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REVIEW

Dairy Foods and Dairy Fats: New Perspectives on
Pathways Implicated in Cardiometabolic Health
Kristin M Hirahatake,1 Richard S Bruno,2 Bradley W Bolling,3 Christopher Blesso,4 Lacy M Alexander,5 and Sean H Adams6,7

1Department of Epidemiology, College of Health Sciences, University of California, Irvine, CA, USA; 2Human Nutrition Program, Department of Human
Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA; 3Department of Food Science, University of Wisconsin-
Madison, Madison, WI, USA; 4Department of Nutritional Sciences, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT,
USA; 5Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, State College, PA, USA; 6Arkansas Children’s
Nutrition Center, Little Rock, AR, USA; and 7Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA

ABSTRACT

Low-fat and nonfat dairy products have been promoted as part of a healthy dietary pattern by both US dietary guidelines and professional
organizations for several decades. The basis for this recommendation stems in part from the putative negative cardiometabolic effects associated
with saturated fat consumption. However, as nutrition research has shifted from a single nutrient to a whole-food/dietary pattern approach, the
role of dairy foods and dairy fat in the diet–disease relationship is being reexamined. Most observational and experimental evidence does not
support a detrimental relationship between full-fat dairy intake and cardiometabolic health, including risks of cardiovascular disease and type 2
diabetes. Indeed, an expanded understanding of the dairy food matrix and the bioactive properties of dairy fats and other constituents suggests a
neutral or potentially beneficial role in cardiometabolic health. To consider how consuming dairy foods, including full-fat dairy, is associated with
cardiometabolic health, this review provides an innovative perspective on mechanisms that link dairy consumption to 3 main biological systems at
the core of metabolic health, the gastrointestinal, hepatic, and vascular systems. Adv Nutr 2020;11:266–279.
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Introduction
Cardiovascular disease (CVD) is the leading cause of death
worldwide. In recent years, there has been a substantial
global increase in cardiometabolic diseases such as type 2
diabetes (T2D), hypertension, and obesity (1). In fact, the
American Society of Endocrinology, the National Choles-
terol Education Program, and the WHO, among others,
now recognize cardiometabolic syndrome as a disease entity.
Cardiometabolic disease is a combination of metabolic
dysfunctions characterized by insulin resistance, impaired
glucose tolerance, dyslipidemia, hypertension, and central
obesity, and its presence markedly increases CVD morbidity
and mortality (2). Diet, among other lifestyle factors such
as physical activity and smoking, has an established link
with cardiometabolic health (3, 4). Over the past decade,
nutrition research related to health outcomes has shifted
from a focus on individual nutrients to complete dietary
patterns and whole foods. This is reflected by evidence-based
dietary recommendations such as the Dietary Guidelines
for Americans (DGA). The 2015–2020 DGA specifically
identified low-fat and fat-free dairy foods as components of
healthy eating patterns (5). Public health recommendations

to emphasize low-fat and fat-free dairy are attributed, in
part, to the putative negative health effects of saturated
fats. Yet, the evidence linking dietary saturated fat with
CVD risk and risk indices is far from settled, with many
studies demonstrating no association (6–13). Furthermore,
the majority of observational and experimental evidence
does not support a detrimental relationship between con-
suming full-fat dairy and cardiometabolic health outcomes,
including CVD or T2D [e.g., (12, 14–21)]. In addition,
consideration of the health impact of dairy fats and dairy
foods must take into account their complex matrix (e.g.,
milk oligosaccharides, calcium, live and active cultures in
yogurt, milk fat globule membranes and polar lipids, and
bioactive peptides), which contribute to the gastrointestinal
(GI) tract milieu of diet-derived factors that influence the
host and microbiome. With these considerations in mind,
there is a critical need to revisit current concepts related to
dairy fats (and other dairy components) with respect to how
they associate with physiological systems relevant to whole-
body cardiometabolic health. In contrast to other recent
reports that broadly focus on specific dairy foods or dairy-
containing diet patterns and CVD disease risk or T2D [e.g.,
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(11, 12, 14, 17–19, 22)] the current review aims to consider
new perspectives on mechanisms that link dairy-containing
diet patterns (or specific dairy components) to 3 main
biological systems at the core of metabolic health, the GI,
hepatic, and cardiovascular systems. Using this approach,
one can build an integrative picture of how dairy foods
may impact the splanchnic and vascular systems, which are
episodically and chronically exposed to factors associated
with individual meals and food patterns.

Current Status of Knowledge
Dairy consumption and gastrointestinal tract function

Dairy foods can broadly affect immune function via
specific mechanisms in the gut. The GI tract is closely linked
with immune function and maintains homeostasis with
the gut microbiota via the mucosal layer, intestinal barrier,
and immunocytes (23). These systems affect cardiovascular
health via direct effects on GI tract immune cells and/or
the flux of microbial antigens and metabolites into the
bloodstream, which impact whole-body and vascular site
inflammation (24, 25). Dendritic cells in the gastrointestinal
tract sample microbial antigens, migrate to the mesenteric
lymph nodes and induce the activation of T cells (26).
Intestinal activation of Toll-like receptor 4 (TLR4) by
endotoxin increases proinflammatory T cell populations
and cytokine production (27). In contrast, commensal
bacteria may stimulate barrier function and/or produce
metabolites (e.g., propionate and butyrate) that dampen
intestinal inflammation (28, 29). There are multiple avenues
through which the GI tract, and dietary components that
modify its structure or function, may have substantial
effects on cardiometabolic health. Notably, animal studies
have contributed extensively to the current understanding
of this area. Although some humans have polymorphisms
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conferring lactase persistence, laboratory rodents gradually
lose intestinal lactase activity after weaning (30, 31). Lactase
activity is typically not described in rodent studies. Since
undigested lactose can be fermented in the GI tract by gut
microbiota, intestinal lactase activity may be an important
variable to consider when interpreting results from animal
models.

