hybridization does not disrupt the universal mechanism of formation of the
inverted band gaps, Dirac fermions and topological surface states in TMXs. A type-I bulk
Dirac point (BDP-I) appears at E — Er ~ 1.5 eV, which is followed by a type-II protected
bulk Dirac point (BDP-II) at £ — Er ~ 76 meV and k, = 0.36¢* (¢* = 27/c). The bands
forming the BDP-II are labelled as 1 and 2 (Fig. 5.2d). These bands cross Er and form
electron pockets. This type-II Dirac fermion has been found in other TMX5; however, the

proximity of BDP-II to the Fermi level is unique to NiTey [37, 12, 81, , 36, ]. In
NiTes, the location of BDP-II in momentum space is slightly closer to A-point than PtTe,
(k. = 0.346¢*) but further away from A than in PdTe, (k, = 0.40¢*) [12, 217, 36, 48]. This

implies that the strength of CFS and bandwidth of Ry (£) derived bands is intermediate
between PtTe, and PdTes. From the calculated band structure we found that close to BDP-
I1, the p, derived bands form inverted band gap IBG-I at £ — Er ~ —0.65 eV (smaller gap
~ 200 meV), which is accompanied by IBG-II at E— Er ~ —1.5 eV (larger gap ~ 1 eV). We
want to point out that the inverted band gaps (IBGs) at the A-point have inverted parity,
implying the existence of topological states.

With these predictions in hand, we now turn to the experimental measurements of the
bulk and surface electronic structure of NiTey. First, we focus on tracking the BDP-II and
surface states along I'-A using photon-energy-dependent ARPES and measure the occupied
states below the Fermi level (Fig. 2e). The band features are broadened due to the finite
k. resolution of photoemission but the states are in good agreement with calculated bulk
bands. Both IBGs, near Fermi level (F — Er ~ —0.65 V) and away from it (E — Ep ~ —1.5
eV) are found. The BDP-II lying above the Fermi level is not accessible by ARPES, but the
bands 1 and 2 forming the BDP-II are observed at the A-point (k, = 7/c). Interestingly, a
non-dispersive two-dimensional band is found at £ — Er ~ —1.35 eV close to A-point which
does not match any calculated bulk band (marked in Fig. 5.2¢).

To better understand the band structure, we compared the experimental and calculated
in-plane band dispersion along A-L and A-H in Fig. 5.3. The bulk bands show good
agreement with bulk DFT calculations (Fig. 5.3a, b, d, e). Our DFT slab calculations (see
Methods for details) show a set of surface states which match well with the experimental
data (Fig. 5.3 ¢,f). The non-dispersive feature at £ — Er ~ —1.35 eV is reproduced as
one of the surface states by the slab calculations. We assign the surface state as TSS2. At
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the A-point, TSS2 forms sharp and intense bands. This feature threads through the IBG-II
and connects the time-reversal invariant momentum (TRIM) points (here A,L, H). TSS2
represents a topological non-trivial band but lies far away from the Fermi level.

Slightly closer to the Fermi level, our DFT calculations show a topological surface state
at ' — Ep ~ —0.65 eV within the band gap IBG-I. This is named as TSS1 and lies within
the manifold of bulk bands. TSS1 experiences strong interaction with the bulk states and is
classified as a surface resonance state. In ARPES spectra, we observe weak spectral intensity
of TSS1 at A, which matches well with the calculations (Fig. 5.3 a, ¢). However, the mixing
of TSS1 with bulk bands makes it difficult to resolve.

At the Fermi level, a surface state is visible in our DFT surface band structure along
A-L (Fig. 5.3¢). This is assigned as TSSO, which shows a large spin splitting of around 120
meV and lies between £ — Er ~ 0 to —200 meV. TSSO is not present along A-H (Fig. 3f).
Experimentally, TSSO is found between A and L with in-plane momentum & ~ 0.5 (A)_l.
TSSO is formed from two parabolic-like upper (labelled as €) and lower () branches which
intersect Fr and form electron pockets (see Fig. 5.4a).

The k, -dependence of the electronic states spanning over a wide photon energy range
(hv = 20 — 120 V) shows that TSSO is non-dispersive along I'-A (Fig. 5.4b). This confirms
that TSSO is two-dimensional. The vicinity of TSSO to Er in NiTe, makes it unique com-
pared to other surface states and implies finite contribution of topological surface carriers to
the non-trivial transport properties. All topological surface states found previously in other
TMX, are also found in NiTey [37, 12, 81, , 30], but notably TSSO is absent in PtSes.

To complete our studies, we map the Fermi surface of NiTe, using photon energy tuned to
the A-point (hv =23 ¢V) (Fig. 5.4c). It is found that the Fermi surface is formed by TSS0
and the bulk bands crossing the Fermi level. The € and v bands of TSSO are identified. These
bands form electron pockets at the Fermi level. The pockets formed by € are more circular
than the pockets of the v band. Identical to PdTe,, these bands form arc-like features and
imply small projected bulk band gaps. At the A-point, band 2 forms an electron pocket
(labelled as «) and the projected bulk bands form a hexagonal shape. We show that the
calculated bulk Fermi surface agrees well with the experimental data (see Inset of Fig. 5.4c).

To identify the topological character of the surface states, the associated spin texture is
calculated as shown in Fig. 4d, e. In our description, the x- and y-axis are along A-L and
A-H, respectively. TSS2 has a chiral spin texture in the x-y plane with finite (S,) and (S,)
components. Negligible (S,) component is found. The strong interaction with bulk bands
for TSS1 limits the estimation of spin polarization, and we do not include polarization for
TSS1. The electron pockets formed by TSSO along L-A-L (indicated in Fig. 5.4c) are well
separated from the bulk and hence it is possible to resolve spin texture here. We find that
TSS0 has non-zero spin component solely along the y-direction (S,), which is normal to the
A-L direction. The branches of TSS0, € and ~, show opposite spin polarization. We want
to point out that the spin-split branches of the surface state TSSO close to the Fermi level
are connected to the conduction band and the valence band separately, which highlights
the topological non-trivial character [17]. For completeness, we include spin polarization for
TSSO along the entire and paths, but note that the only location where the surface charac-
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ter has not significantly hybridized with bulk is at the electron pockets, so calculated spin
texture at all other locations does not accurately represent surface state spin texture of T'SSO.

5.4 Conclusion

We have shown that NiTe, exhibits topological surface states and bulk type-II Dirac points,
which are derived solely from the Te 5p orbitals, consistent with the generic band inversion
mechanism for transition metal dichalcogenides. However, the choice of Ni as the transition
metal leads to 3d states significantly closer to the Fermi level compared with (Pd, Pt)(Se,
Te)2, allowing additional d-p hybridizations which tune the bulk Dirac point very close to
Er. The band dispersions away from this BDP-II, which form the alpha electron pocket,
thus have a topologically non-trivial character, likely to explain the non-trivial Berry phase
of a small electron-like pocket observed in transport studies [215]. We have also shown
that NiTes; harbours a unique topological surface state, TSSO, with one of the largest spin-
splitting of up to 120 meV reported for any Fermi-crossing surface state of a transition metal
dichalcogenide. For future studies, an exciting approach would be to exfoliate individual
monolayers or grow very thin films of NiTe,, with a significantly increased contribution of
these topological surface carriers to the transport properties. Thus both the surface and
bulk electronic structures of this material are candidates for engineering novel spintronics
devices underpinned by a robust and generic topological mechanism.
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Figure 5.1: (a) Crystal structure of 1T-NiTey (space group: P — 3ml), composed of
hexagonal basal planes (ab-planes) of Ni-atom (red sphere) coordinated to the Ni-atom at
the centre and triangular layers with inequivalent Te atomic site (blue sphere) above (Te
-1) and below (Te -2) the basal plane along the (001)-direction [18]. The hopping
parameters between 2-site Te p-orbitals are categorized as intra-layer hopping (t; = ts),
interlayer hopping (¢3) within the unit cell and between two unit cells (t4). (b) Brillouin
zone. (c) Hierarchy of p-orbital derived energy levels at I' and A-point showing the
inverted band gaps (IBG), Dirac points (BDP: circled) and topological states. The
symmetry of the states are labelled with IREPs (I';, A;, Ay) and parity (4/-). Inspired
from Ref. [12, 30]. Figure made using Adobe Illustrator [1].
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Figure 5.2: (a) Electronic DFT bulk band structures with orbital character of bands.
Type-1I Dirac fermion formed by crossing of band 1 and 2 near Fermi level. (b) Density of
states (DoS) showing dominant contribution of Te p-bands at the Fermi Level compared to
Ni d-bands. Above Fermi level, the DoS spectra is scaled up by factor of 2. (¢) Band
dispersion along the I'-A direction with inverted band gaps (IBG) and bulk Dirac points
(BDP) marked, (d) and (e) Zoomed-in dispersion and measured photon-energy dispersion
with linear horizontal polarization along the I'-A direction. A non-dispersive feature is
marked with an arrow, which does not match with bulk DFT calculation. Figures made
using Igor [151] and Adobe Hlustrator [1].
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Figure 5.3: Spectral band dispersion along in-plane L'-A-L (a-c) and H-A-H (d-e)
direction, probed with photon energy hr = 99 eV (a) experimental ARPES data with
linear horizontal polarization, supercell calculation integrated along k. with (b) bulk DFT
and (c) slab surface. Arrows mark the position of the topological surface states (T'SS). The
overlaid dotted red lines in (a, d) represent the calculated bulk DFT bands. Figures made
using Igor [151] and Adobe Ilustrator [1].
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Figure 5.4: (a) In-plane dispersion of TSSO forming electron pockets labelled as e and ~y
and (b) the non-dispersive behaviour of TSSO surface state close to the Fermi level in the
photon-energy dependence. (c) Fermi surface measured with horizontal polarization of
light and photon energy, hv = 23 eV, which corresponds to the A-plane. The region under
the red dotted box is magnified by a factor of 5 to show the electron pockets a (Band 2), €
and 7 (TSS0) and the bulk bands. (Inset: calculated bulk Fermi surface consisting of the
circular « electron pocket and bands forming hexagonal contour, in good agreement with
measured data). (d) and (e) Slab calculation with projected spin components of the
topological surface states. TSS2 shows finite (S,) and (S,) components normal to H'-A-H
and L’-A-L direction, respectively. TSSO has finite spin component (S,) normal to L'-A-L
(note that TSSO is hybridized with bulk in all other regions of the plots, so no further
conclusions about surface state spin texture can be made). Figures made using Igor [151]
and Adobe Illustrator [1].
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Chapter 6

Topological semimetal features in the
multiferroic hexagonal manganites

The material was previously published as

e Sophie F. Weber, Sinéad M. Griffin, and Jeffrey B. Neaton, Topological semimetal
features in the multiferroic hexagonal manganites, Physical Review Materials 3, 064206

(2019).
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6.1 Introduction

Since their discovery in 1963[15], the hexagonal manganites (RMnOs, R = Sc, Y, In, Dy —Lu)
have attracted great interest by virtue of their combined magnetic and ferroelectric order.
The hexagonal manganites undergo an improper ferroelectric transition from a centrosym-
metric P63/mmc [194] phase to the polar P63cm [185] structure (P3cl for InMnO3[75]) at
around 1000K; they develop a noncollinear antiferromagnetic ground state at much lower
temperatures (for example in YMnOs, magnetic ordering sets in around 80K][31]). Multi-
ferroic materials such as the hexagonal manganites are interesting for both basic research
and for technology due to the possibility for controlling multiple order parameters (via, for
example, temperature, magnetic field, or strain) within a single material[151].

Another class of systems of current interest are topological materials, which include, more

recently, topological semimetals (TSMs)[208, 115]. TSMs exhibit band crossings protected
by crystalline and other symmetries. The nodes in TSMs can be either zero-dimensional, as
in the case of Dirac and Weyl semimetals[210, , , , , , 205], or they can form

a closed one-dimensional ring, which occurs for nodal line (NL) semimetals[76, 19, 18 ,

]. As a consequence of their nontrivial topological character, these three broad categories
of TSMs host a wide variety of exotic phenomena including ultrahigh mobility, the chiral
anomaly, giant magnetoresistance, and unusual surface states, such as Fermi arcs in Weyl
semimetals and two-dimensional ‘drumhead’ states in NLs[112, 156].

The remarkable properties of TSMs and multiferroic materials have sparked interest in
compounds that combine the two properties, i.e. multiferroic systems that are also TSMs
in either their high-symmetry nonpolar or low-symmetry polar phases|[193, , ]. Such
compounds can potentially be switched between topological and trivial electronic structure
by application of an external field or by tuning temperature through the ferroelectric tran-
sition, and they also provide an excellent platform for studying the interplay between the
topology, ferroelectricity, and magnetism.

There are several arguments for investigating the hexagonal manganite structure as a
possible platform for combining multiferroic and TSM properties. First, the synthesis of
hexagonal manganites is well-developed both in bulk and in ultrathin epitaxial film form.
For example, RMnOs-type compounds that have an orthorhombic ground state have been
grown in the metastable hexagonal structure, primarily via epitaxial stabilization on a hexag-
onal lattice[02]. Second, hexagonal manganites are known to exhibit real-space topological
defects in their ferroelectric P6scm state, which manifest as adjacent domains of opposite
polarization directions, with the vortex phase remaining in the nonpolar P63/mmc space
group at low temperature[79]. Such nontrivial real-space topology existing concomitantly
with reciprocal-space topological order, i.e the TSM phase, would provide an unprecedented
opportunity to explore the interaction between such types of topology.

While the prototypical hexagonal manganite YMnOs is insulating in both polar and non-
polar phases with its ground state antiferromagnetic (AFM) order, the band structure can
be significantly altered by stabilizing ferromagnetic (FM) order. FM order can be achieved,
for example, by application of a magnetic field, or by substituting other transition metal
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(TM) ions for Mn®" to alter the balance in the competition between in-plane noncollinear
AFM order and slight out-of-plane canting which has been observed in the hexagonal man-
ganites[178].

In this work, we undertake a first-principles study of the electronic band structure and
its topology in compounds isostructural to YMnO3 with FM ordering. Specifically, in ad-
dition to YMnOj3, we investigate four other compounds in which the Mn*' cation has been
substituted with V3, Cr*", Fe*™ and Co®" in order to shift the Fermi level systematically.
We predict that nonpolar hexagonal manganites YVO3 and YCrOs have band crossings very
close to the Fermi level, and in fact feature topological nodal lines in the k, = 0 plane that
are protected by a mirror symmetry. We also predict that they should undergo a ferroelectric
(FE) P63/mmc — P63cm transition characteristic of the traditional RMnO3z compounds.
Stabilizing this set of compounds in the hexagonal structure should hence provide new op-
portunities for studying the interaction between topological and multiferroic order.

6.2 Methodology

For our first-principles density functional theory (DFT) calculations, we employ the Vi-
enna ab intitio simulation package (VASP)[103] with generalized gradient approximation
(GGA) using the Perdew-Burke-Ernzerhof (PBE) functional[157] and projector augmented-
wave (PAW) method[21]. We treat 4s,4p,5s and 4d, and 2s and 2p electrons explicitly as
valence for Y and O, respectively. For the five transition metals V-Co, we include 3p as
well as the valence d and s electrons. To account for the localized nature of the d electrons
in the transition metal cations, we add a Hubbard U correction (GGA+U)[159]. We apply
the rotationally invariant version of GGA+U by Dudarev et al.[15], and for ease of compar-
ison we choose a U of 3 eV for all elements, a value consistent with previous literature[107]
(see supplementary material for further discussion of our GGA+U calculations). We use
an energy cutoff of 800 eV for our plane wave basis set, with a Gamma-centered k-point
mesh of 16 x 16 x 6 for the 10-atom nonpolar unit cell and 8 x 8 x 6 for the 30-atom po-
lar unit cell. Starting from the structures in the Materials Project database[39], we relax
lattice parameters and internal coordinates for all structures until forces on the atoms are
less than 0.001 eV/ A. We use collinear spin-polarized calculations to account for the finite
magnetic moments of the transition metal (TM) ions. We do not include spin-orbit coupling
(SOC) unless explicitly stated. When relevant, we approximate the noncollinear AFM order
inherent to the hexagonal manganites[5 1] with a collinear G-type AFM ordering (GAFM),
consisting of a two up, one down (one up, two down) pattern in a given 30-atom supercell
for the upper (lower) basal plane[235] (see Figure 6.1b). Finally, for all topological analysis
we use a tight-binding model constructed from our DFT-GGA+U calculations using max-
imally localized Wannier functions (MLWFs)[137, 113] as our basis states. For the surface
state plots and surface polarization calculation we use the WannierTools software[213] which
takes the tight-binding model as input. Finally, to assess dynamical stability of the YXOj3
compounds in their hexagonal form, we perform first-principles phonon calculations. The



CHAPTER 6. TOPOLOGICAL SEMIMETAL FEATURES IN THE MULTIFERROIC
HEXAGONAL MANGANITES 59

details of the computations as well as the results are described in Appendix 6.8.

6.3 Nonpolar P63/mmc Crystal Structure and
Energetics

To begin, we focus on the centrosymmetric, nonpolar crystal structure of the hexagonal
manganites in the P63/mmc space group. This YXO3 (X = V, Cr, Mn, Fe and Co) structure
is shown in Figure 6.1a (YCrOj is chosen as the example). The primitive cell consists of
two TM atoms, two yttrium atoms, and six oxygen atoms. The TM ions X3t are five-fold
coordinated by oxygen O*, forming trigonal bipyramids, and they lie in the z = }1 and
z= % planes. The yttrium Y3* ions are sandwiched between, in the z = 0 and 2 = % planes.

While all of our subsequent calculations are performed assuming FM order, we also
perform relaxations using the GAFM configuration in order to examine the relative energies
of the two magnetic states. We note that at the high temperatures for which the nonpolar
P63 /mmc space group is naturally favored over the polar P63cm space group, the structure
is paramagnetic. However, it may be possible to stabilize the nonpolar structure at low tem-
peratures, for example by alloying or introducing defects[65]. The results of our calculations
for both orderings are given in Table 6.1. To date, the only crystal in Table 6.1 which has
been synthesized in bulk P63/mmec structure is YMnOj3, with reported lattice parameters
a = 3.61 A and ¢ = 11.39 A[122]. Comparing this to our relaxed FM GGA+U results of
a=3.617 A and ¢ = 11.366 A suggests that our GGA+U calculations will be good predictors
of experimental lattice constants of the other four compounds.

We also report energy differences between FM and GAFM orderings in Table 6.1. These
values may be viewed as a guide since the frustrated collinear GAFM order is an approxi-
mation to that of noncollinear AFM. Nonetheless, comparison with collinear GAFM should
be useful for predicting the relative ease of stabilizing the FM state in these compounds,
for example by application of a magnetic or electric field[121]. Specifically, FM ordering
becomes more stable relative to GAFM the further to the left we move on the periodic table,
so achieving FM order should be most feasible in the V3 and Cr®" compounds. Note that
when GAFM is enforced, for X = Cr-Co the relaxed O-X-O bond angle between apical and
in-plane oxygen atoms differs by less than 0.5° from the ideal 90°. However, in the case of
YVO; the enforced magnetic frustration results in non-uniform magnetic moments on the
inequivalent V atoms, leading to a large and unrealistic distortion of the bond angles by as
much as 15°. Including SOC and allowing YVOj3 to relax to the noncollinear AFM should
remove this artifact, but to be consistent with the other compounds in Table 6.1 we include
our results for the collinear GAFM structure; the parameters and energetics for YVO3 with
this enforced magnetic order relative to the other four compounds should be interpreted with
appropriate caution.
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Figure 6.1: (a) Primitive cell for nonpolar hexagonal YCrOgs, with centrosymmetric space
group P63/mmec [194]. The primitive cell consists of two Y atoms (green), two Cr atoms
(blue), and six O atoms (red) (the structures of all other compounds studied in this paper
are qualitatively identical). (b) Depiction of the GAFM in-plane magnetic ordering which
we use as a collinear approximation to the true noncollinear antiferromagnetism in the
hexagonal manganites. Note that the 10-atom P63/mmc primitive cell is tripled to
accommodate this ordering. (c¢) Depiction of the nonpolar-to-polar structural transition in
the hexagonal manganites. Left panel: Nonpolar centrosymmetric space group P63/mmc
(primitive cell tripled for easier comparison to polar phase). Middle panel: Action of the
unstable ¢ = (1/3,1/3,0) K3 phonon on the XOj trigonal bipyramids. Outward
trimerization pulls the Y ions downwards (top), whereas inward trimerization forces the Y’
ions upwards (bottom). Right panel: Polar P63cm space group. The K3 phonon couples to
a secondary order parameter, the zone-centered I'; mode (upward arrows), which further
shifts the Y ions in the Z direction and causes net polarization in the unit cell.
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Table 6.1: Lattice constants (for the primitive 10-atom unit cell), energy per formula unit
(fu) for FM and collinear GAFM ordering, and AE = Epy — FEgary for YXO3 in the
P63 /mmec space group after full optimization with GGA+U. As mentioned in the main text,
the inherent frustration of the GAFM ordering on a triangular lattice has a strong effect on
the bond angles of YVO3. We include the relaxed GAFM result for completeness but with
the caveat that the distortion may be unphysical.

YVO3 YCI’Og YMDOg YF603 YCOO3

a (A) 3496 | 3510 | 3.617 | 3.566 | 3.640
¢ (A) 12.382 | 12.041 | 11.366 | 11.762 | 11.193
E/fu (eV) | —42.366 | —42.242 | —42.188 | —40.223 | —37.218
GAFM
a (A) 3.561% | 3525 | 3.609 | 3.548 | 3.608
¢ (A) 11.912 | 12.010 | 11.359 | 11.798 | 11.272
E/fu (eV) | —42.341 | —42.062 | —42.182 | —40.407 | —37.512
AE (eV) | —0.025 | —0.180 | —0.006 | +0.184 | +0.294

6.4 Semimetal Features in Ferromagnetic Band
Structures

In Figure 6.2 we present the GGA+U band structures for the P63/mmc YXO3 compounds
in the FM configuration in the absence of SOC (see supplementary material for GAFM band
structures). Because they dominate the states near the Fermi level, we focus on the spin up
bands and plot their orbital-projected character. (The spin down bands are included with
dashed black lines and without orbital projection.) The spin up bands near the Fermi level
are composed almost exclusively of transition metal X d states and O p states. Going from
left to right across the 3d elements, we observe a simultaneous upwards shift of the Fermi
level and a lowering in energy of the X d states toward the O p states, leading to great-
est hybridization for YFeOs. In YVO3 and YCrOgs, the uppermost d states have started
to invert energies with the lower states of mixed d and p character; in particular, for both
we compute a band inversion centered at the K point (%, %, 0) with linear nodes to the left
and right, boxed in red (upon further inspection the apparent inversion at H is actually an
anticrossing). For YVOg, the crossings at K are about 80 meV above Fermi level, whereas
for YCrOj3 they are about 300 meV below.

We note that GGA+U Kohn-Sham eigenvalues can only approximate single-particle ex-
citations and band structure. Therefore it is reasonable to question whether for GGA+U,
and specifically for U = 3 eV, our approach to computing the band structure near the Fermi
energy, specifically the band inversions responsible for the nodes in YVO3 and YCrOjs, will
be predictive. Based on prior calculations for similar oxide systems with V and Cr in the
same 37 oxidation state, a U of 3 eV can lead to band structures that nearly reproduce
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Figure 6.2: Orbital-projected DFT-GGA+U (U = 3 eV) band structures for spin up bands
in the ferromagnetic P63/mmec YXO3 compounds (X =V — Co), with spin down bands
included without projections. The bands near the Fermi energy are composed of X d states
(where X is the relevant transition metal ion) and O p states, with negligible Y character.
Color scale varies from dark blue for purely X d character to yellow for purely O p
character. The Fermi level is marked by the dashed black line. Panels (a)-(e) correspond to
YVO3, YCrOz, YMnOg3, YFeOs, and YCoOs, respectively.

experimental gaps (see Appendix 6.9 for a detailed discussion). Thus, we have reason to
expect our U = 3 eV calculations will be qualitatively accurate for the band inversions near
the Fermi energy.

We now further analyze the band structure and topology of YVO3 and YCrOj3. Orbital
decompositions of the inverted bands reveals that the conduction bands are composed of
mostly V/Cr d,. and d,. states whereas the valence bands are d, and d,2_,2 states. Plot-
ting only these projections, it is clear that at K the bands cross with no mixing whereas
at the (%, %, %) H point they hybridize, exchange character, and very slightly gap out (see
Figures 6.3a and 6.3b). In both cases we find that the non-gapped crossings in fact form
nodal lines (NLs) lying in the k, = 0 plane, centered at K and K’ (see Figure 6.3c).

The mirror plane symmetry M, centered at z = %1 is responsible for the protection of the
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Figure 6.3: Analysis of band crossings in Figure 6.2. (a) and (b) show zoomed-in band
structures of YVO3 and YCrOj respectively about the K and H points, with the orbital
character decomposed into planar (d,,/d,2_,2) and z-oriented (d,./d,.) d states. (c)
Isoenergy contours (specifically for E = —0.38 eV for YCrOs3) in the hexagonal 3D
Brillouin zone.

NLs. (Note that with FM ordering and no SOC the magnetic space group is identical to the
crystal space group P63/mmc). The action of M, in reciprocal space is

M.t (kg by k) — (K, oy, —s). (6.1)

Thus k. = 0 and k. = Z planes are invariant under M. and can be labeled by its eigenvalues,
which are 1 in the absence of SOC. If two bands with opposite mirror eigenvalues cross on
one of these planes due to a band inversion, their crossing is symmetry-protected and they
form a closed loop of Dirac nodes. This is the case for K in the k., = 0 plane. However, if the
bands have the same eigenvalues they will mix and gap out[47], which occurs on the k, = 7
plane where H lies. In the supplementary material we construct an explicit tight-binding
model to calculate the M, eigenvalues throughout the Brillouin zone and thus verify our
observations.

Let us now consider what happens when we include spin-orbit coupling (SOC). With
SOC, spin and orbital degrees of freedom are coupled and symmetry operators act on both
Hilbert spaces simultaneously. Notably for us, a mirror plane symmetry becomes the com-
bination of (a) a reflection of the spatial coordinates about the mirror plane, and (b) a =
rotation of the spin coordinates about the axis perpendicular to the mirror plane[210]. Thus,
depending on the spatial orientation of the spins, a mirror plane symmetry may either be
broken or preserved when SOC is taken into account. For our nonpolar hexagonal mangan-
ites, let us first examine the case where the spin orientation is along the [001] axis. In this
example, the magnetic point group symmetry is reduced from Dgy, in the collinear case to
Cen- In Cgy, the total mirror symmetry is still preserved, since rotating the spins 180° about
the z axis leaves them invariant; thus, the NL should still be protected in the k, = 0 plane
in this case. The only difference from the non-SOC case is the functional form of M, due to
the requirement that the operator must now be antiunitary, such that spin up (down) bands
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Figure 6.4: DFT-GGA+U band structures with SOC, using YCrOj as the example. Planar
dyy/22—y2 character is plotted in red, while d,./,. states are plotted in dark blue. (a) and
(b) show full band structures with SOC included and spin quantization along the [001] and
[100] directions respectively. (c¢) and (d) show the zoomed-in portions of (a) and (b) around
the K where the topological NLs are centered in the collinear spin case. In (c) the NL
crossings are still robust with the [001] spin orientation, whereas a very small gap forms
between one of the conduction bands and the valence band in (d) with [100] spin
orientation, with the second conduction band passing through the gap.

pick up a factor of +i (—i) when acted on by M, (we include a tight-binding model which
incorporates SOC in addition to the collinear tight-binding models in our supplementary
material). Taking the example of YCrOs, we plot the band structure with SOC for [001]
oriented spins in Figures 6.4a and 6.4c and as expected the crossings are still robust.

If we choose, on the other hand, to orient the spins such that they have a component
perpendicular to the [001] axis, say in the [100] direction (the band structure with [100]
oriented spins is plotted in Figures 6.4b and 6.4d), the magnetic point group is reduced to
C5,. Now the action of the mirror operator will still leave the orbital coordinates in the
k., = 0 plane unchanged, but it will send a spin with components (s, s,,s,) = (1,0,0) to
(82, 8y,52) = (—1,0,0). Hence the mirror plane is no longer a symmetry of the crystal and
generically the crossing bands can hybridize and gap out the NL. This is demonstrated in
Figure 6.4d. From the orbital projection onto d,/,2_,2 and d,./,. states one can clearly
see the hybridization and gap between the valence band and one of the two near-degenerate
conduction bands (the second conduction band passes through the gap).

Although magnetization along any axis other than [001] will break the mirror symmetry
protecting the nodal line, it is possible for discrete points along high-symmetry directions to
remain ungapped. Specifically, in cases of inversion-symmetric NL systems such as YVO3
and YCrQOg, if the spins are orientated along an axis n in the a — b plane with a two-fold
rotational symmetry C7, the points on the NL which intersect this axis are protected from
hybridizing, and a pair of Weyl points can remain even though the rest of the NL becomes
gapped[90, 210]. For the point group Dg, there are six such axes: 6’2[100], 02[010], C’glo], 02[110],
0510] and 02[120]. Thus, for the example in Figures 6.4b/6.4d in which the spins are oriented
along [100], the C'SOO] rotational symmetry remains unbroken and we expect that Weyl points
will remain along [100], while the rest of the line is gapped out, as seen along the M — K —T'
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Figure 6.5: Projected band structures for the [001] surface in (a) YVO3 and (b) YCrOs
from slab geometries (see text). Color is proportional to weight of projection onto the
outermost layers of the slab, with blue being highest weight. The discernible surface state
is magnified in one inset for both cases. The insets with the shaded circles are cartoons
depicting the boundaries of the NL pairs projected onto the [001] surface, with the region
where surface states appear shaded in grey. Figures (c¢) and (d) show the [001] surface
polarization charge P (k) for YVO3 and YCrOg respectively along the same
high-symmetry path as (a) and (b). Note that P(kj) jumps to a nonzero value at the same
momenta where the surface states are visible.

path in Figure 6.4d. Unfortunately, the existence of two nearly degenerate conduction bands
makes detection of the Weyl points difficult.

Finally, we note that the magnetic anisotropy energy Eo1] — Efio0) is very small ([100]
oriented spin is lower in energy than [001] by 1.5 meV /f.u), implying that it should be feasi-
ble to switch between a robust and gapped nodal line within the nonpolar P63/mmc space
group by varying the direction of an external magnetic field.

6.5 Surface States

A hallmark feature of topological NLs is their two-dimensional “drumhead” surface states|30].
These surface states must terminate at the surface projection of the nodal line and they may
lie either outside or inside the area subtended by the NL. Using our maximally localized
Wannier functions (MLWFSs), we construct a tight-binding slab model with 20 unit cells in
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the [001] direction. The 2D projected band structures on the [001] surface for YVO3 and
YCrOj3 are shown in Figures 6.5a and 6.5b, respectively. At the the K point, the top valence
band of YCrOg3 and top two valence bands of YVOj3 invert with the bottom two conduction
bands which are very nearly degenerate for both compounds. Thus, one (two) pair(s) of NLs
are actually projected onto on the [001] surface in the case of YCrOs and YVO3, respectively,
as depicted schematically in the figure insets. While in principle there is a single surface
drumhead state associated with each bulk NL[19], the projected bulk from the multiple NLs
interferes with the surface states, making detection difficult. However, by projecting the
tight-binding wave functions onto the outermost cells in the slab we can make out a single
surface state (dark blue) which has not hybridized with bulk. It is sandwiched between the
pair of NLs in YCrOg, whereas in YVOs it is visible only in the region between the two NL
pairs (the corresponding regions are shaded in grey for the top-view cartoons of the [001]
surface in Figures 6.5a and 6.5b).

We can infer physical meaning from the observable surface states by calculating a series
of one-dimensional Berry phases at fixed momenta k| parallel to the the [001] surface, where
the one-dimensional Berry phase 6 at k| = (k;, k) is defined by

o) = =i 3~ [ (0] fun10) a, (62)

En<Ep~ —

where |u,(k)) is the cell-periodic part of the Bloch eigenstate 1y (r) = e*Tu, 1 (r), and the
sum over n is over occupied states. It has been shown in previous work[l198] that ¢(k)
is related to the bound charge on a surface perpendicular to k. To be more explicit, the
amount of surface polarization charge P(kj) at (provided the band structure is gapped at
k) is given by

P(ky) = 5-0(k), (6.3)

modulo e, where e is the electron charge. For the case of an NL semimetal, we can divide the
k| into distinct regions of the surface Brillouin zone, with the [001] projections of the NLs
acting as region borders. For M, symmetric systems such as YVO3 and YCrOs, 0(k)) is
quantized to either 0 or 7 (and hence P(k)) is quantized to 0 or 3) [30]. The NL boundaries
are the only momenta at which P(k) can switch values, since all gapped kj within a given
boundary are topological indistinct. In fact, the kj at which the surface polarization charge
becomes nonzero are exactly the momenta at which we expect the drumhead surface states to
appear[30, 18, 71]. Using the hybrid Wannier charge center (WCC) method[19] we calculate
P(k)) for momenta in the k. = 0 plane along the M — K —I" path for YVOg3 and YCrOs in
Figures 6.5¢ and 6.5d respectively. As we expect, the surface polarization is zero except at
the momenta where we see the surface states, at which point it jumps to %
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6.6 Ferroelectric Instabilities of the P63cm Structure

The topological NLs near the Fermi level occur in the high-symmetry P63/mmc space group
due to the combination of band inversion at K and the R, mirror symmetry. However, as
mentioned previously the hexagonal manganites RMnOj3 are known to undergo a ferroelectric
(FE) transition to the nonpolar P6zcm space group as the temperature is lowered[1 19]. Here
we verify that the YXO3 (X = V-Co) compounds in their metastable hexagonal structure
also have a lower-energy P63cm phase connected to the P63/mmc topological semimetal
phase through unstable phonon modes.