Metabolic endotoxemia and cardiovascular health.
Immune homeostasis in the intestine is achieved in part
through cellular responses to the gut microbiota. Translo-
cation of gut-derived endotoxins, e.g. lipopolysaccharides
(LPS), from Gram-negative bacteria generate a proinflam-
matory response by activating TLR4 (32, 33). Consumption
of dietary emulsifiers or high-fat challenge meals can, under
some circumstances, activate postprandial inflammation by
coabsorption of LPS and lipids (34, 35). Collectively, chronic
low-grade LPS exposure is described as “metabolic endo-
toxemia.” This phenomenon has been implicated in obesity
and insulin resistance by inducing chronic inflammatory
responses (36, 37) that may increase risk of cardiovascular
disease (38, 39).

Postprandial inflammation and cardiovascular health.
Recognition of the link between postprandial lipemia, in-
flammation, and CVD has led to further investigation of
how inflammation could develop in the postprandial state.
Initially, postprandial lipemia was observed in individuals
with coronary artery disease after consuming a high-fat,
high calorie (HFHC) challenge meal consisting of heavy
whipping cream, chocolate syrup, and sugar (729 kcal/m2)
(40). Subsequently, postprandial lipemia induced by an
HFHC meal was associated with inflammation. In healthy
individuals, an HFHC challenge meal (white bread, ham,
margarine, coffee, and whole milk providing 602 kcal/m2)
increased NF-κB activation in peripheral blood mononuclear
cells (PBMCs) after 6–9 h (41).

The postprandial inflammatory response is determined by
the metabolic state of the individual (e.g., obese or lean) and
by the macronutrients in the test meal (42). It has been shown
that both predominately carbohydrate-based and lipid-based
meals may induce postprandial inflammation (42). Carbo-
hydrate consumption increases postprandial glucose, which
by itself is sufficient to induce oxidative stress and increase
circulating IL-6 (43). Impaired glucose tolerance exacerbates
inflammation in response to glucose ingestion (43). Lipid
consumption alone induces postprandial endotoxemia in
rodents (44). Endotoxins are coabsorbed with lipids, and
emulsified lipids increase postprandial lipemia and endo-
toxemia relative to unemulsified fat intake (44, 45). The
majority of studies that have utilized high-fat meals to induce
postprandial inflammation include carbohydrates (46), so
both lipid- and glucose-mediated mechanisms that lead to
postprandial inflammation should be considered. A recent
analysis of the literature on HFHC meals and postprandial
inflammation concluded that the inflammatory response
was not associated with the proportion of fat (46). The
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postprandial inflammatory response was also inconsistent
among studies of HFHC meals. While postprandial IL-6
was increased in 32 of 45 studies, blood IL-1β , TNF-α, and
C-reactive protein (CRP) were not consistently induced by
a high-fat meal (HFM) (46). Others have suggested that
leukocyte markers of inflammation are more consistent in the
postprandial state than concentrations of plasma cytokines
(47). This implies that cell-based markers of inflammation
may be more robust indicators of inflammatory status in
the postprandial state than circulating cytokines. Since few
studies have comprehensively assessed cell-based markers
of postprandial inflammation, a complete understanding
of the immune response to different dietary components
is limited. Recently, the concept that saturated fatty acids
robustly activate macrophage inflammation under normal
conditions, or even after an HFM, has been challenged
(46, 48).

Dairy and postprandial inflammation.
In the context of an HFHC challenge meal, emulsified dairy
fats can induce postprandial inflammation, and thus, dairy
foods (typically cream, butter, cheese, or milk) have been
included in the majority of challenge meals to study post-
prandial inflammation (46). In fresh milk, the fat is stabilized
by the milk fat globule membrane (MFGM). Subsequent pro-
cessing by the addition of emulsifying ingredients can alter
the physical state of fats in dairy products by redistributing
naturally occurring phospholipids and proteins, which may
affect the postprandial response. Emulsifying ingredients
are also added to dairy foods to achieve desired textures.
In a randomized crossover study, obese or normal-weight
individuals consumed a mixed meal consisting of 40 g milk
fat, 50 g bread, and 160 mL skimmed milk (251 kcal) after
an overnight fast (45). The dairy fat was consumed as an
emulsification in the milk (emulsified with milk protein) or
spread on the bread (unemulsified). Endotoxemia was not
evident in normal-weight individuals (n = 8) after either
treatment. The emulsified dairy fat substantially increased
LPS activity 60 min after the test meal, but the unemulsified
dairy fat spread had no effect on postprandial endotoxemia
in obese individuals (n = 8) (45).

Other studies using a combination of dairy cream and
sugar have yielded inconsistent results on postprandial
inflammation. For instance, a 300-kcal intake of cream alone
induced postprandial endotoxemia and TLR4 expression in
mononuclear cells (49). In another example, a cream, sugar,
and water mix that provided 954 kcal increased postprandial
IL-6 in healthy men, but this increase was no different than
the increase occurring after a lower-calorie meal (50). In
a double-blind randomized crossover intervention study,
postprandial IL-8 was increased by a high-fat shake (53%
wt/vol) fresh cream, 3% (wt/vol) sugar and 44% (wt/vol)
water with a macronutrient composition of 6 g protein,
95 g total fat (54 g saturated), 22 g carbohydrates, and
954 kcal relative to an average breakfast shake containing
43% (wt/vol) full cream milk, 48% (wt/vol) full cream

yogurt, 4% (wt/vol) lemonade, 4% (wt/vol) fantomalt (a high-
energy carbohydrate oral supplement) (Nutricia BV), and
1% (wt/vol) wheat fiber with a macronutrient composition
of 17 g protein, 14.5 g total fat (9 g saturated), 49.5 g
carbohydrates, 2.3 g fiber, and 400 kcal (50). In contrast,
1200 kcal provided from milk, cream, sucrose, and protein
or 150 kcal from ice cream and whipping cream had no effect
on postprandial inflammation (51, 52).

Several studies have evaluated whether dairy products can
prevent postprandial inflammation. Schmid et al. compared
the effects of an HFHC dairy meal (including cheese and
butter), an HFHC nondairy control meal, and an HFHC
nondairy meal supplemented with full-fat milk on postpran-
dial inflammatory and metabolic responses in healthy men
(53). Endotoxemia, IL-6, and TNF-α concentrations were
not different after the dairy-supplemented meals compared
with the nondairy HFHC meal (53). A subsequent study
provided acidified milk or a probiotic yogurt (containing
Lactobacillus rhamnosus GG) to healthy men (n = 14,
BMI 18.0 to 25.0 kg/m2) after 2-wk consumption of dairy
products prior to the HFHC meal (54). Both the milk and
yogurt (400 g/d) reduced the postprandial IL-6 and TNF-
α integrated AUC, relative to the preintervention baseline
HFHC meal (54). These changes were in parallel with
alterations of the gut microbiota during each dietary phase.
Bilophila wadsworthia decreased with milk consumption,
while Lactobacillus delbrueckii spp. bulgaricus and Strepto-
coccus salivararius spp. thermophilus increased after yogurt
intake (54). Further analysis of these changes found that
yogurt intake altered the expression of 747 genes in the
blood transcriptome at 2 h after consumption (55). In
contrast, 55 and 4 genes were changed by the intervention
at 4 and 6 h, respectively. Yogurt dampened postprandial
genes associated with immune activation, as well as the
aryl hydrocarbon receptor (AhR). Targeted analysis of AhR
ligands identified a positive correlation between circulat-
ing xenometabolite indole-3-acetaldehyde and AhR gene
expression (55). Yogurt consumption increased microbe-
derived indole derivatives relative to acidified milk, which
may explain the differential effects of these 2 products on the
AhR (56).

Another study compared the consumption of low-fat,
sweetened yogurt to an isocaloric nondairy control snack
in obese and nonobese women (57, 58). Premeal yogurt
consumption inhibited the increase of postprandial IL-6
in both obese and nonobese women (n = 30 per group)
after an HFHC meal (57). Yogurt consumption also reduced
postprandial LPS-binding protein (LBP): sCD14, a marker of
endotoxin exposure (57). Premeal yogurt consumption has
also been shown to reduce postprandial hyperglycemia in
obese women (58). Additional daily consumption of 340 g
yogurt for 9 wk further decreased postprandial LBP: sCD14
in obese women, although postprandial IL-6 was similar to
the acute effect (58).

Collectively, these studies suggest that yogurt and acid-
ified whole milk consumption reduce postprandial inflam-
mation in the context of HFHC challenge meals. In contrast,
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consumption of significant amounts of emulsified fat may
exacerbate postprandial inflammation in obese individuals.
Excessive intake of cream contributes to postprandial inflam-
mation in some cases. Therefore, the dose, metabolic state of
the individual and food matrix all impact how dairy affects
postprandial inflammation.

Mechanisms by which dairy affects GI tract function.
Studies of dairy in animal models suggest that a number of
components could impact GI tract function in a manner that
modulates intestinal immune function. For example, after
4 wk, serum LPS activity and fecal Gram-negative bacteria
were reduced in mice fed a high-fat diet (45% kcal from
fat from soybean oil and anhydrous milk fat) modified to
contain 0.25% (wt/wt) milk sphingomyelin, a polar lipid
in milk fat (59). Supplementation of 1.5 g/kg/d milk fat
globule membrane by daily gavage for 15 d reduced bacterial
translocation and increased the expression of claudin tight
junction proteins in the ileum of rats with small-bowel re-
section (60). Low-fat, sweetened yogurt powder also inhibits
intestinal barrier dysfunction by increasing tight junctions
in human intestinal Caco-2 cells exposed to inflammatory
cytokines (61). Probiotics commonly found in fermented
dairy products, milk proteins, and peptides have also been
shown to directly improve intestinal barrier function through
tight junction stabilization in Caco-2 cell culture models (62–
66). Results from intervention studies in humans suggest
that consumption of 400 g/d fermented milk for 2 wk
can alter gut microbiota and microbial xenometabolites
that may improve barrier function (54–56, 67). However, a
complete understanding of the impact of the dairy matrix on
microbiota composition and function is lacking.

Dairy consumption and hepatic function
Relationship of liver function with cardiometabolic
health.
The liver is a multifunctional organ, which plays a critical
role in health and disease as a hub for whole-body nutrient
metabolism, as well as a major site of detoxification enzymes,
hormone production, and immune functions. The liver is a
major site of lipid biosynthesis, including the production of
bile acids, fatty acids, and cholesterol. In many species, it is
the major organ responsible for the secretion of endogenous
lipids in the form of VLDL and the clearance of circulating
lipoproteins, including LDL. Often referred to as the hepatic
manifestation of metabolic syndrome, nonalcoholic fatty
liver disease (NAFLD) has recently emerged as the most
common liver disorder worldwide and is present in the
majority of obese individuals (38). NAFLD includes a
broad spectrum of conditions occurring in the absence
of significant alcohol use, including steatosis, nonalcoholic
steatohepatitis (NASH), advanced fibrosis, cirrhosis, and
hepatocellular carcinoma. NASH is expected to become the
most common indication for liver transplantation in the
future (38). Beyond the liver, NAFLD also worsens health
outcomes associated with obesity by increasing the risk for
CVD (68). This is thought to be due to liver dysfunction

contributing to systemic inflammation, oxidative stress, and
dyslipidemia (69).