We first compute the energy per formula unit of the FM P6scm polar structures and
compare with our previously calculated energies for the FM P63/mmc nonpolar structures.
The GGA+U AE = Epoiar — Enonpolar 15 given in Table 6.2. For all five compounds the
polar phase is lower in energy. Next, we decompose the atomic displacements involved in
the distortion from the nonpolar to the polar phase into symmetry-adapted phonon modes
using the AMPLIMODES software[ 155, 161] provided by the Bilbao Crystallographic Server.
The primary structural order parameter responsible for the P63/mmec — P63cm transition
in hexagonal manganites is the unit-cell tripling K3 phonon mode at ¢ = (3,3,0)[119, 19].
As temperature is lowered this phonon can condense, leading to trimerizing tilts of the XOj5
trigonal bipyramids and a subsequent shifting either up or down of the Y ions, as shown in
the middle panel of Figure 6.1c. At this point the P63/mmc — P6zcm transition has already
occurred, but there is no net polarization in the unit cell. The spontaneous polarization is
caused by the coupling to K3 of the zone-centered I'; mode at ¢ = (0,0,0). I'; causes an
additional uniform shift of the Y ions in the Z direction, resulting in non-zero polarization|(]
(right panel of Figure 6.1c). Based on the relative amplitudes of the modes (given in A) in the
P63cm structures relative to the parent P63/mme structures in Table 6.2, we can conclude
that the FE transitions in the YXO3 compounds of interest also exhibit the K3 mode as their
primary order parameter, with the distortion caused by the I'; mode significantly smaller.
Moreover, the K3 distortion amplitudes are all modest in magnitude, roughly 1 A, implying
that the FE transition is realistic for these systems.

Finally, we briefly examine the band structures for the fully relaxed P63cm compounds in
Figure 6.6. In addition to the loss of inversion symmetry in the nonpolar-to-polar transition,
the R, symmetry protecting the NLs in the P63/mmc space group is no longer a symmetry
for P6scm. Thus, the topological NLs in P6zcm YVO3; and YCrOg are necessarily absent.
According to our band structure calculations, YCrOs becomes a trivial metal. YVO3 on
the other hand develops a 1 eV direct gap in Figure 6.6a. Since this would allow a tuning
between a topological semimetal state and a trivial insulator by changing temperature, YVO3
seems to be the most promising of the YXO3 candidates for future studies.
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Table 6.2: AE = Eppjar — Enonpolar and amplitudes of K3 and I'; modes of the polar P63cm
structure with respect to P63/mmc parent structure. Note that all calculations here are
with FM ordering.

YVOg YCI’Og YMH03 YFGOg YCOO3
AE (eV) | —0.354 | —0.075 | —0.100 | —0.103 | —0.358
Ks (A) | 1.056 | 0958 | 0.971 | 1.030 | 1.026
I; (A) | 0402 [ 0.158 | 0.183 | 0.199 | 0.218

Figure 6.6: DFT-GGA+U band structures for the FM YXO3 compounds (X=V-Co) in the
polar P6zcm space group . For comparison to Figure 6.2, the spin-up bands are again
projected onto the relevant atomic orbitals and the spin-down bands are plotted in dashed
black. Panels (a)-(e) correspond to YVO3, YCrOsz, YMnOs3, YFeO3, and YCoOs,
respectively.
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6.7 Conclusion

In summary we have performed extensive first-principles calculations on five YXO3 (X=V-
Co) compounds isostructural to the hexagonal manganite YMnOsz. We find that with FM
ordering the nonpolar P63/mme phase hosts topologically nontrivial nodal lines near the
Fermi level for YVO3 and YCrOs. The NLs are formed by a band inversion and protected
by a mirror plane symmetry. We show that the YXO3 compounds are also ferroelectric,
undergoing a structural transition to polar P63cm upon lowering of temperature. Finally,
YVO3 becomes insulating in the polar phase, suggesting the possibility of switching from
a TSM to an insulating state concomitantly with the FE transition. In realizing these
structures, FM magnetic order must be stabilized in the nonpolar space group; in principle
this could be done via application of a magnetic, electric, or even strain field[50]. Although
all compounds except YMnOj naturally crystallize in an orthorhombic structure, rather
than the hexagonal phase studied here[!], , , |, it is possible to synthesize a
metastable structure by epitaxial growth on a hexagonal substrate. In fact, this has already
been done successfully for the case of YFeOj3[2]. Thus, our studies provide motivation for
future experimental work stabilizing the hexagonal FM phases, thereby providing a new
opportunity for examining the interplay of multiferroicity and topology.

6.8 Appendix I: Phonon Dispersions for Nonpolar
and Polar phases

In order to analyze the dynamical stability of both polar and nonpolar hexagonal YVO3
and YCrOs, we perform detailed phonon spectra calculations for YCrOs. We do not repeat
the calculations for YVOj3; however, given the similar ionic radii of V and Cr (~ 0.75 A),
we expect the results to be analogous. Our phonon spectra are computed using the finite
displacement method as implemented in the Phonopy software[192]. We construct 3 x 3 x 1
and 2 x 2 x 1 supercells for the nonpolar P63/mmc and polar P6zcm structures respectively.
With these supercells we use Phonopy to make the symmetry-inequivalent displacements
necessary to build the matrix of interatomic force constants. The dynamical matrix at a
given wavevector q is calculated from the force constants and diagonalized along the high-
symmetry lines in Figure 6.7 to get phonon frequencies (given in THz).

Let us first examine the phonon dispersion for the nonpolar P63/mme space group, for
which we see the topological NLs. As shown in Figure 6.7a, all phonons are stable except
for a single mode which becomes imaginary in frequency with a maximum instability at the
K point. A symmetry analysis reveals that this is a K3 phonon. Hence, the phonon spectra
for P63/mmc YCrOs is precisely what we would hope: that is, the nonpolar phase has an
unstable K5 phonon which at the unit cell tripling wavevector q = (1/3,1/3,0) mediates the
ferroelectric P63/mmc — P63cm transition upon lowering of temperature.

The phonon dispersion for the low temperature P6scm structure of YCrOgs is shown in
Figure 6.7b. As hoped for, all phonon modes in the polar compound are positive-definite,
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Figure 6.7: Phonon dispersions for YCrOs in the (a) nonpolar P63/mmc and (b) polar
P63cm phases respectively.

meaning that the structure is dynamically stable. This strongly implies that the synthesis
of YCrO3z and YVOj3 in the hexagonal structure, via epitaxial growth, will be feasible.

6.9 Appendix II: Discussion and Comparison of
GGA+U and HSE06 band structures

Although GGAs such as PBE are computationally inexpensive and often yield results compa-
rable to experiment for structural and other ground-state properties, Kohn-Sham eigenvalues
computed with GGAs are well known to systematically underestimate experimental band
gaps (and hence overestimate band inversion) due to spurious self-interaction errors and an
inaccurate description of exchange and correlation effects necessary to capture charged ex-
citation energies quantitatively[194, 67]. Thus interpreting predicted band structures from
GGA or GGA+U calculations must be done with care. Band gap underestimation can be
more severe in compounds containing elements with localized, unpaired d and f electrons[(7],
which is precisely the case for the TM ions in our YXO3 (X =V — Co) compounds. Higher-
order methods for computing band structures from DFT input, such as dynamical mean-field
theory (DMFT) and the GW method, are computationally expensive, and results for complex
systems can depend on the DFT starting point; DMFT and GW calculations for systems as
complex as these are studies in their own right. Hybrid functionals, which mix a fraction of
Hartree-Fock exchange with that of traditional GGA approximations, can approximate self-
energy corrections and improve GGA Kohn-Sham band structures relative to photoemission
experiments[194, 107]. A more approximate but computationally-inexpensive correction to
DFT band structures (and total energies) is the GGA+U approach[!, 15], which we use
throughout the analysis in the main text. GGA+U reduces the spurious GGA delocalization
of the d electrons by adding an on-site Coulomb repulsion term to the total energy. The pri-
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mary drawback of GGA+U is that the choice of value for the Hubbard U parameter is ad hoc
and, in principle, system and environment-dependent; U is often chosen empirically by com-
parison to measured oxidation energies[204] or measured band gaps|07]. Since photoemission
spectroscopy data for hexagonal YVO3 and YCrOjs are not yet available, it is reasonable to
ask whether our choice of U = 3 eV can be expected to predict an experimentally-observable
band structure, i.e whether the band inversion leading to the topological NLs predicted by
our GGA+U calculations is accurate.

Although YVO3; and YCrOj3 have yet to be synthesized in the hexagonal P63/mmc and
P63cm space groups, experimental band gap data is available for the stoichiometrically equiv-
alent compounds in the related orthorhombic Pnma structure. Thus, a value of U which
yields a GGA+U band structure with the correct (or near-correct) experimental band gap
for the Pnma phase could also be expected to be predictive for band gaps and/or band inver-
sions for the hypothetical hexagonal phase. Taking the experimental lattice parameters for
Pnma YVO3 and YCrOj3 and enforcing the GAFM magnetic ordering found in experiment,
we calculate the GGA+U band structures with U = 3 eV, the results are shown in figure
6.8. For YVO3; in Figure 6.8a, the resultant 1.6 eV direct band gap matches experiment
nearly perfectly, whereas for YCrOg in Figure 6.8b the 2.9 eV GGA+U gap underestimates
the experimental direct gap by 0.3 eV.[196, 95, ] Thus while our choice of U in the main
text may be slightly lower than the ideal value for Cr, the discrepancy is likely to be small;
and moreover we find that a U of 4 eV for Pnma YCrOj (Figure 6.8¢) results in a slightly
overestimated 3.3 eV band gap, whereas this value of U for the hexagonal P63/mmec space
group still results in a band inversion (Figure 6.8d). While the band inversion at this point
is very small, about 0.1eV, we find this band inversion can be increased by moderate biaxial
compression in the a-b plane.

Finally for comparison, we repeat our band structure calculations for the nonpolar P63/mmc
YVO3; and YCrO3 with FM magnetic ordering (neglecting SOC) using the hybrid density
functional HSE06, a standard hybrid functional implemented in VASP.[73] HSE06 mixes
GGA exchange with a fraction, 1/4, of Hartree-Fock exact-exchange at short range, where
“short range” is defined by a range-separation parameter u; at longer range, the exchange
becomes that of the GGA. This is often written as

BYSE = LB () + S BGOSR ) 1 BEOR () 1 B, (6.4
where SR and LR denote short-range and long-range parts respectively, of the electron-
electron interactions, Ex refers to the exchange energy, and E¢ refers to the correlation
energy. For our calculations p is fixed to the standard value of 0.2. The HSE06 band
structures are plotted in Figure 6.9, with the GGA+U with U = 3 eV band structures
from the main manuscript included for comparison. For both YVO3 and YCrOs, HSE06
removes the band inversion necessary for the topological NLs and opens up an appreciable
gap. This is to be expected: HSE06 can overestimate experimental band gaps by more
than 1 eV in some cases, and for transition metal oxides the overestimates are particularly
extreme[12]. In the present case, for YVO3 and YCrOg, there is reason to believe that HSE
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Figure 6.8: GGA+U calculations for YVO3 and YCrOs in the orthorhombic Pnma
structure with experimental GAFM ordering. (a) and (b) use a U of 3 eV for YVO3; and
YCrOs respectively, which is the value we use in our calculations for the hexagonal phases
in the main text. Experimental band gaps are 1.6 and 3.3 eV respectively, so for YVO3 the
choice of U exactly reproduces the experimental gap. (c) shows the GGA structure for
Pnma YCrOs using a U of 4 eV, which overestimates the experimental band gap by 0.1
eV. (d) shows the nonpolar P63/cmm band structure of YCrOj using U = 4 ¢V. The band
inversion necessary for the NL is still present, implying that while U = 3eV may be slightly
too low for the case of YCrOg, the qualitative band structure should be accurate.

is spuriously removing the band inversion. Firstly, HSE has been found to overestimate the
experimental band gap of the transition metal oxides Vo053 and Cry0O3 by 1.14 eV and 1.0
eV respectively[38, 67]. Since V203/CryO3 have the same 3+ oxidation states for V and Cr
as YVO3 and YCrOs, HSE calculations for the latter compounds are very likely to yield a
similarly large band gap overestimation. Secondly, we find that a U of 5 eV is necessary to
reproduce the 0.65 eV gap opened up by HSE06 in YVO3. For YCrOs, U = 5 eV is still
too small to remove the band inversion at K. To our knowledge, few if any GGA+U studies
in the literature use a U larger than 3.5 eV (4 eV) for V (Cr)[67, 196, 168, 165, 2041] where
these values have been obtained either from empirical fitting to experimental data or from
constrained DFT calculations[7]. Thus, it would appear that HSE will lead to unrealistic
gaps and band inversion.

In conclusion, while future calculations using an ab initial dynamical mean-field theory[57]
or the GW approach|[72] would be desirable for a more quantitative analysis, there is good
evidence that our calculations of topological NLs in nonpolar hexagonal YVO3 and YCrOj
are predictive.
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Figure 6.9: HSE06 band structure plots for (a) YVO3; and (b) YCrOs in the P63/mmc
space group. Note that HSE06 overestimates the band gaps and consequently loses the
band inversion creating the topological NLs at K with the GGA+U calculations in the text

((c) and (d)).
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Chapter 7

Antiferromagnets in spintronics
applications: concepts and status

7.1 Spintronics: some background and motivation

Spintronics (“spin electronics”) is a field of research which has emerged and subsequently
exploded in the last three decades. The underlying concept is the use of an electron’s spin
degree of freedom rather than, or in addition to, its charge degree of freedom, to encode,
write, and transfer information in electronic devices [212, 60, 129].

The use of ordered spin states to record information dates back much earlier than modern
spintronics. Indeed, the earliest use of a magnetized material to store information was in
1898 with the invention of the magnetic wire recorder to record sound [129, 173]. Related
technologies such as magnetic hard-drives and magnetic core memory soon followed [173].
However, these 19th and 20th century technologies rely on the use of external magnetic
fields to “write” or orient the spins in the magnetic compound used for storage. The main
disadvantage of this technique is the poor scalability. In general, the smaller the magnetic
“bit” (where the bits in a device are defined by magnetic domains of different orientations),
the larger the external magnetic field required to stabilize the bit in the presence of thermal
fluctuations. The current needed to generate the magnetic Oersted fields traditionally used
to manipulate magnetic bits scales linearly with the strength of the external field [25]. Thus,
the miniaturization and general tailoring of magnetism-based devices becomes untenable due
to the huge current amplitudes required for the writing fields.

A primary focus in current spintronics research is to exploit spin-dependent transport
phenomena in order to use electrical current, rather than magnetic fields, to manipulate the
spin degrees of freedom in a material. This is achieved through the so-called “s-d exchange”,
which we will describe quantitatively later. Qualitatively, s-d exchange occurs when an
electric current induces a nonzero magnetic polarization in itinerant conduction, or “s” elec-
trons. These spin-polarized electrons create an effective magnetic field, which analogously to
the traditional external fields described above, can reorient the localized magnetic moments
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(generally composed of localized, d orbital electrons) through a spin exchange term in the
Hamiltonian [60]. Crucially, in contrast to external magnetic fields, the effective magnetic
field from the polarized conduction electrons scales linearly with applied current density
rather than absolute current. This means that the current needed to reorient or “switch”
localized magnetic order scales decreases proportionally to the cross-sectional area of the
magnetic bits [25]. Thus, by using s-d exchange rather than externally applied magnetic
fields, spintronics-based devices at nanoscale size become feasible [32].

A comprehensive overview of the field of spintronics is beyond the scope of this thesis.
Moreover, in our studies on the antiferromagnetic spintronics candidate Fe; 3NbS, in Chap-
ters 8 and 9, we focus primarily on magnetic properties and electronic structure which may
have consequences for spintronics applications, rather than the theoretical details of the ac-
tual spin-transport phenomena. Thus, in this introductory chapter we introduce just a few
key concepts in spintronics, (in particular, spintronics using antiferromagnets) to put recent
interest in Fe; /3NbS, in perspective.

7.2 Spin transfer torque

Spin-transfer torque (STT) is a nonrelativistic spin-transport phenomenon discovered inde-
pendently by Slonczewski and Berger in 1996 [175, 14], which was first realized in ferro-
magnets (FMs), but as we will see later, can also be leveraged in antiferromagnets (AFMs).
Before the discovery in the last decade of spin-orbit torque [129], which can be viewed as
STT’s relativistic analog, STT formed the conceptual basis of most spintronics applications.
Since many aspects of the phenomenon are directly transferable to spin-orbit torque, we
will spend some time introducing STT, although spin-orbit torque is the effect relevant for
Fel/ngSQ.