Overview of liver lipid metabolism in health and disease.
NAFLD is thought to be driven by hepatic insulin resistance.
Ectopic lipid deposition of lipid metabolites (e.g., ceramide,
diacylglycerol) and inflammation are thought to contribute
to hepatic insulin resistance in NAFLD. Insulin is responsible
for 2 primary actions in the liver: 1) increasing de novo
lipogenesis and 2) reducing gluconeogenesis. Insulin tran-
scriptionally suppresses gene expression of gluconeogenic
enzymes and induces the transcription of several genes
involved in de novo lipogenesis, by transcriptional and
posttranslational actions on the lipogenic transcription fac-
tors (70–72). Hepatic insulin resistance is associated with
impairments of selective branches of the insulin signaling
pathway, with the capacity for insulin to stimulate de
novo lipogenesis retained at the same time as the inability
to suppress hepatic gluconeogenesis (73). In parallel with
increases in hepatic de novo lipogenesis are reductions in
β-oxidation. Insulin-induced lipogenesis leads to increased
malonyl-CoA production, which in turn inhibits carnitine
palmitoyl transferase-1, and as a result, fatty acid oxidation
is reduced (74). Consequently, this altered lipid handling
further contributes to the progression of liver injury and
NAFLD (75).

Hepatic insulin resistance is also related to increased
VLDL-triglyceride production, which contributes to athero-
genic dyslipidemia (76). LDL receptors are abundant in the
liver, and this organ plays a major role in LDL clearance from
circulation (77). The cholesterol content of LDL cholesterol
is well established as a predictor of cardiovascular events and
the primary target of lipid-lowering therapy (78). The liver is
also the primary source responsible for the elevated plasma
CRP concentration observed in NAFLD (79, 80). Circulating
high-sensitivity CRP (hsCRP) is an independent predictor of
future myocardial infarctions (81) and cardiovascular events
(82). Thus, liver dysfunction has systemic implications for
cardiometabolic health, with both lipid and inflammatory
contributors to its sequelae.

Clinical studies using dairy products on NAFLD-related
measures.

Dairy compared with nondairy diet interventions. The
effects of dairy products on liver-derived lipoprotein con-
centrations have been studied extensively and reviewed
previously (83, 84). However, few dietary interventions have
examined the effects of dairy products as the primary inter-
vention variable on NAFLD-related measures or in NAFLD
patients. NAFLD may be diagnosed in humans through
a liver biopsy, considered the gold standard, but is most
commonly examined via imaging and other noninvasive
diagnostic measures of liver injury, such as serum alanine
transaminase (ALT) and aspartate transaminase (AST) (85).
Observational studies have inversely linked NAFLD with
low-fat dairy intake (86, 87). Thus, dietary patterns which
incorporate dairy, such as the DASH (Dietary Approaches
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to Stop Hypertension) diet, may be useful in mitigating this
disease. An 8-wk parallel intervention study demonstrated
benefits of following a calorie-restricted DASH diet ( n = 30),
which incorporated at least 3 servings of low-fat dairy
daily, on lowering BMI, serum ALT, HOMA-IR, hsCRP,
and serum triglycerides, among other variables, compared
to a calorie-restricted control diet ( n = 30) in patients
with NAFLD (88). However, other differences in the DASH
diet compared to the control diet, such as greater fruit and
vegetable intake and lower simple sugar intake, likely also
contributed to the observed benefits. A 4-wk crossover study
in overweight/obese adults (n = 47) showed a diet rich in
low-fat dairy (4–6 servings/d) increased insulin resistance
(HOMA-IR) compared to a diet high in lean red meat
with minimal dairy (<1 serving/d) (89); however, there
was no effect on serum inflammation markers (90). In
contrast, in a 6-wk randomized crossover study in adults
with metabolic syndrome (n = 37), the consumption of
3 servings of low-fat dairy daily (296 mL 1% milk, 170 g
nonfat yogurt, 56.7 g 2% cheese) compared to isocaloric
carbohydrate-based control foods (42.5 g granola bar and
355 mL juice) significantly lowered plasma ALT, AST, hepatic
steatosis index, and mRNA expression of IL-6 and IL-
1β in PBMCs. In this study, dairy intake had no effect
on HOMA-IR or other plasma inflammatory biomarkers
measured (91). Body weight, waist circumference, and BMI
were lower after the low-fat dairy period in women but
not men. The authors speculated that the observed decrease
in plasma aminotransferases may be due to attenuation of
hepatic apoptosis and improvement in hepatocyte function
by branched-chain amino acids from casein in milk, and/or
an effect of increased circulating vitamin D concentrations
following dairy consumption. The specific mechanisms by
which at least some dairy foods impact liver fat and liver
health indices remain to be elaborated.

Yogurt clinical studies. Gut microbiota have been linked
with liver function and the development of NAFLD in both
rodents (92) and humans (93). Yogurt has been investigated
for its effects on liver function measures as both conventional
(live starter cultures) and probiotic-containing yogurt (i.e.,
yogurt with starter cultures and added probiotics). In a
recent 24-wk open-label randomized, controlled, clinical
trial, NAFLD patients were instructed to follow a healthy
lifestyle and consume either 300 g daily of a synbiotic yogurt
containing 1.5 g inulin and Bifidobacterium animalis subsp.
lactis (n = 34), 300 g of a conventional yogurt (n = 34),
or no yogurt as a control (n = 34) (94). After 24 wk,
liver steatosis and liver span (a measure of hepatomegaly)
assessed by ultrasonography were both shown to be reduced
to a significantly greater extent with the synbiotic yogurt
group compared to the other 2 groups. The synbiotic yogurt
group also had greatly improved serum liver enzymes, with
significantly lower levels of ALT, AST, gamma-glutamyl
transferase, and alkaline phosphatase. These changes were
also observed with reductions in HOMA-IR and serum lipids
(cholesterol, triglycerides, and LDL cholesterol) compared to

controls. Relative to controls, grade of steatosis, liver function
variables, and lipid profiles improved with conventional
yogurt, but to a lesser degree than with synbiotic yogurt.
Probiotic yogurt was also shown to be more effective than
conventional yogurt in another study in NAFLD patients. In
a parallel intervention study, NAFLD patients who consumed
300 g/d of a probiotic-containing yogurt (B. lactis Bb12 and
Lactobacillus acidophilus La5) (n = 36) for 8 wk had signifi-
cant reductions in weight, BMI, ALT, AST, LDL cholesterol,
and insulin compared to patients consuming a conventional
yogurt (n = 36) (95). A growing body of evidence suggests
that probiotic-containing yogurt can reverse or improve liver
steatosis indices relative to conventional yogurt and controls,
whereas conventional yogurt only modestly improves or has
no effect on these indices compared with no yogurt intake.