The experimental setup required to generate STT is illustrated in Figure 7.1a. An elec-
trical current passes through a thick “fixed” layer of FM material (“FM I”) with magnetic
moments on the localized “d” electrons oriented along S,. After exiting FM I and entering
a nonmagnetic “spacer”, the conduction electrons will have acquired a net spin polarization

along e, = Sl / ‘Sl‘ Provided that the thickness of the nonmagnetic spacer is smaller than

the spin diffusion length, the conductions electrons will still be primarily polarized along S,
when they impinge on a second “free” FM layer (“FM II”) with magnetic moments along
S, #+ S;. These polarized conduction electrons generate an effective magnetic field B,
given by [00]

. om
Bsd - - sdﬁsa (71)

where J,q is the exchange integral between s and d electrons, ém = m — m,, is the current-

induced nonequilibrium spin polarization of the s conduction electrons, and M, is the sat-
urated magnetic moment of a lattice site in FM II. Note from equation 7.1 that it is the
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deviation 0m from the equilibrium conduction spin polarization m,, that explicitly generates
the STT, but since m,, in the absence of current is in most cases zero, in this chapter we
generally assume dm = m for ease of notation. The localized magnetic moments in FM II
then couple to this effective magnetic field via the s-d exchange mentioned above:

~

M M=B,- M, (7.2)

S

Hsd: —Jsd

where M is the magnetization of FM II. Through this exchange term, the polarized con-
duction electrons exert a torque T =M x Bsd on the localized moments in FM II and by
transfer of angular momentum, can induce the moments M to rotate from their original
direction € to point towards the effective magnetic field along €;. Overall, if we combine
the torque due to B,y with torque from the effective magnetic field Bef s of FM II (which
has contributions from crystalline anisotropy, magneto-dipole fields, demagnetization fields,
and other material effects), the steady-state equation of motion for the magnetization of the
localized moments in FM II can be shown to be [175, 128, (0]
dM

N . dM
E:—’}/MXBeff—i—T]MX

= h X 1m, (7.3)
where 7 is the gyromagnetic ratio. The first term in equation 7.3 is the instantaneous torque
on a localized moment due to the effective magnetic field in FM II in the absence of current,
the third term is the STT due to the current of polarized conduction electrons, and the
second term arises due to frictional damping of M with 1 the so-called “Gilbert damping
constant”. The dynamics of the localized moments in FM II are then a combination of
energy-conserving precession of M about the fields B.;; and B,g, and dissipative damping
due to the second term as well as alignment of M along the effective fields due to angular
momentum exchange with the polarized conduction electrons. We note that the strength
and direction of Eeff with respect to B, are important in determining the experimental
thresholds for which the desired alignment or “switching” of M dominates over precession
[175]. However, the details of Bef ¢ are not relevant for our broad discussions of STT and
related spintronic mechanisms, so we will neglect this term for the remainder of the chapter.

Before moving on to the closely related phenomenon of spin-orbit torque, we mention
that in general, the STT Ter = J;‘Ldl\A/I x m can be either “fieldlike” or “antidamping”
depending on the relative time scales of the conduction electron spin lifetime (i.e., the time
before the spin polarization acquired from FMI decoheres) compared to the precession period
of the free ferromagnet FM II [92]. In the case that the conduction spin lifetime is short
compared to the equilibrium FMII dynamics, the polarization of the carrier electrons is
independent of the localized magnetization M in FM IL Thus, the nonequilibrium conduction
electron polarization m in FM II remains along the initial axis of polarization acquired in
FM I, m ~ S;. This means the effective magnetic field defined in equation 7.1 is directly
proportional to the polarization S, of the conduction electrons impinging on FM II, and the
resulting torque is “fieldlike” in that it is equivalent to the torque generated by an external




CHAPTER 7. ANTIFERROMAGNETS IN SPINTRONICS APPLICATIONS:
CONCEPTS AND STATUS 7

(a)

Fixed Nonmagnetic Free

FM | spacer FM I
Sy I
SQ,'"
o ‘ ’
= 4 4 4 x A A A =
K N\ | 7 7 77 VAR
Bsd

S S
e | Sili A A = e | %11 A 4
7 7 VARV N 77 s 0.
1 SQXS]
~FL Q S nAD S Q S
TST = SQ X Sl TST = 82 X (SQ X Sl)

®

Figure 7.1: Experimental setup and mechanism of spin-transfer torque (STT) in
ferromagnets (a) Electrical current (grey arrow) with initially non-spin polarized electrons
(small arrows) passes through FMI, with magnetization along S; (large black arrow).
When the conduction electrons exit FM I and enter a nonmagnetic spacer they will have
acquired a polarization along S; which they maintain when they enter FM II with
magnetization along S,. The polarized spin current acts as an effective magnetic field B
that exerts a torque on the magnetization in FMII and can cause the localized spins to
rotate and align along B, (large blue arrow) via transfer of angular momentum from the
conduction to localized electrons. (b) Fieldlike (FL) versus antidamping (AD) STT (left
and right respectively). If the spin lifetime of the conduction electrons is short compared to
the movement of localized moments in FM II, the conduction electrons will remain
polarized along S; and the effective field B,y is in this direction (FL). If the spin lifetime of
the conduction electrons is long compared to that of the localized moments in FM II, the
polarization of the conduction electrons becomes dependent on the direction of
magnetization, and effective magnetic field will be proportional to S, x S; (AD).
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magnetic field along e;:
TEE ~ M x S;. (7.4)
Conversely, if the conduction spin lifetime is long compared to the dynamics of the localized
moments in FM II, the polarized conduction electrons will precess around M. In this case,
the carrier polarization is modified to m ~ M x S; This “antidamping” component of the
STT is given by
T42 =M x (M x Sy). (7.5)

The directions of TEE and T4R are shown in Figure 7.1b. Spin-orbit torque, which we discuss
next, can also be antidamping or fieldlike, with the nature of the torque dependent primarily
on the symmetries of the magnetic space group, rather than the conduction electron spin
lifetime. We will also see that for AFMs in particular, only one of the two torque components
is usually useful for reorienting the magnetization in a given AFM material.

7.3 Relativistic analog of STT: spin-orbit torque

Spin-orbit torque (SOT) is in most respects nearly identical to STT. It is a spin-transport
phenomenon that involves the reorientation of localized spins in a magnetic material due to
an effective field generated by spin-polarized conduction electrons from a current. The cru-
cial difference between SOT and STT is the mechanism by which the conduction electrons
become polarized. Whereas the polarization in STT requires passing the current through
a reference FM polarizer (FM I in the above discussion), through the SOT mechanism the
conduction electrons become polarized in the material of interest (FM II) in the presence
of current via relativistic spin-orbit coupling [128]. Thus, spintronic devices leveraging SOT
can have a single self-referencing magnetic component, rather than needing an additional FM
material to polarize the conduction electrons as is the case for devices using STT, making
SOT an inherently more robust mechanism.

We briefly outline the principle of SOT, again focusing first on FM materials for sim-
plicity. Our discussion closely follows references [128] and [129]. Consider the one-particle
Hamiltonian for an “s” conduction electron with the s-d exchange described in section 7.2,
and an additional spin-orbit coupling term:

A2

g=-2 _ M6+ Hsoc, (7.6)
2m
H N (VV x P)-6 (7.7)
— -0 .
SOC = 5 p ’

where m is the conduction electron’s effective mass, M is again the magnetization of the
FM material, Jy; the exchange integral between s and d electrons, ¢ is the velocity of light,
and p is the electron’s momentum. & is the operator of Pauli spin matrices for a single
conduction (“s”) electron. In the spin-orbit coupling (SOC) term defined in equation 7.7,
VV is the effective electric field seen by the conduction electron. The SOC-inducing potential
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V can have different forms depending on the crystal symmetries and material details. From

Equations 7.6 and 7.7, we can then use Ehrenfest’s theorem (% == ([A H]> <%‘i‘> for

an operator A) to obtain the coupled equations for the localized magnetization M and
the conduction spin polarization density m = (o) (where () denotes quantum mechanical
averaging over occupied conduction electron states).

dm  Jy . ~ 1 NN .
% 7 m X e ((VV X p) X J) , (78)

(7.9)

If we assume steady-state for the conduction electron spin polarization dm/dt = 0 in equation
7.8, we can substitute the result into equation 7.9 to obtain the SOT:

~

dM Jsd . 1 A .
T T = = i 1
i SO 7 X 2mc? <(VV X p) X O'> (7 0)

Note that equation 7.9 is equivalent to the STT part (third term) of equation 7.3. The
difference is that for the case of SOT, we can see explicitly from equation 7.10 that the
non-equilibrium conduction spin polarization m comes from the spin-orbit interaction of the
conduction electrons in the material, rather than an external FM polarizer.

It is important to emphasize that in equilibrium the net conduction spin polarization
density m is generally zero, and so too is the SOT. For a nonzero SOT, both the spin orbit
coupling and an applied current to generate a nonzero m are necessary. As a concrete exam-
ple, let us consider a Rashba-type spin-orbit interaction due to broken inversion symmetry
at an interface, in which H soc = ar(z X p)- 0. Here, z is perpendicular to the interface and
ap is the Rashba coupling constant. In this case, equation 7.10 becomes

Tso =5 (2 x D) x ). (7.11)
Figure 7.2b shows the Fermi surface for conduction electrons in the l;x-lA{y plane with Rashba
spin-orbit coupling, where the conduction spins tend to align along (R x z) (recall that the
wavevector k is proportional to p). In the absence of current, (R} = 0, so the net spin
polarization density is zero. However, in the presence of current (Figure 7.2¢), the Fermi
surface shifts in reciprocal space along the direction of the current (taken to be X in this case)
such that (k) # 0. As a result of the nonequilibrium redistribution of the conduction Fermi
surface by the current, the conduction electrons acquire a net spin polarization, m ~ z x J
where J is the direction of the current. In this case, equation 7.11 yields a nonzero torque
Tso which can reorient the localized magnetization M analogously to the STT. Note that
spin-polarized conduction electrons generated by the current in the SOT mechanism are in
general spatially localized, e.g. near the inversion-breaking interface (Figure 7.2a). This is
relevant in discussion of spintronics for AFMs, which we discuss next.
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(a)

Figure 7.2: Spin-orbit torque (SOT). (a) depiction of SOT mechanism. A non-spin
polarized electrical current is applied directly to an FM material with magnetization M,
and via spin-orbit coupling of the conduction electrons in the FM, these electrons acquire a
nonzero spin polarization density m that can exert a torque on the localized moments. (b)
Equilibrium Fermi surface cross section (blue circle) for conduction electrons with a
Rashba-type spin orbit coupling in the absence of current. While the individual electrons
have polarization dictated by the Rashba coupling, because the Fermi surface is centered at
k = 0 the polarizations cancel and the spin polarization density m = 0. (c¢) Fermi surface
in the presence of current J || x. The distribution of electrons at the Fermi surface shifts in
the +k, direction and as a result there is a net conduction spin polarization density along

A~

y.
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7.4 AFMs as spintronics materials: some attractive
features

Until recently, AFMs were not regarded as useful for spintronics devices. Because the op-
positely pointed magnetic sublattices on an AFM add to zero bulk magnetization, the tra-
ditional method of spin reorientation using external magnetic fields as described in Section
7.1 is prohibitively challenging. However, following the discovery of electrical current-based
methods of magnetization control in FMs such as STT and SOT, and the realization that
these mechanisms can also be leveraged in AFMs with certain symmetries, focus in the
spintronics community has shifted to AFMs due to several inherent advantages over FMs.
The first advantage stems from the same feature that makes AFMs difficult to manipulate
with external magnetic fields, namely, their vanishing net magnetization. A hidden benefit
of this insensitivity to magnetic fields is that data encoded in the magnetization state of
AFM-based devices is less likely to be accidentally erased by perturbing stray fields in the
lab than the states in FM-based devices [60].

A second advantage of AFMs is that their characteristic frequencies (corresponding to the
rate at which the AFM can be switched between different magnetization states) is several
orders of magnitude higher than the limiting frequencies in FMs. This can be understood by
considering the energy scales involved in rotating AFM versus FM magnetization. For FMs,
the resonance frequency is simply proportional to Hy: wey ~H A, where H , is the effective
anisotropy field (the energy difference between states with spins oriented along different crys-
tallographic axes) [97]. On the other hand, due to the large energy cost for adjacent spins
in AFMs to partially align, the rate of rotation for the Néel vector, defined as the difference
L = M, — M, of the magnetizations on sublattices a and b, is enhanced by the effective
exchange field H,, between the sublattices: wipy ~ vHiH,, [153]. Typical anisotropy
fields in crystals are less than 1 Tesla, whereas H,, is generally ~ 100 Tesla. This implies
that, provided we can effectively rotate the Néel vector using SOT, AFM-based spintronics
devices have a limiting speed of data encoding that is two orders of magnitude faster than
in devices using FM materials [97].

Before concluding this section, we mention that for both FMs and AFMs, in addition
to mechanisms such as SOT which, via rotation of the magnetism, dictate or “write” the
magnetization state, some method of distinguishing different states is also necessary for any
practical application. The most intuitive method of distinction is simply a magnetization
measurement to determine the orientation of the internal magnetic field. However, such a
detection scheme with an AFM is complicated by the AFM’s zero bulk magnetization. In
principle, the bit-like nature of different FM states (e.g., spins along x versus spins along y)
can be naturally extended to collinear AFMs by considering different orientations of the Néel
vector, (see Figure 7.3b). However, while states “0” and “1” are clearly distinguishable by
magnetization measurements in the case of an FM (Figure 7.3a), the analogous states for an
AFM cannot be distinguished due to the lack of bulk magnetization (Figure 7.3b). Happily,
this can also be circumvented by an electrically-based readout mechanism that leverages
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Figure 7.3: Magnetization states in FMs versus AFMs, and the concept of anisotropic
magnetoresistance (AMR). (a) Different magnetization states corresponding to bits in an
FM-based device are distinguished by relative orientations of the magnetization M, for
example along y versus X. (b) Different magnetization states corresponding to bits in an
AFM-based device are distinguished by relative orientations of the Néel vector

L = M, — M, which is the difference between the magnetization on sublattices a and b. (c)
Readout of magnetic states. Detection of different orientations of magnetization in FMs
(AFMs) can be accomplished by detecting changes in resistance depending on the relative
orientation of the current and the magnetic moment (Néel vector). An AFM is depicted
here.
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anisotropic magnetoresistance (AMR) [92]. Qualitatively, AMR is simply the concept that,
due to spin-dependent electron scattering, the electrical resistance of a magnetic material is
dependent on the relative angle between the probe current and the magnetic moments. Cru-
cially for our purposes, AMR is an even function of the magnetic moment [92, 201], meaning
it is present in both FMs and AFMs. Thus, we can detect different magnetic states in an
AFM indirectly by detecting changes in the electrical resistivity along a given sample direc-
tion (Figure 7.3c). This is the concept on which the experiments for Fe; 5sNbS, described in
Chapter 9 are based.

7.5 Extension of SOT to AFMs

We now describe the extension of SOT to collinear AFMs, and the additional requirements
on the symmetry of the SOT for efficient manipulation of the Néel vector. In our description
of SOT for the simpler case of FMs in Section 7.3, we stated that the mechanism works by
spin-orbit coupling-mediated polarization of the conduction electrons in the presence of a
current. These polarized conduction electrons then create an effective magnetic field which
can reorient the localized magnetization. However, in the case of AFMs, if the effective mag-
netic field is uniform in direction throughout the material, the SOT mechanism is no more
efficient than an external magnetic field in manipulating the Néel vector. This is because,
just as the exchange energy cost ~ H,, for partial alignment of sublattices in AFMs implies
ultrafast spin dynamics, it also implies that the critical field needed to reorient magnetization
in an AFM scales with the inter-sublattice exchange, whereas this enhancement is absent in
FMs [97]. However, unlike an external magnetic field, the fields generated by the polarized
conduction electrons in SOT can be modified in the presence of crystal symmetries such that
the SOT-mediated control of AFM magnetism is tractable. As mentioned in Section 7.3,
the spin-polarized conductions generated through SOT are spatially localized. Thus, for the
case of a collinear AFM with sublattice magnetizations M, = —Mb, in principle the local
effective magnetic fields m, and m, in the vicinity of sublattices a and b can be different. In
particular, for SOT to effectively reorient the Néel vector, the local effective fields on each
sublattice (and subsequently, the local torques) MUST be staggered with the sublattice, i.e.
have opposite signs [228]. In this case, where m, = —m,, the localized spins on the the
sublattices can maintain their AFM alignment as they rotate [190].

Keeping in mind this requirement of staggered local polarizations for efficient SOT in
AFMs, we can easily generalize the formalism of SOT to apply to AFMs. Now rather than
considering the torque on the total bulk magnetization M, we instead consider the local
torque on sublattice a (or analogously, sublattice b):

T Js ~ ~
S0 = fM X My, (7.12)

where again Jg; is the exchange integral between s and d electrons, M, is the magnetization
on sublattice a, and m, is the current-induced spin polarization of the s conduction electrons
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in the vicinity of sublattice a. Note that equation 7.12 is identical to equation 7.10 except
that it describes local SOT on a single sublattice.

Finally, we discuss the symmetries in AFMs which can lead to staggered effective fields
on the sublattice. Recall that in general, STT and and SOT can have two parts: a so-called
“fieldlike” component and an “antidamping” component. If we again consider just the SOT
on a given AFM sublattice a, the total SOT can be written as

I aSO = Tg’O,FL + TQSO,AD ~ Ma X flq + Ma X (Ma X ﬁa)7 (7'13)

where 7, is a vector local to sublattice a which is independent of the sublattice magnetization
M, [129]. For the case of STT, 7, = 7, is simply the initial conduction electron polarization
S, acquired from the FM polarizer. In the case of SOT, 7, roughly corresponds to the initial
polarization of the conduction electrons near sublattice a the instant a current is introduced,
rather than the steady-state polarization density m, which is proportional to the effective
magnetic field that induces SOT. Indeed, by comparing Equation 7.12 to Equation 7.13, we
see that for fieldlike SOT,

m, = ﬁaa (714)

and for antidamping SOT, R
m, = M, X 7,. (7.15)

We see that in the case of FL SOT, the effective magnetic field is (trivially) an even function
of the sublattice magnetization, whereas for AD SOT the effective field is an odd function
of M,. From a symmetry standpoint, this means that the effective field for FL SOT is even
under time-reversal, whereas the effective field for AD SOT is time-reversal odd [228, 129].

To understand the implications of this on the magnetic space group restrictions for efficient
SOT in AFMs, it is useful to go to a linear-response type formalism. If we assume a local
current-induced spin polarization m,, we can define a tensor y, such that m, = y,E with E
the electric field parallel to the applied current. The components of % are then proportional
to the nonequilibrium spin polarization in the ith direction induced by a current in the jth
direction. Because, as we saw above, the SOT has components which are odd and even under
time-reversal, we can also divide Y, into components which are even and odd under time-
reversal, corresponding to the fieldlike and antidamping components of SOT respectively.
The group symmetries D of the magnetic space group restrict the form of y, by requiring
that the tensor components transform in the following way:

X" = det(D)DY"D !, (7.16)
X% = + det(D)DY°“D !, (7.17)

where a’ is the sublattice to which sublattice a transforms under symmetry operation D,
X x°44 are the parts of x, which are even and odd under time reversal respectively, and
the + (—) in equation 7.17 is for group symmetry operations that do not (do) contain time

reversal. Now in order for the SOT-induced effective magnetic field to be staggered with the
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sublattice magnetization M, = —M,, either x¢*°" or % must transform under equations

7.16 and 7.17 such that
even/o even/odd
Xa /odd = _Xb / ) (718)

where y, is the SOT tensor projected onto sublattice b with opposite magnetization of sub-
lattice a. The part of the tensor (even or odd) which generates efficient torque to manipulate
an AFM depends on what symmetries transform sublattice a to sublattice b [228]. For the
examples of electrically switchable AFMs CuMnAs and MnsAu which are well documented
in the literature [201, 23], the sublattices are connected by inversion symmetry, implying
that x5 is the tensor component, corresponding to the fieldlike SOT, which generates the
staggered field. On the other hand, in Fe;/;3NbS,, the sublattices in a single Fe plane are
related by a translation accompanied by time inversion. This means that the odd component
of the SOT tensor has a staggered form. Thus it is likely the antidamping component of
SOT which generates the efficient control of AFM domains in Fe;/3NbS, which we discuss
in Chapter 9.

7.6 A few complications in Fe;/;3NbSy

Before wrapping up this chapter, we mention some thorny issues with our compound of inter-
est, Fe; ;3sNbS,y, which make direct application of the concepts in this chapter difficult. The
theory of SOT in collinear AFMs as outlined in this chapter applies quite straightforwardly
to the two previously mentioned compounds CuMnAs and MnAus,, the only experimentally
verified electrically switchable bulk AFMs prior to Fe;/;3sNbS,. For example, CuMnAs is a

tetragonal collinear AFM whose spins are oriented in the é—f)/f{-y plane, with four ener-
getically equivalent AFM domains distinguished by the Néel vector pointing along +x and
+y. As mentioned in Section 7.5, for CuMnAs the efficient component of the SOT-induced
effective field B, o 1, is the time-reversal even, or fieldlike component. The symmetry-
constrained form of x5*" for CuMnAs is

0 Xuy O
szen = ny 0 Xyz ; (719)
0 Xz O
and x§'" = —x&’". This implies that a current along % (y) generates SOT-induced fields

along +y (£x) for sublattice a and b respectively (see Figure 7.4a). Thus, a current in the
a-b plane in CuMnAs will tend to increase the fraction of AFM domains whose Néel vectors
are oriented perpendicular to the current, as is observed experimentally [201].

For the experiments by Analytis et al. performed in references [118] and [132], the ex-
perimental setup is exactly the same. Current pulses are applied in the a-b /x-y plane of
the sample, and depending on the direction of the current, the measured electrical resistance
switches between high and low states, which are hypothesized to occur due to an SOT-
induced repopulation of AFM domains. In fact, for the magnetic space group corresponding
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Figure 7.4: SOT in CuMnAs compared to Fe;/3sNbS,. (a) CuMnAs (with only the
magnetic Mn sublattices shown), depicting a domain with the Néel vector oriented along x.
A current along x induces local effective fields in the +y directions for the two Mn
sublattices, thereby causing the Néel vector to reorient perpendicular to the current. (b)
Fey/3NbS, (with only the magnetic Fe sublattices in one Fe layer shown) with the stripe
AFM ordering described in Chapter 9. Although the direction of the effective fields is
identical to CuMnAs for in-plane current pulses, because the Néel vector in Fe; 3NbS,
domains is oriented along ¢ (out of the page), the SOT is unlikely to cause a redistribution
of the domains unless there is a slight in-plane canting.

to stripe AFM order, discussed in detail in Chapter 9, the symmetry-allowed form of the
efficient SOT is equivalent to that of CuMnAs given in equation 7.19 (with the only dif-
ference being that for Fe;sNbS,, this is the antidamping, time-reversal odd SOT-induced
field). However, a puzzle which has yet to be fully solved is that, based on published neutron
scattering studies to date of Fe; sNbS, [197, 185], the Néel vector appears to lie fully along
the ¢/z axis (Figure 7.4b). Three AFM domains are distinguished by rotations of the in-
plane AFM ordering by 27/3 about the ¢ axis, but for all domains the Néel vector remains
along ¢ [116]. Thus, it is unclear how the SOT-induced effective fields, which are oriented
in the a-b plane for currents applied in that same plane, could couple to the ¢-directed Néel
vector and cause a reorientation of the domains. Perhaps the most plausible explanation is
that there is a slight canting of the Néel vector in Fe;/;3NbS; towards the a-b plane, and it is
this in-plane component with couples to the SOT-induced fields and causes a redistribution
of AFM domains [148, 132]. There is some evidence of a slight in-plane canting in Fe; 3NbS,
based on more recent, unpublished neutron scattering studies by Wu and Birgeneau [214],
but the details are as yet inconclusive.

An additional complication for Fe;/;3NbS, is that there is some evidence that the SOT
mechanism itself is completely novel; specifically, that conduction electron spin polarization
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is induced by a disordered spin glass which appears to coexist with the ordered AFM mag-
netism when the Fe concentration deviates from the stoichiometric % concentration [132].
One compelling piece of evidence for this is that the AMR-based changes in electrical resis-
tance are greatly enhanced for off-stoichiometry samples (both for x < 1/3 and x > 1/3)
compared to the pristine x = 1/3 case (which we focus on in our DFT studies) where there is
no experimental indication of a coexisting spin glass. If the spin glass is responsible for the
current-induced conduction spin polarization, then determination of the symmetry-allowed
form of the SOT based on the magnetic space group of the AFM as described in Section 7.5
is not possible. This is part of our motivation in Chapter 9 for making inferences about the
effects of the SOT on the AFM domains in Fe;/;3NbS, through DFT-based calculations of

the AMR rather than symmetry analysis.

7.7 Conclusion

In this chapter we have given a very brief introduction to the concept of spintronics, in
particular, spintronics based on electrical control of AFM materials. We have attempted
to justify the interest in AFMs based on the appeal of their ultrafast spin dynamics and
insensitivity to data-erasing fields. We have also outlined the basic theories of SOT and
AMR-based readout as they apply to FMs and AFMs, with the caveat that there are some
added subtleties in our material of interest. We now turn to our detailed DFT studies of one
particularly promising electrically switchable AFM, Fe;/3NbS,.
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Chapter 8

Half-magnetization plateau and the
origin of threefold symmetry breaking
in an electrically switchable triangular
antiferromagnet

The material was previously published as

e Shannon C. Haley, Sophie F. Weber et al., Half-magnetization plateau and the origin
of threefold symmetry breaking in an electrically switchable triangular antiferromagnet,
Physical Review Research 2, 043020 (2020).
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8.1 Introduction

The electrical manipulation of antiferromagnetic (AFM) spin textures has the potential to
effect transformative technological change [93]. Exotic magnets with complex interactions
are of special interest in this field, because they are likely to leverage novel mechanisms for
their manipulation, possibly allowing ultra low-power or ultra-fast functionality. Diagnosing
the relative magnitude of these interactions gives a direct insight into these mechanisms. The
existence of magnetization plateaus at fractions of saturation, when a material is subjected
to large external magnetic fields, is a powerful tool to this end [187].

In this work we study magnetization plateaus in the antiferromagnet Fe; 3NbS,, a magnet-
ically intercalated transition metal dichalcogenide which has recently been found to exhibit
reversible, electrically-stimulated switching between stable magnetic states [118]. This be-
havior has been seen with considerably lower energy requirements in Fe; 3sNbS, as compared
to the other systems [118], raising the question of whether the mechanism differs significantly
[227, |. At the center of this question is the nature of the magnetic ground state, which
has been challenging to determine because collinear and non-collinear order are energetically
close and the true ground state depends strongly on the magneto-crystalline anisotropy [133].
The nature of the underlying ordering in Fe;/3NbS, has been studied by both neutron scat-
tering [197, 185] of magnetic order and optical linear birefringence microscopy [!16], which
probes nematic structure in the electrical conductivity. Both measurements — electric and
magnetic — find indications of three-fold symmetry breaking in the ground state, whose
origin is unclear.

We report here a hitherto unobserved plateau in the field-induced magnetization at half of
the saturation value. Such a plateau has been discussed theoretically, [170, | in triangu-
lar lattice antiferromagnets, appearing whenever there is a significant next nearest neighbor
magnetic coupling [222]. As compared to plateaus occurring at one-third saturation mag-
netization [154, , , , 68, , 3], experimental realizations of a half-magnetization
plateau on a triangular lattice are relatively rare [10, |. The implication from theory
is that the same interactions that generate the plateau are also responsible for a threefold
symmetry breaking stripe phase in the ground state, for both quantum and classical models.
The half-magnetization plateau found in Fe;;3NbSy thus gives a clear clues regarding the
microscopic mechanism for the electrically switchable antiferromagnetic ground state.

8.2 Results

Fe;/3NbS, is a layered material with space group P6322 No. 182 whose magnetism arises
from the iron which sits between layers of NbS, (Fig. 8.1 (a)). These magnetic atoms form
triangular lattices in each layer, with adjacent layers staggered with respect to one another
(Fig. 8.1 (b)). Charge from the iron atoms is transferred to the NbSy conduction band,
leaving them in a 2+ ionized state, with four unpaired localized electrons per atom [01,

|. The macroscopic behavior of the material in low field is antiferromagnetic (AFM). The
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Figure 8.1: (a) The crystal structure of Fe;/3NbS,. Iron atoms sit between layers of NbS,,
aligned with the niobium atoms above and below. (b) Looking along the c-axis, the iron
atoms in a given layer form a triangular lattice. These triangular lattices are shifted from
layer to layer. Arrows indicate in-plane and out-of-plane first and second nearest neighbors,
labeled by their relevant exchange constants.

samples discussed in this study were grown via chemical vapor transport, as described in
Ref. [11]. Using EDX and ICP, the ratio of Fe:Nb was found to be 0.330:1.

Measurements of the magnetic susceptibility as a function of temperature in low applied
fields show AFM behavior below a transition near 45K (Fig. 8.2 (a)). Fitting to the param-
agnetic regime, the Curie-Weiss law yields an estimate of 5 pp/Fe for the effective moment
of the material, a quantity which is slightly higher than the expected moment at saturation.
This is in agreement with the values found in the literature, which predominantly range from
4.3-5 pp/Fel01, 87, , 8, 152], although there is one report as high as 6.3 upg/Fe [53]. Heat
capacity measurements resolve two clear transitions at zero field (Fig. 8.2 (b)). With the
application of field, these transitions move apart from each other in temperature. The lower
temperature transition has a further splitting at higher fields, indicating the presence of an
additional intermediate phase.

High field measurements further elucidate the nature of the phase transitions. Measure-
ments at 0.6K and 20K of the magnetization as a function of applied field are shown in Fig.
8.3 (a). The full set of measurements, taken at temperatures ranging from 0.6K to 50K, and
the phase boundaries determined in part from these measurements are shown in Fig. 8.4.
These measurements were performed on a stack of about 30 co-aligned crystals, which were
roughly 1mm in diameter and had an average thickness of 0.1mm.

There are three dominant phases at low temperature evident in the data: (I) the zero field
phase characterized by a small magnetic moment, (II) the ‘plateau’ phase characterized by
a nearly constant magnetic moment centered around half the estimated saturation moment,
and (IIT) a high field phase which approaches the fully saturated moment. The final phase
gets pushed above 60T at the lowest temperatures. An intermediate phase bridging the zero
field and plateau phase has only a weak feature in the magnetization.

The experimental phase diagram, Fig. 8.4, shows a non-monotonic dependence of the
ordering temperature on applied field. This can be explained by the impact of an applied field
on a reduced dimensional system [171]; as the field increases, both the order parameter and
these fluctuations are suppressed. The latter effect increases in the transition temperature
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Figure 8.2: (a) Curie-Weiss fits of both out of plane (H || ¢) and in plane (H L ¢)

susceptibility. (b) Heat capacity measurements show two transitions, which split with the
application of field parallel to the c-axis. Curves are offset to enhance visibility.

in low field, and the former brings down the transition temperature at higher fields. We also
observe a second ordered phase, which is destroyed in that low field regime.

These measurements were confirmed in stacks and individual single crystals in pulsed and
DC magnetic fields. The latter was used to scale the former, because only relative changes
could be recorded in our pulsed-field measurements. In addition, data on other compositions
with x = 0.339 suggest changes in stoichiometry do not affect the field-dependent ground
state, though they can shift the phase boundaries.

To understand the physical mechanism responsible for the magnetization plateaus (Fig.
8.3(a)), we study a minimal model motivated by our density functional theory (DFT) cal-
culations, discussed below. In addition to the single-ion anisotropy D, we find that a model
with nearest neighbor (NN) and next nearest neighbor (NNN) exchange couplings within
a single Fe plane, as well as NN and NNN couplings between adjacent planes, is sufficient
to accurately reproduce the ab-initio energies of various magnetic states. We restrict our
attention to the Fe atoms and their localized d states, which form a lattice of S = 2 spins,
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and consider a short-range Hamiltonian

H=Ey+2/1) Si-S;+2kh Y S8, (8.1)
(i) ()
~\ 2
+200 > S-S+ 20 Y si-sj—ZD(SiZ) ,
(iede) (o) i

where J; and J5 are the NN and NNN exchange couplings within a single Fe plane, J;. and Js.
are the NN and NNN couplings between adjacent planes and D is the magnetoanisotropy of
Fe spins. Fjy encompasses any non-magnetic contributions to the total energy. The exchange
coupling sums are over all unique bonds. In a large neighborhood of relevant exchange
coupling values, this model has three distinct phases at zero temperature as the magnetic
field is varied. (1) An “AFM stripe” phase at low field with a magnetic unit cell of 4 Fe
spins, with 2 pointing up along +c and 2 along —c in a stripe configuration. (2) A half-
magnetization plateau at intermediate field with a magnetic unit cell of 8 Fe spins, with
three up spins and one down spin per layer (denoted UUUD). (3) A saturated phase at high
field with a magnetic unit cell of 2 Fe spins which are all pinned to point up, parallel to H.
These configurations are shown in Fig. 8.3 (¢). The phases are consistent with two close
antecedents of this Hamiltonian, discussed in Refs. [170, 221]

Due to the spins being large (S = 2), we perform a classical analysis of Eq. 8.1. We
search for the ground state of Eq. 8.1 using many different sized trial unit cells. While a
fully 3D classical Monte-Carlo simulations would be more exhaustive, the present analysis
is sufficient because high-field measurements of the nuclear magnetic resonance suggest that
the plateau has a relatively simple spin texture. We find that the magnetic unit cell for the
ground state is always small over a very broad range of parameters J, D, and h, with no
more than 8 Fe atoms. Intuitively, this small unit cell is consistent with the short-ranged
nature of the dominant interactions.

The classical analysis shows there is a large range of couplings (Ji, Ja, Ji¢, Ja.) which
produce the three phases observed as a function of magnetic field when D > 0 is large.
The key observation is that, for J; > 0 and Jy/J; << 1, there is a large region in the
(Jie, J2c) parameter space that approximately reproduces the magnetization curves - the
“stripy” AFM, UUUD, and UUUU are the only three ground states for a wide range of
Jie/J1 > —1 and Jo./J; < 0. In fact, the only 1/2-magnetization plateau without a UUUD
structure between the two layers occurs for only a small region of parameter space. We may
conclude that Eq. 8.1 qualitatively reproduces the observed transitions in the magnetization
even without precise estimates for the coupling parameters.

We now quantitatively predict the critical magnetic fields for the transitions from the
model Eq. 8.1. For large D > 0, the transition from the stripe phase to the plateau phase
occurs when h = 4(J; + Ji. + J2) and the transition from the plateau phase to the saturated
phase occurs when h = 12(.J; 4+ Ji. + J2). Quantitative analysis requires estimates of the pa-
rameters (J1, J2, Jic, Joe, D), which we now ascertain through a combination of experimental
and numerical means. Following Ref. [01], we can relate the magneto-crystalline anisotropy
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D Jl JQ ch J2c
1.09 0.76 -0.006 0.39 -0.22

Table 8.1: PBE+U (U = 0.3 eV) values of magneto-crystalline anisotropy D and NN and
NNN interplanar and intraplanar couplings in Eq. 8.1. Units are meV per Fe atom. With
the conventions used in Eq. 8.1 positive values for J represent AFM couplings, negative
values are FM, and a positive value of D implies an easy-axis along ¢ for the anisotropy.