Cheese, whey, and human liver function. Currently, there
are no controlled trials that have specifically examined the
effects of cheese intake in NAFLD patients. However, relative
to other full-fat dairy products such as butter, cheese intake
has not been shown to raise LDL cholesterol concentrations
in human intervention studies (96–98), suggesting an effect
on the liver’s function in lipoprotein secretion or clearance
from circulation. A 12-wk randomized parallel intervention
study in adults with ≥2 metabolic syndrome risk factors
(n = 139) demonstrated no significant effects of a diet
incorporating 80 g/d of regular-fat cheese (n = 45) on body
composition, serum lipids, nuclear magnetic resonance–
lipoprotein profiles, HOMA-IR, or hsCRP compared to
reduced-fat cheese ( n = 48) or low-cheese control diets
(n = 46) (99, 100).

High-protein diets containing whey protein have been
investigated for their potential benefits in liver function. In
particular, the high cysteine content of whey protein may
be beneficial in supporting hepatic levels of the antioxidant
glutathione, which has been shown to be lower in livers of
NAFLD patients (101). However, data from well-controlled
trials are sparse in this area. In a randomized, double-
blind, placebo-controlled trial, elderly women (n = 166;
70–80 y) consumed 30 g/d of whey protein–supplemented
beverage (n = 82) or an energy-matched, low-protein, high-
carbohydrate control beverage (n = 84) for 2 y (102). After
2 y, there were no significant differences in weight, waist
circumference, BMI, insulin, glucose or HOMA-IR between
groups. Additionally, there were no significant differences
in hepatic steatosis between the treatments, as measured
by computed tomography scans, although hepatic steatosis
significantly worsened from baseline in the control but
not the protein-treated groups. Strong inferences about the
effects of cheese and whey intake on liver function and
NAFLD are limited by the paucity of studies currently
available on this topic, which warrants further investigation.

Animal models using dairy bioactive components on liver
function and NAFLD development.

Whole dairy. Whole-dairy foods and dairy bioactive
components have been investigated for their effects on liver
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function and NAFLD, mostly in rodent models. Adams and
colleagues (103) investigated the effects of high-calcium diets
with and without nonfat dry milk (NFDM) on metabolic
and inflammatory outcomes in diet-induced obese C57BL/6
mice. Male mice were fed an obesogenic soy protein–based
high-fat diet (45% kcal as fat, 0.5% wt/wt calcium) for 8 wk,
then randomized to consume for an additional 8 wk either
the same diet (control; n = 29), a high-fat diet with 1.5%
(wt/wt) calcium (high-Ca; n = 30), or a high-fat diet with
high calcium (1.5% wt/wt) from NFDM (NFDM; n = 30).
Mice fed the NFDM diet had improved glucose tolerance
and lower liver triglycerides compared to both the high-
calcium and control groups, suggesting the noncalcium dairy
matrix components are responsible for benefits seen in these
outcomes. Accordingly, feeding studies in rats have shown
benefits of cheese on hepatic lipid content in some, but not
all, studies (104). Interestingly, diets containing 10% (wt/wt)
ripened cheese (15 d and 35 d) reduced hepatic lipids in obese
diabetic mice ( db/db) compared to a diet with 10% (wt/wt)
unripened cheese ( 105), suggesting the duration of ripening
affects the cheese matrix and health response.

Polar lipids from dairy and MFGM. In its natural state,
milk fat is encased in a tri-layer milk fat globule membrane
(MFGM), which is composed of proteins, cholesterol, and
polar lipids (106). Polar lipids comprise approximately 1%
of the total lipids of milk, and include glycerophospholipids
(e.g., phosphatidylcholine) and sphingolipids (e.g., sphin-
gomyelin), which emulsify triglyceride in the aqueous phase
of milk (107). The polar lipid content of dairy products can
vary considerably due to processing (108). Importantly, these
MFGM components may impact the health effects of milk fat
triglycerides and cholesterol in dairy products. In particular,
sphingomyelin and its sphingolipid metabolites have been
examined extensively in rodent models for their properties
in inhibiting the intestinal absorption of other lipids (e.g.,
cholesterol, fatty acids) (). Due to their putative inhibition
of the intestinal absorption of other lipids, as well as being
a source of choline for liver health, polar lipids from MFGM
have been investigated for potential benefits on liver function
(109).

Blesso and colleagues have shown that feeding purified
dietary sphingomyelin (SM; 0.1–0.25%, wt/wt diet) chron-
ically to high-fat diet–fed C57BL/6 mice attenuates hepatic
steatosis (59, 110). However, Yamauchi et al. (111) reported
that supplementing 1% (wt/wt) of milk SM for 4 wk did not
significantly alter hepatic lipids in genetically obese KK-Ay or
low-fat diet–fed C57BL/6 mice. Wat et al. (112) and Kamili
et al. (113) reported that chronic supplementation with
various milk polar lipid extracts (0.25%–0.35% SM, wt/wt
diet) significantly attenuated hepatic steatosis by lowering
cholesterol and triglycerides in livers of C57BL/6 mice fed
high-fat diets (21% butter fat, 0.15% cholesterol by weight).
Effects were also observed in genetically obese KK-Ay mice
with polar lipid–supplemented diets (0.5%–1.7% wt/wt)
(114). However, some rodent studies have not shown effects
on hepatic triglycerides. Supplementing an MFGM isolate

(0.5% polar lipids, 0.1% SM by weight of diet) to AIN-
76A diet-fed rats for 12 wk significantly reduced hepatic
cholesteryl ester content, with no change in hepatic TG (115).
Furthermore, supplementing palm oil–based high-fat diet
with 1.2% (wt/wt) milk polar lipids did not impact hepatic
lipids in C57BL/6 mice after 8 wk (116). More research
should be conducted on the effects of milk polar lipids,
particularly those provided as components of whole dairy
compared to those which are provided as an isolate. Further
research is warranted in the clinical realm, as well, to test
how MFGM and other dairy lipids impact human liver
phenotypes.