D to the in- and out-of-plane Curie-Weiss temperatures, which are found from the fits in
Fig. 8.2(a) to be -110 K and -26 K, respectively; this analysis yields D ~ 1 meV. While Ref.
[61] gives slightly lower Curie-Weiss temperatures (-135 K and -40 K), these values give a
virtually unchanged estimate of D, which is proportional to their difference.

Our DFT calculations, performed with the Perdew-Burke-Ernzerhof (PBE) functional
[157] and Hubbard U corrections [159], corroborate this picture. We note that the calculated
D, being a highly local property, is sensitive to the Hubbard U used to approximately treat
the localized Fe d electrons. This sensitivity has been documented for several Fe-based
compounds in previous literature [219, 21]. However, the experimental estimate of D allows
us to choose a U value that yields a similar anisotropy, and with which to compute the
exchange constants in the minimal model. Using a Hubbard U of 0.3 €V in our PBE+U
calculations at experimental lattice parameters, we obtain D = 1.09 meV, with the easy axis
along ¢, in very good agreement with experiment. Using six inequivalent magnetic collinear
configurations with Fe spins along the ¢ axis, we solve an overdetermined system of equations
to determine the unknown couplings J. The values of all J as well as D are given in Table
9.2.

As an experimental check, the Curie-Weiss temperatures can be related to the sum of
the coupling constants corresponding to all of a given Fe atom’s interactions, giving an
estimate ) . J; = 6(J1 + Jo + Jic + Jac) ~ 1.1 meV (assuming all couplings beyond nearest
and next-nearest neighbors are negligible), where the factor of 6 arises because each atom
has six nearest and next nearest neighbors. This is somewhat in tension with our PBE+U
results, which from Th. 9.2 gives 6(J; + Jo + Jic + Jac) ~ 5.4 meV. Despite the fairly
large overestimate, our PBE+U calculations, with U = 0.3 eV so that D ~ 1 meV, notably
yield reliable relative values of exchange constants consistent with the estimates based on
our experiments. Our choice of U also predicts an AFM stripy phase to have the lowest
energy of all collinear magnetic configurations examined, in line with the results of our
classical model and neutron data [185]. Moreover, the tendency for DFT+U to overestimate
exchange constants at small or near-zero values of U is well documented [108, : ],
while capturing their relative values well. Following previous work [115] we uniformly scale
J1,J2, Jie and Jo. so that 6(J; + Jo + -+ ) = 1.1 meV, in line with our Curie-Weiss data,
and closely agreeing with the data in Ref. [01], whose fitted temperatures predict a slightly
higher >, J; ~ 1.3 meV.

Taking the scaled parameters (Ji, Ja, Jic, Joe, D) = (0.15,—0.0012,0.077, —0.044, 1.09)
meV, we can semi-quantitatively reproduce the magnetization curve. We estimate the g-
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Figure 8.3: (a) Magnetization response of Fe;/3NbS, to an out-of-plane pulsed field. (Data
from a 25T pulse is used below 15T for the 0.6K curve.) At 0.6K, the magnetization shows
two flat plateaus at 0 and 1/2 of the saturated magnetization (dashed line). At 20K a further
transition, likely to a fully saturated state, is observed near 60T. (b) Magnetization response
of the model, Eq. 8.1, computed classically. Three plateaus are clearly visible: a stripy AFM
phase, a UUUD phase, and a saturated PM phase. (c) Cartoons of the spin configurations
in the eight site unit cell.

factor as g = 2.09 = gpe [172]. This yields estimated critical fields of 15T and 45T, as shown
in Fig. 8.3. With no fitting to the experimental magnetization in Fig. 8.3, we already
have found remarkable agreement between theory and experiment. Fine-tuning the J values
within the range of error of the Curie-Weiss data moves the transition fields into even better
agreement.

The UUUD phase responsible for the half-magnetization plateau is stable at the classi-
cal level over a wide range of applied fields. The model Eq. (8.1) qualitatively reproduces
the critical field strengths and quantitatively captures the magnitude of the magnetization.
However, it fails to describe some of the fine features of the measurements, such as the small,
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Figure 8.4: Experimental phase diagram of Fe;/3NbS,, as a function of temperature and
field applied along the c-axis. Calculations suggest that region I is a stripe phase while
region II (the plateau) is UUUD. The origin of the intermediate phase bridging the stripe
and UUUD phase is not known. Phase boundaries were determined by torque
magnetometry, heat capacity and pulsed field magnetization measurements. Phase
boundary lines are a guide to the eye.

positive slope of the magnetization within plateaus and the intermediate phase detected by
measurements between the plateau and stripy order. The symmetry constraints of the switch-
ing reported in Ref. [118] also indicate an in-plane component to the moment at zero field
which is not accounted for in this model. To capture the remaining fine features of Fe; 3NbS,
would require a more sophisticated 3D model with vastly more parameters and temperature
effects, similar to [133, 170]. Nevertheless, as a minimal model that only includes a subset of
the degrees of freedom, the model is highly consistent with measurements and seems to have
identified the dominant interactions responsible for the magnetization response of Fe; 3NbS,.

The applicability of the lattice model suggests that Fe;/3NbS, is proximate to many other
phases, some of which are possibly similar to supersolid phases discussed by Seabra and
Shannon [170]. One of these may describe the boundary phase dividing stripy and plateau
orders in Fig. 8.4. Preliminary data appears to be consistent with an UUD phase, though
more data is required to confirm this.

The agreement of the experimentally observed magnetization with a classical model sug-
gests that the magnetic behavior, while originating from many competing interactions, in-
volves conventional magnetic phases. This model could be further confirmed by inelastic
neutron scattering. The existence of an UUUD half-magnetization plateau had previously
been studied as a result of strong next-nearest neighbor interactions within the triangular-
lattice plane; we have determined that it is not limited to that case, as we see its emergence
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from strong interplanar interactions. The determination of these interactions and of the ab-
normally strong single-ion anisotropy has a large impact on the zero-field ground state of this
material; the three-fold symmetry breaking seen in optical measurements [1 16], for example,
originates from a magnetic order driven by a large ratio of Ji./J; ~ 1/2, likely stripy in
nature with a significant c-axis component. It is interesting to consider the implications for
the electrical switching of the spin texture of this material. In the typical mechanism, an
in-plane Néel vector can be naturally rotated by the angular momentum imparted by an in-
plane spin polarized current. In contrast, Fe;3NbS, has a Néel vector that is predominantly
pointed out-of-plane, so that a different kind of mechanism to transfer angular momentum
is likely to be active. The present work suggests that this leverages both strong inter- and
intra-planar exchange interactions.
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Chapter 9

Origins of anisotropic transport in
electrically switchable
antiferromagnet e, /3Nb82

9.1 Introduction

Due to the bit-like nature of electronic spins, magnetic materials are natural candidates for
storage and sensing devices. In particular, the scaling advantages of electrical current over
magnetic fields makes spintronic materials whose magnetism can be controlled by current
especially desirable [129]. The underlying mechanism for current-induced magnetic switch-
ing is generally thought to be spin-orbit torque; the applied electric current, in a manner
dictated by crystal symmetries, induces a polarization in conduction electrons, thereby cre-
ating an effective magnetic field [127, , 13, 56, , |. This effective field imparts a
torque on the localized magnetic moments, enabling them to switch to different orientations.

There has been growing interest in electrically induced switching in antiferromagnetic
(AFM) compounds. AFMs have been reported to switch (via a rotation of the Néel vector)
at THz rates by electrical current compared to a nominal ~ GHz limit for ferromagnets
[153]. Moreover, their vanishing bulk magnetization makes them insensitive to stray mag-
netic fields, enhancing their stability for memory storage relative to ferromagnets (FMs). In
spite of their appeal, there are just a few reports of AFM materials which can be electroni-
cally manipulated; until very recently the only known examples in single crystal form were
the collinear AFMs CuMnAs and MnyAu [201, 23].(Additionally, current-driven manipula-
tion of AFMs has also been confirmed in heterostructure devices [1412, 31]).

Recently, an electrically switchable AFM was discovered among the magnetically interca-
lated transition metal dichalcogenides (TMDs), layered compounds in which the magnetic
ions are intercalated between the layers. These materials have received attention in the past
due to their high tunability; by simply varying the intercalated element, concentration of the
intercalant, or base TMD, a wide variety of magnetic and electric ground states are induced
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[54, 197]. Transport experiments by Nair et al. [148] demonstrated that one particular case,
Fe;/3NDbS,, can be switched between states of high and low resistance by applying orthogonal
current pulses. The switching occurs below the Néel temperature of 49 K, indicating that
the magnetic order is relevant to the changes in resistance.

However, the origin of the high and low resistance states has yet to be clarified. It has
been hypothesized, based on the results of optical polarimetry measurements, that the resis-
tance change is associated with a current-induced repopulation of three AFM domains [118,

|, analogously to the current-induced switching observed in CuMnAs [66]. Little et al.
[116] point out that this could occur in theory even if the Néel vector of Fe;;3NbS2 is fully
out of plane. If domain repopulation leads to changes in resistance along a given direction,
this will necessarily be reflected in the anisotropy of the electronic structure and transport
for a single domain.

In what follows, we perform density functional theory (DFT) calculations of the electronic
structure and the nature of the magnetic order in Fe; /3NbS,. We find an AFM ground state,
and two nearly degenerate in-plane magnetic orderings corresponding to previously reported
“stripe” and “zigzag” AFM states. We find that the Fermi surfaces for stripe and zigzag
order are both anisotropic in the k,-k, plane, though the in-plane anisotropy is larger for
stripe order. Using our DF'T electronic structure and a constant relaxation time approxima-
tion within the Kubo linear response formalism, we find that with stripe order the resistivity
along the [120] crystallographic axis is roughly twice as large as along the orthogonal [100]
direction. On the other hand, the resistivity along [100]/ & is larger than [120]/7, and the
relative anisotropy is reduced for zigzag order. Our computed resistivity tensors for stripe
and zigzag order, combined with the experimental switching data, suggest that for both mag-
netic states a current pulse depopulates the AFM domain whose principle axis is parallel to
the current and increases the populations of the other domains. Our calculations support
the domain repopulation hypothesis and provide insight into the specific current-domain
dynamics in Fe;/3NbS,.

9.2 Methods

For our first-principles density functional theory (DFT) calculations on Fe;/;3NbS,, we em-
ploy the Vienna ab intitio simulation package (VASP) [103] with generalized gradient ap-
proximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) functional [157] and projector
augmented-wave (PAW) method [21]. For all DFT calculations we include spin orbit cou-
pling (SOC), and treat it self-consistently. We take 3d and 4s; 4p, 4d, and 5s; and 3s and 3p
electrons explicitly as valence for Fe, Nb, and S, respectively. We use an energy cutoff of 650
eV for our plane wave basis set. For our k-point grid we use a I'-centered mesh of 12 x 7 x 6
for the 1x /3 x 1 orthorhombic supercell consistent with stripe order, and a 6 x 7 x 6 mesh for
the 2 x v/3 x 1 supercell consistent with zigzag AFM order. We use the tetrahedron method
[22] for Brillouin zone integrations. These parameters lead to total energy convergence of
< 1 meV/Fe ion. We use the experimental lattice constants of a = 5.76 A and ¢ = 12.20
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A, and experimental atomic coordinates [197], having checked that relaxation changes pa-
rameters and atomic positions negligibly. For calculations of two-dimensional fermi surfaces
and velocities, we use Wannier interpolation as implemented in the post-processing utility
postw90 for Wannier90 [137, , ]. We use 208 and 416 bands for stripe and zigzag
order respectively in our Wannierizations. We select Fe d, Nb d.2, and S p orbitals as our
localized projections. Cross sections of the Fermi surfaces and Fermi velocities are evaluated
on a ky; X ky x k, grid of 251 x 251 x 1. Fermi surface cross sections shown in the the Sup-
plement without band velocities were generated using WannierTools [213]. The evaluation
of the Kubo formula for conductivity is performed using the Wannier-linear-response code
[230]. The code calculates linear response properties within the Kubo formalism based on
DFT-parameterized tight-binding Hamiltonians, taking the overlap of Wannier functions as
input. We use a converged k-grid of 400 x 400 x 400 for evaluation of the conductivities.

To approximately account for the localized nature of the Fe d electrons we add a Hubbard
U correction[0], and we select the rotationally invariant implementation by Dudarev et al.
[15]. We note here that our quantitative results for energetics, Fermi surface cross sections,
and transport tensors are highly sensitive to the specific value of Hubbard U chosen. This
is because U is an ad-hoc parameter that acts explicitly on the Fe d states, which have a
very large weight near the Fermi energy in Fe;/;sNbS,; therefore, small changes in U have
a disproportionate effect on bands in the relevant energy window for transport properties.
Given the limitations of PBE+U with a single choice of the U parameter, to gain confidence
in consistent qualitative features in transport anisotropy we perform and describe PBE+U
calculations using two different U values in the main text. We first use PBE+U with U = 0.3,
eV following previous work, which results in a magnetoanisotropy energy (MAE) consistent
with experiment [70]. However, as we noted in reference [70], U = 0.3 eV overestimates
Heisenberg exchange constants as compared to experiment by several orders of magnitude.
This motivates our consideration of a larger value U = 0.9 eV for comparison, which results
in smaller (though still overestimated) Heisenberg exchange constants due to increased local-
ization, and also gives the correct sign for the MAE (easy axis along ¢) while the magnitude
of the MAE is overestimated. We note here that, as shown in the Supplement, even if we use
a much larger U = 4 eV which gives an incorrect sign for the MAE, the qualitative trends for
transport with both zigzag and stripe magnetism are identical to those presented here using
U =10.3¢eV and U = 0.9 €V, giving us further confidence in the robustness of our results.
We refer the reader to Appendix 9.8 for further details and discussion.

9.3 Crystal Structure

Fe;/3sNDbS, is a layered compound with Fe intercalated between 2H-type TMD NbS, lay-
ers[>4]. The primitive non-magnetic unit cell is depicted in Figure 9.1. The Nb atoms are
surrounded by the S atoms in a trigonal prismatic coordination. Fe;;sNbSy takes up the
space group P6322 [182]. The Fe atoms are sandwiched between the NbS, layers at relative
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---@c=1/4

Figure 9.1: Left: hexagonal crystal structure of Fe;3sNbS,, with space group P6322.The
primitive cell contains two Fe atoms sandwiched between the layers of NbS, at ¢ = 1/4 and
¢ = 3/4. Right: c-oriented view of the two Fe layers with ions in layer ¢ = 1/4 and ¢ = 3/4
colored red and blue respectively.

coordinates (1/3,2/3,1/4) and (2/3,1/3,3/4) (Wyckoff position 2d). There are two different
Fe layers stacked along c, with each layer forming a triangular lattice in the a-b plane (note
that the a-b plane is what we refer to as “in-plane” in what follows).

9.4 Magnetic Order

The magnetic ground state of Fe;3NbS, is known to be AFM below about 50K [51], but
the nature of the AFM order is highly sensitive to small changes in Fe concentration. Sem-
inal work more than 40 years ago [197] indicated that for Fe,NbS, with = = 0.323, an
in-plane “zigzag” AFM order of the Fe spins, with the Néel vector oriented out of plane along
[001] and the spins along one in-plane Fe bond direction alternating between up and down
and between “up up” and “down down” along the other two bond directions (Figure 9.2b).
However, another neutron scattering study by Suzuki et al. [I85] with 2 = 0.297 found
evidence for a stripe AFM ground state, with rows of spins along one Fe bond direction
alternating between all up and all down (Figure 9.2a).

We perform DFT calculations for both experimentally proposed collinear magnetic order-
ings, with the Néel vector taken along c, corresponding to magnetic space groups Pr21212;
(stripe) [185] and P.21212 (zigzag)[197] (see figure 9.2). In what follows, we will refer to
them as a-stripe and a-zigzag respectively, with the “a” indicating that adjacent planes of
Fe ions are AFM coupled. From our PBE+U calculations, these two magnetic orders are
nearly degenerate; the energy differences between the magnetic states are 0.9 and 2.5 meV
per Fe atom for U = 0.3 and U = 0.9 eV, respectively. Additionally, the slightly preferred
ground state switches from a-stripe for U = 0.3 eV to a-zigzag for U = 0.9 eV.

The near-degeneracy of a-stripe and a-zigzag phases can be understood quantitatively
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from a Heisenberg Hamiltonian which we discussed in reference [70] for PBE+4U calculations
with U = 0.3 eV. We will mention it again here and discuss the exchange constants in the
case of both U = 0.3 eV and U = 0.9 eV. Neglecting antisymmetric spin exchange which
could lead to slight deviations from fully collinear order, magnetic contributions to the en-
ergy of Fe;/3sNbS, can be described approximately by the following Heisenberg Hamiltonian
for the Fe lattice:

H=FEo+Y hS+ ) LS+> NS
(i7) ((ig)) (i)
+ Y JeST D TS =) D(S) (9.1)
(ig))e (@ i

where S = 2 is the spin value of Fe’", one, two and three pairs of brackets distinguish
Heisenberg exchange constants between equidistant nearest, next-nearest and third-nearest
neighbors respectively, and the ¢ subscript refers to interplanar, rather than in-plane cou-
plings. The last term is the magnetoanisotropy energy (MAE) which, while relevant to our
studies in reference [70], we can neglect in our discussion here as both a-stripe and a-zigzag
phases have their Néel vectors fully along [001]. E, encompasses nonmagnetic contributions
to the energy. Note that we neglected the third nearest neighbor exchange Js3. in reference
[70] as it did not qualitatively alter our conclusions. To obtain the five coupling constants
plus Ey we fit our DFT total energies for six inequivalent collinear magnetic configurations,
which include the a-stripe and a-zigzag phases, to Equation 9.1 for each U value studied.