Odd-chain fatty acids from dairy. The odd-chain satu-
rated fatty acids, pentadecanoic acid (15:0) and heptade-
canoic acid (17:0), are xenolipids (“nonself ” lipid molecules
that are derived from microbes) produced by the gut
microbiota in ruminant animals and may serve as circulating
biomarkers of dairy fat intake in humans (117). Odd-
chain fatty acids comprise ∼1.5% of milk fat, with 15:0
being twice as abundant as 17:0 (118). Interestingly, serum
concentrations of 15:0 and 17:0 were negatively correlated
with NAFLD activity scores and hepatocyte ballooning
scores in a cohort of NAFLD patients (n = 106) (119). Serum
15:0 was also negatively correlated with the severity of fibrosis
and AST, while serum 17:0 was negatively correlated with
both AST and ALT. Mice fed methionine-choline–deficient
diets supplemented with 15:0 (5% wt/wt) for 4 wk were
partially protected from liver injury. Supplementation with
15:0 attenuated elevations in serum AST, normalized liver
weights of animals, and reduced the number of ceroid-
laden macrophages (119). These results suggest that odd-
chain fatty acids found in milk fat may influence liver
function; however, more research is needed to confirm these
initial findings and to understand if physiologically relevant
intakes or systemic levels influence metabolic health or liver
function.

Protein and/or bioactive peptides from milk. Adminis-
tration of whey protein has been shown to improve liver
function and reduce NAFLD-related outcomes in mice
(120), and in rats in some studies (121), but not others
(122). Male Wistar rats fed various whey protein mixtures
(whey protein isolate, whey hydrolysate) or individual
isolated whey proteins (α-lactalbumin, β-lactoglobulin, or
glycomacropeptide) by oral gavage (∼1 g/kg body weight)
for 28 wk had lower ALT concentrations and hepatic
malondialdehyde, with some whey proteins also improv-
ing body weight (whey isolate, α-lactalbumin, and β-
lactoglobulin) and hepatic glutathione levels (whey isolate,
whey hydrolysate, and β-lactoglobulin) (121). In another
study, female C57BL/6 J mice were fed high-fat diets for
11 wk, with or without 100 g whey protein isolate per liter
drinking water (120). Compared to high-fat diet controls,
mice fed the whey protein isolate had fewer hepatic lipid
droplets evaluated by histological analysis, as well as lower
concentrations of nonpolar lipids (mainly triglycerides) in

Pathways linking dairy intake and metabolic health 271



livers. However, a recent study in low-fat diet–fed male
Wistar rats reported that while orally administering a whey
protein concentration (WPC-80) at 0.5 g/kg body weight
for 21 d increased hepatic glutathione concentrations and
induced liver injury compared to saline ingestion, including
significantly increasing ALT, AST, hepatic malondialdehyde,
IL-1β and TGF-β1 concentrations (122). Further studies are
needed to clarify these contrasting effects of whey protein in
some rodent studies. In addition to whey protein, hydrolyzed
casein derived from dairy products may also be a source
of bioactive compounds/peptides for protection of liver
function. The inclusion of an extensively hydrolyzed form of
casein, instead of nonhydrolyzed casein, to a high-fat, high-
sucrose diet (45% kcal as mainly lard) was shown to lower
body weight, serum lipids, and macrovesicular steatosis in
LDLr−/−.Leiden mice after 21 wk (123).

Probiotics found in dairy products. Kefir, a fermented milk
product and potential source of probiotics, has been reported
in rodents to have beneficial effects on liver outcomes in
NAFLD induced by high-fat diet (124), high-fructose corn
syrup–enriched diet (125), and genetic deficiency of leptin
(ob/ob mice) (126). The isolation and administration of a
potential probiotic from fermented milk was reported to
have beneficial effects on NAFLD in rats (127). Lactobacillus
paracasei Jlus66 (4 × 1010 cfu) administered to 60% kcal
high-fat diet–fed rats for 20 wk decreased body and liver
weights, serum ALT, and NAFLD lesion score compared to
control animals fed a high-fat diet.

Calcium. Due to the putative effects of calcium on
forming insoluble fatty acid soaps in the GI tract and
increasing fecal fat excretion (128), dietary calcium may be an
important dairy component which affects liver fat accretion.
Accordingly, male C57BL/6 mice that were fed a calcium-
adequate high-fat diet (0.5% calcium, 20% corn oil wt/wt)
for 18 mo had significantly lower NAFLD-related liver injury
(hepatic inflammation, fibrosis, and overall NAFLD activity
scores) and greater gut microbial diversity than mice fed a
calcium-deficient high-fat diet (0.04% calcium wt/wt) (129).
Furthermore, in male Wistar rats that were overfed as pups,
feeding a diet that was 2-fold enriched in calcium (10 g/kg
of diet) for 2 mo significantly improved histological steatosis
scores and liver oxidative stress markers (130).

Dairy consumption and cardiovascular function
Diets containing higher levels of dairy foods have been
reported to be associated with neutral or lower risks for
CVD-related morbidity and mortality (14, 131, 132). A
mediating benefit of higher dairy food intakes on CVD risk is
attributed to its blood pressure–lowering effects, which have
been reviewed (133) and are the focus of several systematic
reviews and meta-analyses (134–137). However, reduced
blood pressure is unlikely to fully explain the mechanisms
by which dairy foods may lower CVD risk. Evidence from
controlled trials that will be discussed herein support that

dairy foods improve vascular function independent of any
blood pressure–lowering effect.

The challenge to evaluating dairy foods with regard
to CVD risk relates to the decades-long development of
this disorder. However, vascular dysfunction has an early
etiologic origin and mediates the progression of CVD.
Brachial artery flow-mediated dilation (FMD) is a well-
established method to evaluate vascular function and has
prognostic value to predict cardiovascular events (138–
140). This technique in combination with measures of
cardiometabolic biomarkers has been applied in controlled
clinical studies to help establish the mechanistic benefit of
dairy foods.

Postprandial effects.
In the acute setting, the controlled administration of dairy
foods or their bioactive components have been examined for
their impact on vascular health in the postprandial period.
In a double-blind, randomized controlled trial with cross-
over design, persons with metabolic syndrome ingested
1% low-fat milk (474 ml) or an isocaloric volume of rice
milk that was matched for micronutrients but had a higher
proportion of its energy from carbohydrate (40 g compared
with 24 g) in lieu of less protein (1 g compared with 16 g)
(141). During the 3-h postprandial period, FMD responses
were unaffected by low-fat milk, whereas FMD decreased
following rice milk ingestion; blood pressure was unaffected
regardless of treatment. The vasoprotective activity of low-
fat milk was attributed to its lack of impact on postprandial
hyperglycemia-induced oxidative stress that otherwise limits
nitric oxide bioavailability. Indeed, rice milk significantly
increased circulating glucose in association with increasing
lipid peroxidation. Rice milk also increased postprandial
levels of asymmetric dimethylarginine (ADMA) relative
to arginine (ADMA/ARG). In contrast, low-fat milk did
not increase postprandial lipid peroxidation and actually
increased circulating ARG. This suggests that its limited
impact on hyperglycemia protects against oxidative stress,
which is otherwise known to increase arginase-mediated
catabolism of ARG (142). These biochemical findings are
consistent with evidence that FMD responses are at least, in
part, mediated in a nitric oxide-dependent manner (143).

Controlled feeding trials.
Based on postprandial hyperglycemia mediating vascular
dysfunction, a randomized cross-over trial in persons with
prediabetes examined the vasoprotective activities of nonfat
dairy milk or its casein and whey proteins when co-
ingested with glucose (144). While glucose alone (75 g)
decreased FMD responses, glucose-induced decreases in
FMD during the 3-h postprandial period were prevented
when nonfat milk (474 ml containing 16 g total protein) or
isonitrogenous amounts of either casein or whey protein were
co-ingested with glucose. Consistent with the co-ingestion
of whey or casein with carbohydrate similarly attenuating
acute hyperglycemia in individuals with prediabetes (145),
each dairy-based treatment similarly lowered areas under
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the curve (AUC0–3 h) for plasma glucose while increasing
cholecystokinin (144). This suggests that hyperglycemia
was attenuated by delaying glucose absorption. Further,
the lipid peroxidation biomarkers malondialdehyde and F2-
isoprostanes (that were otherwise increased by glucose)
were attenuated by all dairy-based treatments in association,
with lower methylglyoxal and endothelin-1. AUC0–3 h of
nitric oxide metabolites were similarly higher among all
dairy-based treatments, which occurred coincident with
greater ARG availability and lower ADMA/ARG, and with
symmetric dimethylarginine relative to ARG (SDMA/ARG)
but without affecting tetrahydrobiopterin redox status.

In a similarly designed controlled trial in individuals with
prediabetes, postprandial vascular function and metabolic
health was examined in response to dairy milk fat per se
(146). Participants ingested glucose alone or glucose with
either nonfat dairy milk (0.4 g fat) or full-fat dairy milk
(16.2 g fat) prior to assessing FMD and cardiometabolic
biomarkers during the 3-h postprandial period. Despite
prospective observational reports linking dairy fat with
CVD risk (147, 148), findings of this controlled study
(146) showed that dairy milk, regardless of its fat content,
similarly protected against glucose-induced impairments in
vascular function. In agreement with others (141, 144), the
vasoprotective mechanism was likely attributable to limiting
glucose-induced oxidative stress: the latter decreases ARG
and increases both ADMA/ARG and SDMA/ARG. Together,
these findings support that dairy milk, mediated through
its proteins and without any detriment of its lipid fraction,
helps to promote vascular function by improving nitric oxide
bioavailability.

Potential mechanisms of action: gut–vessel interactions.
Evidence from a large-scale prospective observational study
indicated that 2-h blood glucose following a glucose tol-
erance test, but not fasting glucose, predicted CVD-related
mortality in persons with impaired glucose tolerance or
those with overt diabetes (149). This further highlights that
postmeal glucose excursions may be important to regulate
vascular function. Although insulinotropic effects of milk
proteins (≥20 g/serving) have been observed (150), the doses
are generally higher than typical consumption patterns of
dairy foods. Thus, rather than due to enhanced glucose
clearance, the glucose-lowering effects of dairy foods are at
least partly mediated at the level of the gut. This is consistent
with dairy milk or milk proteins increasing circulating chole-
cystokinin (146) in agreement with separate clinical studies
suggesting slower gastric emptying (145, 151). Further, C-
peptide concentrations increased among individuals with
prediabetes following the acute ingestion of whey protein
isolate (50 g) compared with maltodextrin (145). Both
whey protein isolate and sodium caseinate also increased
glucose-dependent insulinotropic polypeptide to a greater
extent than maltodextrin, but neither dairy-derived protein
affected glucagon-like peptide-1 (GLP-1) levels. However, the
effects of whey protein on GLP-1 may be dose dependent,
consistent with a higher dose (70 g) but not a lower dose

(30 g) increasing peak GLP-1 during a 3-h postprandial
period (151). Overall, the evidence from controlled studies
supports the cardioprotective benefits of dairy milk along
the gut–vessel axis. Whether the attenuation of oxidative
stress by dairy foods contributes to changes in vascular
function remains unknown. Limited evidence indicates that,
at least acutely, nitro-γ -tocopherol is unaffected by low-
fat dairy milk ingestion (141). That this nitrative stress
biomarker increases by proinflammatory responses (152)
suggests that dairy foods protect against acute vascular
dysfunction independent of inflammation, but further study
is needed.