We find for both sets of PBE+U calculations that the in-plane and interplanar nearest
neighbor exchange constants J; and Jj. are antiferromagnetic (J > 0) and significantly larger
in magnitude than the other three exchange constants J5, Jo. and J3. which are all ferromag-
netic (J < 0). We note that this is also qualitatively consistent with a previous DFT study
of the exchange constants in Fe;/3sNbS, with no Hubbard U correction (U = 0 eV)[134]. Fo-
cusing on the experimentally relevant a-stripe and a-zigzag phases, the difference in energy
between a-stripe and a-zigzag phase using the above equation is given by

Eafstm'pe - Eafzigzag = 4=]2052 - 4JQS2 - 8J30527 (92)

where again, the interplanar Jo., J3. and in-plane J, are all FM (J < 0). We see then
that the condition for the a-stripe phase to be favored is |Jo| > |J2| 4+ 2|J5.|, whereas
the a-zigzag is energetically favored when |Joo| < |Jo| + 2|Jsc|. Thus, the switching in our
PBE+U calculations between a-stripe and a-zigzag phase ground states as a function of U
is caused by a shift in calculated relative values of three very small exchange constants (a
table with all Heisenberg exchange constants in equation 9.1 for both U values is provided
in the Supplement). Specifically, while the magnitudes of most of the exchange constants
using U = 0.9 eV shrink fairly uniformly relative to those calculated with U = 0.3 eV (as
expected due to increased electron localization with larger U), the in-plane next-nearest
neighbor exchange constant J, becomes larger with the greater U value. This is likely
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Figure 9.2: Experimentally proposed magnetic orderings, (a) Pr21212; (a-stripe); (b)
P.2,2,2 (a-zigzag), with only Fe spins shown. In our DFT calculations the Néel vector is
purely out of plane; + and — symbols refer to up and down spins respectively. Magnetic
supercells are outlined in black. The orthohexagonal supercell for stripe order in terms of
the primitive hexagonal lattice vectors a and c is a x v/3a x ¢ and the supercell for zigzag
order is 2a x v/3a x c. Dashed purple circles show the three interplanar nearest neighbors
for a given ion, which determine whether the planes are “FM” coupled or “AFM” coupled;
the coupling is AFM in both cases.

due the enhanced hybridization between Nb d and Fe d states in the k£, = 0 plane for
PBE+U with U = 0.9 eV compared to U = 0.3 eV. Because the magnetism in Fe;/;3NbS,
and other magnetically intercalated TMDs is thought to be RKKY-mediated[54], enhanced
hybridization between Fe and Nb states in the k, = 0 plane is consistent with larger long-
range in-plane couplings.

Direct conclusions regarding the magnetic ground state of Fe;/;3NbS, for intercalations

slightly below or above x = % cannot be made from our PBE+U calculations using this
stoichiometric intercalation. Nevertheless, our PBE+U result of competing ground states
at r = % is consistent with the experimental sensitivity of the magnetic ground states to

minuscule intercalation changes. Moreover, the change in our computed exchange constants,
and consequently in the magnetic ground state, for small changes in the U parameter are
consistent with the unpublished neutron scattering report[211] suggesting that a-stripe and
a-zigzag phases may coexist at x = % If the experimental ground state at z = % is in
fact a superposition of a-stripe and a-zigzag phases, the changes in magnetic energetics as a
function of U could reflect the fact that this compound is incompletely described by single set
of Heisenberg exchange constants. In any case, the experimental relevance of the a-stripe and
a-zigzag phases, in addition to our PBE+U findings that they are energetically competitive,

motivate us to study the transport anisotropy of both magnetic orders in what follows.
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9.5 Fermi Surface Cross Sections

We now examine cross sections of the Fermi surfaces (FSs) for a-stripe and a-zigzag order
computed with our two sets of PBE+U calculations. We focus on electronic structure parallel
to the k,-k, plane, relevant to the switching experiments. We plot Fermi contours in the
k. = 0 plane of the Brillouin zone (BZ); cuts of the k,-k, FS at other values of k, are given
in the Supplement. We focus first on the a-stripe FS, depicted in Figures 9.3a-9.3b and
9.3e-9.3f for both U = 0.3 and U = 0.9 eV respectively. We consider the two U values for
the reasons discussed in Section 9.2. For both choices of U, the a-stripe FS results from
relatively flat bands extending along the entire k, direction of the BZ (k, is parallel to the
[100] crystallographic direction in real space, and k, parallel to [120]; we use the hexagonal
notation of the primitive cell for crystallographic directions through the text.) We gain a
more explicit picture of the corresponding anisotropy in carrier transport by examining the
in-plane components of the band velocities. Figures 9.3a and 9.3e are color-coded according
to v (ko) = %gT]i|k:ko,E:EFa where z is along [100], Ef is the Fermi energy, and & is a point
in the k,-k, plane. Figures 9.3b and 9.3f are colored by v,, whose magnitude is greatly
reduced compared to v,. This suggests that, for the stripe phase, the conductance o,, along
the « direction of the sample (parallel to the magnetic stripes in real space) will be higher
than o,, (perpendicular to the stripes ); and equivalently, the resistance R,, < R,, for a-
stripe order.

While still anisotropic, the a-zigzag FS cuts, depicted in Figures 9.3¢-9.3d and 9.3g-9.3h
for U= 0.3 and U = 0.9 eV, are more symmetric as compared to a-stripe. This is also evident
from examining the band velocities. For PBE4-U with U = 0.3 the v, and v, components at
Er appear isotropic (Figures 9.3c¢ and 9.3d), likely a coincidental result due to this choice
of U. The a-zigzag weight of v, relative to v, increases significantly for U = 0.9 eV (Figures
9.3g and 9.3h). This implies that that the transport anisotropy in a-zigzag, at least for
U = 0.9 eV, switches compared to stripe (i.e. for a-zigzag, o,, < oy, and R, > R,,). We
point out that the large qualitative changes in the FS cross section for a-zigzag order in
going from U = 0.3 to U = 0.9 eV as compared to a-stripe order are presumably linked to
the large number of low-dispersion bands near the Fermi level for a-zigzag which are highly
sensitive to small changes in U.

9.6 Resistivity Tensor and Switching

In order to understand the specific current-domain response implied by the FS anisotropies
above, we can compute the resistivity tensor for mono-domain Fe; 3NbS, with input from our
DFT calculations within the Kubo linear response formalism [125]. Within this formalism,
using the eigenstate representation, the static conductivity tensor ¢ in the zero-temperature
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Figure 9.3: Electronic structure in the k, = 0 plane of Fe;;3NbS,, with a finite broadening
for aesthetic purposes of 10 meV for a-stripe order with U = 0.3 ((a)-(b)) and U = 0.9 eV
((e)-(f)), and 2 and 5 meV for a-zigzag order with U = 0.3 ((¢)-(d)) and U = 0.9 eV
((g)-(h)) respectively. The plots are colored by either the x or y component of band
velocity, as indicated by the title.

limit may be written as [52, 231]

7 =~ 37 [0 Rel k] i k) (k| k)]

k,nm

([(Er — u)® + T[(Bp — eni)” +T7) 7, (9.3)

with €, the eigenenergy of the corresponding eigenstate |nk) and 0; the velocity operator in
the ith direction. The indices n and m run over all bands (occupied and unoccupied). We
use a constant band broadening I', where I' = % is inversely proportional to the electron
relaxation time 7, assuming 7 is band and k-independent, sufficient for our purposes. The
Bloch eigenstates, eigenvalues, and velocity operators in Eq. 9.3 are constructed using Wan-
nier functions obtained from our PBE+U calculations, and Equation 9.3 is evaluated using
the Wannier Linear Response software [229]. In general, the linear-response conductivity can
also contain a term which is odd under time reversal, whereas Equation 9.3 is even under
this operation [231]. However, both a-stripe and a-zigzag magnetism possess time reversal
symmetry plus a translation according to their magnetic space groups, such that the part of
the conductivity which is odd under time reversal is necessarily zero, leaving us with only
Equation 9.3 to evaluate.

v (10%cm/s)

v (10%cm/s)
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Apart from the approximations inherent in our conductivity tensors computed using
Equation 9.3, additional deviations from experimental results may come from our use of
the pristine z = % Fe concentration in all PBE+U calculations, as the recent transport and
switching experiments [118, | were performed on Fe,NbS, samples with a range of Fe
concentrations = ~ 0.31 — 0.35. Although NMR data suggests that a spin-glass coexists
with the AFM order above and below z = %, and may well be the underlying mechanism for
the efficient switching of the ordered magnetic domains [132], we expect that the electronic
structure and transport anisotropy of the stripe and zigzag phases, which we focus on in
this paper, will not differ significantly between slightly off-stoichiometry structures and the
r = % structure we use in our DFT calculations. Moreover, the NMR measurements, as
well as contemporary neutron experiments [214], find evidence for a slight in-plane magnetic
moment in contrast to the earlier neutron studies [197, |. However, given the strong
magnetic anisotropy which favors spins to point along the c axis in Fe;/3NbS, [54, 70], we
expect our focus on calculations of transport properties with collinear magnetic order along
¢ to be an acceptable simplification.

Having obtained conductivity tensors within the constant relaxation time approximation,
the resistance R is then the resistivity p = o~! multiplied by the ratio of device length
to cross-sectional area (~ 3.7 x 107* cm)?[148]. In order to meaningfully compare the
anisotropy of the resistance tensors with different magnetic orders and U values, we treat I'
as a parameter and adjust it for each U and magnetic order such that the R,, component of
the tensor (corresponding to the resistance along the [100] direction) is roughly equivalent
to the experimentally measured resistance of Fe;/3sNbS, samples, between 0.25-0.3 Q[131].
Since the samples associated with these values are not mono-domain [118], this measured
value does not, strictly speaking, correspond to the R, of a single domain crystal, but we
use it nonetheless to normalize the computed resistance tensors.

The results of our calculations appear in Table 9.1. The transport anisotropy we compute
from our PBE+U calculations, which we define quantitatively as A = g—g, is consistent
with the calculated band velocities in Figure 9.3. For a-stripe ordering, R,, along [120] is
higher than R,, along [100] by roughly a factor of 2, for both U values considered. With
a-zigzag ordering however, R,, becomes smaller than R,, (A < 1). For both sets of PBE+U
calculations, the transport anisotropy for a-zigzag is significantly reduced compared with
stripe ordering. Indeed, for U = 0.3 eV the transport anisotropy is nearly unity for zigzag
ordering.

Having obtained approximate resistivity tensors for mono-domain Fe;/;3NbS,; with a-
stripe and a-zigzag ordering based on our PBE+U calculations, we can infer the current-
domain response by comparing with experiment. In the following discussion we use our
PBE+U results with U = 0.9 eV. In Figure 9.4a we show the a-b plane of the Fe;/;3NbS,
crystal overlaid with the directions of applied currents and measured resistances for the ex-
periments in references [145] and [132]. In these experiments, DC pulses, J{"¢ and Jyrie,
were applied in succession along the —k,/[120] and k,/[100] crystallographic directions. The
low-frequency AC current JP™°% used to measure the sample resistance after each writing
pulse was applied at an angle of 45° with respect to DC pulses. The transverse resistance



CHAPTER 9. ORIGINS OF ANISOTROPIC TRANSPORT IN ELECTRICALLY

SWITCHABLE ANTIFERROMAGNET Fe; ;3NbS, 106
Table 9.1: In-plane transport anisotropy computed for Fe;3NbS,, defined as A = Ryy with

x along [100], for a-zigzag and a-stripe phases for both U values used in our PBE+U cal-
culations. Absolute values of R,, and the values of I" used in Equation 9.3 are provided as
well.

U=0.3eV U=09eV
a-stripe | a-zigzag | a-stripe | a-zigzag
[' (meV) 10 5 30 10
R, (Q) | 0.26 0.28 0.28 0.25
A 2.15 0.97 2.00 0.77

f1 =0.38 (a-stripe) f1 =0.395 (a-zigzag)

Jwrite
—— 1

1 -.“—‘-0- Jg“'“e R —

- —3 1 1 I I 1 1 I
.25.27 .29 .31.33.35.37 .39 .41 .25.27 .29 .31.33 .35.37 .39 .41

f3 I3

Figure 9.4: Electrical switching. (a) Fe;/3NbS, crystal structure overlaid with directions of
applied currents and measured resistance in experiment. In the experiment, orthogonal
pulses applied along the red and blue arrows switch Fe; 3NbS; between two states with
different domain populations, detected by changes in the transverse resistance R, . (b)-(c)

Calculated AFEE{“L based on equations 9.4 (red) and 9.5 (blue) as a function of f3 for a fixed

initial value of fi. f1 (f3) can be viewed as the resulting fractional population of the
domain with principle axis along [100] after Jy™¢ (J¥ri¢). (b) corresponds to a-stripe
phase, (c) corresponds to a-zigzag phase. Dashed lines (same color coding as the
PBE+U-derived points) indicate the value of f3 where the calculated AIE{{HL agrees with the
experimental data in reference Maniv2021 for Fe intercalations likely corresponding to
a-stripe and a-zigzag order.

R, was read out along the contact which is orthogonal to J?"°¢. Note that this is equal to
the R,, component of the resistance tensor with z axis along J’""; we obtain this tensor by
a rotation of our computed resistance matrix with = axis along [100][233] (see Appendix 9.9
for details). The experimental changes in R, normalized by the longitudinal resistance R
along JP°%are shown in reference [132] to be ~ 2.5% and ~ 1.3% (when normalized to the
same DC pulse current density) for Fe intercalations corresponding to = 0.31 and x = 0.35
respectively; the smaller intercalation was used in reference [145] as well. In addition to the
reduction in magnitude of ARl going from the under-intercalated to over-intercalated sam-
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ple, the sign of resistance change also switches; specifically, for z = 0.31 a pulse along Jy"
causes a decrease in R, whereas for x = 0.35, AR is positive after a pulse along J¥"*¢. In
interpreting the experimental results, we assume that x = 0.31 and x = 0.35 correspond to
a~stripe and a-zigzag order respectively, as implied by neutron measurements (in addition
to the results by Van Laar and Suzuki[l197, |, a recent more systematic analysis of Fe
concentration specifically indicates a stripe ground state for x < % and a zigzag AFM ground
state for © > %[ ].) We note also that both zigzag and stripe magnetic space groups are
consistent with the three-fold AFM domain structure observed by Little et al. (where the
zigzags/stripe directions for each domain are related by 120° rotations about c[116].)

With these assumptions of the experimental magnetic order, we can explore the implica-
tions of our computed resistance tensors for domain repopulation with a-stripe and a-zigzag
magnetism. We assume the total transverse resistance after each J{™¢ or J¥"* pulse is
proportional to the sum of resistances of the three domains, weighted by their fractional ar-
eas f, analogously to previous studies of domain-based anisotropic magnetoresistance[l01].
Then, we have

120)/3ue SR = AR 4RI 4 R, (9.4)
and
100)/3y7% R = (R 4+ p RO 4 R, (9.5)

where R[fm] for example is the transverse resistance for a single domain with principle axis
along [010]. f1 and f, are fractional domain populations after a JV"¢ pulse, f3 and f4 result
from a J¥7 pulse, and we set fo = (1— f1)/2 and f; = (1— f3)/2 in equations 9.4 and 9.5 to
ensure the fractions add to unity. We assume in each case that f([010]) = f([110]) because
both writing pulses bisect these two axes; the resistance tensors for the three domains are
connected by rotations of 27/3. The R, values in equations 9.4 and 9.5 are obtained from
the off-diagonal components of these tensors.