Potential mechanisms of action: microcirculation.
The microcirculation controls 80% of systemic vascular
resistance, and dysfunction of the microcirculation is highly
predictive of long-term CVD risk (153, 154). One of the
earliest detectable functional manifestations of CVD is re-
modeling of the resistance vasculature and an attendant loss
of endothelium-dependent vasodilation due to a reduction
in nitric oxide. Thus, the mechanistic impact of dairy on
microcirculatory control is a relatively unexplored area of
investigation.

Independent of blood pressure reduction, dairy-derived
bioactive proteins protect vascular endothelial function
through multiple putative mechanisms, including acting as
free-radical scavengers (155, 156), reducing NADPH oxidase
(157), inhibiting lipid peroxidation (158), and improving
antioxidant enzyme capacity through increased expression
and activity (159, 160). The majority of the studies that
have mechanistically demonstrated these effects have been
performed in isolated cell and animal models (161, 162).
Collectively, the results of these studies suggest that dairy
proteins can preserve endothelial function by limiting reac-
tive oxygen species (ROS).

An additional proposed mechanism underlying the pro-
tective effects of dairy on microcirculatory control involves
angiotensin-converting enzyme (ACE) inhibition (163–165).
In particular, casein-derived lactotripeptides including Val-
Pro-Pro and Ile-Pro-Pro exhibit modest ACE-inhibitory
properties. In a study involving stage I hypertensive men
(n = 24), in a double-blind placebo controlled design, 1 wk of
supplementation with casein hydrolysate improved vascular
responsiveness during reactive hyperemia (166). Subsequent
microarray analysis of the aorta in a spontaneously hyperten-
sive rat model indicated the target changes in gene expression
related to vascular function were increases in endothelial
NO synthase and connexin 40, and alterations in pro/anti-
inflammatory transcription factors, including NF-κB and
peroxisome proliferator–activated receptor γ , respectively
(167).

To date, few studies have interrogated the putative mech-
anisms underlying the impact of whole dairy foods on mi-
crocirculatory control in humans. In observational studies,
low-fat milk, yogurt, and cheese consumption was associated
with improved retinal microvascular quality in subjects with
elevated CVD risk (168). However, in prospective studies,
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acute low-fat milk consumption resulted in reduced NO-
dependent vasodilation in the skin compared to both a
water control and a eucaloric rice beverage comparison. The
human cutaneous circulation has emerged as a representative
vascular bed for assessing mechanisms mediating vascular
dysfunction and is a validated in vivo model for assessing
endothelial function in the microcirculation (169–171). De-
spite observing a reduction in NO-dependent vasodilation,
the total magnitude of the vasodilator response remained
unchanged (172). These data suggest that other non-NO–
dependent pathways, including vasoprotective hyperpolariz-
ing factors, may be modulated by dairy in the acute (single
meal) setting.

The matrix and fat composition of dairy may protect the
microvasculature from the detrimental effects of sodium.
Independent of the effects on blood pressure, sodium reduces
NO in the microcirculation through increasing superoxide
production through NADPH oxidase (173, 174). However,
recent data demonstrate that detrimental effects of sodium
are mitigated when ingested in a dairy complex (natural
cheese) (173). NO-dependent vasodilation in the cutaneous
microcirculation was impaired 90 min after sodium ingestion
at 560 mg and 1120 mg from a pretzel snack and 560 mg
from nondairy cheese (soya), which was ameliorated with the
localized treatment of the nonspecific antioxidant ascorbate.
Similar to the animal and cell culture studies, the conclusions
from this study suggest that the mechanisms mediating this
vasoprotective effect are through decreasing oxidant stress
(175). However, the exact component of the dairy cheese
matrix mediating this effect or the influence of the dairy
fat composition on these responses are unknown. Longer-
term controlled and free-living studies incorporating low-
and full-fat dairy cheese as a source of bioactive peptides
and sodium in a sustainable dietary pattern are needed, to
determine the precise mechanisms underlying these vascular
effects.

Conclusions
Considerations of how specific foods or food components
may impact whole-body health and function will benefit
from an integrative perspective: one that takes dietary
patterns, food matrices, and multitissue physiology into
account. In this review, we have considered how full-
fat dairy and other forms of dairy foods impact systems
directly relevant to cardiometabolic health, including the
gastrointestinal tract, liver, and vasculature. This unique
perspective, bolstered by epidemiological and observational
literature, generally supports the concept that dairy foods
(including full-fat dairy) included as part of healthy di-
etary patterns do not negatively impact factors such as
chronic or postprandial inflammation, CVD risk markers,
vascular function, or liver fat homeostasis. In fact, on
balance, epidemiological, randomized controlled trials and
mechanism-based evidence points to a neutral-to-protective
association of dairy with respect to cardiometabolic health.
This unique perspective, complemented by epidemiological
and observational literature, generally supports the concept

that dairy foods (including select forms of full-fat dairy such
as milk, yogurt, and cheese) included as part of healthy
dietary patterns does not contribute to deterioration of
metabolic health, e.g. by negatively impacting factors such
as chronic or postprandial inflammation, CVD risk markers,
vascular function or liver fat homeostasis. In fact, on balance,
epidemiological and mechanism-based evidence points to
a neutral to protective association of dairy with respect to
cardiometabolic health.
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