We can calculate the relative fractional domain changes required to reproduce the exper-
imental switching amplitudes for the pulses, defined as

write | Jwrite write | Jwrite —
‘]1 /J2 Jl /J2

AR R ~R,
_ = _ , (9.6)
R Ry
Where — me’te me'te _ Juw‘ite me’te
R, =R +RE) 2R =R +RET))2 (9.7)

are the averages of the two resistances. We do this by selecting constant values of f; (fraction
of [100] domain after J{"¢) and plotting Ag:”i for both J¥"¢ and J¥¢ as a function of f3

(fraction of [100] domain after J3"*). Note that AR’FME /Ry and AR”PMQ /Ry are each
dependent on both f; and f3 through R, and R defined in equation 9.7. Results based on
our PBE+4U (with U = 0.9 eV) calculations are shown in Figures 9.4b and 9.4c. In both plots
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we have selected f; such that the values of f; and f3 which yield the experimental resistance
changes are symmetrically displaced about f = %, which is the equilibrium fraction we would
expect for all three domains in the absence of external current. We emphasize however that
for a given magnetic order, the qualitative results are identical regardless of the value of
fi1, i.e. the sign and magnitude of the fractional change f; — f3 of domain [100] between
the the pulses remains constant. The dashed lines correspond to the experimental percent
values for the intercalation corresponding to the same magnetic order. We see that, as a
consequence of the crossover in the computed anisotropy from A > 1 for a-stripe to A < 1
for a-zigzag, the current-domain response for both magnetic structures is the same assuming
the experimental data with opposite AR signs indeed corresponds to the two proposed
magnetic orders. Specifically, to replicate the correct sign of switching from experiment,
for both a-stripe and a-zigzag order, f; — f3 > 0. This means that the J¥"*¢ pulse along
[120] causes a fractional increase in the orthogonal [100] domain, whereas the J3"¢ pulse
parallel to [100] destabilizes the [100] domain and increases the fraction of domains alongs
[010] and [110]. Moreover, we can see that experimental reduction in switching amplitude
for a~zigzag order compared to a-stripe is consistent with the reduced in-plane anisotropy we
find for a-zigzag order in our PBE+U calculations. Indeed, using our U = 0.9 eV PBE+U
results, the computed fractional changes from the equilibrium distribution % : % : % required
to match the corresponding experimental resistance changes are very close, f; = 0.38 for
a-stripe and f; = 0.395 for a-zigzag, as one would expect for a given current density.

9.7 Discussion and Conclusion

We have used DFT calculations to understand the magnetism and origins of the electrical
switching observed in Fe;/;3NbS;. Our PBE+U calculations indicate that the experimen-
tally proposed a-stripe and a-zigzag magnetic phases are nearly degenerate, consistent with
neutron data[l97, , | indicating that the ground state switches for small changes in
Fe concentration. We find that the in-plane Fermi surface and corresponding transport for
a-stripe order is anisotropic, with R,, > R,,, for all values of U used in our PBE+-U calcula-
tions. The F'S and transport for a-zigzag order is also anisotropic but the degree of anisotropy
is reduced relative to stripe, and the quantitative results are highly sensitive to small changes
in the Hubbard U used. Our findings suggest that there are two important factors leading
to the particularly high anisotropy in electronic structure and transport for stripe order in
Fe;/3sNbS,. Firstly, the reduction of six-fold symmetry in the high-temperature paramagnetic
phase to two-fold symmetry due to the in-plane stripe magnetic order is consistent with the
high anisotropy of the FS. Isostructural Co;/3NbS,, also believed to have a stripe ground
state, has been reported to have an anisotropic F'S with quasi-flat bands much like Fe; ;3NbS,
from prior DFT calculations|[162]. With a-zigzag ordering however, the anisotropy in elec-
tronic structure and transport for Fe;3sNbS,, while still present, is significantly reduced in
spite of an identical reduction to two-fold rotational symmetry due to the magnetic order.
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This suggests that the magnetic interactions between nearest Fe neighbors may play an even
larger role than rotational symmetry reduction in determining the degree of anisotropy in
transport.

Our calculations also reveal that, for both a-zigzag and a-stripe magnetic order, a pulse
along a given direction should disfavor domains whose principle axes (and stripes/zigzags)
are parallel to the pulse, and increase the populations of the other two domains. This direc-
tional dependence has implications for the microscopic details of the mechanism responsible
for the current-induced domain repopulation. Further studies are required to understand
the origins of the current-domain coupling which leads to domains parallel to the current
pulse being disfavored, and whether this is consistent with the spin glass-mediated spin-orbit
torque mechanism proposed in reference [132].

To be more concrete, we explicitly mention two possible future experimental outcomes for
which our computed current-domain response will be informative. First, if further neutron
scattering studies show unambiguously that the Fe spins in Fe;/3NbS, have zero in-plane
component, the origin of current-induced switching must differ from traditional spin-orbit
torque mechanisms, including the spin-glass mediated case proposed in reference [132]. This
is because the in-plane directionality of the spin-orbit torque in the experimental geometry
could not result in a switching between domains with the Néel vector fully along [001] for all
three domains. In this situation, knowledge of the directionality of domain stabilization could
inform the search for a novel switching mechanism. Alternatively, further studies expanding
on reference [132] may definitively establish the direction in which polarized electrons in
the coexisting spin glass are rotating a small in-plane component of the Néel vector in the
ordered a-stripe and a-zigzag phases studied in this manuscript (i.e., away from or toward
the current). This information, combined with our finding that a current pulse destabilizes
domains with principle axes parallel to the pulse, will indicate the likely direction of the
in-plane Néel vector component for a given domain. To be specific, if the current is found to
rotate the in-plane component of the Néel vector away from the current pulse, our current-
domain response findings indicate that the in-plane component is along the direction of the
domain principle axis (parallel to the stripes or zigzags). However, if the current tends to
align the in-plane Néel vector component parallel to the pulse, this suggests that the small
in-plane moment is perpendicular to the direction of the domain principle axis. Overall, our
transport and electronic structure calculations support repopulation of magnetic domains
being the underlying cause of electrical switching in Fe;/3NbS,, and provide a platform for
future studies.

9.8 Appendix I: Commentary on PBE+U Treatment

As mentioned in the main manuscript, to approximately account for the localized nature
of the d electrons in Fe’*, we add a Hubbard U correction (GGA+U)[6], and we select the
rotationally invariant version of GGA+U by Dudarev et al.[15] Magnetic properties such
as magnetic moment, ground state order, and magnetoanisotropy energy (MAE) can be
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extremely sensitive to the choice of Hubbard Uj; this is particularly well documented in the
case of Fe-based compounds[219, 24]. Thus, it is crucial to rationalize our selection of U
values. Perhaps the most consistent experimental finding across all studies of Fe; ;3NbS, is a
very large MAE, with the easy axis of Fe spins lying along the ¢ ([001]) axis of the hexagonal
unit cell[54, 185, 70]. Hence, in a recent study on Fe; sNbSy[70], we chose U to recover the
best experimental estimate of the MAE. From comparing Curie-Weiss temperatures with
magnetic fields along [001] and [100], a quantitative estimate of the anisotropy D =1 £ 0.2

meV per Fe atom was established[70]. Note that D is the so-called anisotropy constant
defined through the MAE contribution to total energy:
Eyap=—D) ()7 (9.8)

where the sum is over all Fe spins in the unit cell. Ey4r and D can be calculated within
DFT simply by comparing self-consistent total energies in the case of all Fe?* spins aligned
along the a([100]) axis and along the ¢ ([001]) axis:

_ Ehoo — ooy

D
252 ’

(9.9)
where we use S = 2 for the Fe?* spins. The factor of two accounts for the two Fe atoms
in the primitive unit cell. The PBE+U value of D as a function of U is shown in Figure
9.5. We find that for values greater than U = 2 eV, PBE+U incorrectly predicts a negative
MAE, implying an easy axis in-plane, along a, rather than c¢. Below U = 2 eV, D changes
non-monotically with U, increasing rapidly to large positive values (easy axis along c) before
decreasing again below U ~ 1.3 eV. We find that a very small U = 0.3 eV gives D = 1.09
meV /Fe, in good agreement with experiment.

However, in examining the Fermi surface and transport anisotropy using U = 0.3 eV in the
present study, we found negligible anisotropy for a-zigzag magnetic ordering, implying that a
domain repopulation would have no effect on the sample resistance for zigzag ordering. The
large contribution of Fe d states at the Fermi level for Fe; 5NbS, (see Section 7?7) makes the
Fermi surface and transport extremely sensitive to small changes in U; thus we hypothesize
that the isotropic transport with a-zigzag ordering for U = 0.3 eV is coincidental. We
therefore repeated our calculations with U = 0.9 eV, with which the MAE as computed
by PBE+U is overestimated (D = 11.95 meV/Fe), but has the correct sign. As shown
in the main manuscript, the transport for a-zigzag order becomes much more anisotropic
than with U = 0.3 eV, with A = g—zz = 0.77. We note that, with a-zigzag order (a)
although nearly isotropic, R,, < R, with U = 0.3 eV for reasonable values of I" used in the
constant relaxation time approximation; and (b) a calculation with U = 4 eV (see later in
Supplement), not included in the main manuscript, also yields R,, < R,, with A = 0.74.
Thus, we are quite confident of the qualitative finding R,, < R,,, even though the reduced
magnitude of anisotropy makes it less unambiguous than our results for a-stripe.

Finally we explored whether the near-isotropic transport for a-zigzag at U = 0.3 eV might
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Table 9.2: Calculated intraplane nearest neighbor spin exchange Ji, in meV/Fe atom, and
anisotropy A = g—zz with a-stripe and a-zigzag magnetic order for the two U values used for
our PBE+4U calculations in the main text, as well results with artificially expanded lattice
parameters. The values of I' used in the Kubo linear response conductivity calculation and
the resulting R, (along [100]) are included as well.

U = 0.3 eV, experimental lat. | U=0.9eV | U=0.3 eV, 1.05 lat

J1 (meV/Fe) 0.76 0.57 0.11
A, a-stripe 2.15 2.0 1.88
[' (meV) 10 30 10
Raw () 0.26 0.28 0.31
A, a-zig 0.97 0.77 0.96

[ (meV) 5 10 5
R (Q) 0.28 0.25 0.26

be connected to the overestimation of nearest-neighbor Heisenberg spin exchange parameters

at this U value, as we reported in reference [70]. While the magnitude of MAE and relative
values of different Heisenberg exchange parameters computed with U = 0.3 eV led to good
agreement with experiment in reference [70], the magnitudes of our coupling parameters

were overestimated by roughly a factor of 5. This was part of our motivation in this study
for examining another U value larger than 0.3 eV, rather than smaller, as increased electron
localization from the higher U is expected to lead to smaller orbital overlap, and hence
smaller Heisenberg exchange parameters [115]. The nearest neighbor in-plane spin exchange
parameter Jq, as calculated with PBE4U for U = 0.9 eV, is reduced by nearly 25% as
shown in Table 9.2, as expected. To test whether the changes in quantitative anisotropy
were directly caused by the decrease in J; rather than other effects influenced by U values,
we repeated the transport and magnetic studies for U = 0.3 eV using a crystal structure
with all three lattice constants expanded by 5% from the experimental values, to artificially
decrease the exchange constants while keeping the U value constant. However, as shown
in Table 9.2, while J; decreases dramatically, much more so than when using U = 0.9 eV,
compared to the calculations with experimental lattice constants, the anisotropy for a-zigzag
order remains nearly constant (a-stripe anisotropy on the other hand does decrease). Thus, it
seems that subtle changes in the electronic structure from the specific choice of U, which are
independent of the Heisenberg exchange parameters, are responsible for the highly sensitive
transport properties.

9.9 Appendix II: Rotation of coordinate system to
determine conductivity of magnetic domains

The Kubo conductivity matrix ¢ discussed in the main text is a second-order tensor with
components o;; referring to the conductance measured in the jth direction given an applied
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Figure 9.5: Magnetoanisotropy constant D as a function of effective Hubbard U for
Fe; /3NDbS,. Positive values indicate an easy axis along ¢, whereas negative values indicate

an easy plane (spanned by a and b). U = 0.3 eV gives the best agreement with experiment,
with D = 41.09 meV /Fe.

electric current in the ith direction. The magnetic space groups of the a-stripe order and
a-zigzag order in Fe;/;3NbS, (specifically, Pc21212; and P.212,2 respectively) dictate the
symmetry-allowed form of the tensor. With our coordinate system defined as having = along
the [100] direction (along the magnetic stripes/zigzags), and y along the [120] direction in
terms of the hexagonal lattice vectors, this form for both space groups is

Ope 0O 0
o= 0 o, 0], (9.10)
0 0 o0,

with all off-diagonal elements constrained to 0. This is consistent with our numerically cal-
culated tensor for mono-domain Fe; sNbS,. The resistivity tensor p = o~ in this coordinate
system has the same form:

= 0 0
p=(0 .- (1) : (9.11)
0 0

Ozz
Recall however, that for the device geometry used to write and read magnetization changes
in Fe; /3NbS,, the current Jrrobe ysed to measure resistivity is applied at an angle of 45° with
respect to the [100] crystalline axis. Thus, to model the actual transport measurements for
the [100] oriented domain, we need to rotate the coordinate system of our resistivity tensor
so that the z axis is along Jrrobe:

pgbg?z}sured = Rﬂ'/4 X po X R;/lzp (912)
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where p&i?swed is the resistivity tensor for the [100] domain with z axis along JPr°% py is

our original ab-initio resistivity tensor with z axis along [100], and

1 =19
Rru= \f f 0 (9.13)
/4 V2 V2 ’
0 0 1

is the matrix which rotates the coordinate system about the z/[001] axis by an angle of 45°.

R, in the main text (assuming a single domain along [100]) is then just the (xy) component
of pgig]swed (which is no longer 0 in the rotated coordinate system). Following the same

procedure, to obtain the resistivity tensor with z along JP"*% for the domains along [010]
and [110] we rotate pl°"

measured

by an additional 27 /3 and 47 /3 respectively:

010 100 _

pgnea}sured = RQW/?’ X pgnea]sured X R27r1/3’ (914)
110 100 _

p’Enea]sured = R47T/3 X pgnea]sured X R47r1/3’ (915>

where Ror/3 and Ry, /3 are again rotation matrices.

It should be noted that in the above methodology, we are implicitly assuming that the
observed anisotropic magnetoresistance (AMR) in Fe; 5NbS, is dominated by noncrystalline
contributions [167]; that is, the transport signal is dependent only on the absolute angle
subtended by the current and the direction of the magnetic stripes.



114

Chapter 10

Outlook

In this thesis, we have used DFT calculations to characterize properties which could be
leveraged for technological applications in several topological semimetals and an electrically
switchable AFM. We have also examined ways in which we can tune the ground state mate-
rial properties to bring them closer to our desired functionalities. In Chapter 5 for example,
we show that substitution of the transition metal ion in TMDs with topological ladders can
bring the topological features closer to the Fermi level. In Chapter 6, we enforce metastable
ferromagnetic order in hexagonal manganites to change the electronic structure from trivially
insulating to topological and semimetallic. Our studies in Chapter 9 of transport anisotropy
in Fe; 3NbS, suggest that the contrast in resistance states induced by electrical switching of
antiferromagnetic domains can be enhanced or decreased depending on the underlying AFM
order (i.e. whether Fe;/3NbS, is in the “stripe” or “zigzag” AFM phase). Our studies provide
improved insight on the properties and tunability of TSMs and electrically switchable AFMs
within the versatile material motifs of hexagonal oxides and TMDs. They also motivate
questions for continued work in this subspace of functional materials. We will mention just
a few here.

In our first-principles investigation of TSM features in hexagonal manganites in Chapter 6,
we point out that while our findings of nontrivial topology in such tunable systems is highly
promising for practical applications, many challenges must be overcome to experimentally
realize the metastable structures studied in our DFT calculations. YCrOs; and YVO3 both
have an orthorhombic space group as their ground state, but as discussed in reference [2] for
the case of YFeQg, it is possible to stabilize the hexagonal structure via epitaxial strain. A
DFT-based total energy mapping for the orthorhombic versus hexagonal phases of YCrO;
and YVOj; as a function of strain would be invaluable in determining the feasibility of epi-
taxial stabilization for these particular compounds. Additionally, TSM features in hexagonal
YCrO3 and YVOj3 occur in the centrosymmetric P63/mmc space group which is normally
energetically favorable only at high temperatures where the magnetism is disordered; thus,
in order to stabilize the FM magnetic order which induces the TSM band structures, some
method of stabilizing the P63/mmec phase at low temperatures is likely necessary. Griffin
et al. found in reference [65] that for the hexagonal manganite InMnOs, Ga alloying on the
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Mn site favored the centrosymmetric P63/mme phase at low temperatures. This provides
motivation for further studies of the stability of P63/mmc relative to the polar P63cm phase
of YCrO3 and YVOj3 upon alloying, and whether the TSM band structures remain robust
with this alloying.

While our studies of electrically switchable AFMs focus on the single intercalated TMD
Fe;/3NbS,, the high tunability of magnetically intercalated TMDs via intercalant species,
intercalant concentration and TMD base suggests that other compounds in this space might
also be promising for spintronics applications. To this end, DFT characterizations of the
ground state magnetic order, electronic structure, and symmetry-dictated form of the spin-
orbit torque for other magnetically intercalated TMDs would be instructive. For Fe-intercalated
NbS,, as mentioned in Chapters 8 and 9, our DFT calculations thus far only use the stoichio-
metric x = % concentration of Fe, whereas experimental characterizations of the electrical
switching suggest that a disordered spin-glass background at concentrations slightly above
and below 3 enhances the efficiency of the SOT [132]. While computationally challenging
due to the large supercells required to mimic the concentrations, more comprehensive DFT
studies of the magnetic order and transport anisotropy of Fe; 3, sNbS, for small § would
provide further insight into the experimental observations.

Finally, we mention that there has been some recent experimental evidence that the
topological Dirac semimetal NiTey; which we characterize in Chapter 5 may become super-
conducting when doped with Re on the Ni site [130]. The coexistence of TSM features and
superconductivity holds great promise in the application of topological quantum computa-
tion in particular. We are currently performing DFT calculations to investigate the effect
of Re substitution on the electronic structure of Ni(;_yReyTe,, in particular, whether Fermi
surface reconstruction that could facilitate the superconductivity appears to occur.
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